
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3656–3677
June 16-21, 2024 ©2024 Association for Computational Linguistics

Investigating Acceleration of LLaMA Inference by Enabling Intermediate
Layer Decoding via Instruction Tuning with ‘LITE’

Neeraj Varshney Agneet Chatterjee Mihir Parmar Chitta Baral
Arizona State University

Abstract
Large Language Models (LLMs) have achieved
remarkable performance across a wide variety
of tasks; however, their large size makes their
inference slow and computationally expensive.
Focusing on this problem, we study instruction
tuning LLMs with additional explicit Losses
from the InTermediate layErs (LITE) and show
that it enables these layers to acquire ‘good’
generation ability without affecting the genera-
tion ability of the final layer. We then perform
‘dynamic confidence-based early exiting’ at to-
ken level from the intermediate layers which
improves the computational efficiency of text
generation without sacrificing the quality of
the generation. We conduct comprehensive
experiments by instruction tuning LLaMA-2
models on the Alpaca dataset and evaluate on
four different instruction test sets. We show
that dynamic early exiting achieves consistent
and considerable inference cost improvements
(37.86% for 7B and 46.35% for 13B model)
while maintaining the generation quality. We
further conduct a thorough analysis of the re-
sults and dissect the efficiency improvements
which reveals several important findings.

1 Introduction

Recently developed LLMs (Touvron et al., 2023;
OpenAI, 2023; Chowdhery et al., 2022; Rae et al.,
2021; Smith et al., 2022) have revolutionized the
field of natural language processing and achieved
remarkable performance across a wide variety of
tasks. ‘Instruction Tuning’ further teaches these
models to follow the user’s instruction provided in
natural language (Wei et al., 2022; Mishra et al.,
2022; Sanh et al., 2022; Wang et al., 2022; Chung
et al., 2022). Despite all the notable abilities of
these models, their large size (number of parame-
ters) makes their inference slow and computation-
ally expensive which poses a practical challenge
limiting their widespread adoption in resource con-
strained applications. Focusing on the above prob-
lem, in this work, we investigate instruction tuning

LLMs in a way that enables intermediate layer de-
coding for efficiently generating text without com-
promising the quality of the generation.

We first show that in standard instruction tun-
ing, only the final layer of the model acquires the
ability to generate ‘quality’ text while the repre-
sentations of the intermediate layers (when passed
through the language modeling head) fail to do so.
This restricts decoding from these intermediate lay-
ers without degrading the generation quality. Ad-
dressing this point, we instruction tune LLMs with
additional explicit Losses from the InTermediate
layErs (LITE) and show that it enables these lay-
ers to acquire ‘good’ generation ability. Impor-
tantly, we show that these layers acquire this ability
without affecting the generation ability of the fi-
nal layer; however, as expected, their generation
ability still remains slightly inferior to the gener-
ation ability of the final layer. Thus, decoding
the complete response from intermediate layers im-
proves the efficiency of inference but still results in
degradation in the quality of the response.

Addressing the above limitation, we show that
(a) LITE greatly aligns the intermediate layers’ to-
ken prediction with that of the final layer and (b) the
intermediate layers’ token prediction probabilities
provide a strong signal of this alignment. Building
on these findings, we perform ‘dynamic confidence-
based early exiting’ at token level from the inter-
mediate layers which improves the efficiency of
inference while maintaining the generation quality.

We conduct comprehensive experiments by in-
struction tuning LLaMA-2 models (Touvron et al.,
2023) on the widely used Alpaca dataset (Taori
et al., 2023) and holistically evaluate on four differ-
ent human-instruction test sets including Vicuna,
WizardLM, Koala, and Self-Instruct. Figure 1 com-
pares the quality of responses (evaluated using the
Claude model as detailed in Section 5) and the
inference cost (measured in FLOPs) of the (i) stan-
dard generation method from the final layer with

3656

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

Vicuna (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

Koala (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

WizardLM (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0

50

100

150

200

250

300

TF
LO

PS

Cost
 (higher is better) (lower is better)

Self-Instruct (7B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS
Cost

 (higher is better) (lower is better)

Vicuna (13B)

0
1
2
3
4
5
6
7
8
9

10
Sc

or
e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

Koala (13B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

WizardLM (13B)

0
1
2
3
4
5
6
7
8
9

10

Sc
or

e

Quality

0
50
100
150
200
250
300
350
400
450
500
550

TF
LO

PS

Cost
 (higher is better) (lower is better)

Self-Instruct (13B)

Figure 1: Comparing the quality of the responses and the inference cost of (i) the standard generation from the final
layer (orange) and (ii) the dynamic early exiting method (blue) on model tuned with LITE. The top and the bottom
rows show the effectiveness on four different test sets for the LLaMA-2 7B and 13B models, respectively.

(ii) the dynamic early exiting method. It shows that
dynamic early exiting achieves consistent and con-
siderable inference cost improvements (37.86% for
7B and 46.35% for 13B model on average) while
maintaining the generation quality.

We further perform a thorough analysis of the
results over several important aspects, such as,
comparing the semantic similarity between the re-
sponses generated from the final layer and the early
exiting method, and dissecting the efficiency im-
provements by comparing the number of tokens
generated in the outputs. We also discuss the poten-
tial of intermediate layer decoding in ‘speculative
sampling’ and ‘hallucination detection’.

In summary, our work contributes to improving
the efficiency of LLM inference while maintaining
the generation quality, a crucial step en route to
enabling their widespread adoption.

2 Related Work

Improving the inference efficiency of LLMs is an
important research direction and is receiving con-
siderable attention from the NLP community. In
this section, we review some of the existing meth-
ods and differentiate our work from them.

Reducing model size: Since model size plays
a crucial role in increasing the inference cost and
latency, techniques like quantization (Dettmers
et al., 2022; Yao et al., 2022; Xiao et al., 2023;
Frantar et al., 2023), knowledge distillation (Hsieh
et al., 2023; Jiao et al., 2020; Li et al., 2022), model
compression and network pruning (Wang et al.,

2020; Guo et al., 2021) have been shown to be
effective in improving the inference efficiency.

Furthermore, during sampling, a cache of the
keys and values can be maintained for every atten-
tion layer which reduces the computations at infer-
ence time (KV caching). However, it increases the
GPU VRAM memory requirement of inference.

Another technique speculative sampling
(Leviathan et al., 2023; Chen et al., 2023) first
generates a draft of K tokens from a smaller
auto-regressive model and then scores the draft
using the target model. This results in generation
of more than one token (on average) from the
target model in a single pass.

Early exiting and cascading based inference
techniques have been shown to be effective for clas-
sification tasks with BERT-style models, such as
DeeBERT (Xin et al., 2020) that speeds up BERT
inference by inserting extra classification layers be-
tween each encoder layer, PoWER-BERT (Goyal
et al., 2020) that focuses on progressive word-
vector elimination (based on significance computed
using self-attention) along the encoder pipeline,
DynaBERT (Hou et al., 2020) that adjusts the size
of the model by selecting adaptive width and depth,
and cascading (Varshney and Baral, 2022; Li et al.,
2021; Varshney et al., 2022; Yue et al., 2023; Cheng
et al., 2023; Varshney and Baral, 2023) in which se-
quential inference is done through models of bigger
and bigger size with conditional exiting to output
predictions efficiently. Our work is also related to
Confident Adaptive Language Modeling (CALM)

3657

(Schuster et al., 2022) and Depth-Adaptive Trans-
formers (Elbayad et al., 2020) in which early exit-
ing is performed by learning additional classifiers
attached to the decoder layers.

Din et al. (2023) proposed to short-cut away
transformer inference in between certain layers by
learning linear transformations across layers in the
network, i.e., casting internal representations.
O’Brien and Lewis (2023); Gera et al. (2023) ex-
plore leveraging the intermediate layers for con-
trastive decoding to improve reasoning. We discuss
other related and concurrent work in Appendix H.

Our work differs in the following aspects:
(1) Firstly, most of the existing work in early exit-
ing focuses on improving the efficiency of encoder-
only models (like BERT) or encoder-decoder mod-
els (like T5); our work focuses on the current state-
of-the-art decoder-only LLMs (LLaMA-2). Fur-
thermore, we focus on the instruction tuning setting
with text generation, unlike prior work that focused
on solving simpler tasks like GLUE classification
or QA. (2) Early exiting methods typically require
training additional classifiers for the intermediate
layers, however, in this work, we use the same
shared language modeling head at all the layers;
thus, we do not introduce new model weights. (3)
For leveraging the intermediate layers for decoding,
we enable them to acquire generation ability by in-
struction tuning with LITE, unlike other methods
that use a pre finetuned model in which these layers
have poor generation ability as we show in Section
6.1. (4) Existing methods typically require com-
plex architectural modifications, pruning, saliency
quantification, or training new parameters. In con-
trast, our method (both for tuning and inference)
is simple and easy to implement and yet achieves
considerable benefits. (5) Existing methods typ-
ically require training a separate model for each
computation budget; however, in our method, the
same model can be adapted to meet all the computa-
tion constraints (by varying the exiting confidence
thresholds). (6) The computational efficiency often
comes with a compromise in performance. How-
ever, our method maintains the generation quality
while providing efficiency benefits.

3 Instruction Tuning with LITE

Instruction Tuning (IT): One of the major rea-
sons that necessitate instruction tuning of LLMs is
the mismatch between their pre-training objective
and the users’ objective, i.e., LLMs are typically

trained on minimizing the word prediction error
while users want the model to follow their instruc-
tions. To this end, an instruction tuning dataset is
collected and a pre-trained model is fine-tuned in
a supervised manner (Mishra et al., 2022; Chung
et al., 2022; Wei et al., 2021). Loss calculation
during instruction tuning of a typical decoder-only
LLM (LLaMA in this case) is shown in Figure 2
(left). The model consists of a stack of decoder lay-
ers followed by a language modeling head which
outputs the probability distribution over the vocabu-
lary tokens as its prediction. During the supervised
fine-tuning, the loss over the output tokens is back-
propagated from the final layer of the model:

Loss(y1:M) = −
M∑

t=1

log p(yt|y<t)

IT with LITE: We show that in standard instruc-
tion tuning, only the final layer of the model ac-
quires the ability to generate ‘quality’ text while
the representations of the intermediate layers (when
passed through the language modeling head) fail
to do so (Section 6.1). In other words, it does not
explicitly teach the intermediate layers of the tuned
LLM to generate tokens. This restricts decoding
from these intermediate layers without degrading
the generation quality.

We note that during tuning, the same language
modeling head (that is used with the final layer)
can also be used with the intermediate layers to
obtain the losses of those layers. Thus, this does
not impact the number of parameters of the model.
To this end, we calculate a weighted aggregation of
the losses from the intermediate layers (including
the final) to calculate the overall loss value:

Loss =

∑N
i=1wiLossi∑N

i=1wi

where N is the number of layers, wi is the
weight of the ith layer, and Lossi is the cross en-
tropy loss of the ith layer as shown in Figure 2.

During training, we use the representations of
the intermediate layers and calculate the loss from
these layers at the end. We note that this is a gen-
eral formulation as it captures a variety of scenarios
including the standard fine-tuning in which the loss
is calculated only from the last layer (i.e., w1:N−1

= 0 and wN = 1). Furthermore, this formulation
also allows aggregating losses from only the se-
lected intermediate layers instead of all the layers

3658

Decoder

Decoder

Decoder

LM Head

…

Norm

Decoder

Decoder

Decoder

LM Head

…

Norm

Instruction Tuning Instruction Tuning with LITE

Figure 2: Loss calculation for standard instruction tun-
ing (left) and instruction tuning with additional explicit
losses from the intermediate layers LITE (right).

by accordingly defining the LM head pathways and
the wi values. In Section 6.2, we will show that
this formulation while enabling the intermediate
layers with ‘good’ generation ability does not ad-
versely affect the final layer’s generation ability.
Furthermore, as expected, the quality of generation
typically improves with the layer number as the
later layers have more capacity to learn.

4 Making Inference Efficient

In this section, we first detail auto-regressive infer-
ence and then describe early exiting techniques.

Auto-Regressive Inference: It refers to the pro-
cess of generating a sequence of tokens where each
token is generated based on the preceding tokens
in the sequence. For generating a token, the model
takes the input (including the previously generated
tokens) and runs a forward pass in which the input
is fed to the model and passed sequentially along
its layers until the probabilities for the next token
are predicted (called as logits). Chaining model
forward passes with next token selection iteratively
leads to the generation of text. In greedy decoding,
the token with the highest probability is selected as
the next word prediction at each timestep.

4.1 Fixed Early Exiting
Since instruction tuning with LITE enables the in-
termediate layers to acquire ‘good’ generation abil-
ity, the computations during inference can be termi-
nated at a pre-specified intermediate layer (referred
to as exiting layer) and the language modeling
head can be used to predict the next token. This

saves the computations of the remaining layers that
follow the specified exiting layer and thus it im-
proves the efficiency of inference.

Though this method of fixed early exiting leads
to improvement in the efficiency of inference, it
is bound to result in some degradation in the qual-
ity of the generation as the generation ability of
an intermediate layer still remains inferior to the
generation ability of the final layer. However, the
quality of generation typically improves with the
layer number as the later layers have more capacity.

4.2 Dynamic Confidence-Based Early Exiting

Addressing the limitation of the fixed early exiting
method, we study a dynamic early exiting method
that decides the exiting layer for a token prediction
based on the intermediate layer’s probability of the
prediction (softmax over the logit values).

This is motivated by our following two findings:
(a) Instruction Tuning with LITE greatly aligns the
intermediate layers’ token prediction with that of
the final layer (Section 6.3) and
(b) The intermediate layers’ token prediction proba-
bilities (referred to as confidence) provide a strong
signal of this alignment (Section 6.4).

Building on these two findings, we per-
form ‘dynamic confidence-based early exiting’ at
token level from the intermediate layers which im-
proves the efficiency of inference while maintain-
ing the generation quality. Specifically, a set of
intermediate layers with their corresponding confi-
dence thresholds are defined and at inference time,
the exiting decision for a prediction is taken by
comparing the intermediate layer’s prediction con-
fidence against its corresponding threshold. This
enables the model to perform efficient inference
without degrading the generation quality. Note that
this method does not introduce new parameters and
uses the softmax probability to make the exiting de-
cision. We study this exiting method for inference
without KV caching.

5 Experimental Setup

Instruction Tuning: We instruction tune the
LLaMA-2 models (Touvron et al., 2023) (7B and
13B) with the widely used Alpaca dataset (Taori
et al., 2023). Alpaca consists of 52K instruction-
following demonstrations generated using the self-
instruct (Wang et al., 2023b) technique. In IT with
LITE for 7B model (32 total layers), we aggregate
losses from the following selected intermediate lay-

3659

ers: (8, 12, 16, 20, 24, 28) along with the final layer
and use equal weights in loss calculation. Similarly,
for the 13B model (40 total layers), we use (8, 12,
16, 20, 24, 28, 32, 36) layers. We perform full
parameter fine-tuning on 4 A100 GPUs.

We skip selecting the initial layers because they
have a limited capacity to learn and thus can not
give good token predictions. Furthermore, we
select layers at an interval of 4 so that at in-
ference time, the model can do enough reason-
ing/interactions between two consecutive check-
points. Otherwise, checking at every layer can
result in computational overhead. We train this
model for 5 epochs so that it achieves training loss
comparable to standard tuning.

We present all the results corresponding to this
tuning configuration in the main paper and present
the study corresponding to weighted LITE in the
Appendix C.

Evaluation Datasets: To perform holistic eval-
uation, we experiment with four different human-
instruction test sets including Vicuna (Chiang et al.,
2023), Self-Instruct (Wang et al., 2023b), Koala
(Geng et al., 2023), and WizardLM (Xu et al.,
2023). We select these evaluation test sets as they
can together cover a large number and types of
instructions thus resulting in a comprehensive eval-
uation. Table 4 shows the statistics of the datasets.

Evaluation Methodology: The evaluation of the
instruction-following ability of LLMs is challeng-
ing due to the existence of multiple correct re-
sponses to an input and the infeasibility of repro-
ducing human evaluations. Addressing this prob-
lem, recent works have started to rely on automatic
evaluations using LLMs (Zheng et al., 2023; Chi-
ang et al., 2023). Specifically, we use Claude LLM
(Bai et al., 2022) as a judge to compare the quality
of responses of two models on a given instruction.
We note that these LLMs have been shown to be
vulnerable to position bias in their judgment (Wang
et al., 2023a). To circumvent this bias, we evaluate
a response pair with both orderings of the responses
and then aggregate the judgment scores. We pro-
vide the prompt for comparing the quality of the
responses of two models in Appendix A.

6 Results and Analysis

In this section, we first demonstrate the inability
of the intermediate layers of the model tuned with
standard IT to generate ‘quality’ text (6.1). Then,

we show the impact of IT with LITE: it does not
adversely affect the generation quality of the final
layer (6.2), it aligns the intermediate layers’ token
predictions with the final layer (6.3), and the cor-
responding prediction confidence values provide a
strong signal of the alignment (6.4). These findings
motivate dynamic confidence-based early exiting.
Finally, we show the effectiveness of the method in
improving the efficiency of inference while main-
taining the generation quality (6.5). To avoid rep-
etition, we present results for the 7B model in the
main paper and for the 13B model in B.8.

6.1 Generation Ability of Intermediate Layers
In order to obtain the text (sequence of tokens) gen-
erated via fixed exiting from an intermediate layer,
we apply the normalization (RMSNorm) followed
by the language modeling head to the representa-
tions of that intermediate layer and skip the compu-
tations of the layers following the exiting layer (as
detailed in Section 4.1). For the model tuned with
the standard instruction tuning, we compare the
quality of the text (as detailed in Section 5) gener-
ated from different intermediate layers against the
final layer’s generation in Figure 3. As expected,
the intermediate layers generate text of consider-
ably degraded quality and this quality drops as the
layer number decreases.

This demonstrates that with standard instruction
tuning, only the later layers (primarily the final
layer) of the model acquire the ability to generate
‘quality’ text while the representations of the inter-
mediate layers (when passed through the language
modeling head) fail to do so. Thus, for such a
model, the early exiting method saves the inference
computation cost but considerably degrades the
generation quality. This restricts employing such
early exiting techniques for the model tuned with
standard instruction tuning. We show examples
of responses obtained via fixed early exiting from
different intermediate layers in Appendix B.1.

We perform instruction tuning with LITE to en-
able the intermediate layers to acquire ‘good’ gen-
eration ability. Importantly, we show that these
layers acquire this ability without affecting the gen-
eration ability of the final layer (Section 6.2).

6.2 Impact of LITE on the Final Layer
In Figure 4, we compare the quality of responses
of (a) the model tuned using standard instruction
tuning (IT) and (b) the model tuned using IT with
LITE. Note that the responses for both these models

3660

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100
%

 Q
ua

lit
y

(c
om

pa
re

d
ag

ai
ns

t F
in

al
 L

ay
er

)
Final Layer's Quality

(a) Vicuna

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(b) Koala

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(c) WizardLM

Layer 32
(Final)

Layer 28 Layer 24 Layer 16 Layer 80

20

40

60

80

100

%
 Q

ua
lit

y
(c

om
pa

re
d

ag
ai

ns
t F

in
al

 L
ay

er
)

Final Layer's Quality

(d) Self-Instruct

Figure 3: Demonstrating quality comparison of the output of intermediate layers (generated via fixed exiting) against
the final layer’s generation of the model tuned with standard instruction tuning.

correspond to their respective final layer’s output.
From the figure, it can be observed that for all the
datasets, the outputs of both models are of compa-
rable quality which shows that tuning with LITE
does not adversely affect the generation ability of
the final layer of the model.

Next, we demonstrate two important characteris-
tics of instruction tuning with LITE (in 6.3 and 6.4)
that motivate us to study dynamic confidence-based
early exiting from the intermediate layers.

6.3 ‘Alignment’ of Intermediate Layers
We define percentage ‘alignment’ of a layer as the
measure of how often the token predictions of that
layer match with that of the final layer (given same
input prefixes). For this study, we do not do early
exiting, instead we just use the representation of
each intermediate layer and pass it through the LM
head to obtain the corresponding token prediction
of each layer. Note that for generating the next
token, we follow the standard generation method-
ology and append the predicted token of the last
layer to the input to obtain the token prediction of
all the layers given the same input prefixes.

In Figure 5, we plot the percentage alignment
of token predictions of all intermediate layers with
the token predictions of the final layer. The figure
shows the percentage alignment of (i) the model
tuned using standard IT (orange) and (ii) the model
tuned using IT with LITE (blue). We show this re-
sult aggregated over all the output token predictions
for all the inputs of the corresponding dataset.

We draw the following inferences:
(a) The predictions of the intermediate layers

of the model tuned with LITE align well with the
final layer, i.e., given a prefix, the intermediate
layers’ token predictions match quite well with the
final layer’s token prediction. In contrast for the
model tuned using IT, the token predictions of the
intermediate layers do not align well with the final
layer’s token predictions.

vicuna koala wizardLM self_instruct
Test Datasets

0

2

4

6

8

10

Qu
al

ity
 o

f R
es

po
ns

es

Instruction Tuning (IT)
IT with LITE (Final Layer)

Figure 4: Comparing quality of responses of (a) model
tuned using IT and (b) model tuned using IT with LITE.
The outputs of the models are of comparable quality.

(b) As the layer number increases, the % align-
ment also increases, i.e., given a prefix, the pre-
dicted token of the later layers shows higher align-
ment (with the final layer) than the initial layers.

(c) There are some peaks in the curve for IT with
LITE which correspond to the selected layers from
which the loss is aggregated during tuning, i.e.,
these layers show higher alignment as expected.

In summary, this study demonstrates that IT with
LITE greatly aligns the token predictions of inter-
mediate layers with that of the final layer.

6.4 Token Probability and Alignment

We plot the relationship between the token predic-
tion confidence (softmax over the logits of the LM
head) of the intermediate layers and the percent-
age alignment with the token prediction of the final
layer. Figure 6 shows this plot for the model tuned
with LITE. The figure shows that in IT with LITE,
the intermediate layers’ token prediction probabil-
ities provide a strong signal of alignment, i.e., a
high token prediction confidence implies a higher
likelihood of its alignment with the token predic-
tion of the final layer. It also shows that with the
increase in the layer number, the percentage align-

3661

Instruction Tuning (IT)
IT with LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 5: Comparing percentage ‘alignment’ of interme-
diate layer token predictions with the token predictions
of the final layer for the model tuned using IT (orange)
and the model tuned using IT with LITE (blue).

ment typically increases at the same confidence
values. In contrast, in standard instruction tuning
(IT), the confidence is not well correlated with the
percentage alignment as we show in Appendix B.6.

6.5 Effectiveness of Dynamic Early Exiting

Motivated by the findings of the previous two
subsections (6.3 and 6.4), we perform dynamic
confidence-based early exiting at token-level, i.e.,
we exit when the token prediction confidence of
the intermediate layer is sufficiently high (thus it is
likely to align with the final layer’s prediction).

To this end, from the confidence vs percent-
age alignment curve, we identify a confidence
threshold for each layer where the alignment is
> 95%. Specifically, we use the following thresh-
olds: Layer 8: 0.95, Layer 12: 0.95, Layer 16: 0.9,
Layer 20: 0.9, Layer 24: 0.8, and Layer 28: 0.7.

In the main paper, we present the results and
analysis for the aforementioned configuration.
However, we note that a different threshold con-
figuration can also be used for inference. For
instance, a more aggressive configuration with
lower thresholds (shown in Appendix B.7) leads
to even more cost improvements (49.92%); though
it slightly drops the quality of generation (5.34%).
The trade-off between quality and cost can be bal-
anced depending on the application requirements.
For example, applications with quality tolerance
or resource limitations can keep low threshold to

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 6: Demonstrating trend of token prediction con-
fidence of the intermediate layers and the % alignment
with the final layer for model tuned with LITE.

Test Dataset Inference Cost Improvement (%)

Vicuna 33.39 %
Koala 35.40 %

WizardLM 36.12 %
Self Instruct 46.54 %

Table 1: Percentage improvements in the inference cost
(measured in FLOPs) with dynamic early exiting.

achieve higher cost improvements.

Dynamic confidence-based early exiting: At a
selected layer, we pass its representations through
the LM head, calculate the softmax logit value,
and compare it with the corresponding confidence
threshold of the layer. If it surpasses the threshold
value then we exit from that layer and proceed to
generate the next token, otherwise, we repeat this
process at the next selected layer.

Figure 1 (in Section 1) compares the quality
of responses and the inference cost (measured
in FLOPs) of the standard generation method (fi-
nal layer) with the dynamic early exiting method.
It shows that the dynamic early exiting method
achieves consistent and considerable cost improve-
ments (37.86% for 7B and 46.35% for 13B model
on average) while maintaining the generation qual-
ity. Table 1 shows the percentage improvements
in inference cost for each test set individually. We
note that we use FLOPs as the metric of showcas-
ing inference efficiency improvements because it
is hardware independent, unlike latency.

3662

6.5.1 Semantic Similarity of the Responses
In addition to comparing the quality, we also com-
pare the semantic similarity between the responses
of the final layer and the dynamic early exiting.
Table 2 shows the semantic similarity (calculated
using the ‘en_core_web_sm’ spacy model) for the
four datasets. It shows that there is a large semantic
similarity between the responses as the values are
closer to 1. This implies that dynamic early exit-
ing maintains the semantics of the responses while
providing efficiency benefits. Appendix B.4 shows
examples of responses from both the last layer and
the dynamic early exiting method.

6.5.2 Dissecting the Cost Improvements
In Figure 7, we compare the average number of
tokens generated in the final layer’s responses and
the dynamic early exiting responses. It shows that
both the methods generate a comparable number of
tokens in their respective outputs. This asserts that
the cost improvement resulting in dynamic early
exiting is because of the reduced computations and
not due to generating a lesser number of tokens.

6.5.3 Contribution of Different Exiting Layers
Figure 8 shows the percentage of token outputs
from different exit layers. Note that this is aggre-
gated across all the token positions. This shows that
the model exits a considerable percentage of times
from the intermediate layers (while maintaining
the generation quality) which further justifies the
improvement in inference efficiency. We further
conduct several interesting studies and analyses of
the results and present them in Appendix B.

6.5.4 Effectiveness at Category Level
Vicuna and WizardLM datasets also provide the
category corresponding to different test instances.
To this end, we present category-level quality and
inference cost results for these datasets in Figure
9 and 10 (Appendix). On average, the method
results in cost improvement of 33.39% on Vicuna
and 36.12% on WizardLM.

7 Conclusion and Discussion

In this work, we proposed instruction tuning with
additional explicit losses from the intermediate lay-
ers and showed that it enables these layers to ac-
quire ‘good’ generation ability without affecting
the final layer’s generation ability. We performed
‘dynamic confidence-based early exiting’ at token
level from the intermediate layers and showed that

Test Dataset Semantic Similarity

Vicuna 0.9135
Koala 0.8940

WizardLM 0.9020
Self Instruct 0.9001

Table 2: Semantic similarity between the final layer’s
and the dynamic early exiting responses on test sets.

vicuna koala wizardLM self_instruct
Test Datasets

0

20

40

60

80

100

120

140

Av
g.

 N
um

be
r o

f T
ok

en
s G

en
er

at
ed Final Layer

Confidence-Based Early Exiting

Figure 7: Comparing the average number of tokens
generated in the final layer’s responses and the dynamic
early exiting responses for the four datasets.

8 12 16 20 24 28 32
Exit Layer

0

5

10

15

20

25

30

Pe
rc

en
ta

ge

Figure 8: Percentage of token outputs from different
exiting layers in the proposed method.

it improves the efficiency of inference while main-
taining the generation quality. We further con-
ducted a thorough analysis that resulted in several
important findings. Overall, our work contributes
to improving the efficiency of LLM inference while
maintaining the generation quality, a crucial step
en route to enabling their widespread adoption.

Looking forward, our work additionally opens
up several other avenues for new research, such as
speculative sampling from the intermediate layers
to improve the inference efficiency and checking
information consistency from the output of inter-
mediate layers to detect hallucinations (discussed
in Appendix I). Furthermore, this approach is com-
plementary to some existing efficiency methods de-
scribed in Section 2 and H, i.e., they can be used in
conjunction to achieve even more efficiency gains.

3663

Limitations

We have shown the efficacy of intermediate layer
decoding to achieve inference efficiency benefits.
However, utilizing the intermediate layers requires
instruction tuning with LITE. This is because the
standard instruction tuning does not teach the inter-
mediate layers to generate quality text. Thus, for
utilizing the intermediate layers, the model needs to
be trained using instruction tuning with LITE and
an already instruction-tuned model may not pro-
vide the same efficiency benefits while maintaining
the generation ability. Though this method is gen-
erally applicable, we investigate it with LLaMA-2
models as also explicitly specified in the paper title.
This is because the LLaMA-2 models are one of the
best performing publicly available models and they
are widely being used in ongoing NLP research.
We also clearly note that this research is limited to
the English language.

Ethics Statement

We have used AI assistants (Grammarly and
ChatGPT) to address the grammatical errors and
rephrase the sentences.

Acknowledgement

We thank the anonymous reviewers for their in-
sightful feedback. This research was supported by
the 2023 Spring Amazon Research Award (ARA).

References
Amos Azaria and Tom Mitchell. 2023. The internal

state of an LLM knows when it’s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967–976, Singapore. Associa-
tion for Computational Linguistics.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. 2023. Batch
prompting: Efficient inference with large language
model APIs. In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Process-
ing: Industry Track, pages 792–810, Singapore. As-
sociation for Computational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2023. Chain-of-verification reduces hal-
lucination in large language models. arXiv preprint
arXiv:2309.11495.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
cutting transformers with linear transformations.
arXiv preprint arXiv:2303.09435.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In Interna-
tional Conference on Learning Representations.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. 2023. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gu-
nasekara, Benjamin Sznajder, Noam Slonim, and
Eyal Shnarch. 2023. The benefits of bad advice:
Autocontrastive decoding across model layers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

3664

https://aclanthology.org/2023.findings-emnlp.68
https://aclanthology.org/2023.findings-emnlp.68
https://aclanthology.org/2023.emnlp-industry.74
https://aclanthology.org/2023.emnlp-industry.74
https://aclanthology.org/2023.emnlp-industry.74
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.18653/v1/2023.acl-long.580
https://doi.org/10.18653/v1/2023.acl-long.580

Long Papers), pages 10406–10420, Toronto, Canada.
Association for Computational Linguistics.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690–3699. PMLR.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896, Online. Association for Computational
Linguistics.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. In Advances in Neural
Information Processing Systems, volume 33, pages
9782–9793. Curran Associates, Inc.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8003–8017,
Toronto, Canada. Association for Computational Lin-
guistics.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei,
Ali Ghodsi, Boxing Chen, and Mehdi Reza-
gholizadeh. 2023. Sorted llama: Unlocking the po-
tential of intermediate layers of large language mod-
els for dynamic inference using sorted fine-tuning
(soft). arXiv preprint arXiv:2309.08968.

Sehoon Kim, Karttikeya Mangalam, Jitendra Malik,
Michael W Mahoney, Amir Gholami, and Kurt
Keutzer. 2023. Big little transformer decoder. arXiv
preprint arXiv:2302.07863.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li,
Jie Zhou, and Xu Sun. 2021. CascadeBERT: Ac-
celerating inference of pre-trained language models
via calibrated complete models cascade. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 475–486, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati,
Parminder Bhatia, Andrew Arnold, Bing Xiang, and
Dan Roth. 2022. DQ-BART: Efficient sequence-to-
sequence model via joint distillation and quantization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 203–211, Dublin, Ireland.
Association for Computational Linguistics.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004–9017, Singapore. Association for Computa-
tional Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,
and Yu Wang. 2023. Skeleton-of-thought: Large
language models can do parallel decoding. arXiv
preprint arXiv:2307.15337.

Sean O’Brien and Mike Lewis. 2023. Contrastive de-
coding improves reasoning in large language models.
arXiv preprint arXiv:2309.09117.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,

3665

https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2022.acl-short.22
https://doi.org/10.18653/v1/2022.acl-short.22
https://aclanthology.org/2023.emnlp-main.557
https://aclanthology.org/2023.emnlp-main.557
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://api.semanticscholar.org/CorpusID:257532815

M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodolà. 2023. Accelerating
transformer inference for translation via parallel de-
coding. arXiv preprint arXiv:2305.10427.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Ra-
jabzadeh, Marzieh Tahaei, Boxing Chen, and Ali
Ghodsi. 2023. Sortednet, a place for every network
and every network in its place: Towards a generalized
solution for training many-in-one neural networks.
arXiv preprint arXiv:2309.00255.

Neeraj Varshney and Chitta Baral. 2022. Model cas-
cading: Towards jointly improving efficiency and
accuracy of NLP systems. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 11007–11021, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Neeraj Varshney and Chitta Baral. 2023. Post-
abstention: Towards reliably re-attempting the ab-
stained instances in QA. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 967–982,
Toronto, Canada. Association for Computational Lin-
guistics.

Neeraj Varshney, Man Luo, and Chitta Baral. 2022.
Can open-domain qa reader utilize external knowl-
edge efficiently like humans? arXiv preprint
arXiv:2211.12707.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian-
shu Chen, and Dong Yu. 2023. A stitch in time saves
nine: Detecting and mitigating hallucinations of
llms by validating low-confidence generation. arXiv
preprint arXiv:2307.03987.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023a. Large language models are not fair evaluators.
arXiv preprint arXiv:2305.17926.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6151–6162, Online. Association for Computa-
tional Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

3666

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2023.acl-long.55
https://doi.org/10.18653/v1/2023.acl-long.55
https://doi.org/10.18653/v1/2023.acl-long.55
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. In Proceedings of the 40th
International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 38087–38099. PMLR.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023a. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-
itris Papailiopoulos, and Kangwook Lee. 2023b.
Predictive pipelined decoding: A compute-latency
trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu
Yao. 2023. Large language model cascades with
mixture of thoughts representations for cost-efficient
reasoning. arXiv preprint arXiv:2310.03094.

Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei
Fang, Luc Gaitskell, Thomas Hartvigsen, Xixin Wu,
Danny Fox, Helen Meng, and James Glass. 2023. In-
terpretable unified language checking. arXiv preprint
arXiv:2304.03728.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Appendix

A Evaluation Methodology

We use the following prompt with Claude model
for comparing the quality of responses:

Human: You are a helpful and
precise assistant for checking the
quality of the answer.

[Question]
{question}

[The Start of Assistant 1’s
Answer]
{answer_1}

[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s
Answer]
{answer_2}

[The End of Assistant 2’s Answer]

We would like to request your
feedback on the performance of two
AI assistants in response to the
user question displayed above.
Please rate the helpfulness,
relevance, accuracy, level of
details of their responses. Each
assistant receives an overall
score on a scale of 1 to 10, where
a higher score indicates better
overall performance.
Please output a single line
containing only two values
indicating the scores for Assistant
1 and 2, respectively. The two
scores are separated by a space.

Assistant:

To circumvent the position bias, we evaluate a
response pair with both orderings of the responses
and then aggregate the judgment scores. We use the
Claude API with temperature set to 0 and modelId
to ‘anthropic.claude-v1’.

3667

https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204

B Additional Results

B.1 Inability of the Intermediate Layers of the
Model Tuned with Standard Instruction
Tuning to Generate ‘High-Quality’ Text

In this Subsection, we show examples of responses
of intermediate layers (fixed exiting) of the model
tuned with standard instruction tuning (IT).

Question: What are the
differences between plant-based
and animal-based protein sources?

Layer 32 (Final): The main
difference between plant-based
and animal-based protein sources
is that plant-based proteins are
found in plant-based foods, such
as legumes, nuts, and seeds,
while animal-based proteins are
found in animal-based foods,
such as meat, eggs, and fish.
Plant-based proteins typically
contain fewer calories, fat, and
cholesterol than animal-based
proteins. Additionally, ...

Layer 28: plant- based proteins
sources such as legumes, legumes,
and nuts contain essential amino
achren needed for growth and repair
of cellsular structures. animal
based proteins sources such as meat,
eggs, and fish contain additional
nutrients such as vitamin B Complex
vitamin D vitamin Iron and calcium
needed for optimal health.

Layer 24: plant based prote
source protein source diversity,
quality proteinsrichness
quantityquantityquantityquantity
quantity quantity quantity quantity
quantity q ...

Layer 20: difference between Plant
Based vs animal based protein
sourceage oldenhamptonensis
proportionalityunicíclesqueque
...

Question: Imagine you are a time
traveler from the year 3000. What
technological advancements would
you tell people about?

Layer 32 (Final): From the year
3000, I would tell people about
the advancements in technology
that have made life easier and
more efficient. I would talk about
the autonomous cars, the implanted
chips that allow people to access
the internet and doctors to monitor
patients remotely, the 3D-printed
homes and the list goes on. I
would also tell people about the
advancements in renewable energy
and how we are able to generate
electricity from the sun and the
wind.

Layer 28: From the year 3000
perspective, some technological
advances might include flying
cars, robotic vac vacuifiers,
implanted implants used for
implantable devices such as
pacemakers, implanted cameras
implanted microscopes implanted
anything else you can think of
implanted implanted implanted ...

Layer 24: techn adv advances
techn advances techn advances
techn ...

Layer 20:
futureproofing@gmailgmail
domainainsights
intoxicatednessipag
eantryonswardswardsonswardsonswardso
...

The above examples and the results in Section
6.1 show that in standard instruction tuning, the
intermediate layers do not acquire good genera-
tion ability as the generated responses are of poor
quality.

In the next subsection, we illustrate examples
that show that IT with LITE enables the intermedi-
ate layers to acquire good generation ability.

3668

B.2 Intermediate Layers Acquire Good
Generation Ability in IT with LITE

Question: What are the
differences between plant-based
and animal-based protein sources?

Layer 32 (Final): Plant-based
protein sources are mainly found
in foods such as legumes, nuts, and
seeds, while animal-based protein
sources are found in foods such
as meat, fish, eggs, and dairy
products. Plant-based proteins
are generally lower in calories
and fat, and are rich in vitamins,
minerals, and fiber. Animal-based
proteins are typically higher in
calories and fat, and ...

Layer 28: Plant-based protein
sources are mainly found in foods
such as legumes, nuts, and seeds,
while animal-based protein sources
are found in foods such as meat,
fish, eggs, and dairy products.
Plant-based proteins are generally
lower in calories and fat, and are
rich in vitamins, minerals, and
fiber. Animal-based proteins are
typically higher in calories ...

Layer 24: Plant-based protein
sources are mainly found in foods
such as legumes, nuts, and seeds,
and are typically lower in calories
and fat than animal-based protein
sources. Plant-based proteins are
also rich in vitamins, minerals,
and antioxidants, and are a good
source of ...

Layer 20: Plant-based protein
sources are found in many different
foods, including legumes, nuts,
seeds, and seeds. They are usually
lower in calories and fat than
animal-based protein sources.
Plant-based proteins are also rich
in fiber and contain essential
vitamins ...

Question: Imagine you are a time
traveler from the year 3000. What
technological advancements would
you tell people about?

Layer 32 (Final): From the
year 3000, I would tell people
about the incredible advancements
in technology that have been made
over the centuries. We take many
things for granted now, such as the
internet and autonomous vehicles,
but these technologies were first
developed in the ...

Layer 28: From the year 3000,
I would tell people about
the advancements in artificial
intelligence, robotics, and genetic
engineering. In particular, I would
tell people about the advancements
made in AI, such as the development
of autonomous cars, virtual
assistants, and smart homes. I
would ...

Layer 24: From the year 3000,
I would tell people about
the incredible advancements in
technology that have been made over
the centuries. We are now able to
control our environment by using
thought-controlled prostheses, use
genetic ...

Layer 20: In the 3000s, we
have developed advanced artificial
intelligence, self-driving cars,
and teleportation of particles. We
have also made significant progress
in quantum computing, which has
allowed us to ...

The above examples illustrate that IT with LITE
enables the intermediate layers to acquire good
generation ability. This is because the losses are
aggregated from these intermediate layers during
instruction tuning.

3669

B.3 Poor Quality of Responses With Dynamic
Early Exiting from Model Tuned with
Standard Instruction Tuning (IT)

Here, we show examples of the responses generated
via dynamic confidence-based early exiting from
the model tuned with standard instruction tuning
(IT). Note that this is without LITE.

It can be observed from these examples that the
early exiting responses are of poor quality. They
suffer from a number of issues including degen-
eration such as unwanted token repetitions, and
lack of coherence and structure. We note that this
can be attributed to the poor generation ability and
alignment of the intermediate layers.

Question: What are the most
effective ways to deal with stress?

Layer 32 (Final): The most
effective ways to deal with
stress include identifying sources
of stress, developing coping
strategies, maintaining a balanced
diet, exercising regularly, getting
enough sleep, and taking time to
relax and do something enjoyable.
Taking time to practice deep
breathing and meditation, talking
to a friend or therapist, and using
humor are also helpful.

Dynamic Early Exiting with IT
model: cop coping strategies
include identifying sources of
stress, developing cop coping
skills such as cop coping and
relaxation techniques such as
meditation and med meditation
med meditation med meditation
med meditation med meditation
med meditation med meditation med
meditation med meditation ...

Question: Can you explain the
basics of quantum computing?

Layer 32 (Final): Quantum computing
is a form of computing that uses
quantum-mechanical phenomena, such
as superposition and entanglement,
to perform operations on data.
It enables computation at a much
faster rate than traditional
computers and can solve problems
that are intractable on classical
computers. Quantum computing uses
qubits2̆014quantum bits2̆014which
can be in a state of 0 or 1,
instead of the traditional bit
of 0 or 1. Qubits can be used
to represent data and perform
operations on it, such as addition,
subtraction, and multiplication.

Dynamic Early Exiting with IT
model: quantum computing basics
quantum computing basics explain
the basics of quantum computing
including what it is, how it
works, why it matter, how it can
be used for computing, and what
its future may hold. quantum
computing basics quantum computing
basics explain the basics of
quantum computing including what
it is, how it works, why it matter,
how it can be used for computing ...

This further showcases the importance of LITE
during instruction tuning as it allows the intermedi-
ate layers to acquire good generation ability, thus
enabling opportunities for early exiting without
compromising the quality of the generation.

3670

B.4 Examples of Responses with Dynamic
Early Exiting for Model instruction tuned
with LITE

Here, we show examples of responses of the final
layer and the dynamic early exiting method with
the model instruction tuned using LITE.

Question: What are the main
differences between Python and
JavaScript programming languages?

Layer 32 (Final): The main
differences between Python and
JavaScript programming languages
are their syntax, data types, data
structures, and logic. Python is
a high-level, interpreted language
that is focused on readability
and simplicity, while JavaScript
is a low-level, interpreted
language that is focused on adding
interactive elements to web pages.
Python has strong support for
data typing, while JavaScript has
weaker support for data types.
Python is more suitable for
creating scripts and applications,
while JavaScript is more suitable
for creating interactive web pages.

Dynamic Early Exiting: The main
differences between Python and
JavaScript programming languages
are their syntax, data types, data
structures, and logic. Python is
a high-level, interpreted language
that is focused on readability
and simplicity, while JavaScript
is a low-level, interpreted
language that is focused on adding
interactive features to web pages.
Python has dynamic data types,
while JavaScript has static data
types. Python is more suitable for
creating scripts and applications,
while JavaScript is more suitable
for creating interactive web pages.

Question: What if Isaac Newton
had focused on biology instead of
physics?

Layer 32 (Final): Isaac Newton
had focused on biology instead of
physics, he would have likely made
similar discoveries in that field
as he did in physics. His laws of
motion and universal gravitation
could have been formulated in a
biological context, for example,
describing the ways in which cells
and organisms adhere to physical
laws. He would have likely realized
that biology is also an essential
physical science, and that the laws
of motion are just as universal in
biology as in physics.

Dynamic Early Exiting: Isaac
Newton had focused on biology
instead of physics, he would have
developed a different understanding
of the natural world. He would
have believed that biology was the
foundation of all physics, and that
it was the only way to understand
the universe. He would have also
believed that all living organisms
had the same underlying laws of
physics, rather than the laws of
physics being created for humans
to understand. He would have also
believed that biology was the
most important branch of science,
and that it was the only way to
understand the universe.

These examples show that the responses ob-
tained via early exiting do not compromise the
quality of the generation. Furthermore, responses
have high syntactic and semantic overlap.

B.5 Quality and Inference Cost Analysis at
Category Level

Vicuna and WizardLM test sets also provide the
category corresponding to different test instances.
To this end, we present category-level quality and
inference cost results for these datasets.

3671

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0

2

4

6

8

10

Qu
al

ity

0

25

50

75

100

TF
LO

PS

 (higher is better) (lower is better)

(a) Generic

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(b) Knowledge

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(c) Roleplay

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(d) Commonsense

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(e) Fermi

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

TF
LO

PS

 (higher is better) (lower is better)

(f) Counterfactual

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(g) Writing

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(h) Coding

0

2

4

6

8

10

Qu
al

ity

0.0

2.5

5.0

7.5

10.0

TF
LO

PS

 (higher is better) (lower is better)

(i) Math

Figure 9: Comparing the quality of responses and the inference cost of the standard generation method with the
dynamic early exiting method on different categories of the Vicuna Test set.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0

2

4

6

8

10

Qu
al

ity

0

20

40

60

TF
LO

PS

 (higher is better) (lower is better)

(a) Math

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(b) Code Generation

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(c) Writing

0

2

4

6

8

10

Qu
al

ity

0

100

200

TF
LO

PS

 (higher is better) (lower is better)

(d) Reasoning

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(e) Computer Sc.

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(f) Code Debug

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(g) Complex Format

0

2

4

6

8

10

Qu
al

ity

0

20

40

60

TF
LO

PS

 (higher is better) (lower is better)

(h) Common-Sense

0

2

4

6

8

10

Qu
al

ity

0

100

200

300

TF
LO

PS

 (higher is better) (lower is better)

(i) Counterfactual

0

2

4

6

8

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

 (higher is better) (lower is better)

(j) Multilingual

Figure 10: Comparing the quality of responses and the inference cost of the standard generation method with the
dynamic early exiting method on different categories of the WizardLM Test set.

3672

Vicuna: Figure 9 compares the quality of re-
sponses and the inference cost of the standard gen-
eration method (final layer) with the dynamic early
exiting method for different categories of Vicuna
test set. On average, it results in cost improvement
of 33.39%. It can be observed that the approach
consistently achieves efficiency improvement in all
the categories which demonstrates the generality
of the approach.

WizardLM: Figure 10 compares the quality of
responses and the inference cost of the standard
generation method (final layer) with the dynamic
early exiting method for different categories of Wiz-
ardLM test set. On average, it results in cost im-
provement of 36.12%.

B.6 Relationship Between Token Prediction
Confidence and Percentage Alignment of
the Intermediate Layers for the Model
Tuned with Instruction Tuning (IT)

Figure 11 shows the relationship between the token
prediction confidence of the intermediate layers
and the percentage alignment with the token pre-
diction of the final layer for standard instruction
tuning (IT). It shows that the confidence is not well
correlated with the percentage alignment. However,
in IT with LITE (Figure 6), the intermediate lay-
ers’ token prediction probabilities provide a strong
signal of alignment.

B.7 Dynamic Confidence-Based Early Exiting
with Aggressive Confidence Thresholds

We also experiment with aggressive confidence
thresholds. Specifically, we use the following con-
fidence thresholds: Layer 8: 0.85, Layer 12: 0.85,
Layer 16: 0.8, Layer 20: 0.8, Layer 24: 0.7, and
Layer 28: 0.6. These thresholds are lower than
those used in the main paper. Figure 12 shows the
quality and cost comparisons. It leads to larger cost
improvements (of 49.92%) though it slightly drops
the quality of generation (by 5.34%).

B.8 Results for 13B Model

For the 13B model, we use the following confi-
dence thresholds: Layer 8: 0.95, Layer 12: 0.95,
Layer 16: 0.9, Layer 20: 0.9, Layer 24: 0.8, Layer
28: 0.7, Layer 32: 0.7, and Layer 36: 0.65,

Table 3 shows the cost improvements resulting
from dynamic early exiting from the 13B model on
each test dataset. On average, it results in 46.35%
cost improvement. This improvement is higher

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 11: Demonstrating relationship between token
prediction confidence of the intermediate layers and the
percentage alignment with the token prediction of the
final layer for model tuned with IT.

Test Dataset Cost Improvement (%)

Vicuna 43.60 %
Koala 45.62 %

WizardLM 50.84 %
Self Instruct 45.35 %

Table 3: Percentage improvements in the inference cost
(measured in FLOPs) with dynamic early exiting for the
13B model. On average, it achieves an improvement of
46.35%.

than the improvement achieved in the case of the
7B model (37.86%).

C Weighted LITE

We also experiment using increasing weights for
different intermediate layers during the loss ag-
gregation. We use increasing weights as the later
layers have more capacity to learn. Specifically, for
the 7B model where we select layer numbers 8, 12,
..., 28, and 32, we use the following weights: 1, 2,
..., 7.

In Figure 13, we plot the percentage alignment
of token predictions of all intermediate layers with
the token predictions of the final layer. The figure
shows the percentage alignment of (i) the model
tuned using standard IT (orange) and (ii) the model
tuned using IT with weighted LITE (blue). In Fig-

3673

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Final Layer (Standard) Confidence-based Early Exiting

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

25

50

75

100

125

150

175

TF
LO

PS

(higher is better) (lower is better)

(a) Vicuna

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

250

TF
LO

PS

(higher is better) (lower is better)

(b) Koala

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

250

TF
LO

PS

(higher is better) (lower is better)

(c) WizardLM

0
1
2
3
4
5
6
7
8
9

10

Qu
al

ity

0

50

100

150

200

TF
LO

PS

(higher is better) (lower is better)

(d) Self-Instruct

Figure 12: Comparing the quality of responses (evaluated using the Claude model) and the inference cost (measured
in FLOPs) of the standard generation method from the final layer with the dynamic early exiting method. Confidence
Thresholds: Layer 8: 0.85, Layer 12: 0.85, Layer 16: 0.8, Layer 20: 0.8, Layer 24: 0.7, and Layer 28: 0.6. This
aggressive configuration results in larger cost improvements of 49.93% but results in a slight degradation in the
generation quality.

Test Set # Samples

Vicuna 80
Koala 180

WizardLM 218
Self Instruct 252

Table 4: Statistics of evaluation datasets.

ure 14, we compare the alignment for the model
tuned using IT with LITE and the model tuned us-
ing IT with weighted LITE. It can be observed that
assigning lower weight to the initial layers results
in just a slight reduction in alignment percentage.

We also plot the relationship between the token
prediction confidence (softmax over the logits of
the LM head) of the intermediate layers and the
percentage alignment with the token prediction of
the final layer. Figure 15 shows this plot for the
model tuned with weighted LITE.

D Additional Evaluations

In the paper, we have presented LLM-based eval-
uations. To further support these evaluations, in
this section, we present human evaluations and
GPT-4 based evaluations. In human evaluations,
we asked the participants to annotate the quality
of the responses. We conducted this study on the
Vicuna test dataset and for the 7B model. Specif-
ically, we asked 3 participants to rate the quality
of responses on a scale of 1 to 10, where a higher
score indicates better overall performance (similar
to the LLM-based evaluations). All the participants
were graduate students. Table 5 shows the ratings
of the individual participants and the aggregated
scores. Additionally, we also use GPT-4 for evalu-
ations. The scores corresponding to ‘Final Layer

Id. Final Layer Confidence-based
(Standard) Early Exiting

1 7.25 7.2375
2 7.725 7.6125
3 7.5625 7.425

Avg. 7.51 7.425

Table 5: Human annotations for the quality of responses
of the 7B model on the Vicuna test dataset.

(Standard)’ and ‘Confidence-based Early Exiting’
are 6.3 and 6.17 respectively.

From both these studies, it can be inferred that
the quality ratings are indeed very close and thus
support our LLM-based evaluations.

E Comparison with Early Exiting
Baselines

Motivated by the techniques presented in (Fan et al.,
2020), we develop several early exiting baseline
techniques. Specifically, we implement two vari-
ants of random early exiting technique and a se-
quential exiting technique. We note these are just
other early exiting baseline techniques and exper-
imenting with them can demonstrate the sheer ef-
fectiveness of our dynamic confidence based early
exiting.

In the random early exiting technique, instead of
looking at the confidence (as we do in the dynamic
confidence based early exiting), we randomly make
a decision to exit from a ‘check-point’ layer. In one
variant of this technique, at each checkpoint layer,
we make a binary random decision to exit or con-
tinue (therefore two choices). In another variant,
we reduce this chance value to (1/#checkpoint lay-
ers).

In the sequential early exiting technique, we

3674

cyclically change the exiting layer for the next to-
ken. For example, for the first token, we use the
first checkpoint layer (8th layer), for the second
token, we use the second checkpoint layer (12th
layer) and so on in a cyclic manner. We present the
results of these baselines on the vicuna test dataset
in Table 6.

From these results, it can be observed that the
dynamic confidence based early exiting method re-
sults in just a minimal drop in quality of generation
while the other baselines (despite using the interme-
diate layers of the model tuned with LITE) result
in a considerable drop in quality of generation.

In addition, for standard instruction tuning (with-
out LITE), we have already shown that performing
early exiting results in very poor quality of genera-
tion (Appendix B.3).

F Comparing Latency

We study latency improvements on the Vicuna test
dataset using 7B model. We find that the standard
generation with the final layer requires 14912.12
ms on average while dynamic confidence based
early exiting method takes 9873.20 ms on average.
This implies that the early exiting method takes
up just 66.2% latency of the standard generation
process while maintaining the generation quality.
This result supports the FLOP improvements.

We have focused primarily on the FLOP values
because the latency values vary (though marginally)
on different executions, unlike the FLOP values.
Furthermore, the follow-up works may not be
able to precisely compare the latency values in an
apples-to-apples comparison. Thus, FLOP values
more clearly and reliably show the impact of the
methodology and can also facilitate future work.

G Design Decisions

FLOPs for measuring Computational Cost: We
note that we use FLOPs as the metric of showcasing
inference efficiency improvements because it is
hardware independent, unlike latency.

KV Caching: We explore the dynamic exiting
method for inference without KV caching. This is
because the representations of the layers after the
exiting layer are not computed in this method and
thus will not be available in the cache for the next
token prediction if the model exits from a higher
layer than the previous token prediction.

LLaMA-2 Models for Experiments: We experi-
ment with LLaMA-2 models as they are publicly

available and widely used for LLM research.
Evaluation Datasets To perform holistic evalu-

ation, we experiment with four different human-
instruction test sets including Vicuna, Self-Instruct,
Koala, and WizardLM. We select these evaluation
test sets as they can together cover a large number
and types of instructions thus resulting in a com-
prehensive evaluation. Table 4 shows the statistics
of the datasets.

H Extended Related and Concurrent
Work

Yang et al. (2023b) propose an approach called Pre-
dictive Pipelined Decoding (PPD) that focuses on
lowering the latency by utilizing additional com-
pute resources. Specifically, it accelerates the de-
coding by parallelizing processes, each of which
starts to decode from the top-k predicted tokens of
the specific transformer layer. Simultaneously, the
main process continues to compute the output of
the final layer and predicts the next token.

Yang et al. (2023a) propose an inference-with-
reference decoding method that exploits the overlap
between an LLM’s output and available reference.
Specifically, it first selects a text span from the
reference and copies its tokens to the LLM decoder,
and then checks if they are acceptable based on
the output token probabilities. He et al. (2023)
also uses retriever to generate the draft tokens in
speculative decoding.

Jiang et al. (2023) propose to compress the
prompts to accelerate the inference. Santilli et al.
(2023) propose a parallel decoding strategy for
translation using Jacobi and Gauss-Seidel fixed-
point iteration methods

The most similar yet non-trivially different from
our work is a concurrent work (Kavehzadeh et al.,
2023) which is motivated from SortedNet (Valipour
et al., 2023) that focuses on leveraging the inherent
modularity of models to construct sub-models with
varying computational loads. In contrast, in our
work, we instruction tune with LITE and then per-
form token-level dynamic confidence based early
exiting to achieve efficiency benefits while main-
taining the generation quality. Our approach is mo-
tivated from our two findings of the model tuned us-
ing IT with LITE which are (a) LITE greatly aligns
the intermediate layers’ token prediction with that
of the final layer and (b) the intermediate layers’ to-
ken prediction probabilities provide a strong signal
of this alignment.

3675

Instruction Tuning (IT)
IT with LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 13: Comparing percentage ‘alignment’ of intermediate layer token predictions with the token predictions of
the final layer for the model tuned using IT (orange) and the model tuned using IT with weighted LITE (blue).

IT with LITE
IT with weighted LITE

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(a) Vicuna

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(b) Koala

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(c) WizardLM

0 5 10 15 20 25 30
Layer Number

0.0
0.2
0.4
0.6
0.8
1.0

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 14: Comparing percentage ‘alignment’ of intermediate layer token predictions with the token predictions of
the final layer for the model tuned using IT with LITE (orange) and the model tuned using IT with weighted LITE
(blue).

Layer 8
Layer 12

Layer 16
Layer 20

Layer 24
Layer 28

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(a) Vicuna

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(b) Koala

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(c) WizardLM

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

20
40
60
80

100

%
 A

lig
nm

en
t

(d) Self-Instruct

Figure 15: Demonstrating trend of token prediction confidence of the intermediate layers and the % alignment with
the final layer for model tuned with weighted LITE.

3676

Method Quality Cost (TFLOPs)

Standard (Final Layer) 7.78 184
Dynamic Confidence based Early Exiting 7.72 123

Random Baseline (first variant) 5.93 69
Random Baseline (second variant) 6.91 129

Sequential Baseline 6.97 124

Table 6: Performance comparison of dynamic confidence based early exiting with other early exiting baselines
described in Section E.

I Discussion on Other Avenues of
Research using Intermediate Layer
Decoding

I.1 Speculative Sampling

In speculative sampling (Leviathan et al., 2023;
Chen et al., 2023; Ning et al., 2023; Kim et al.,
2023; Spector and Re, 2023), a short draft of
K tokens is first generated from a smaller auto-
regressive model and then the draft is scored us-
ing the target model. Using a rejection sampling
scheme, a subset of the K draft tokens is accepted
by sequentially checking from left to right, and
thus in this process, the distribution of the target
model is recovered for the accepted tokens. The
efficiency in this technique comes from ‘producing’
more than one token (on average) from the target
model in a single pass.

This technique requires an additional drafting
model. However, we showed that instruction tun-
ing with LITE enables the intermediate layers to
acquire ‘good’ generation ability. Thus, the inter-
mediate layer(s) of the same model can be used as
the drafting model while the last layer remains to
be the target model. This circumvents the require-
ment of maintaining a separate drafting model for
speculative sampling.

I.2 Hallucination Detection

Addressing the hallucination problem of LLMs
is an important research direction and a num-
ber of methods have been developed (Manakul
et al., 2023; Azaria and Mitchell, 2023; Zhang
et al., 2023; Dhuliawala et al., 2023; Varshney
et al., 2023; Gou et al., 2023). Sampling based
methods require generating multiple samples and
then checking the information consistency between
them. Enabling the intermediate layers with the
generation ability equips us with multiple opportu-
nities, such as checking the consistency based on
the alignment percentage of the intermediate layers

with the final layer or using the intermediate layers
to generate the complete output and then checking
the information consistency.

3677

