CodecLM: Aligning Language Models with Tailored Synthetic Data

Zifeng Wang', Chun-Liang Li', Vincent Perot', Long T. Lef,
Jin Miao', Zizhao Zhang', Chen-Yu Lee', Tomas Pfister'
TGoogle Cloud Al Google Research
{zifengw, chunliang, vperot, longtle,
jinmiao, zizhaoz, chenyulee, tpfister}@google.com

Abstract

Instruction tuning has emerged as the key in
aligning large language models (LLMs) with
specific task instructions, thereby mitigating
the discrepancy between the next-token predic-
tion objective and users’ actual goals. To re-
duce the labor and time cost to collect or an-
notate data by humans, researchers start to ex-
plore the use of LLMs to generate instruction-
aligned synthetic data. Recent works focus
on generating diverse instructions and apply-
ing LLM to increase instruction complexity,
often neglecting downstream use cases. It re-
mains unclear how to tailor high-quality data
to elicit better instruction-following abilities
in different target instruction distributions and
LLMs. To this end, we introduce CodecLM,
a general framework for adaptively generating
high-quality synthetic data for LLM alignment
with different downstream instruction distribu-
tions and LLMs. Drawing on the Encode-
Decode principles, we use LLMs as codecs
to guide the data generation process. We first
encode seed instructions into metadata, which
are concise keywords generated on-the-fly to
capture the target instruction distribution, and
then decode metadata to create tailored instruc-
tions. We also introduce Self-Rubrics and Con-
trastive Filtering during decoding to tailor data-
efficient samples. Extensive experiments on
four open-domain instruction following bench-
marks validate the effectiveness of CodecLM
over the current state-of-the-arts.

1 Introduction

Large language models (LLMs) have exhibited
remarkable capabilities across a wide array of
natural language processing (NLP) tasks (Brown
et al., 2020; Ouyang et al., 2022; OpenAl, 2023a;
Anil et al.,, 2023). In particular, LLMs can
be trained for improved instruction-following
through various methods, including fine-tuning on
human-annotated data (Touvron et al., 2023; Bai
et al., 2022) or extracted knowledge from stronger

(Optional)
Seed

L ~
As a superhero, how would you explain
Instructions

your origin story to a curious child? J

\E

Strong LLM

\L Metadata encoding

Self-Rubrics
Strong LLM

? Contrastive Filtering

N

Upon being revived, a group of people
given a second chance at life ... Describe
their journey and the choices they make.

c

High-Quality
Synthetic

Instructions

Figure 1: Overview of CodecLM. We first encode seed
instructions into metadata to capture the underlying dis-
tribution of instructions. This metadata is then decoded
through Self-Rubrics and Contrastive Filtering to tailor
high-quality synthetic instructions that are aligned with
the target instruction distribution. Intermediate instruc-
tions and responses are omitted in the figure for clarity.

LLMs (Wang et al., 2022; Taori et al., 2023; Chiang
et al., 2023; Peng et al., 2023). Recent progress in
this area highlights the critical role of high-quality
data in enhancing LLMs’ instruction-following ca-
pabilities (Zhou et al., 2023a; Kopf et al., 2023;
Chen et al., 2023b). However, acquiring such data
through human annotation remains cost-prohibitive
and difficult to scale, hindering further progress.

As an alternative solution to human annota-
tion, recent work explores generating instruction-
response pairs for LLM alignment by prompting
them with example data or prompts and iteratively
refining the results (Honovich et al., 2022; Wang
et al.,, 2022; Li et al., 2023; Xu et al., 2023).
While these methods are effective at generating
diverse and complex instructions for LLM align-
ment broadly, real-world applications often priori-
tize tailoring the LLM to specific downstream tasks
such as individual enterprise applications or per-
sonal assistant agents (OpenAl, 2023b), which of-

3712

Findings of the Association for Computational Linguistics: NAACL 2024, pages 3712-3729
June 16-21, 2024 ©2024 Association for Computational Linguistics

ten involve different instruction distributions. This
desideratum for task-specific alignment brings us
to a core question for data synthesis: how can we
tailor synthetic data to align LLMs for different
instruction-following tasks?

Specifically, current data synthesis approaches
fall short of providing effective solutions for task-
specific LLM alignment. While prior works by
Wang et al. (2022) and Xu et al. (2023) empha-
size diversity and complexity as hallmarks of high-
quality data, these approaches stumble when facing
different downstream tasks that may involve spe-
cific instruction distributions. A diverse dataset for
one task might not effectively cover the instruction
distribution for another. Furthermore, the definition
of “complex” instructions can be subjective and
vary across tasks. To complicate matters further, an
LLM might excel at some seemingly complex in-
structions while struggling with others that appear
simple according to human-crafted criteria. These
limitations underscore the need for a unified data
synthesis framework that can generate tailored data
to align LLMs on specific downstream tasks.

In this work, we present a novel framework,
CodecLM, which systematically generates tailored
high-quality data to align LLMs for different down-
stream tasks. A high-level overview of CodecLM
is shown in Figure 1. Inspired by the principles of
Encode-Decode process (Kramer, 1991; Kingma
and Welling, 2013), we leverage a strong LLM as a
codec to “encode” seed instructions from our target
task into instruction metadata and then “decode”
the metadata into tailored synthetic instructions.
The metadata serves as a word-level abstraction of
the input instruction distribution, including the use
case and skills for effective instruction following.
It can be automatically generated by encoding seed
instructions, or directly provided by users with a
high-level anticipation of the downstream task.

Once the metadata is extracted, we then “decode”
them to generate tailored instructions. We begin
by prompting a LLM with the metadata as con-
straints, creating basic instructions. To elevate the
instruction quality, we introduce Self-Rubrics. It
samples appropriate actions from strong LL.Ms to
make the basic instruction more complex or chal-
lenging based on the rubrics it generates for differ-
ent metadata. Intuitively, a general knowledge QA
instruction about math would differ in complexity
rubrics from one in creative writing about sports.
With self-generated rubrics and actions based on
metadata, the strong LLM crafts instructions that

better align the target LLM with specific knowl-
edge required for the downstream task. We can run
Self-Rubrics iteratively to control the instruction
complexity, similar to Xu et al. (2023), and finally
generate the corresponding responses.

We also introduce Contrastive Filtering during
decoding to further identify the most effective
instruction-response pairs by leveraging the qual-
ity discrepancy between the target and a stronger
LLM. This strategy identifies two key instruction
sets: (a) those the target LLM struggles with, push-
ing it to improve in its weak areas for more signif-
icant gains, and (b) those the target LLM excels
at, feeding them back into the Self-Rubrics process
for improved data efficiency. Contrastive Filtering
serves as a response-level analogy of contrastive
decoding (Li et al., 2022).

CodecLLM sets a new state-of-the-art on four
open-domain instruction-following benchmarks
with various LLLM choices, demonstrating its effec-
tiveness in LLM alignment for diverse instruction
distributions.

2 Related Work

Instruction Tuning for LLM Alignment. Tun-
ing LLM to faithfully follow instructions and align
with diverse human preferences remains a signif-
icant challenge (Efrat and Levy, 2020). Early re-
search primarily focused on cross-task generaliza-
tion, where models were fine-tuned on various pub-
lic NLP datasets to improve performance on diverse
tasks (Raffel et al., 2020; Wei et al., 2021; Aribandi
et al.,, 2021; Victor et al., 2022; Chung et al.,
2022). More recently, researchers have extended
instruction tuning to open-domains, characterized
by a wider range of formats and task types. This
shift has been driven by crowdsourcing human-
generated instruction-response pairs (Ouyang et al.,
2022; Kopf et al., 2023; Zhou et al., 2023a) and
LLM-generated data (Taori et al., 2023; Chiang
etal., 2023). Unlike prior work, CodecLM presents
a unique approach for tailoring synthetic data to
specific downstream tasks without human annota-
tion, utilizing the concept of instruction metadata.
Data Generation for Instruction Tuning. To ad-
dress the high cost of human annotation for high-
quality instruction-response pairs, several studies
advocate for automating the data generation pro-
cess (Schick and Schiitze, 2021; Liu et al., 2022;
Meng et al., 2023). Leveraging the in-context learn-
ing (Brown et al., 2020) ability of LLMs, Wang

3713

et al. (2022); Honovich et al. (2022) prompt LLMs
with seed instructions to generate synthetic ones.
These are then fed to stronger LLMs, e.g., Chat-
GPT, to generate responses for training the target
(often smaller) LLM (Taori et al., 2023). As a
representative work, WizardLM (Xu et al., 2023),
designs a fixed set of human-crafted operations to
increase complexity of instructions and control dif-
ficulty of generated data. Zhao et al. (2023); Zhou
et al. (2023a) further confirm the importance of
instruction complexity for LLM alignment through
empirical studies. Different from these works that
rely on pre-defined rules without considering the
downstream tasks, CodecLM enables automati-
cally tailoring instructions for different downstream
tasks and target LLMs. We also introduce Self-
Rubrics and Contrastive Filtering to further identify
the most effective instruction-response pairs.
Distillation. Alternatively, tuning the target LLM
with responses generated from another LLM can
be viewed as knowledge distillation (Hinton et al.,
2015; Beyer et al., 2022). However, our focus
remains on instruction generation, while still being
flexible to readily integrate with existing distillation
techniques (Hsieh et al., 2023; Liang et al., 2023).
Finally, we discuss some of the most relevant
recent work. AttrPrompt (Yu et al., 2023) leverages
LLM as attributed data generator by extracting at-
tributes within instructions. However, it focuses
solely on classification tasks and requires human
intervention for attribute selection. In contrast, our
work focuses on the broader context of aligning
LLMs to follow open-domain instructions, elim-
inating the need for human efforts. MSP (Chen
et al., 2023a) utilizes trainable soft prompts to
control generation, but requires gradient access
to the LLM. Our method, on the other hand, is
readily compatible with black-box LLMs that only
offer API access for high-quality data generation.
SteerLM (Dong et al., 2023) analyzes quality-
related aspects of responses, instead of the instruc-
tions, to capture human preference. Therefore,
SteerLM can be used alongside CodecLM as a
parallel approach for enhancing response quality.

3 Problem Statement

We study the open-domain instruction following
problem (Wang et al., 2022; Taori et al., 2023; Xu
et al., 2023), where instructions vary in input for-
mat and tasks. Specifically, we consider two practi-
cal scenarios: (1) Starting with a given set of n seed

instructions Dy = {I;}'_;, each drawn from some
underlying distribution P;. For our experiments,
we create a set of seed instructions using a held-out
validation set. Practically, such instructions can
be collected from the usage traffic of users. (2)
In the absence of seed instructions, but with prior
knowledge of downstream tasks, we directly start
with a given set of instruction metadata M (see
Section 4.1 for definition). The latter scenario is
especially useful for end users who lack existing
instruction data but wish to jumpstart LLM tailored
to specific applications, similar to the concept of
GPTs (OpenAl, 2023b).

We focus on the first scenario for clarity, though
the second can be derived similarly by leveraging
an LLM as the encoder (Section 4.1). Our goal is to
generate a set of high-quality instruction-response
pairs D, = {(Ij,-, R;-)}}”:l, using a strong LLM f,
and then use D, to fine-tune the target LLM f;. We
evaluate the performance of the fine-tuned LLM f;
on test instructions from the target distribution P,
to which we are aligning.

4 CodecLM

We propose CodecLLM, a general framework for
generating high-quality instruction-response pairs
tailored to different downstream tasks and LLMs,
eliminating the need for human annotation. See
Figure 2 for method overview.

4.1 LLM as Codec for Instructions

In this section, we introduce the concept of using
a strong LLM as a codec, i.e., both encoder and
decoder, for instruction generation.

LLM as Encoder with Instruction Metadata.
We begin by encoding the given seed instructions
D, = {1I;}!, into instruction metadata M, i.e.,
keywords that capture the underlying target instruc-
tion distribution. Inspired by the task pool by Wang
et al. (2022) and the post-hoc analysis on skill dis-
tribution by Xu et al. (2023), we define the meta-
data as encompassing two key aspects: use case
and skills. Use case describes the intended task
(e.g., question answering or creative writing), while
Skills are the knowledge the LLM required to have
to successfully respond to the given instruction
(e.g., algorithms or communication). Skills are
often generalizable to different use cases. There-
fore, each instruction has a single use case and
may involve multiple skills. To extract this meta-
data, we leverage the strong LLM f; following

3714

fs Strong LLM

| Seedinstruction |

As a superhero, how would you
explain your origin story to a
curious child?

Target LLM

S Response
Scorer

Final nstruction

Instruction Metadata f
S

—
Skills | Role-Play | |Story-Telling| -

|G| < 8 Instruction needs improvement! J‘

1. Introduce additional characters
with unique personalities,
backgrounds, and motivation...

Self-Rubrics

Write a story about a person who
is given a second chance at life
after dying.

Upon being revived, a group of
people given a second chance
at life ... Describe their journey...

Instruction

cloaked figure spoke, “lam ...”

Winning Response

\G| > 6| Quality
In the shadowed realm where Gap
souls lingered, Kai awoke to a
symphony of whispers. Another

fs

PR

A group of people is given a
second at life, they qutckly realize
that they are all different ..

Strong LLM
Response
Contrastive
Fllterlng

Figure 2: Overview of the proposed CodecLM. First, the strong LLM f; encodes the seed instruction into in-
struction metadata, specifying its use case and skills required for responses. Next, f, decodes metadata into basic
instructions. Meanwhile, Self-Rubrics leverages f; to generate rubrics and actions to improve the basic instruction,
tailoring them for the downstream task. Finally, Contrastive Filtering uses a scoring function S to compares f;
and f;’s responses. The most effective pairs are selected for aligning the LLM, while less effective instructions are
sent for further improvement. In this figure, the strong LLM’s response is winning against the target one’s, so we
select the corresponding pair for instruction tuning the target LLM.

the prompt template in Figure 7, Appendix A.9.
While richer definitions are possible based on finer-
grained instruction-following metrics (Zhou et al.,
2023b), we prioritize use case and skills for their
broad applicability across diverse instruction dis-
tributions. Future work can explore extending this
metadata further.

For each instruction I;, we extract the corre-
sponding use case u; and set of skills s;. We then
have the set of metadata as M = {(u;, s;)}}" ;.
Instructions may share or partially overlap in their
u;’s and s;, reflecting the distribution of tasks and
capabilities within the seed instructions. Use cases
and skills are generated on-the-fly, not limited to
some predefined sets, enabling broader applicabil-
ity. However, we can always provide such con-
straints with our prior knowledge, or even directly
write out metadata without any seed instructions.

LLM as Decoder for Instruction Generation.
Given the metadata M, we decode metadata into
synthetic instructions, following a generation and
tailoring paradigm. For each use case and skills
pair in M, we list them as constraints to prompt
the strong LLM f; to generate multiple instruc-
tions. Therefore, the generated instructions are
for the given use case, and require the given skills
to be responded. Moreover, to prevent the LLM
from generating repetitive instructions, we encour-
age its generation to be diverse in the prompt, and
do not provide any demonstrations that the LLM
might copy from. The example prompt template

for generating basic instructions is in Figure 8, Ap-
pendix A.9. Continuing the decoding process, we
then tailor the basic instructions for more effective
alignment through Self-Rubrics (Section 4.2) and
Contrastive Filtering (Section 4.3).

4.2 Instruction Tailoring via Self-Rubrics

Metadata-conditioned instructions lay the ground-
work for aligning the target LLM to desired tasks.
Studies suggest that more complex instructions can
improve alignment performance (Xu et al., 2023;
Zhao et al., 2023). A common practice is to involve
human experts crafting general guidance to com-
plicate instructions, such as adding reasoning steps
or constraints. However, this one-size-fits-all strat-
egy falls short for diverse instructions. Tailoring
guidance to different tasks, like solving calculus
problems versus writing news articles, requires dis-
tinct approaches.

Therefore, we introduce Self-Rubrics, which
leverages the strong LLM to tailor instructions
by adjusting their complexity according to the ex-
tracted metadata. Self-Rubrics first guides the LLM
to generate metadata-specific rubrics for assessing
instruction complexity. Then, informed by these
rubrics, the LLM generates a corresponding set of
actions to enhance the instruction’s complexity. For
metadata (u;, 8;), the corresponding set of gener-
ated actions is a;. Our generated actions are more
domain-specific, and unambiguous than generic
rules crafted by human, making the complicated

3715

instructions better tailored towards the target distri-
bution captured by the metadata. For example, for
the use case of “business plan development” and
skills of “market research and planning”, generic
rules like “add reasoning steps” is vague and inap-
propriate. On the contrary, Self-Rubrics is able to
generate actions like “add SWOT analyisis” and
“include comparison with market competitors” (see
Appendix A.8 for the full details) to complicate
the instruction. The prompt template to generate
rubrics and actions for instruction improvement is
shown in Figure 9, Appendix A.9.

With the obtained actions {a;}}_;, we can iter-
atively prompt fs to complicate the basic instruc-
tions, following the prompt template in Figure 10.
We randomly sample an action a; from the multiple
actions generated for a pair of use case and skills.
This design choice not only enables controlled com-
plexity (Xu et al., 2023), but also prevents potential
confusion between different actions for the LLM.

4.3 Instruction Selection via Contrastive
Filtering

While Self-Rubrics tailors complex instructions
based on instruction metadata, not all instructions
are equally effective for instruction tuning, regard-
less of their complexity (Chen et al., 2023b; Zhou
et al., 2023a). Intuitively, exposing the target LLM
to instructions it finds challenging can effectively
identify its areas for improvement. Therefore, it is
crucial to select the most impactful instructions for
aligning the target LLM.

We therefore introduce Contrastive Filtering, a
method to select the instructions that can effec-
tively enhance the target LLM f;. For clarity, we
define the space of all natural language sequences
as V. We have the strong LLM f, : N’ — N, the
target LLM f; : N' — N, and a scoring function
S : N — R to evaluate response quality. In prac-
tice, .S is obtained by reusing the strong LLM f;
with a prompt template (Figure 11, Appendix A.9)
adapted from the Vicuna pairwise evaluation tem-
plate (Taori et al., 2023; Chiang et al., 2023). To
mitigate potential position bias, we average the
scores obtained by exchanging the positions of two
responses (Chiang et al., 2023). We observe using
fs for scoring works quite well in practice, so we
prioritize this option for simplicity. Given an in-
put instruction I € N, we obtain responses from
both LLMs as fs(I) and f;(I), respectively. We
then define the quality gap G : N' — R between
these responses to estimate the effectiveness of the

instruction: G(I) = S(fs(1)) — S(fe(1)).

The quality gap metric G reflects how much the
target LLM benefits from the strong LLM for each
instruction /. As demonstrated in Figure 2, here
are two possible cases: (1) |G(I)| > 6, where
f € R is a certain threshold. This indicates that:
Either the strong LLLM has a much better response
than the target LLM, we add (1, f5(I)) to our high-
quality instruction-response pool D, to fill the gap;
Or rarely, the target LLM gives much better re-
sponse than the strong LLM, we add (, f;(I)) to
D, as as an implicit regularization to keep the target
LLM’s desirable behavior to certain instructions.
(2) |G(I)| < 6, where the quality of responses
from both LLMs is similar, so learning from I does
not lead to much gain. We then send [to the next
Self-Rubrics iteration for further improvement.

Contrastive Filtering complements Self-Rubrics
to select effective instruction-response pairs by cal-
ibrating the target LLM’s instruction-following ca-
pability with the strong LLM’s. Analogous to Con-
strastive Decoding (Li et al., 2022) at response-
level, Contrastive Filtering can also be regarded as
LLM-feedback (Madaan et al., 2023) with the in-
teraction of two LLMs. While we adopt the strong
LLM as scoring function to measure the quality
gap, our framework can be compatible with and
potentially benefit from the advances in more reli-
able and comprehensive scoring and feedback sys-
tems (Lee et al., 2023), and we leave it as promising
future work.

S Experiments

We conduct comprehensive experiments to evalu-
ate CodecLM using different LLMs on multiple
representative benchmarks, closely following well-
established evaluation settings for open-domain
instruction following in prior work (Xu et al., 2023;
Chen et al., 2023b). We also conduct a case study
in Appendix A.8 to illustrate how CodecL.M tailors
an instruction step by step.

5.1 Evaluation Benchmarks

We evaluate CodecLLM on four widely-used open-
domain instruction-following benchmarks with di-
verse instruction distributions to reduce evalua-
tion bias. Our test benchmarks include Evol-
Instruct (Xu et al., 2023), Vicuna (Chiang et al.,
2023), Self-Instruct (Wang et al., 2022) and
Koala (Geng et al., 2023). To complement the
evaluation, we also evaluate on two standard NLP

3716

benchmarks MMLU (Hendrycks et al., 2020) and
BBH (Suzgun et al., 2022) in Appendix A.7. Please
refer to Appendix A.1 for benchmark details.

5.2 Baseline Methods

We compare our method against state-of-the-art
data generation approaches for instruction tun-
ing. For fair comparison, we provide all methods
the same LLM backbones when possible. More-
over, we control the number of instruction-response
pairs the same for all methods to ablate the effect
of data quantity. Baseline methods include Self-
Instruct (Wang et al., 2022), Alpagasus (Chen
et al., 2023b), Tree-Instruct, WizardLM (Xu
et al., 2023), and WizardLM+, an enhanced ver-
sion of WizardLM using the same basic instruc-
tions generated from CodecL.M as seed instructions.
Baseline details are presented in Appendix A.2.

5.3 Experiment and Evaluation Details

LLM Backbones. We adopt LLaMA-based (Tou-
vron et al., 2023) and PalLM-based (Anil et al.,
2023) LLMs as our target LLMs in our experi-
ments. For LLaMA-based target LLLMs, we use
Gemini-Pro (Team et al., 2023) as the strong LLM,
and LLaMA-7B, -13B as the target LLMs. For
PalLM-based target LLMs, we use text-unicorn as
the strong LLLM, and text-bison as the target LLM.
PalLM-based models and Gemini-Pro are accessi-
ble through Google Cloud APT'.

Implementation Details of CodecLM. We split
all benchmarks into 20% validation set and 80%
evaluation set. We extract the instruction meta-
data from the validation set, see Appendix A.3
for more details. Depending on the specified total
data size, we prompt the strong LLM to gener-
ate equal number of base instruction per metadata.
We generate 500-8000 synthetic data throughout
the experiments. We generate 4 rubrics and corre-
sponding actions. At each iteration, we randomly
choose 1 action for improving instruction. We run
Self-Rubrics at most 4 iterations. For Contrastive
Filtering, We set the scoring scale to 10 and the
filtering threshold to 3 for all experiments. We
align these configurations with Xu et al. (2023)
and leave more detailed rationales of these config-
urations, additional hyperparameter settings, and
training details in Appendix A.3-A.4.

Evaluation. Assessing how well LLMs follow in-
structions is complex, arising from the fact that

"https://cloud.google.com/vertex-ai

an instruction has various valid responses, and the
challenge of replicating human evaluation. Recent
advances in automatic evaluation on instruction fol-
lowing (Dubois et al., 2023; Zheng et al., 2023)
demonstrate that LLM-based evaluators are scal-
able, explainable, and consistent with human eval-
uations. Therefore, we adopt widely-used Vicuna
pairwise evaluator (Chiang et al., 2023) based on
ChatGPT to compare the response quality from two
LLMs for its accessibility in price and efficiency.
The evaluation prompt template is in Figure 12,
Appendix A.9. We include GPT-4 based evalua-
tion results in Appendix A.6 to demonstrate the
consistency of LLM-based evaluators. To mitigate
position bias that the LLM evaluator may have, we
conduct every evaluation twice by exchanging re-
sponse orders. A response is considered better only
if it wins twice. Following (Chen et al., 2023b),
we set the temperature to 0.0 to reduce evaluation
randomness, and left other parameters as default.

Similar to prior work (Xu et al., 2023; Zhao et al.,
2023), we compute the total ratio of wins and ties
of a target LLM against the strong LLM, to indicate
how much model capacity the target LLM recovers
from the strong LLM (often treated as the upper
bound performer). CRR simplifies the combinato-
rial pairwise comparisons between all target LLMs.
We name the metric as Capacity Recovery Ratio
(CRR), where CRR = m In exper-
iments, we observe that the number of ties often
dominates the number of wins, since the strong
LLM is much capable than the target model. So we
do not put additional weights on wins in the calcula-
tion. To demonstrate CRR faithfully reflects model
performance, we show the exact number of wins,
ties and losses in Appendix A.5 on Evol-Instruct.
We would like to emphasize our focus on the gap
in CRR between different methods instead of the
absolute value, since the absolute value may based
on the specific LLM evaluator we choose.

5.4 Open-Domain Instruction Following

Results with LL.aMA-based Target LLMs. Ta-
ble 1 summarizes the performance of CodecLM
and the comparing baselines with 2000 synthetic
data for instruction tuning. All methods are trained
on LLaMA-7B or -13B as the target LLM and com-
pared against Gemini-Pro, the strong LLM that gen-
erates the data. CodecLM outperforms comparing
methods consistently on all benchmarks, with two
target LLMs of different sizes. The consistently
superior performance of CodecLLM highlights its

3717

https://cloud.google.com/vertex-ai

Table 1: Results with LLaMA-based target models on four open-domain instruction following benchmarks. Each
method trains a target model based on LLaMA-7B or -13B, and compares against the strong model, Gemini-Pro.

The reported metric Capacity Recovery Ratio (%), CRR =

wins+-ties
total comparisons*®

Larger CRR means better performance.

LLaMA-7B vs. Gemini-Pro

LLaMA-13B vs. Gemini-Pro

Methods | Evol-Ins. Vicuna Koala Self-Ins. || Evol-Ins. Vicuna Koala Self-Ins.
Self-Instruct 72.02 81.25 67.78 65.87 75.69 86.25 77.22 69.05
Alpagasus 75.23 +32) 81.25 (+0.00 71.11 (+3.3) 70.24 (+4.4) 79.82 (+4.1) 87.50 (+1.3) 77.78 (+0.6) 71.03 (+2.0)
Tree-Instruct 7523 (+32) 81.25(+0.0) 72.78 (+5.0) 68.65 (+2.8) 82.57 +6.9) 87.50 (+1.3) 80.56 (+3.3) 79.37 (+10.3)
WizardLM 7431 (+23) 76.25(-5.0) 65.56 (-2.2) 71.43 (+5.6) 82.11 (+6.4) 86.25 (+0.0) 78.89 (+1.7) 76.19 (+7.1)
WizardLM+ 75.69 (+3.7) 83.75 (+2.5) 68.33 (+0.6) 72.22 (+6.4) 84.40 +8.7) 88.75 (+2.5) 81.11 (+3.9) 79.76 (+10.7)
CodecLM (ours) || 79.82 (+7.8) 88.75 (+7.5) 74.44 (+6.7) 78.17 (+12.3) || 86.70 (+11.0) 90.00 (+3.8) 82.22 (+5.0) 83.33 (+14.3)

Table 2: CRR Results on PaLM-based models. Each
method trains a target model based on text-bison, and
compares against the strong model, text-unicorn.

Table 3: Ablation study of CodecLM’s core designs.
All components contribute to the final performance.

Metadata Self-Rubrics Contrastive Filtering | CRR

[text-bison vs. text-unicorn X X X 72.02

Methods R . 3 v X X 75.23

| Evol-Ins. Vicuna Self-Ins. Koala v v X 5

text-bison 87.16 81.25 74.21 77.47 v v v 79.82
Alpagasus 82.11¢-5.1) 81.25 (+0.0) 67.86 (-6.4) 73.33 (-4.1)
WizardLM+ 84.40 (2.8) 78.75 (2.5 69.44 (-4.8) 73.89 (-3.6)

CodecLM (ours) || 88.53 (+1.4) 86.25 (+5.0) 72.22 (-2.0) 80.56 (+3.1)

generalizability to different downstream instruction
distributions and target LLMs. Both Tree-Instruct
and variants of WizardLM focus on the importance
of instruction complexity, however, their perfor-
mances are not always better than Alpagasus with
simple instructions, especially with larger target
LLM. This observation indicates that the effec-
tiveness of data cannot be solely determined by
instruction complexity, and validates the motiva-
tion of our design of Self-Rubrics and Contrastive
Filtering. Moreover, the win of WizardLM+ over
WizardLM confirms the efficacy of instruction dis-
tribution matching via instruction metadata. When
shifting the target LLM from LLaMA-7B to -13B,
all methods get a significant performance boost,
which accords with prior discoveries on scaling
model size (Wei et al., 2021).

Results with PaLLM-based Models. Table 2 sum-
marizes the results of CodecLM and the best per-
forming baselines in LLaMA-based experiments.
We generate 1000 synthetic data due to computa-
tion budget. Since text-bison is a proprietary model
that has been aligned with various techniques in-
cluding instruction tuning, we also include it as a
baseline approach. Interestingly, text-bison obtains
strong performance across different benchmarks.
Both Alpagasus and WizardLM+ underperform
text-bison, suggesting it is non-trivial to improve
upon a well-tuned LLM continually. CodecLLM, on
the contrary, outperforms text-bison in most cases,
thanks to our core designs that adaptively tailor
high quality data pairs to improve the target LLM.

5.5 Ablation Study

In this section, we conduct comprehensive ablation
studies to empirically explore the effectiveness of
CodecLM. We mainly conduct experiments with
LLaMA-7B model as the target LLM, Gemini-Pro
as the strong LLM, and report the CRR on the
Evol-Instruct benchmark.

Effectiveness of Core Designs. We show
component-wise contributions in our framework
in Table 3. The 1st row has the result from Self-
Instruct as a baseline; In the 2nd row, we only align
the LLM with basic instructions from instruction
metadata; We gradually add Self-Rubrics and Con-
trastive Filtering in the 3rd and 4th rows, respec-
tively. We clearly observe that every component
contributes to the final performance. Interesting,
the performance of using basic instructions from
metadata is even on par with that of Wizard LM+
in Table 1. This observation indicates that human-
crafted strategies for complicating instructions may
not fit different types of instructions. On the con-
trary, Self-Rubrics adaptively generates instruction
improving actions based on different metadata, re-
sulting in better tailored instructions for the target
LLM. Further improvements from Contrastive Fil-
tering demonstrate that selected data are indeed
more effective for alignment.

Effect of Number of Iterations. We demonstrate
the effect of number of CodecL.M iterations in Fig-
ure 3. In particular, we count the proportion of
data from each iteration in all synthesized data
D, and show it in the blue bar chart with left y-
axis. We also draw the target model performance
in CRR after training on the synthetic data up un-

3718

roporti
n
o

1 2 3 4
Iteration

Figure 3: Data proportion from each iteration and the
corresponding CRR performance at each iteration.

80

9
<79
2
o078

77
20 30 40 50 60 70 80 90 100
Metadata Matching Proportion (%)

Figure 4: Metadata matching proportion vs. CRR.

til the current iteration in the yellow line chart
with right y-axis. From the data proportion bar
chart, we observe that more than 70% of the data
comes from the first iteration. This indicates Con-
trastive Filtering successfully collects less complex
yet challenging instructions, which are critical for
building up the instruction-following ability of the
target LLM. Starting from the second iteration, the
data proportion gets increasingly small. However,
similar to the less is more for alignment observa-
tion (Zhou et al., 2023a), high-quality and more
complex instructions indeed contribute to the final
performance despite less in quantity.

Exploration on Distribution Matching. As
shown by previous results, generating metadata
extracted from the downstream instruction distri-
bution indeed helps. However, in practice, the ex-
tracted or human-written metadata may not be able
to precisely characterize the instruction distribu-
tion. Therefore, it is necessary to explore the per-
formance of CodecLLM when the distribution repre-
sented by instruction metadata does not fully match
the test distribution. As the true test distribution is
complicated and not known as a prior, we approx-
imate various extent of distribution matching by
random subsampling from the set of metadata M.
To control the effect of data quantity, we keep the
total number of instruction-response pairs the same
for each case. For example, when subsampling
20% of M, we prompt the strong LLM to gener-
ate 5 times more instructions for each metadata
accordingly. The result is shown in the upper part
of Figure 4, and we did observe the trend that the
better instruction metadata captures the underlying
distribution, the better performance the target LLM
can achieve. Moreover, when the metadata match-

©o
o

—&— CodecLM 13B
—e— CodecLM 7B

WizardLM+ 13B
WizardLM+ 7B

©
w

(o]
o

~
w

~
o

<)}
w

Capacity Recovery Ratio (%)

051 2 4 8
Generated Data Size (x103)
Figure 5: Scaling with model size and data quantity.

ing proportion is equal or greater than 60%, we ob-
tain close performance as the fully-matched result.
This observation highlights CodecLM’s robustness
under potential instruction metadata mismatch.
Scaling with Model Size and Data Quantity.
To explore how our method scales with different
synthetic data quantities and model sizes, we con-
duct experiments by comparing CodecLM with
WizardLM+, the most competitive baseline. The
experiment results on Evol-Instruct with LLaMA-
7B and -13B as the target LLM are presented in
Figure 5. Both methods get increasingly better per-
formance with more synthetic data and larger target
models. CodecLLM consistently outperforms Wiz-
ardLM+ under all cases, demonstrating its great
data efficiency and scalability. We expect the gain
will gradually diminish after we generate more than
8k synthetic data, due to the intrinsic ability gap
between the target models and the strong LLM.

6 Conclusion

In this work, we propose CodecLLM to tailor syn-
thetic data for LLM alignment with different tar-
get instruction distributions and LLMs. We show
that CodecLM effectively captures the underlying
instruction distribution via instruction metadata,
and further tailor the most effective instruction-
response pairs through Self-Rubrics and Con-
trastive Filtering. CodecLM provides a potent solu-
tion towards adapting LL.Ms for customized uses,
without the necessity of human annotation. We be-
lieve CodecLLM serves as a general framework for
targeted LLM alignment, which opens the door to
multiple promising research directions within the
framework, such as richer metadata definition, bet-
ter prompt design, and more reliable LLM-based
scorer. CodecLLM can also benefit from orthogonal
research fields, and we continue the discussion in
Ethical Considerations and Limitations sections.

3719

Ethical Considerations

Although CodecL.M serves as an effective data syn-
thesis framework for LLM alignment, we should
also reflect on the ethical impact of our work. Our
method leverages LLMs to generate instruction-
response pairs. Similar to human annotators who
might make unconscious mistakes during the data
annotation process, LLMs also sometimes gener-
ate unethical, toxic or misleading instructions and
responses (Bender et al., 2021). Moreover, as we
train a target LLM using the generated data, the
resulting instruction-tuned LLM might also carry
the bias and fairness issues (Gallegos et al., 2023)
from the original model. Although we conducted
manual inspection as specified in Appendix A.3,
in practice, we should adopt existing techniques
(Hanu and Unitary team, 2020; Thakur et al., 2023)
to detoxify and mitigate bias from LLMs used in
CodecLLM, and design more strict inspection and
filtering rules to clean up the generated data. Due
to the flexibility of our framework, we envision
future progress in the domain of reducing bias and
fairness issues can be complementary to CodecLLM.

Limitations

We acknowledge the limitations of CodecLM from
the following aspects to inspire future research op-
portunities in the field of LLM alignment.

First of all, as discussed in the Ethical Con-
siderations, our method requires a strong LLM
to generate the data, so the performance of our
method depends on the quality of the LLM and
may inherit bias and fairness issues from it. On the
other hand, CodecLM can benefit from stronger
LLMs improved with advanced bias-reducing and
fairness-enhancing approaches.

Secondly, as an orthogonal direction, our method
did not explore robustness of the instruction-tuned
model towards adversarial attacks such as prompt
injection (Liu et al., 2023) and jailbreaking (Zou
et al., 2023). In practice, we should apply adver-
sarial defense techniques (Jain et al., 2023) ac-
cordingly to the instruction-tuned LLLM from our
method.

Moreover, we mainly use LLM-based automatic
evaluation methods following recent works in data
synthesis for alignment. Although recent stud-
ies (Chiang et al., 2023; Dubois et al., 2023) demon-
strate LLM-based evaluation is largely consistent
with human evaluation, the scalability and relia-
bility of LLM-based evaluators still have room for

improvements. Although we include some standard
benchmark results in Appendix A.7 to complement
LLM-based evaluation results, we still believe the
progress in better evaluating LLMs can lead to a
more reliable demonstration of the effectiveness of
our method.

Finally, as shown in Section 5.5, although Code-
cLLM is robust to moderate distribution mismatch,
its performance still depends on how well the meta-
data captures the underlying instruction distribu-
tion. In practice, our collected seed instruction
might differ from the actual test instructions. Or in
the case that we directly create metadata from user
specification, the users might change their mind
at test time to send the model out-of-distribution
instructions beyond the original metadata. As a
consequence, CodecLM may suffer performance
degradation under distribution mismatch. As a rem-
edy, we can constantly collect user instruction traf-
fic or user feedback to update the generated data
from CodecLM, and continuously update the target
LLM.

We hope future work can leverage CodecLLM as
a flexible data synthesis framework for LLM align-
ment, so that advances in the field can be integrated
into CodecLLM to reduce its current limitations.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo
Ni, et al. 2021. Ext5: Towards extreme multi-
task scaling for transfer learning. arXiv preprint
arXiv:2111.10952.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM confer-
ence on fairness, accountability, and transparency,
pages 610-623.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Mar-
keeva, Rohan Anil, and Alexander Kolesnikov. 2022.

3720

Knowledge distillation: A good teacher is patient
and consistent. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 10925-10934.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Derek Chen, Celine Lee, Yunan Lu, Domenic Rosati,
and Zhou Yu. 2023a. Mixture of soft prompts
for controllable data generation. arXiv preprint
arXiv:2303.01580.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023b. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416.

Yi Dong, Zhilin Wang, Makesh Narsimhan Sreedhar,
Xianchao Wu, and Oleksii Kuchaiev. 2023. Steerlm:
Attribute conditioned sft as an (user-steerable) alter-
native to rlhf. arXiv preprint arXiv:2310.05344.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods
that learn from human feedback. arXiv preprint
arXiv:2305.14387.

Avia Efrat and Omer Levy. 2020. The turking test: Can

language models understand instructions? arXiv
preprint arXiv:2010.11982.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-

tdschel. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv
preprint arXiv:2309.16797.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed.
2023. Bias and fairness in large language models: A
survey. arXiv preprint arXiv:2309.00770.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Laura Hanu and Unitary team. 2020. Detoxify. Github.
https://github.com/unitaryai/detoxify.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2020. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping-yeh Chiang,
Micah Goldblum, Aniruddha Saha, Jonas Geiping,
and Tom Goldstein. 2023. Baseline defenses for
adversarial attacks against aligned language models.
arXiv preprint arXiv:2309.00614.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Andreas Kopf, Yannic Kilcher, Dimitri von Ruiitte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Richard Nagyfi, et al. 2023. Openassistant
conversations—democratizing large language model
alignment. arXiv preprint arXiv:2304.07327.

Mark A Kramer. 1991. Nonlinear principal compo-
nent analysis using autoassociative neural networks.
AIChE journal, 37(2):233-243.

Gyeong-Geon Lee, Ehsan Latif, Xuansheng Wu, Ning-
hao Liu, and Xiaoming Zhai. 2023. Applying large
language models and chain-of-thought for automatic
scoring. arXiv preprint arXiv:2312.03748.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022. Contrastive de-
coding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097.

3721

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng
He, Weizhu Chen, and Tuo Zhao. 2023. Less is
more: Task-aware layer-wise distillation for lan-
guage model compression. In International Con-
ference on Machine Learning, pages 20852-20867.
PMLR.

Alisa Liu, Swabha Swayamdipta, Noah A Smith, and
Yejin Choi. 2022. Wanli: Worker and ai collabora-
tion for natural language inference dataset creation.
arXiv preprint arXiv:2201.05955.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang,
Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan
Zheng, and Yang Liu. 2023. Prompt injection attack
against llm-integrated applications. arXiv preprint
arXiv:2306.05499.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang,
Tarek Abdelzaher, and Jiawei Han. 2023. Tun-
ing language models as training data generators for
augmentation-enhanced few-shot learning. In Inter-
national Conference on Machine Learning, pages
24457-24477. PMLR.

OpenAl. 2023a.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

OpenAl. 2023b. Introducing gpts. https://openai.
com/blog/introducing-gpts.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730-27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Timo Schick and Hinrich Schiitze. 2021. Generating
datasets with pretrained language models. arXiv
preprint arXiv:2104.07540.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi,
Denny Zhou, et al. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Himanshu Thakur, Atishay Jain, Praneetha Vad-
damanu, Paul Pu Liang, and Louis-Philippe
Morency. 2023. Language models get a gen-
der makeover: Mitigating gender bias with
few-shot data interventions. arXiv preprint
arXiv:2306.04597.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Sanh Victor, Webson Albert, Raffel Colin, Bach
Stephen, Sutawika Lintang, Alyafeai Zaid, Chaffin
Antoine, Stiegler Arnaud, Raja Arun, Dey Manan,
et al. 2022. Multitask prompted training enables
zero-shot task generalization. In International Con-
ference on Learning Representations.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824—
24837.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

3722

https://openai.com/blog/introducing-gpts
https://openai.com/blog/introducing-gpts
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2023. Large language models as optimizers. arXiv
preprint arXiv:2309.03409.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2023. Large language model as
attributed training data generator: A tale of diversity
and bias. arXiv preprint arXiv:2306.15895.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023.
A preliminary study of the intrinsic relationship be-
tween complexity and alignment. arXiv preprint
arXiv:2308.05696.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023a. Lima: Less is more for align-
ment. arXiv preprint arXiv:2305.11206.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023b. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt
Fredrikson. 2023. Universal and transferable adver-
sarial attacks on aligned language models.

3723

http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043

A Appendix
A.1 Benchmark Details

The details of the open-instruction following bench-
marks are included below:

¢ Evol-Instruct (Xu et al., 2023) includes 218
real-world human instructions from diverse
sources such as online open-source projects,
platforms, and forums.

* Vicuna (Chiang et al., 2023) includes 80 di-
verse instructions generated by GPT-4 through
prompt engineering.

¢ Self-Instruct (Wang et al., 2022) includes 252
expert-written instructions motivated by user-
oriented applications.

e Koala (Geng et al., 2023) includes 180
conversation-style real user instructions that
were posted online.

All these benchmarks consist of English instruc-
tions from multiple categories or tasks. However,
though sharing some common use cases such as
general knowledge QA and coding, the coverage of
the instructions in different benchmarks are indeed
different. For example, Xu et al. (2023) discuss in
detail how Evol-Instruct is different from Vicuna
in instruction distribution. The difference between
instruction distributions effectively mimic the prac-
tical scenario where we have different downstream
tasks.

The details of the additional standard NLP
benchmarks are included below:

* MMLU (Hendrycks et al., 2020), Massive
Multitask Language Understanding, is a
benchmark designed to measure capability of
language models. It covers 57 subjects across
STEM, the humanities, the social sciences,
and more areas. We only use the test split
for reporting the test results, and report the
average score across all tasks.

* BBH (Suzgun et al., 2022), BIG-Bench-Hard,
includes 23 challenging BIG-Bench tasks that
prior language models did not outperform av-
erage human-raters.

All benchmarks are publicly available for non-
commercial research purposes, and we strictly limit
their usage in this research work. We also carefully
check these datasets and make sure that no personal
information is involved.

A.2 Baseline Details

Self-Instruct (Wang et al., 2022) generates instruc-
tions by prompting LLM with existing seed instruc-
tions as few-shot demonstrations. Here we ran-
domly subsample the Alpaca (Taori et al., 2023)
dataset as seed instructions. Since Alpaca itself is
based on Self-Instruct, using its subset as seed is a
natural continuation of the Self-Instruct method.
Alpagasus (Chen et al., 2023b) selectively filters
data using ChatGPT-based response quality evalu-
ator. Closely following the original approach, we
adopt the strategy upon instruction-response pairs
generated by Self-Instruct.

Tree-Instruct (Zhao et al., 2023) improves instruc-
tion quality by prompting the LLM to implicitly
complicate instruction through its semantic tree.
Following the original paper, we use the subsam-
pled Alpaca dataset as seed data. We set the number
of tree nodes to 10 for best possible performance.
WizardLM (Xu et al., 2023) iteratively compli-
cates instructions by prompting the LLM with a set
of pre-defined evolution operations. Given the pop-
ularity and effectiveness of WizardLM, we experi-
ment it with two variants: the original version using
Alpaca as seed data, and the enhanced version uses
the same set of basic instructions generated from
CodecLM as seed data. We name the later variant
as WizardLM+ as its enhanced by components of
our framework.

A.3 Additional Implementation Details

We augment the metadata to 200 by mix-and-
matching use cases and skills from different in-
structions. We randomly sample one use case from
{u;}?_,, and pair it with one or more skills sampled
without replacement from (J"_; s;. Although most
skills are generalizable between use cases, we still
conduct manual sanity check to exclude unreason-
able use case and skills pairs. We align our hyper-
parameters for iteratively improving instructions
via Self-Rubrics with prior work (Xu et al., 2023):
We generate 4 rubrics and corresponding actions,
and at each iteration, we randomly choose 1 action
for improving instruction. For fair comparison with
WizardLM, we also use at most 4 improve itera-
tions for each instruction (we count basic prompt
generation as the first iteration). For Contrastive
Filtering, we always use the strong LLM itself as
the scorer. We set the scoring scale to 10 and the
filtering threshold to 3 for all experiments. We
obtain the threshold by developing on the AlpacaE-

3724

val (Dubois et al., 2023) dataset. And we find this
threshold works generally well across different set-
tings. Moreover, for LLaMA-based models, using
their Alpaca (Taori et al., 2023) counterparts as the
target LLM for response generation in Contrastive
Filtering works better than the original model that
is not instruction tuned. For metadata extraction,
base instruction generation and Self-Rubrics, we
use a inference temperature of 0.7. We set the max-
imum number of tokens for generation to 2048 for
LLaMA-based models, and 1024 for PaLM-based
models due to API constraints. Moreover, although
we set aside 20% validation set for metadata ex-
traction, we still report the performance on the full
test set in the main paper, the reasons are as fol-
lows: (1) We observe removing the validation set
from the full test benchmark will not change the
relative superior performance of our method, the
performance gap between our method and base-
lines remains almost the same. Therefore, we keep
them in for better reproducibility. (2) By carefully
checking the generated instructions, we notice that
none of the generated instructions overlap with the
original validation instructions, so no data leaking
happens during the data generation process.

We conduct manual inspection on the generated
data to make sure no personal information or offen-
sive contents are generated.

A.4 Training Details

For LLaMA-based models, we follow the practices
in instruction tuning in prior works (Zhou et al.,
2023a; Chen et al., 2023b). We use AdamW op-
timizer with 5; = 0.9, 82 = 0.95 to finetune the
target model for 15 epochs, as suggested by Zhou
et al. (2023a) for smaller data size. We set the ini-
tial learning rate to 1 x 107> and linearly decaying
to 1 x 109 by the end of training. We set per GPU
batch size to 8, which is equivalent to a total batch
size of 64, as we use 8 A100 GPUs for training.
The maximum token length is set to 2048.

For PalLM-based models, we follow the default
instruction tuning setting on Google Cloud’s LLM
tuning web UI. We set the number of tuning steps
to 2000, the learning rate multiplier to 1, and use
the TPU training option.

A.5 Detailed Comparison Results

We show the details of pairwise comparison on
Evol-Instruct benchmark with LLaMA-based mod-
els, as a demonstration of how CRR faithfully re-
flects the capability of the target LLMs trained by

Table 4: Additional results on standard benchmarks.

Methods | BBH MMLU Average
LLaMA-7B 30.93 35.17 33.05
Alpagasus 31.55 36.46 34.01
Wizard LM+ 31.72 37.89 34.81
CodecLLM (ours) || 32.60 42.67 37.64

different methods. In Table 5, we observe that num-
ber of ties dominates the results and the number
of wins are scarce. We attribute it to the fact that
the target model is essentially distilling knowledge
from the strong model. As a result, most of the time,
the instruction-tuned target model is only able to
respond as good as the strong model, through the
lens of the LLM-based evaluator.

A.6 Consistency between LLM-based
Evaluators

In the main paper, we use ChatGPT as the LLM
judge for final evaluation, for its efficiency, price
and accessibility for the community to reproduce
our results. As pointed out in (Chiang et al., 2023),
LLMs evaluators, although largely consistent with
human preferences, may have their own biases.
Therefore, to make sure our experimental results
are solid, we also use GPT-4 as the judge and com-
pare against the performance gap in CRR between
different baselines and the Self-Instruct method.
The comparison results in Table 6 demonstrates the
agreement of two LLM-based judges and confirms
the superior performance of CodecLM against com-
paring methods.

A.7 Additional Benchmark Results

To complement the performance result using LLM-
based automatic evaluator, we also evaluate LLMs
tuned with the top methods presented in Section 5.4
on standard NLP benchmarks, MMLU (Hendrycks
et al., 2020) and BBH (Suzgun et al., 2022). We
follow the same settings introduced in (Wang et al.,
2023) without demonstrations or CoT (Wei et al.,
2022) prompt for evaluating the target models
based on LLaMA-7B. For our method, we follow
the same setting as in Evol-Instruction benchmark
evaluation. We present the evaluation results in Ta-
ble 4 and use the performance of vanilla LLaMA-
7B as a reference. We observe the same perfor-
mance ranking of all methods as that in Table 1
where we use LLM-based automatic evaluator. The
consistency between two different evaluation ap-
proaches indicates the reliability of LLM-based
evaluator in terms of demonstrating relative perfor-

3725

Table 5: Detailed comparison results with LLaMA-based models on Evol-Instruct benchmark. Each method trains
a target model based on LLaMA-7B or -13B, and compares against the strong model, Gemini-Pro. Capacity

wins4ties
total comparisons®

Recovery Ratio (%), CRR =

|| LLaMA-7B vs. Gemini-Pro

|| LLaMA-13B vs. Gemini-Pro

Methods

|| Wins Ties Losses CRR | Wins Ties Losses CRR
Self-Instruct 17 140 61 72.02 29 136 53 75.69
Alpagasus 17 147 54 75.23 26 148 44 79.82
Tree-Instruct 23 141 54 75.23 26 154 38 82.57
WizardLM 19 143 56 74.31 30 149 39 82.11
WizardLM+ 19 146 53 75.69 31 153 34 84.40
CodecLLM (ours) 29 145 44 79.82 35 154 29 86.70

Table 6: Performance gap to Self-Instruct in terms of CRR on Evol-Instruct, evaluated by ChatGPT and GPT4,
respectively. Each method trains a target model based on LLaMA-7B or -13B, and compares against the strong
model, Gemini-Pro. We observe two LLM-based automatic evaluators yields consistent results.

| LLaMA-7B vs. Gemini-Pro || LLaMA-13B vs. Gemini-Pro

Methods | ChatGPT GPT4 | ChatGPT GPT4
Self-Instruct 0.00 0.00 0.00 0.00
Alpagasus +3.21 +1.38 +4.13 +1.83
Tree-Instruct +3.21 +2.29 +6.88 +4.59
WizardLM +2.29 +0.46 +6.42 +3.21
WizardLM+ +3.67 +2.29 +8.72 +5.50
CodecLM (ours) +7.80 +8.26 +11.01 +8.72

mance of competing methods.

A.8 Case Study

We present a case study in Figure 6 to show an it-
erative tailoring process from instruction metadata
to the final high-quality prompt. In practice, the
iteration may terminate earlier by the Contrastive
Filtering process. We observe that Self-Rubrics is
able to tailor rubrics and actions according to the
given metadata. Interestingly, the actions generated
by LLM seems very domain-specific. For example,
the SWOT analysis in the last action may even be
hard for non-expert human annotators to come up
with. Moreover, the colored texts in instructions
demonstrate that LLM is able to follow the actions
quite precisely to refine the instructions.

A.9 Prompt Templates for CodecLM

We present all prompt templates here in the ap-
pendix for better reproducibility. In particular, we
list the correspondence between prompt templates
and their usages as follows for quick reference:

* Figure 7: Encoding instructions into metadata,
including use case and transferable skills.

* Figure 8: Decoding instruction metadata into
basic instructions that are relatively simple in
structure.

* Figure 9: Generating rubrics to judge how
challenging an instruction is, and actions to
improve the instruction based on the given
metadata.

* Figure 10: Improving the input instruction by
following one of the generated actions.

* Figure 11: Comparing the responses quality
from the target and strong LLMs. Adapted
from the Vicuna-style pairwise comparison
prompt by removing the explanation part.

* Figure 12: Automatic evaluation using LLM
(e.g., ChatGPT, GPT-4) as the judge. Follow-
ing the templates in (Chiang et al., 2023; Chen
et al., 2023b)

All prompts are zero-shot except for the first en-
coding prompt in Figure 7, which utilizes few-shot
demonstrations to showcase the LLM a rough gran-
ularity of the task and skills. Also, we choose
these prompts as they work quite well in practice.
And we believe recent prompt optimization tech-
niques (Fernando et al., 2023; Yang et al., 2023)
can be incorporated seamlessly into our framework,
and we leave them as future work.

3726

Develop a comprehensive marketing

strategy for a B2B software company [
looking to increase its brand
recognition and lead generation. |8kills: Market Research; Planning; Management}

Use case: Business Plan Development]

_fter.2 |

Develop a multifaceted marketing Develop a more detailed Team management and organization:
strategy that incorporates various organizational structure and Instructions that require organizational
middle-management-led departments emphasize company culture structure and culture building are

to increase brand recognition and when possible. considered more challenging.

generate leads for a B2B software
company, while also fostering a culture
of innovation, customer satisfaction,
and employee engagement.

— —

Develop a multifaceted marketing Include a comparison of the Competition evaluation: Instructions
strategy ... customer satisfaction, and target market and competitors' that necessitate a thorough evaluation
employee engagement. Analyze the marketing strategies. of the competition can be considered
target market and compare the more challenging.

marketing strategies of competitors to
create a distinctive and effective
approach that sets the company apart
from its competitors.

— —

Integrate a SWOT analysis into a Financial projections: Instructions that
multifaceted marketing strategy ... and Conduct a SWOT analysis and require more precise and detailed
effective approach that sets the include it in the business plan. financial estimates can be considered
company apart from its competitors, more complicated.

while maximizing the strengths,
minimizing the weaknesses, and
capitalizing on opportunities while
minimizing threats.

Figure 6: Case study on the instruction improvement process of CodecLM. Repetitive instructions are omitted to
save space.

3727

I want you to act as an instruction analyzer.

Given an instruction, you should recognize its use case and the skills (or knowledge)

required for a large language model (LLM) to answer the question.

Generate the use case and skills required without any explanation.

List at most 3 skills, each skill should be transferable, so that LLM can leverage them to answer
similar questions.

Avoid using "skill"”, "knowledge"” to describe a skill, and each skill should be concise (2-3 words).
Follow the examples below to analyze the given instruction.

#Example 1#

As a sports commentator, describe the winning play in the final seconds of a championship game.
Use case: creative writing

Skills: role-play, sports

#Example 2#

How to read a large file (> 2T) using python?
Task: code generation

Skills: python

#Example 3#

The method section of your paper is too brief and does not explain how your proposed model works
in detail. How can you provide more details of the hierarchical encoder and the cascaded selectors,
such as their architectures, inputs, outputs, and parameters?

Task: general knowledge question answering

Skills: academic writing, machine learning

<input instruction>
<output metadata>

Figure 7: Prompt template to encode the input into metadata, consisting of its use case and transferable skills.

I want you to act as an instruction writer.

Your objective is to write <number of instructions> instructions that must be reasonable
and must be understood and responded by humans.

The generated instructions should be diverse enough while following the constraints below:

Use case of the instructions: <use case>
Skills required to respond to the instructions: <skills>

Generate the instructions without answering in numbered bulletin points.

<output instructions>

Figure 8: Prompt template to generate instructions from metadata.

I want you to act as a instruction judge with domain expertise.

Your job is to generate <number_of_rubrics> domain specific rubrics to assess the difficulty and
complexity based on the use case of the instruction, and skills required to respond to it.

The generated rubrics should be clear, concise and unambiguous.

Based on the generated rubrics, generate corresponding actions to improve an instruction by
making it more challenging.

The use case of the instruction: <use case>.
The skills required to solve the instruction: <skills>.

Generate the domain-specific rubrics and actions without explanation in numbered bulletin points:

<output rubrics>
<output actions>

Figure 9: Prompt template to generate actions to improve instructions based on instruction metadata.

3728

I want you to act as a instruction improver with domain expertise.

Your job is to make the given instruction more challenging following the given improving action
item, and the generated instruction should be reasonable and self-consistent.

Do not directly copy words or phrases in the action.

Improving action: <action>
Input instruction: <input instruction>

Improved instruction: <output instruction>

Figure 10: Prompt template to improve instructions following generated actions.

You are a helpful and precise assistant for checking the quality of the answer.

<Question>

[The Start of Assistant 1's Answer]
<answer_1>

[The End of Assistant 1's Answer]
[The Start of Assistant 2's Answer]
<answer_2>

[The End of Assistant 2's Answer]

We would like to request your feedback on the performance of two AI assistants in response to
the user question displayed above.

Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each
assistant receives an overall score on a scale of 1 to 10, where a higher score indicates

better overall performance.

Please only output a single line containing only two values indicating the scores for Assistant 1
and 2, respectively. The two scores are separated by a space.

Please avoiding any potential bias and ensuring that the order in which the responses were
presented does not affect your judgment.

Figure 11: Prompt template used in Contrastive Filtering to compare the responses of the strong and the target
LLMs. We directly use the strong LLM with this template as the scorer .S to avoid additional costs from calling a
third-party LLM.

System: You are a helpful and precise assistant for checking the quality of the answer.

User:

<Question>

[The Start of Assistant 1's Answer]
<answer_1>

[The End of Assistant 1's Answer]
[The Start of Assistant 2's Answer]
<answer_2>

[The End of Assistant 2's Answer]

We would like to request your feedback on the performance of two AI assistants in response to

the user question displayed above.

Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each
assistant receives an overall score on a scale of 1 to 10, where a higher score indicates

better overall performance.

Please first output a single line containing only two values indicating the scores for Assistant 1
and 2, respectively.

The two scores are separated by a space. In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential bias and ensuring that the order in which
the responses were presented does not affect your judgment.

Figure 12: Prompt template for automatic evaluation using LLM (e.g., ChatGPT, GPT-4) as the judge.

3729

