WebWISE: Unlocking Web Interface Control for LLMs via Sequential
Exploration

Heyi Tao' *
Tanmay Gupta 2

Sethuraman T V*
Heng Ji'

Michal Shlapentokh-Rothman'
Derek Hoiem!

'University of Illinois at Urbana Champaign 2PRIOR @ Allen Institute for Al
{heyitao2,st34,michal5,hengji,dhoiem}@illinois.edu
tanmayg@allenai.org

Abstract

This paper investigates using Large Language
Models (LLMs) to automatically perform web
software tasks using click, scroll, and text in-
put operations. Previous approaches, such as
reinforcement learning (RL) or imitation learn-
ing, are inefficient to train and task-specific.
Our method uses filtered Document Object
Model (DOM) elements as observations and
performs tasks step-by-step, sequentially gen-
erating small programs based on the current ob-
servations. We use in-context learning, either
benefiting from a single manually provided ex-
ample, or an automatically generated example
based on a successful zero-shot trial. We eval-
uate our proposed method on the MiniWob++
benchmark. With only one in-context exam-
ple, our WebWISE method using gpt-3.5-turbo
achieves similar or better performance than
other methods that require many demonstra-
tions or trials.

1 Introduction

A major goal of Al is to develop intelligent agents
that interact with their environments to perform
tasks. This goal is often explored in the context
of physical environments. Our work explores per-
forming software tasks with the long-term aim of
creating agents that work using software designed
for humans. Software tasks are valuable by them-
selves — much of the work we do is on computers
— and also offer highly controllable and repeatable
tasks that have many of the same challenges as
physical tasks, such as manipulable environments,
goals that require long sequences of actions, and
need for exploration. Prior works to control soft-
ware have used reinforcement learning (RL), requir-
ing many demonstrations and scored trials to learn
simple interaction tasks. Instead, we use Large
Language Models (LLMs) to generate actions (e.g.,

“Equal Contribution

click and enter text) based on environment obser-
vations (DOM elements) in web software.

The goal is to complete a web software task,
given a natural language instruction and an API for
observing and interacting with the environment. In
this setting, our observations are DOM elements,
indicating the layout and state of buttons, text, and
other displayed elements. Actions include click-
ing an element, scrolling the mouse wheel, and
entering text in a text box. The experiments are per-
formed on the MiniWoB++ benchmark (Liu et al.,
2018), which consists of randomized simple tasks
that involve menu navigation, text entry, and/or
clicking buttons and other interactive elements.

LLMs are commonly used to generate code, e.g.,
Codex (Chen et al., 2021), and their use has re-
cently been explored to complete Al tasks given
an API and a small number of in-context exam-
ples, e.g., VisProg (Gupta and Kembhavi, 2023),
ViperGPT (Suris et al., 2023), ProgPrompt (Singh
et al., 2023), Code4Struct (Wang et al., 2023), and
Vi-Struct (Chen et al., 2023). Our application of
controlling software differs in two key ways:

* Environment Grounding: Interacting with
software requires knowledge of the environ-
ment, such as the layout of elements on the
screen. For automatic interaction with web
software, we propose to extract and filter per-
tinent information from the DOM elements as
the environmental observations.

* Sequential Decision-Making: As the envi-
ronment responds dynamically to actions, we
take a sequential approach to generate actions
rather than creating an entire actions sequence
all at once. This allows us to generate actions
informed by current observations while main-
taining previous action-observation pairs.

An additional challenge is how to train LLMs to
better control software. This study limits the focus

3693

Findings of the Association for Computational Linguistics: NAACL 2024, pages 3693-3711
June 16-21, 2024 ©2024 Association for Computational Linguistics

action = click_action1 (‘input_checkbox', 'i8J', observation)

observation, reward, terminated, truncated, info = env.step(action) I
I I

API el - e e e e = = o = = == a
Input: Web interface O
matee
e LLM _ nitial program O -
In-Context Generation [+] |/ P
Example successful
AmOtec Submit
e, = o Program
183
Submit A
Task
= Task Description — Finished?
Executable
Program
Extract DOM Summary of

Elements L DOM
Filtering

Generation
Regex Python Executor|

Feedback: Current environment state

Figure 1: We show the path of an agent in the WebWISE method. The representation of the components in the
diagram is as follows: yellow boxes represent inputs to the LLM, the gray box represents executor, Unshaded
red/green boxes symbolize final rewards/output, and shaded green boxes denote Python functions.

to in-context learning. One option is to manually
create examples of programs that satisfy instruc-
tions, but this requires some level of expertise and
experimentation to be effective. Observing that the
LLMs occasionally produce successful programs
for specific tasks sometimes (rather than always
or never), we propose using these successes as a
form of context. This way, LLMs can create its
own context using only a success indicator.

In this paper, our main contribution is to inves-
tigate the use of LLMs to control web software,
particularly:

* Use of filtered DOM elements as web soft-

ware observations, which we find outperforms
more comprehensive read-outs.

* Effects of an iterative approach of cycling
action and observation, which we show out-
performs one-shot generation of an action se-
quence.

* Auto-generating context based on successful
zero-shot trials, that outperforms zero-shot
performance in many cases and requires no
programming or knowledge of the control
APL

2 Related Work
2.1 Automated Computer Tasks

Most methods for automating computer tasks use
some form of RL. Common approaches, includ-
ing Q-Learning (Jia et al., 2019), imitation learn-
ing (Yao et al., 2022), and policy learning and be-
havioral cloning (Zheng et al., 2021) have achieved
human-level performance on the web interface

benchmark MiniWob++ (Liu et al., 2018). Other
approaches, such as (Humphreys et al., 2022;
Zhong et al., 2022), combine RL with other modal-
ities. CCNet (Humphreys et al., 2022) is a multi-
modal architecture specifically designed for au-
tomating software and is trained using a combi-
nation of RL and imitation learning. Language
Dynamics Distillation (Zhong et al., 2022) is pre-
trained by predicting environment information
and fine-tuned with RL. WebGUM (Furuta et al.,
2023) is trained by combining finetuning for an
instruction-finetuned model with a vision encoder
on a large number of demonstrations. While these
methods work well, they often require thousands of
demonstrations and/or millions of trials. We inves-
tigate the use of LLMs with only a single in-context
example per type of task, towards creating an ap-
proach that can be easily extended and adopted.

2.2 Reasoning and Action in Large Language
Models

Recent efforts explore applying LLMs to decision-
making (Mialon et al., 2023) and reasoning (Huang
and Chang, 2023). Initial work focused on how
to convert natural language output to admissible
actions (Huang et al., 2022a). Huang et al. use a
Bert LM (Devlin et al., 2019) model pre-trained
with SentenceBert (Reimers and Gurevych, 2019)
to directly convert the output of GPT-3 (Brown
et al., 2020) to an executable action. SayCan (Ahn
et al., 2022) uses an alternative approach where
for each action, the probability of generating that
action using a language model is multiplied by the
action’s value function. Inner Monologue (Huang

3694

et al., 2022b) builds on SayCan (Ahn et al., 2022)
by introducing feedback from the environment.
Unlike these approaches, our web environment
is much simpler, and we found that with spe-
cific prompting, we can convert natural language
output to an appropriate action. Prompting, in
particular chain-of-thought prompting, has been
used to demonstrate LLM’s reasoning ability (Wei
et al., 2022; Kojima et al., 2022; Nye et al., 2021).
A related area of research combines combining
reasoning and decision-making skills into one
method. SayCan (Ahn et al., 2022) and Inner
Monologue (Huang et al., 2022b) are both early
examples of such a combination. ReAct (Yao et al.,
2023) expands these works by adding language
(generated by an LLM) to the list of possible ac-
tions. After each action is executed, a thought
(language action) is generated based on the pre-
vious action and environment. Reflexion (Shinn
et al., 2023) builds upon ReAct (Yao et al., 2023)
by allowing access to previous actions and states.

2.3 Visual Programming

In this work, we leverage LLMs’ program gener-
ation ability (Chen et al., 2021) to control web-
based software. VISPROG (Gupta and Kembhavi,
2023) introduces the idea of visual programming,
where programs call APIs to interpret and trans-
form images using pre-trained models, solving
tasks like image editing and Visual Question An-
swering (VQA). VISPROG was one of the first ap-
proaches demonstrating the capability of LLMs to
solve a wide array of vision tasks effectively, serv-
ing as an inspiration for our work. VISPROG and
related works (Suris et al., 2023; Wu et al., 2023;
Gao et al., 2023; Wang et al., 2022) use prompts
containing APIs, example programs, and instruc-
tions to guide LLMs in tasks like image editing and
Visual Question Answering (VQA).

Visual programming methods produce impres-
sive zero-shot results but are limited in that they
generate one-shot programs without observing the
image/environment. Our approach generates pro-
grams in multiple steps and uses DOM elements
to summarize the visual input. Methods like HeaP
(Sodhi et al., 2023) learn a set of hierarchical LLM
prompts for planning high-level tasks and execut-
ing low-level policies. While HeaP is an innova-
tive approach, it uses training data collected from
users. Such a reliance might pose a challenge in
scenarios where demonstrations are scarce or the
tasks are highly dynamic and personalized. The ap-

proach ‘Recursively Criticizes and Improves (RCI)’
(Kim et al., 2023), a concurrent study, similarly
employs LLMs for software interaction. RCI takes
HTML as observations and incorporates up to 22
in-context examples. Moreover, their examples are
specific to the variations of each task. In contrast,
we focus on assessing the efficiency of in-context
examples, providing only one per type of task.

3 MiniWob++ Benchmark

Select NthTXB, 6Kc8q and click Solve the math problem and type | Switch between the tabs to find
Submit. your answer into the textbox. and click on the link "Aliqguam”.
Press submit when done.

1x2= |[B

Netus pretium sed vel

[J ninTxB
[kuxsume
[1wossNu
[6Kesq

Submit

adipiscing nibh turpis
faucibus. Nunc feugiat.
Turpis pulvinar diam
habitant vitae amet, turpis
iaculis. Scelerisque eget.

Figure 2: Screenshots of example tasks from Mini-
Wob++ benchmark. Each task contains a natural lan-
guage instruction at the top and a task interface to per-
form primitive actions in the bottom.

Our objective is to generate programs to control
web interaction tasks. To evaluate the effective-
ness of these generated programs, we use the Mini-
Wob++ (Liu et al., 2018) benchmark that captures
the salient challenges of browser interactions in a
simple setting. This web-based simulation envi-
ronment is an extension of MiniWob (Shi et al.,
2017) originally introduced by OpenAl. The Mini-
Wob++ benchmark contains more than 100 tasks of
varying difficulty levels, and we chose 48 of those
tasks to evaluate our methods on. Each MiniWob++
task contains a natural language instruction and an
HTML/DOM representation of the web page con-
taining the task. An agent can interact with Mini-
Wob++ through the Selenium API. Successfully
completed tasks receive a score of "1"; otherwise,
they receive a score of "-1". We describe the ac-
tions we use in the section 4. A few of the tasks we
selected for this study are shown in Figure 2.

4 Methods

This section describes our problem formulation
and progressive layers to our approach: based on
instruction alone, incorporating filtered DOM el-
ements as observations, acting step-by-step, and
auto-generating context. Figure 1 and Algorithm 1
show an overview of our full approach, which we
call WebWISE.

3695

Algorithm 1 WebWISE Function

procedure WEBWISE(input Task Description £, API a, in-context example e = e, . .

generator 7w, DOM elements D,)

., €m, program

Initialize success state s as False, iteration count 7 as 0, maximum iterations as 7’

while s = Falseand t < T do
d; = getSummary(Dy)
Tt = 7T(£, dt, a, e)
s = ¢(l’t, dt)
Dt+1 = getDOM()
t=t+1

end while

end procedure

> Extract relevant DOM elements

> Generate program

> Execute program

> Update DOM elements after execution

4.1 Problem Formulation

Each task involves a virtual agent assigned to carry
out high-level natural language instructions (task
descriptions) denoted as £. The agent must interact
with the environment, which is initially represented
by a set of observable DOM Elements D;. A pro-
gram generator 7 is employed to generate program
xy =7(L, dy). The execution engine ¢ then applies
the generated program through ¢(x, d;), resulting
in success indicator s and updated DOM Elements
Dy 1, representing the environment’s next state. A
maximum number of iterations 7 is set to limit
the total number of iterations that the LLM can
generate programs.

4.2 DOM Elements

The choice among DOM elements, HTML, and
RGB values when interacting with a web inter-
face largely hinges on the task’s demands, the in-
tricacy of the webpage, and the agent’s capabili-
ties. In this work, DOM elements were used due
to their simplicity and structured nature. Models
such as Pix2Struct(Lee et al., 2023) convert web-
page screenshots into structured HTML when di-
rect DOM access is not possible. The DOM ele-
ments allow the agent to engage directly with the
page — clicking on elements, inputting text into
form fields, reading text from the page, and so forth
—and is generally simple to implement and com-
prehend. The full text of the DOM elements can
contain items not crucial for a particular task, so we
use a simple filtering function get Summary that
returns a subset of the current DOM elements that
belong to a pre-defined list of "tags" and "classes".
Further details are in the appendix.

4.3 Single-Step Approach

In the single-step approach, one program is gener-
ated and executed for a given task. We use gpt-3.5-

turbo (Ouyang et al., 2022) and Llama-2 7B (Tou-
vron et al., 2023) as our program generator 7. The
input to the LLM is a prompt with 4 parts: filtered
DOM elements, API a, task description, and an
in-context example e. Our API «a has three basic
functions: click, enter text, and scroll. Each exe-
cutes actions within MiniWob++ (Liu et al., 2018).
A summary of our API can be seen in Listing 1
and is constant across all tasks. A complete listing
of our APIs is shown in the appendix Listing 7.
Hand-crafted in-context examples were used like
in GPT-3, which can be seen in Figure 17 in the
appendix. A sample task input is given followed
by the expected output program.

def getSummary(dom_elements):

Input: DOM elements
Output: Subset of DOM elements

def click_actionl (tag_class_name ,id_text_name ,observation):

Input: tag or element, id or text, observation
Output: clicks on a specific element in the environment

def enter_text_action(input_text ,observation):

Input: text, observation
Output: enters text in element in the environment

def scroll_actionl (text_to_scroll_to ,observation):

Input: text, observation
Output: moves webpage such that certain text is visible

Listing 1: Summary of our API

The generated program z; is a string of Python
code, executed using the execution engine ¢. How-
ever, the code generated might not be executable
or use the API a correctly. A regular expression is
used to extract the executable code and filter the
irrelevant parts of the generated output. If the gen-
erated code proves entirely unusable, this particular
program is skipped, and the LLM will move to the
next iteration of generating programs to solve this
task. If usable code is identified, ¢(xy, d;) will be
executed, and the LLM will rely on the environ-
mental feedback to determine whether the task has
been successfully completed. The iterations con-

3696

In-Context Example

Step 1

Objects in Image: [a Tab #1, a Tab

#2, a Tab #3, t Elit, span Leo]

Task: Switch between the tabs to find and
click on the link "ipsum".

Solution: action = click_action1('a’, 'Tab
#2', observation)

observation, reward, terminated,
truncated, info = env.step(action)

Step 2

Objects in Image: [a Tab #1, a Tab

#2, a Tab #3, span b, span sed]

Task: Switch between the tabs to find and
click on the link "ipsum".

Solution: action = click_action1('a’, 'Tab
#3', observation)

observation, reward, terminated,

Switch between the tabs to find
and click on the link "magna".

NELEIN Tab#2 | Tab #3

In laoreet in nunc viverra
dolor pretium tempor
elementum,. Lorem neque.
Fermentum lobortis eget
non. Neque suscipit magna
placerat id.

Switch between the tabs to find
and click on the link "magna”.

Tab #1 INELEZM Tab #3

Ultrices nulla ridiculus
consequat nec penatibus.
Pharetra pellentesque
viverra eget.
Condimentum. Sed lorem
vestibulum feugiat mauris

WebWISE

Objects in Image: [ul, a Tab #1, a Tab #2, a Tab #3, t In, span laoreet, t in
nunc viverra, t dolor pretium tempor, t elementum,. Lorem, span neque., t
Fermentum lobortis eget, t non. Neque suscipit magna, t placerat id.]
Task: Switch between the tabs to find and click on the link "magna”.
Solution?

Program
Generated
by LLM

action = click_action1('a’, 'Tab #2', observation)
observation, reward, terminated, truncated, info = env.step(action)

Objects in Image: [ul, a Tab #1, a Tab #2, a Tab #3, t Ultrices nulla
ridiculus, t consequat nec penatibus., span Pharetra, t pellentesque, t
viverra eget., t Condimentum. Sed lorem, t vestibulum feugiat mauris, t sit.
Pellentesque. Est, t ultricies.]

Task: Switch between the tabs to find and click on the link "magna".
Solution?

Program
Generated
by LLM

sit. Pellentesque. Est

truncated, info = env.step(action) o
ultricies.

action = click_action1('a’, 'Tab #3', observation)
observation, reward, terminated, truncated, info = env.step(action)

Step 3

Objects in Image: [a Tab #1, a Tab

#2, a Tab #3, span c, span ipsum]

Task: Switch between the tabs to find and
click on the link "ipsum".

Solution: action = click_action1('span’,
'ipsum’, observation)

observation, reward, terminated,
truncated, info = env.step(action)

Amet. Nec urna amet.
Purus suscipit vel amet,
magna lacinia maecenas.

id.

[Switch between the tabs to find
and click on the link "magna”.

Tab#1 | Tab#2 [MELEX]

Sit facilisis vel. Ut egestas
scelerisque vestibulum et,

Objects in Image: [ul, a Tab #1, a Tab #2, a Tab #3, t Amet. Nec urna
amet., t Purus suscipit vel, span amet, span magna, t lacinia, span
maecenas., span Sit, t facilisis vel. Ut egestas, t scelerisque vestibulum,
span et, tid.]

Task: Switch between the tabs to find and click on the link "magna".

Solution?
Program
Generated
by LLM

action = click_action1('span’, 'magna’, observation)
observation, reward, terminated, truncated, info = env.step(action)

Task Finished

Figure 3: An example of WebWISE for the ‘click-tab’ task. The objective is to click on link that is not present
within the initial DOM elements. At each step, the environment updates, and a new program is generated based on
the context. The left part of the image illustrates the step-by-step in-context example with fictional DOM elements
and tasks. This example guides LLMs in generating a program for the current task interface, executing one action at
a time. The middle and right parts of the image shows the task and solution generated by LLMs.

tinue until either the task is successfully completed
(i.e., s = True), or the number of iterations reaches
the predefined maximum (¢ = 7).

4.4 Multi-Step Approach

Our multi-step method, referred to as WebWISE, is
illustrated in Algorithm 1. In contrast to single-step
generation, WebWISE generates and executes pro-
grams incrementally until the environment signals
that the task has been solved correctly or incor-
rectly. If the task has not been solved after a par-
ticular number of iterations (1'), the environment
signals a failure (by returning —1). The DOM el-
ements from the ¢th iteration becomes the initial
DOM elements for the (7 + 1)th iteration. This ap-
proach is employed in both zero-shot and one-shot
scenarios. In the zero-shot scenario, an additional
instruction (task message) is provided to the LLMs,
prompting it to generate programs progressively,
based on changes in the DOM elements throughout

the task. In the one-shot scenario, the in-context
examples shift at each step, coupled with the ad-
ditional instruction (task message) to ‘perform in
a step-by-step fashion’, akin to the zero-shot sce-
nario. Ablation studies concerning the sensitivity
of the task messages are included in the appendix.
Figure 3 illustrates an example of the WebWISE
methodology. Conditioning the program genera-
tion on the current environment simplifies the ex-
ecution of sequential tasks. This is because the
model can observe the effect of its actions in the en-
vironment through the changes of DOM elements,
and consequently generates more effective actions
for the next step. In contrast, the single-step ap-
proach generates the entire program based on the
initial set of DOM elements.

3697

4.5 Automatic Generation of In-Context
Examples From Scored Trials

Our empirical findings reveal improved success
rates when an in-context example is provided. Each
in-context example includes an observation, task
description, and a program that would satisfactorily
complete the task according to the task description.
However, supplying such examples requires a com-
prehensive understanding of the API and program-
ming proficiency, which can pose an obstacle for
intricate tasks or novice users. Prompted by these
challenges, we design a simple approach called
Auto-Context Generation (ACG) to automatically
generate an in-context example from a successful
trial. To develop ACG, we conduct a series of zero-
shot trials. In each trial, a program is generated
and executed in the absence of any in-context ex-
amples. If the program executes the task correctly,
it is stored, along with the original task descrip-
tion and filtered DOM elements, as the in-context
example. After 10 zero-shot trials, the single-step
approach (4.3) is applied for 50 iterations. The
correctly generated programs during the trial stage
serve as in-context examples, and only two such
programs are preserved at maximum. When ap-
pending the in-context examples to the prompt, a
specific statement:"Here is one example you have
solved with a successful solution." is also included.
While our experiments use this fully automated ap-
proach, a user, in a practical context, may be able
to guide the successful completion using feedback
and prompts to acquire the in-context example.

S Experiments and Results

All approaches (single-step, multi-step and Auto-
Context Generation) are evaluated on 48 tasks
derived from the MiniWob++ dataset (Liu et al.,
2018). These tasks are chosen to span a range of
complexities. Additionally, a variant of the single-
step method, which excludes any DOM elements,
is evaluated and labeled as the ‘Instruction Only’
method. The conventional single-step process is
labeled as ‘Instruction+ Filtered DOM’ approach.
We evaluate our methods using gpt-3.5-turbo and
Llama 2 7B. However, we primarily focus on gpt-
3.5-turbo as the model demonstrates significantly
better performance.

5.1 Implementation details

For all experiments, the temperature was set to 0
and the input token limit was 4096 for the gpt-3.5-

turbo with training data up to September 2021. We
used the Llama-2 7B implementation from Hug-
gingFace with 8-bit quantization on a single RTX
3090 Ti. The same prompt is applied at the begin-
ning of each method, which can be found in the
appendix material. In addition to evaluating each
of the 48 tasks with a single in-context example
(k = 1), we also evaluate the zero-shot setting
(k = 0). Tasks are scored as follows: "1" for suc-
cessful completion and "-1" for failure. For the
‘Instruction-Only’, ‘Instruction+DOM’, and ‘Web-
WISE’ (multi-step) approaches, we executed each
task for 50 iterations and averaged the success over
the 50 iterations. For the ‘Auto-Context Generation’
method, we initially carried out 10 zero-shot trials,
followed by 50 iterations of the ‘Instruction+DOM’
(single-step) method.

5.2 Results

We categorized various tasks from the MiniWob++
dataset (Liu et al., 2018) based on the number of
predefined function calls necessary to accomplish
the task. The groups include tasks requiring 1 func-
tion, 2 functions, between 3 and 6 functions, and
a variable number of functions. The detailed task
classification is available in Appendix D.1.

Table 2 summarizes the average success rate of
our proposed methods, and Table 3 compares our
methods with other prior reinforcement learning
(RL) and behavior cloning (BC) based approaches.
Results from prior methods were grouped into the
same categories as our tasks. For simple tasks
which requires just one function call, our approach
with gpt-3.5-turbo outperforms WebNT5-3B (Gur
et al.,, 2022) benchmark by a slight margin of
14.1% which employs a finetuned large language
model with 12K expert demonstration data. Web-
Wise using gpt-3.5-turbo outperforms WebN-T5-
3B, CCNet (RL) (Humphreys et al., 2022), and
CCNet (BC) (Humphreys et al., 2022). CCNet
(BC+RL) (Humphreys et al., 2022) significantly
outperforms our approach, but requires many ex-
pert demonstrations and millions of RL trials, while
our approach requires minimal per-task learning.
Table 1 shows the success rate for all evaluated
tasks across different methods including RCI and
HeaP. While the results suggest that RCI and HeaP
exhibit marginally superior performance in certain
tasks, this difference could be attributed to the num-
ber of in-context examples in RCI since up to 22
examples were used. Additionally, HeaP adopts
a chain-of-thought (Wei et al., 2022) prompting,

3698

which typically surpasses standard prompting tech-
niques. HeaP also uses a currently depreciated
model instruction-tuned text-davinci-003 (OpenAl,
2024) instead of gpt-3.5-turbo, which may also
cause minor performance differences.

5.3 Ablation

Table 2 compares our proposed methods across the
task groups for both zero-shot (k=0) and single-
shot (k=1). For a particular value of k, ‘Instruction
Only’ has the lowest performance though the gap
between ‘Instruction Only’ and the other methods
grows as the task become more complex (left to
right). For the easiest tasks, using DOM elements
and feedback (WebWISE) has little effect on the
performance. For k=1, WebWISE produces the
largest gain in the Variable Function group. Auto-
Context Generation has a similar or higher per-
formance than the other zero-shot methods but is
lower than the single-shot ones.

6 Discussion

Comparison (k=1): Instruction only vs Instruction + Filtered DOM

100 L ® ecee g o
@®

pn
° e
- /
80
°
1 /
60
/ ‘
40 /
® Task that requires 1 function calls (Easy)
® Task that requires 2 function calls (Medium)

® Task that requires 3-6 function calls (Hard)
@ Task that requires arbitary no. of function calls (Hard)

Instruction + Filtered DOM - Accuracy (%)

0 20 40 60 80 100
Instruction only - Accuracy (%)

Figure 4: Comparison of k=1 performance across
all tasks for Instruction Only (x-axis) and Instruc-
tion+Filtered DOM (y-axis).

Drawing from prior work that demonstrates the
ability of LLMs to perform computer vision and
embodied tasks, our work aims to extend the appli-
cation of LLMs to more intricate challenges, specif-
ically web interface tasks. In doing so, we shifted
the focus from reliance on multiple learning exam-
ples to an approach based on zero and one-shot
learning. Key insights are presented from Table 2,
Figure 4, 5, 6, and 7 based on gpt-3.5-turbo results.

Influence of Single In-Context Example and
DOM Elements: We explored the impact of a sin-
gle in-context example, represented as k=1, across
several task groups. The results indicate the ability

Comparison(k=1) : Instruction + Filtered DOM vs WebWISE

100 L 2 o d

® L]
< ®
?
60

WebWISE - Accuracy (%)
s

2 \ @ e Task that requires 1 function calls (Easy)
® Task that requires 2 function calls (Medium)
® Task that requires 3-6 function calls (Hard)
0 ® Task that requires arbitary no. of function calls (Hard)

0 20 60 80 100

40
Instruction + Filtered DOM - Accuracy (%)

Figure 5: Comparison of k=1 performance across all
tasks for Instruction+Filtered DOM (x-axis) and Web-
WISE (y-axis).

Comparison(k=0) : WebWISE(k=0) vs Auto-Context Generation

100 ° ® e]
- 60

@
L]

5 20 ® Task that requires 1 function calls (Easy)
] ® e Taskthat requires 2 function calls (Medium)
® Task that requires 3-6 function calls (Hard)
.

Task that requires arbitary no. of function calls (Hard)

Auto-Context Generation - Accuracy (%)
s

40 60 80 100
WebWISE - Accuracy (%))

Figure 6: Comparison of k=0 performance across all
tasks for WebWISE(x-axis) and Auto-Context Genera-
tion (y-axis).

of a LLM to perform well based on a single correct
example. As shown in Figure 4, most easy tasks
can be successfully completed even without ob-
servations (DOM elements). However, as the task
complexity increases, the inclusion of observations
becomes critical which is evident from the results.

Improvement from Step-by-Step Actions:
Both Table 2 and Figure 5 clearly illustrate that im-
plementing actions and observations in a sequential
manner (WebWISE) significantly enhances perfor-
mance compared to the ‘single-step’ action gener-
ation. This improvement is especially noticeable
for more challenging tasks, where many tasks re-
quire the execution of actions in a specific sequence
and changes in the environment. When k=1, step-
by-step outperforms single-step by a large margin
(23% to 75% success rate).

Performance of Auto-Context Generation
(ACG): Figure 6 shows that auto-context examples
increase success rates, compared to no in-context

3699

Accuracy

Instruction Instruction+ Instruction+ Auto-Context
Task Only Filtered DOM Whole DOM WebWISE Generation Related Works
k=0 k=l k=0 kel k=0 k=l k=0 kel Z2EOSROU pep pegp
Trials=10

click-button-sequence 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-button 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-checkboxes-large 0.00 0.04 026 090 TLE TLE 0.46 1.00 0.89 0.94 1.00
click-checkboxes-soft 0.00 0.00 0.61 070 0.18 041 0.62 0.78 0.86 0.72 0.54
click-checkboxes-transfer 0.04 0.28 0.66 1.00 0.52 TLE 0.73 1.00 0.99 1.00 094
click-checkbox 0.08 0.08 0.58 1.00 0.51 1.00 0.64 1.00 0.97 1.00 0.90
click-collapsible-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.80
click-collapsible 0.00 .002 1.00 1.00 096 1.00 1.00 1.00 1.00 1.00 1.00
click-dialog-2 0.64 0.70 0.70 0.72 0.68 0.54 0.78 0.74 0.71 1.00 1.00
click-dialog 0.00 1.00 1.00 1.00 088 1.00 1.00 1.00 1.00 1.00 1.00
click-link 0.00 0.88 096 1.00 088 092 0.98 1.00 0.97 1.00 1.00
click-option 0.18 0.02 0.74 1.00 070 TLE 0.82 1.00 1.00 1.00 1.00
click-pie 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.80 0.52 - 1.00
click-tab-2-hard 0.00 030 0.14 030 TLE TLE 0.22 0.68 0.00 0.76 1.00
click-tab-2-easy 0.00 0.82 092 094 084 0.86 0.92 0.96 0.95 - -
click-tab-2-medium 0.00 048 036 048 TLE TLE 0.60 0.52 0.28 - -
click-tab-2 0.00 0.14 0.04 028 TLE TLE 0.44 0.78 0.00 0.74 1.00
click-tab 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 -
click-test 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

click-test-transfer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - -
click-test-2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-widget 0.02 096 096 098 094 1.00 0.97 098 0.96 098 1.00
enter-date 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00
enter-password 0.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
enter-text-dynamic 0.00 096 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00
enter-text-2 0.00 090 1.00 1.00 096 096 1.00 1.00 1.00 - 1.00
enter-text 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
enter-time 0.00 0.52 0.00 098 0.00 0.80 0.00 1.00 0.51 1.00 -
focus-text-2 0.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00
focus-text 0.00 092 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
guess-number 0.00 0.32 0.08 0.14 0.00 0.00 0.20 0.84 0.14 0.20 -
login-user 0.00 096 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
grid-coordinate 0.00 0.86 0.00 1.00 0.00 TLE 0.00 1.00 0.00 1.00 1.00
multilayout 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.78 0.00 0.72 0.94
read-table 0.00 0.00 0.28 048 024 030 0.80 0.86 0.90 - -
read-table-2 0.00 0.00 020 032 0.16 0.22 0.80 0.82 0.88 - -
simple-arithmetic 0.00 0.00 090 097 090 090 1.00 1.00 0.99 - 1.00
simple-algebra 0.00 0.02 0.55 1.00 0.84 090 0.80 1.00 0.95 1.00 0.74
navigate-tree 0.00 0.32 0.51 094 0.60 0.74 0.70 0.92 0.25 0.86 -
search-engine 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.20 0.00 - 1.00
find-word 0.00 1.00 0.00 044 0.00 0.18 0.00 0.00 0.00 - 0.98
email-inbox-forward-nl-turk 0.00 0.85 0.00 0.77 0.00 0.00 0.00 0.92 0.00 0.94 0.90
email-inbox-forward-nl ~ 0.00 0.80 0.00 097 0.00 0.00 0.00 0.96 0.00 1.00 0.74
email-inbox-nl-turk 0.00 0.11 0.00 022 0.00 0.00 0.00 0.18 0.00 0.98 1.00
email-inbox 0.00 0.20 0.00 021 0.00 0.00 0.00 0.21 0.00 0.98 0.90
terminal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -
text-transform 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 - -
use-autocomplete 0.00 0.80 0.84 092 0.80 092 0.92 0.92 0.90 - -

Table 1: Comparison of performance across tasks of our methods and RCI using the gpt-3.5-turbo and HeaP using
instruction tuned text-davinci-003. TLE (Token Limit Exceeded) signifies tasks where the full prompt exceeds the
LLM’s context window. "-" denotes tasks not addressed by RCI and HeaP methods.

examples, for the large majority of cases, includ-
ing all levels of difficulty. However,as Table 2
shows, a single manually provided in-context ex-
ample leads to even higher success rates, especially
for the hardest tasks. While ACG is comparable
to the other zero-shot methods, it still lags behind
the single-shot methods across different tasks. This
indicates that either the in-context examples gener-

ated are not as effective as hand-crafted ones or no
in-context examples were generated at all.

Impact of filtered DOM elements: Figure 7
shows that filtering the DOM elements improves
success rates for the large majority of tasks, as the
LLM is able to focus on more relevant information.
However, Figure 7 highlights several tasks where
the performance of our approach when provided

3700

1 Function 2 Function 3-6 Function Variable Function
Methods
k=0 k=1 k=0 k=1 k=0 k=1 k=0 k=1
Instruction Only 0.45 0.94 0.03 0.27 0.00 0.94 0.01 0.20
Instruction + Whole DOM 0.82 0.94 0.71 0.89 0.77 0.80 0.16 0.23
Instruction + Filtered DOM 0.86 0.97 0.64 091 0.80 0.97 0.21 0.44
WebWISE 0.87 0.97 0.73 0.93 0.80 0.99 0.27 0.75
Auto-Context Generation 0.86 - 0.81 - 0.80 - 0.30 -

Table 2: Average success rate across tasks for different versions of our approach evaluating on gpt-3.5-turbo, with
WebWISE and Auto-Context Generation (ACG) being the main approach. k=0 means no in-context example is
provided, or in case of ACG, only auto-context examples are provided; k=1 indicates one manual in-context example
is provided, though many examples are shared across tasks.

1 Function 2 Function 3-6 Function Variable Function
Methods

k=0 k=1 k=0 k=1 k=0 k=1 k=0 k=1

WebWISE(gpt-3.5-turbo) 0.87 0.97 0.73 0.93 0.80 0.99 0.27 0.75

‘WebWISE(Llama 2 7B) 0.45 0.76 0.03 0.24 0.28 0.41 0.03 0.18
WebNT5-3B 0.83 0.29 0.73 0.37
‘WebN-T5-3B(k=0) 0.85 0.27 0.63 0.30
CCNet(BC+RL) 0.99 0.94 0.99 0.89
CCNet(RL) 0.88 0.65 0.50 0.44
CCNet(BC) 0.77 0.37 0.27 0.16
WebGUM((HTML) 0.92 0.40 1.00 0.83
WebGUM(HTML+Image) 0.94 0.40 1.00 0.90

Table 3: Comparison of our WebWISE method on different LLMs with methods reported from other works where
the value of k is not applicable. CCNet has been trained using behavior cloning (BC) on human-labeled data and
also reinforcement learning by interacting with MiniWob++ different tasks environment. CCNet (BC) represents
the model that has been only trained on human-labeled data, CCNet (RL) is trained only by letting it interacting
with MiniWob++ environment for many trials, and CCNet (BC+RL) is trained using both methods.

Comparison(k=0) : Instruction + Whole DOM vs Instruction + Filtered DOM

100 L] (4 L%

>

® Task that requires 1 function calls (Easy)

® Task that requires 2 function calls (Medium)

® Task that requires 3-6 function calls (Hard)

@ Task that requires arbitary no. of function calls (Hard)

Instruction + Filtered DOM - Accuracy (%)
&
\
°

I

20

000 o

°

40 60 80 100
Instruction + Whole DOM - Accuracy (%))

Figure 7: Comparison of k=0 performance across all
tasks for Instruction+Whole DOM(x-axis) and Instruc-
tion+Filtered DOM(y-axis).

with whole DOM elements is better than the filtered
DOM elements. This is likely due to some infor-
mation important contained in the Whole DOM
elements. Thus, developing an adaptive DOM ele-
ment filter that can generalize across several tasks
could be a next step. The influence of different
LLMs on our results are discussed in appendix.
Limitations: Our main limitations include that
experiments are limited to simple tasks, sensitiv-
ity to the input prompts, lack of an explicit mem-

ory, and use of only two LLMs with only one be-
ing open-source. Eventually, we aim to develop
systems that can learn to perform more compli-
cated tasks, like booking airline tickets, with few
trials or demonstrations. This requires being able to
more fully utilize web interfaces and retain mem-
ory of past interactions to complete long action
sequences. Increased robustness to input prompts
is also needed. Further improvement may be pos-
sible by learning from failures and automatically
correcting mistakes.

7 Conclusion

Our work presents an initial exploration into using
Large Language Models (LLMs) to generate pro-
grams that interact with web interfaces. Our exper-
iments indicate: filtered DOM elements are effec-
tive forms of observation; the step-by-step action
and observation is more effective than single-step
generation; and automatically generated in-context
examples from successful trials can boost success
rates for many tasks.

Acknowledgement This work is supported in
part by ONR awards N00014-21-1-2705 and
N00014-23-1-2383.

3701

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Yangyi Chen, Xingyao Wang, Manling Li, Derek
Hoiem, and Heng Ji. 2023. Vistruct: Visual struc-
tural knowledge extraction via curriculum guided
code-vision representation. In Proc. The 2023 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP2023).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yu-
taka Matsuo, Shixiang Shane Gu, and Izzeddin

Gur. 2023. Multimodal web navigation with
instruction-finetuned foundation models. arXiv
preprint arXiv:2305.11854.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 14953-14962.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa
Safdari, Austin Huang, Aakanksha Chowdhery, Sha-
ran Narang, Noah Fiedel, and Aleksandra Faust.
2022. Understanding html with large language mod-
els. arXiv preprint arXiv:2210.03945.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049-1065, Toronto,
Canada. Association for Computational Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118-9147. PMLR.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al.
2022b. Inner monologue: Embodied reasoning
through planning with language models. arXiv
preprint arXiv:2207.05608.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gre-
gory Thornton, Rachita Chhaparia, Alistair Muldal,
Josh Abramson, Petko Georgiev, Adam Santoro, and
Timothy Lillicrap. 2022. A data-driven approach for
learning to control computers. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 9466-9482. PMLR.

Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. 2019.
DOM-q-NET: Grounded RL on structured language.
In International Conference on Learning Representa-
tions.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

3702

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://openreview.net/forum?id=HJgd1nAqFX
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu,
Fangyu Liu, Julian Eisenschlos, Urvashi Khandel-
wal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2023. Pix2struct: Screenshot parsing
as pretraining for visual language understanding.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and
Percy Liang. 2018. Reinforcement learning on web
interfaces using workflow-guided exploration. In In-
ternational Conference on Learning Representations.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Transactions on Machine
Learning Research. Survey Certification.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Auri,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

OpenAl. 2024. Openai api models.
platform.openai.com/docs/models.
2024-03-31.

https://
Accessed:

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3135-3144. PMLR.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In nternational Conference
on Robotics and Automation (ICRA).

Paloma Sodhi, S. R. K. Branavan, and Ryan McDonald.
2023. Heap: Hierarchical policies for web actions
using llms.

Didac Suris, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot structured predic-
tion from natural language. arXiv preprint
arXiv:2210.12810.

Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4struct:
Code generation for few-shot event structure predic-
tion. In Proc. The 61st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL2023).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-
aodong Wang, Zecheng Tang, and Nan Duan.
2023. Visual chatgpt: Talking, drawing and edit-
ing with visual foundation models. arXiv preprint
arXiv:2303.04671.

Shunyu Yao, Howard Chen, John Yang, and Karthik R
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma,
Jianye Hao, and Yang Liu. 2021. Automatic web
testing using curiosity-driven reinforcement learning.
In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 423—435. IEEE.

Victor Zhong, Jesse Mu, Luke Zettlemoyer, Edward
Grefenstette, and Tim Rocktdschel. 2022. Improving
policy learning via language dynamics distillation. In
Advances in Neural Information Processing Systems.

A Scientific Artifacts

The scientific artifacts used in the paper (e.g.,
LLaMa 2(7b), gpt-3.5-turbo, and Miniwob++)
aligns with terms and conditions of usage of pro-
vided the original authors.

B Design choices

B.1 Impact of choice of LLM

It is important to acknowledge that while gpt-3.5-
turbo shows superior performance as indicated in

3703

http://arxiv.org/abs/2210.03347
http://arxiv.org/abs/2210.03347
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
http://arxiv.org/abs/2310.03720
http://arxiv.org/abs/2310.03720
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=R9KnuFlvnU
https://openreview.net/forum?id=R9KnuFlvnU
https://openreview.net/forum?id=Yay6tHq1Nw
https://openreview.net/forum?id=Yay6tHq1Nw

Table 3, LLaMA-2 7B also demonstrates promis-
ing results in certain tasks, especially with one
in-context example. This suggests that, despite
some limitations like the current 8-bit quantization
possibly affecting accuracy, there is potential for
improved performance with larger LLaMA v2 mod-
els. This observation suggests the adaptability and
potential effectiveness of our algorithm, even with
smaller-scale models.

B.2 Impact of choice of Filtered VS Full DOM
Elements

We discussed in our paper that we use only a subset
of DOM Elements (referred to as ‘Filtered DOM El-
ements’) instead of the entire set of DOM Elements.
We use the get Summary() function to extract the
filtered DOM elements. The getSummary() func-
tion iterates through each DOM element and in-
cludes a DOM element in the filtered list if the
element’s tag or class belongs to a pre-defined list.
In addition, we include the flags, an array of bi-
nary values. The values indicate whether a certain
element has been clicked on/modified on. We dis-
play the pre-defined lists, called ‘useful_tag’ and
‘useful_classes’ below. The lists were determined
experimentally.

useful_tag = {'button', 'text', 'input_time', 'textarea',
polygon', 'label', 'input_password', 'rect', 'tt', '

circle ', 'input_password', 'span', 'input_text', '
input_number', 'input_date', 'input_radio', 'tspan', '
input_checkbox ', 't', 'button', 'h3', 'ul', 'a', 'p', '

div', 'th','tr', 'td'}
useful_classes = {'folder '}

Listing 2: Predefined list of useful tags and classes
In Figure 8, we use a simple task to illustrate the
differences between filtered DOM elements and
full DOM elements.

B.3 Impact of choice of Sensitivity to prompts

In our analysis, we have observed that LLMs ex-
hibit sensitivity to the prompts provided, including
the system message and task message. We con-
ducted a case study where we deliberately varied
the task message and examined the resulting per-
formance of the generated programs.

This sensitivity to prompts highlights the impor-
tance of carefully crafting and designing prompts to
elicit the desired behavior and improve the overall
performance of the language model.

task_message_1="""This task is a multi—step challenge. To
successfully complete it, you need to be aware of the
current state of the environment and the user input.
Before performing any action, carefully observe and
analyze the environment to determine whether further
actions are required. When exploring and trying
different actions, ensure that you select appropriate

actions and arguments for the functions based on the
current environment. Focus on efficiently reaching a
solution by checking if the task can be solved with the
current user input and environment state before taking
any further steps, and by using correct actions and
arguments for each function."""

task_message_2="""Next task is a multi—step task, directly
performing a series of actions may not solve the task.
Need to observe the changes in the user input before
and after performing any action to see if

further actions need to be made to solve the task or not"""

task_message_3= """Next task is a multi—-step task, directly
performing a series of actions may not solve the task.
Need to observe the changes in the user input before
and after performing any action to see if

further actions need to be made to solve the task or not. So

explore and try different actions and figure out a

way to solve the task, but at every step check if you
are able to solve the task with the current user input
before taking the action."""

task_message_4="""Your next task is a multi—step challenge.
To successfully complete it, carefully observe and
analyze the changes in user input before and after
performing any action. This will help determine whether
further actions are necessary. While it important to
explore and try various actions, always assess whether
the task can be solved with the current user input
before taking additional steps. Focus on efficiently
reaching a solution without excessive exploration when
a satisfactory outcome is already achievable.

task_message_5="""The upcoming task is a multi-step
challenge that requires you to pay close attention to
the current user input. Your goal is to efficiently
reach a solution by performing appropriate actions
based on the present situation. Before taking any
action , analyze the user input to determine if further
actions are necessary. Explore and try the next action,
but always ensure they are necessary, relevant to the
current state and have the correct arguments for the
functions. Continually assess the situation to check if
the task can be solved with the current user input and
environment state before proceeding further."""

task_message_6="""The upcoming task is a multi-step
challenge. To successfully complete it, you must be
aware of the current state of the environment and the
user input. Before performing any action, carefully
observe and analyze the environment to determine
whether further actions are required. When selecting
actions , ensure that you only perform actions if the
current user input has the necessary elements. Focus on
efficiently reaching a solution by trying to solve the
task with the current user input and environment state
before considering further exploration. Only explore
and try different actions if the task cannot be solved
with the current state. Make sure to use correct
actions and arguments for each function based on the
current environment."""

task_message_7="""The this task is a multi—step challenge.
To successfully complete it, you must be aware of the
current state of the environment and the objects in the
image. Before performing any action, carefully observe
and analyze the environment to determine whether
further actions are required. When selecting actions ,
ensure that you only perform actions if the objects in
the image have the necessary elements. Focus on
efficiently reaching a solution by trying to solve the
task with the current objects in the image and
environment state before considering further
exploration. Only explore and try different actions if
the task cannot be solved with the current state. Make
sure to use correct actions and arguments for each
function based on the current environment."""

task_message_8="""The upcoming task is a multi—step
challenge. Observe and analyze the environment and
objects in the image before performing any action.
Select actions based on the current state and ensure
they are relevant to the objects in the image. Focus on
solving the task with the current state, and only
explore further if necessary. Use correct actions and
arguments for each function, and be mindful of the
environment during the process."""

task_message_9="""This task is a multi—step challenge.

Observe and analyze the user input which contains the
objects in the image before performing any action.
Select actions based on the current state and ensure
they are relevant to the objects in the image. Try
other actions if and only if you are not able to solve
the task with the current user input. Use correct
actions and arguments for each function, and be mindful
of the environment(user input) during the process."""

3704

'value':
vidrs 0t

'flags':

Click button ONE, then click e |
button TWO. T

'flags':

‘size’:
Full Dom

'text':
Elements

'value':

'flags':

‘size':

'text':
getSummary ‘value':

"flags':

'size':

'text':

[{'ref': 1,
'parent’:
‘pos': array([0., 0.], dtype=float3z),
‘size': array([485., 210.], dtype=float32),
'tag': 'body',

‘text': "'

‘classes':
'bg_color': array([0.33333334, 0.33333334, 0.33333334, 1.
'fg_color': array([0., 0., 0., 1.], dtype=float32),
array([1, 0, 0, 0], dtype=int8)},

{'ref': 2,
'parent’:
'pos': array([0., 0.], dtype=float32),
'size': array([160., 210.], dtype=float32),
‘tag': ‘'div',

‘id': 'wrap',

‘classes': '',

'bg_color': array([l., 1., 1., 1.], dtype=float32),
‘fg_color': array([0., 0., 0., 1l.], dtype=float32),
: array([0, 0, 0, 0], dtype=int8)},

TWO ('ref': 3,
'parent': 2,

‘pos': array([0., 50.], dtype=float32),
array([160., 4.], dtype=float32),
'tag': 'div',

'id': 'area',
'classes':
'bg_color': array([0., 0., 0., 0.], dtype=float32),
array([0., 0., 0., 1.], dtype=float32),
array([0, 0, 0, 0], dtype=int8)},

'£g_color':

{'ref': 4,
‘parent': 3,

'pos': array([61., 147.], dtype=float32),
array([40., 40.], dtype=float32),
'tag': 'button’,

'id': 'subbtn',
‘classes’': "'
'bg_color': array([0.9372549, 0.9372549, 0.9372549, 1.
'fg_color': array([0., 0., 0., 1.], dtype=float32),
array({0, 0, 0, 1], dtype=int8)},

'div wrap 2', 'div area', 'button ONE', 'button TWO'] {'ref': 5,
'parent':
‘pos': array([85., 84.], dtype=float32),
array([40., 40.], dtype=float32),
‘tag': 'button',

‘value': "',
‘id': ‘'subbtn2’,
‘classes':
'bg_color': array([0.9372549, 0.9372549, 0.9372549, 1.
'fg_color': array([0., 0., 0., 1.], dtype=float32),
‘flags': array((0, 0, 0, 1], dtype=int8)}]

1, dtype=float32)

1, dtype=float32),

1, dtype=float32),

Figure 8: An example of comparing the full DOM elements VS filtered DOM elements for a simple task. We also

include flags as part of the getSummary() output.

task_message_10="""1In this multi—step task, stay aware of
the environment and user input. Observe and analyze
before acting. As you try actions, choose suitable
functions and arguments. Focus on efficiency: check if
the task is solvable with current input and environment
before proceeding. Converge toward the objective by
using correct actions and arguments, and be cautious to
avoid divergence."""

task_message_11="""This task involves a multi—step challenge
, which can be accomplished by following these succinct
steps:

1)Examine the environment by analyzing objects in the image
from user input.

2)Determine if the desired element from the task image is
present in the current objects.

3)If not, perform necessary actions (e.g., clicking,
scrolling) to make the element available.
4)Iterate steps 1-3 until the desired element is found and

can be clicked or interacted with.
5)Once the element is available and visible , execute the
appropriate action on it."""

task_message_12=

This task is a multi-step challenge , which can be
accomplished by following these steps:

1)You should solve it step by step.

2)Before performing any action, determine if the desired
element from the task is present in the Objects in
Image.

3)If and only if the desired object is not there, say the
phrase "The desired object is not there"

4)Then explore and perform other actions (e.g., clicking,
scrolling) to see if the desired element is available
in other states.

5)Iterate steps 2-4 until the desired element is found and
can be clicked or interacted with.

task_message_13=

This task involves a multi-step challenge, which can be
accomplished by following these succinct steps:
1)Determine if the desired element from the task image is
present in the Object in Image.

2)If its not, explore and perform other actions (e.g.,
clicking , scrolling) to see if the element is available
in other states.

3)Iterate steps 1-2 until the desired element is found and
can be clicked or interacted with.

4)Once the element is available and visible , execute the
appropriate action on it.

Listing 3: Experiments on different task messages for
API

The impact of variation in the task message on
the performance of WebWISE, is shown in Table
5. Although the overall meaning of the "task mes-
sage" remains consistent, minor differences in sen-
tence structure and syntax can affect the model’s
performance for multi-steps tasks. While the aver-
age performance across tasks may appear similar,
there are significant variations in accuracy among
individual multi-step tasks, with some showing a
high standard deviation of 62%. A future research
direction is the development of methods robust to
prompt variation.

3705

B.4 Impact of Full DOM Elements

A deeper analysis of specific tasks like "Simple-
Algebra" and "Navigate-Tree" revealed that provid-
ing the complete DOM elements as input improves
performance. This improvement is attributed to
the presence of keywords like "math-question" and
"folder" within the DOM elements. Although these
keywords may not be essential for executing ac-
tions within the web interface, they play a crucial
role in providing contextual information to the lan-
guage model. Consequently, the model gains a
better understanding of the broader task it needs to
accomplish at any given moment.

C Implementation Details

C.1 LLM Input

The prompt to the LLMs contains (in the following
order) System message, API, Solution Description,
Task description, and In-context examples. There
are a total of 48 different tasks and each has its own
in-context example. We provide the details for the
system message and API below.

System_Message = """You are designed to generate programs to
solve a wide range of complex web interface tasks.

You should be able to generate the program using either one
or a composition of predefined action functions

along with general python codes to solve different tasks.
You should not conversate with human in any context."""

Listing 4: First system message

Solution_Description="""Your task is to generate a solution
for given problems based on objects in an image. Use
the functions provided and follow these guidelines:

1) Construct solutions by calling functions and using Python
data structures.

2)Solutions should be after the text 'Solution?'.

3)Only provide the function names without extra text in the
solution .

4)Assume you can use observations without checking.

5)Don't assume additional functions or unknown information .

6)Add observation , reward, terminated , truncated, info = env
.step (action) after each action.

7)Actions are independent of each other.

8)Do not add any comments, just return the code

If the task cannot be directly solved, perform a reasonable
action and observe changes in the objects.

Use your DOM Elements knowledge to understand objects in the
image .

Feel free to use Python constructs like if-else,
while loop, etc., to generate the program.

for loop,

Listing 5: Second system message that appears after the
API

task_message = """Your next task is a multi-step challenge.
To successfully complete it, carefully observe and
analyze the changes in user input before and after
performing any action. This will help determine whether
further actions are necessary. While it's important to
explore and try various actions, always assess whether
the task can be solved with the current user input
before taking additional steps. Focus on efficiently
reaching a solution without excessive exploration when
a satisfactory outcome is already achievable. """

Listing 6: Third system message for multi-step methods

System Message The (first two) system mes-
sages were the same between tasks and across meth-
ods. A third system message is added for WebWise
and Auto-Context Generation to ensure the task is
completed step-by-step.

You should only use the functions provided herewith in the
function description. Here is the list for the pre—
defined functions [getSummary, click_actionl ,
enter_text_action , scroll_actionl].

To use a function, please refer to the Name, Input, Output,
Description of the functions, and usage examples below.
Action functions should be called correctly in the
solution .

def getSummary (dom_elements) :

Input: DOM elements

Output: Subset of DOM elements

Description: get the filtered DOM elements from full DOM
elements

Example: objects_in_the_image = getSummary(dom_elements)

def click_actionl (tag_class_name ,id_text_name ,observation):
Input: tag or element, id or text, observation
Output: clicks on specific element in environment
Description: useful when you want to click on an element
in the web interface. This function cannot be
generalized on names. Normally first input is one of
tag or element and second is test or id. The output is
given as the action by calling click_actionl function
or 'Cannot find in the DOM_element' if no such thing to
be clicked on
Example: Objects in Image: Button One;
Task: Click button ONE;
Solution: action = click_actionl ('button', 'ONE
', observation)
observation , reward, terminated ,
truncated , info = env.step(action)

def enter_text_action(input_text ,bobservation):
Input: text, observation
Output: enters text in element in environment
Description: useful when you want to type the input_text
into input text box or a similar object like
input_number that can accept text given the observation
of the task interface. Need to call click_actionl to
click on it before calling this function.
Example: Objects in Image: input_text textbox;
Task: Type 'Hello' into textbox;

Solution: action = click_actionl ('input_text"
'textbox ', observation)
observation , reward, terminated ,
truncated , info = env.step(action)

action = enter_text_action ('Hello
observation)

observation , reward, terminated ,
truncated , info = env.step(action)

def scroll_actionl (text_to_scroll_to ,observation):
Input: text, observation
Output: moves webpage such that certain text is visible
Description: needed when elements do not appear on
initial screen. Always used with other actions
Example: Objects in Image: Button Apple
Task: scroll and click button Apple
Solution: action = scroll_actionl ('Apple ',
observation)
observation , reward, terminated ,
truncated , info = env.step(action)
action = click_actionl ('button '
Apple ', observation)
observation , reward, terminated ,
truncated , info = env.step(action)

Listing 7: Full API

Full API Below we list the full details our API.
The API is constant between tasks and methods.
For each function, we list the expected input, out-
put, description and the example use case of the
function. The example differs across the methods
and depends on what visual information is pro-
vided. For the ‘Instruction Only’ method, there is

3706

Tasks Number of Functions

Incorrect Answers Visible
(Y/N)

Target Button Not in Initial
DOM (Y/N)

click-button-sequence 1
click-button 1
click-checkboxes-large Variable
click-checkboxes-soft Variable
click-checkboxes-transfer Variable
click-checkbox Variable
click-collapsible-2 Variable
click-collapsible 2
click-dialog-2 1
click-dialog 1
click-link 1
click-option 2
click-tab-2-hard Variable
click-tab2-easy 2
click-tab2-medium 2
click-tab-2 Variable
click-tab 1
click-test-transfer 1
click-test-2 1
click-test 1
click-widget 1
enter-date 3
enter-password 3
enter-text-dynamic 3
enter-text-2 3
enter-text 3
enter-time 2
focus-text-2 3
focus-text 3
guess-number Variable
login-user

3
multi-layouts 1
use-autocomplete 1
grid-coordinate 1
simple-arithmetic 2
simple-algebra 2

navigate-tree Variable
search-engine Variable
find-word Variable
email-inbox-forward-nl- 3

turk

email-inbox-forward-nl 3
email-inbox-nl-turk Variable
email-inbox Variable
terminal Variable
click-pie 2
read-table 2
read-table-2 2
text-transform 1

Table 4: Classification of all tasks. ’Y

no line that starts with ‘Objects in Image’ since that
information is not part of the method.

C.2 Scatter Plots
We display additional scatter plots for gpt-3.5-turbo
results in Figures 9, 10, and 11.

D Task Analysis

D.1 Task Classification

In the results section, we categorized the tasks
based on the number of pre-defined functions
needed. However, we also introduce two alterna-

ZZZE L 222222 ZZZZZZZZEZEEZ L ZZ K Z 2 Z
ZZZ L 2222222222222 2222222222222 2Z<Z22ZZ<Z

> stands for yes. and *N’ stands for no.

tive methods for classifying the tasks. We provide
a comprehensive table, Table 4, that presents all the
tasks along with their respective classifications.

Incorrect Answers Present One way we can
classify the tasks is, if there are incorrect answers
present. Tasks that include incorrect answers are
characterized by the presence of multiple clickable
buttons, as opposed to tasks with a single button.
An illustration showcasing a task with and without
incorrect answers is provided in Figure 13.

Target Button not in Initial DOM Elements A
second way we can classify tasks is based on the

3707

Comparison(k=0) : Instruction only vs Instruction + Filtered DOM

100 . * L]

Instruction + Filtered DOM - Accuracy (%)
8
oo
@

Task that requires 1 function calls (Easy)

Task that requires 2 function calls (Medium)

Task that requires 3-6 function calls (Hard)

Task that requires arbitary no. of function calls (Hard)

K

20 40 60 80 100
Instruction only - Accuracy (%)

Figure 9: Comparison of k=0 performance across
all tasks for Instruction Only (x-axis) and Instruc-
tion+Filtered DOM (y-axis)

Comparison(k=0) : Instruction + Filtered DOM vs WebWISE

100 & L]

40

WebWISE - Accuracy (%)
[]
]

®
@ Task that requires 1 function calls (Easy)
® Task that requires 2 function calls (Medium)
@ Task that requires 3-6 function calls (Hard)
L

Task that requires arbitary no. of function calls (Hard)

0 20 60 80 100

40
Instruction + Filtered DOM - Accuracy (%)

Figure 10: Comparison of k=0 performance across all
tasks for Instruction+Filtered DOM (x-axis) and Web-
WISE (y-axis).

initial set of DOM elements. In simpler tasks, the
initial set of DOM elements already provides all the
necessary information to perform the task. How-
ever, for more complex multi-step tasks, it is re-
quired to perform at least one additional step to
access the DOM elements that contain the target
button or the information needed to execute the task
correctly. Typically, this additional step involves
clicking on a button that triggers a screen change or
reveals the relevant elements. Figure 12 provides
an example illustrating this concept.

D.2 Task Failures

In this section, we explore why certain tasks failed.
It is worth noting that some failures are attributed
to the different task classifications we discussed
earlier.

One specific example is the ‘click-dialog’ task,
as demonstrated in Table 1. When using our
WebWISE method with only one example, we

Comparison(k=0) : WebWISE(k=0) vs Auto-Context Generation

100 L L4 ,
® » ,‘vg

: A e

Auto-Context Generation - Accuracy (%)

@ Exploratory tasks
@ Non Exploratory tasks

40 60 80 100
WebWISE - Accuracy (%))

Figure 11: Comparison of WebWISE (x-axis) vs. Auto-
Context Generation (ACG) (y-axis) at k=0 across var-
ious tasks. Orange dots indicate tasks requiring ex-
ploration, such as those where the target button isn’t
present initially in the DOM elements, whereas green
dots represent non-exploratory tasks. A noticeable trend
is that Auto-Context Generation’s (ACG’s) performance
decreases on exploratory tasks. When ACG finds a cor-
rect solution during the zero-shot trials, it will continue
to use the same solution found instead of generalizing
from it.

Expand the section below and

Expand the sections below, to find
click submit.

and click on the link "ac.".

Section #3

Figure 12: Comparison of tasks where target button is
visible and not visible in the initial set of DOM elements.
The target is visible for task shown on the left image and
initial DOM elements contain all relevant information.
For task shown on the right image, to get the relevant
information, different sections have to be expanded, and
each time a section is expanded, the DOM elements are
changed.

However, for the
click—dialog—2’ task, the accuracy drops to 76%.
This discrepancy can be attributed to a particular
sub-task where the task description instructs the
user to click on the ‘x’ symbol to close a dialog.
Language models may not fully comprehend that
the symbol ‘x’ represents the close function. As a
result, this lack of understanding leads to failures
in executing this specific sub-task.

achieve perfect accuracy.

3

3708

Click on the "Submit" button. Select Xgmfl6o, ikt, 1zfn, pl,
NNQT1r, jr2J, stGN, ACzM86 and
click Submit.

otenti tellus at:
| ™ (J 1zfn
: : (J aczms ([pi
commodo, scelerisque amet:
() xgmfieo (] o
I Oy O sten
ornare imperdiet ultricies O NNgT1r
sit urna, a::‘.cumsan, Submit

Figure 13: Comparison of tasks with and without incor-
rect answers. For image on the left, incorrect answers
are NOT present. There is only a single button to click.
However, for image on the right, ncorrect answers are
present. Eg. only some of the checkboxes should be
clicked on.

Email Tasks Among the tasks we evaluated,
some simulate performing actions in an email mo-
bile app. Performance varies widely across these
tasks, particularly those that begin with the word
“email." Tasks starting with “email-inbox-forward"
tend to have better performance compared to tasks
without the word “forward". This variation can be
explained by the scope of the individual tasks. In
tasks with “forward" in the prompt, there is only
one specific action that needs to be performed: for-
warding an email. However, in tasks without the
word “forward," there can be one of four possible
actions: forwarding, starring (marking as impor-
tant), deleting, and replying to an email. To main-
tain consistency with the other tasks, we used a
single in-context example with only one of the ac-
tions for the email-related tasks. Consequently, our
method can only successfully execute the action
mentioned in the prompt.

Terminal One common source of failure in
tasks involving a terminal is the model’s lack
of knowledge on how to execute a command
by pressing the enter key. The task only suc-
ceeds when we provide an example because we
pass the first argument to enter_text_action as
"CommandT oBeEntered\n”, which simulates
pressing the enter key after entering the command.
To address this issue, a potential solution in the
zero-shot scenario is to develop primitive func-
tions specifically for key actions such as "ENTER,"
"BACKSPACE," or "DELETE." By incorporating
these primitive functions into our models, it can
learn to perform key-related actions more effec-

tively in terminal-based tasks.

Search Engine and Text Transform Failures in
tasks like “Search-Engine" and “Text-transform"
can be attributed to the limitations of the filtered
DOM elements. For example, in the search engine
task, the instruction may involve clicking on the 8th
search result on a webpage. While the full DOM
elements contain the search results in the correct
order, the filtered DOM elements do not. A similar
observation can be made for tasks like “Text Trans-
form." To address this issue, it becomes necessary
to develop an adaptive getSummary() function
that can extract the most relevant elements while
also preserving their order within the DOM. Al-
ternatively, approaches involving the use of image
input modalities could be explored to overcome
these limitations. Such approaches can provide a
visual representation of the webpage, enabling the
model to better understand the layout and order of
the elements present.

D.3 Additional Task Analysis

In tasks like “Copy-Paste," the objective is to copy
text from the task interface and paste it into an
empty text field, as illustrated in Figure 14. How-
ever, we did not implement the copy-paste function
for the LLMs to interact with the environment and
complete the task. We noticed that LLMs make
references to functions like "create_copy_action"
and "create_paste_action," which, if imple-
mented, could have led to the correct solution (as
shown in Figures 15,16). Some additional func-
tions such as clicking on specific coordinates could
also be implemented to improve the LLMs’ capa-
bilities in handling tasks like these.

Copy the text in the textarea
below, paste it into the textbox and
press Submit.

Porttitor diam
enim,
vestibulum,
ornare iaculis

Figure 14: An example of the copy-paste task

D.4 Single step approach diagram

The example of single step approach is shown in
the Figure 17.

3709

Various Task Message Average performance on WebWise k=0 Average performance on WebWise k=1

Task Message 1 0.62 0.85
Task Message 2 0.52 0.72
Task Message 3 0.50 0.76
Task Message 4 0.54 0.74
Task Message 5 0.48 0.74
Task Message 6 0.54 0.76
Task Message 7 0.56 0.76
Task Message 8 0.56 0.78
Task Message 9 0.58 0.78
Task Message 10 0.60 0.80
Task Message 11 0.56 0.76
Task Message 12 0.54 0.78
Task Message 13 0.58 0.80

Table 5: WebWISE k=0 and k=1 performance for the different task messages which indicates the sensitivity of the
task message

Tasks WebWISE (k=1) RCI RCI k Result
click-button-sequence 1.00 1.00 2 Draw
click-button 1.00 1.00 1 Draw
click-checkboxes-large 1.00 0.94 1 Win
click-checkboxes-soft 0.78 0.72 1 Win
click-checkboxes-transfer 1.00 1.00 2 Draw
click-checkbox 1.00 1.00 2 Draw
click-collapsible-2 0.66 0.62 2 Win
click-collapsible 1.00 1.00 1 Draw
click-dialog-2 0.74 1.00 3 Lost
click-dialog 1.00 1.00 1 Draw
click-link 1.00 1.00 n/a Draw
click-option 1.00 1.00 1 Draw
click-tab-2-hard 0.68 0.76 6 Lost
click-tab-2 0.78 0.74 1 Win
click-tab 1.00 1.00 1 Draw
click-test-2 1.00 1.00 n/a Draw
click-test 1.00 1.00 1 Draw
click-widget 0.98 0.98 3 Draw
enter-date 1.00 0.96 4 Win
enter-password 1.00 1.00 n/a Draw
enter-text-dynamic 1.00 1.00 n/a Draw
enter-text 1.00 1.00 n/s Draw
enter-time 1.00 1.00 2 Draw
focus-text-2 1.00 1.00 n/a Draw
focus-text 1.00 1.00 1 Draw
guess-number 0.84 0.20 n/a Win
login-user 1.00 1.00 n/a Draw
multi-layouts 0.78 0.72 n/a Win
use-autocomplete 0.92 0.58 n/a Win
grid-coordinate 1.00 1.00 1 Draw
simple-algebra 1.00 1.00 1 Draw
navigate-tree 0.92 0.86 1 Win
search-engine 0.20 1.00 22 Lost
email-inbox-forward-nl-turk ~ 0.92 0.94 3 Lost
email-inbox-forward-nl 0.96 1.00 3 Lost
email-inbox-nl-turk 0.18 0.98 4 Lost
email-inbox 0.21 0.98 6 Lost
terminal 0.93 1.00 1 Lost
Average Performance 0.88 0.92

Table 6: Comparison of WebWISE(k=1) and RCI, both using gpt-3.5-turbo. The second last column lists the k value
for RCI if available. Although the average performance of the RCI method is marginally higher than our approach,
it is to be noted that the number of examples provided the RCI method are comparatively higher as seen in the table.
RCT also has higher performance for some tasks when using gpt-4, which is also likely to be in our case since gpt-4
is a more powerful LLM. The "Result" column shows whether our method, "WebWISE (k=1)," was successful or
not compared to "RCI (k=n)."

3710

Web Interface

4 Ob]ects in the Image: [ul , a TextTab , a PasteArea, tPomltord\am 1
1 enim, Vestibulum, ornare iaculis , button submit | 1
1

1 Task: Copy the text in the textarea below, paste it into the textbox and 1
1 and press submit.

' Solutlon”

Invalid program: action = create_copy_action (observation)
observation, reward, terminated, truncated, info = env.step(action)

action = click_action1 (‘input_text', ‘answer-input', observation)
observation, reward, terminated, truncated, info = env.step(action)

Invalid Program: action = create_paste_action (observation)
observation, reward, terminated, truncated, info = env.step(action)

action = click_action1 (‘button’, 'submit', observation)
observation, reward, terminated, truncated, info = env.step(action)

Figure 15: The actual generated program for the copy-
paste task in Zero Shot scenario where we observe
"create_copy_action" being created by the model even
though that function was not provided in the model API

Web Interface

’ Objects in the Image: [ul , a TextTab , a PasteArea, t Porttitor dlam 1
1 enim, Vestibulum, ornare iaculis , button submit] 1
1

Task Copy the text in the textarea below, paste it into the textbox and l
I and press submit.

' Solutlon‘7

action = create_copy_action ('a', 'Texttab', observation)
observation, reward, terminated, truncated, info = env.step(action)
action = create_paste_action (‘a’, 'PasteArea’, observation)
observation, reward, terminated, truncated, info = env.step(action)
action = click_action1 (‘button’, 'submit', observation)
observation, reward, terminated, truncated, info = env.step(action)

Figure 16: A potential generated program for the copy-
paste task in Zero Shot scenario where the model
could create functions like "create_copy_action" and
"create_paste_action" to solve the task.

r Web Interface, N

Ob]ects in the Image: [ul , a Tab #1 , a Tab #2, span Sollicitudin. eget 1
tristique span A, blandit. t turpis Aenean span sollicitudin t tincidunt cras

! Lucas urna,. t Quis quis t maecenas arcu nunc, t euismod. span In odio] 1

1

1 Task: Switch between the tabs to find and click on the link "Sollicitudin". |

1
Solutlon” 4

_____________________ D,

In-Context Example

Objects in the Image: [a 1, a 2, a 3, span Nibh. t Sit placerat span

erat t tristique t vulputate t tristique in egestas quisque span sed. t Feugiat
eget sit. span sed. t Feugiat eget sit. t Bibendum. t Pellentesque. t Lorem
turpis. t Facilisis span aliquam]

Task: Switch between the tabs to find and click on the link "erat".

action = click_action1 ('span’, 'erat’, observation)
observation, reward, terminated, truncated, info = env.step(action)

action = click_action1 (‘a', '2', observation)
\ observation, reward, terminated, truncated, info = env.step(action))

LLM

action = click_action1 (‘'span’, 'Sollicitudin’, observation)
observation, reward, terminated, truncated, info = env.step(action)

Figure 17: An example of the single-step approach. The
input to LLMs includes the in-context example (in the
blue box) and the task query along with the filtered
DOM elements(in the orange box).

3711

