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Abstract

This paper introduces FIRE (FInancial
Relation Extraction), a sentence-level dataset
of named entities and relations within the
financial sector. Comprising 3,025 instances,
the dataset encapsulates 13 named entity
types along with 18 relation types. Sourced
from public financial reports and financial
news articles, FIRE captures a wide array
of financial information about a business
including, but not limited to, corporate
structure, business model, revenue streams,
and market activities such as acquisitions.
The full dataset was labeled by a single
annotator to minimize labeling noise. The
labeling time for each sentence was recorded
during the labeling process. We show how
this feature, along with curriculum learning
techniques, can be used to improved a model’s
performance. The FIRE dataset is designed to
serve as a valuable resource for training and
evaluating machine learning algorithms in the
domain of financial information extraction.
The dataset and the code to reproduce our
experimental results are available at https:
//github.com/hmhamad/FIRE. The reposi-
tory for the labeling tool can be found at https:
//github.com/abhinav-kumar-thakur/
relation-extraction-annotator.

1 Introduction

The proliferation of textual data in the financial
domain presents a unique opportunity for the appli-
cation of machine learning and Natural Language
Processing (NLP) techniques. The extraction of
named entities and their relations from unstruc-
tured financial texts, such as Security and Exchange
Commission (SEC) filings (U.S. Securities and
Exchange Commission) and financial news arti-
cles (Bloomberg - Financial news, analysis, and
data), is a crucial task with significant implications
for financial analysis and decision-making.

Named Entity Recognition (NER) (Wen et al.,
2019) and Relation Extraction (RE) (Detroja et al.,
2023) is a complex yet crucial task in NLP, par-
ticularly within the financial domain. The task de-
mands extensive linguistic and domain knowledge,
making dataset creation costly and labor-intensive.
This complexity has led to instances where previ-
ously hand-labeled and published RE datasets have
undergone subsequent corrections post-publication.
Examples of such non-financial datasets include
TACRED (Zhang et al., 2017b) and its revised coun-
terpart, TACRED Revisited (Alt et al., 2020), as
well as DocRED (Yao et al., 2019) and its updated
version, Re-DocRED (Tan et al., 2022).

The lack of a comprehensive, well-annotated
dataset in the financial domain hampers the devel-
opment and evaluation of algorithms for these tasks.
In response to this identified gap, we present FIRE,
a dataset specifically constructed for joint NER
and RE within the financial domain. Drawn from
both financial documents, mainly SEC filings, and
financial news articles, FIRE provides a diverse
range of linguistic constructs and financial termi-
nologies. The dataset is constituted of 3,025 in-
stances, all hand-labeled according to comprehen-
sive annotation guidelines. Note that an instance
(or an example) refers a labeled object, consisting
of a single sentence or multiple sentences with as-
sociated entity and relation information. Figure 1a
presents a labeled sentence from the dataset while
figure 1b is one example of how the labeled data
can be used to create a knowledge graph. More
examples can be found in the annotation guidelines
document which is provided with the dataset. The
dataset incorporates 13 named entity categories and
18 relation types, effectively capturing vital details
about businesses, including aspects such as their
organizational structure, income streams, business
strategies, and market maneuvers, including acqui-
sitions.

The FIRE dataset also serves as a substantial re-
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(a) A sentence and its labels from the FInancial Relation Extraction (FIRE) dataset. Entity terms are surrounded by a red box,
with the entity type abbreviation annotated below the box. An edge between a pair of entities indicates a relation. (DA), (CO),
(AC), (LO) and (SE) stand for Date, Company, Action, Location and Sector, respectively.

(b) An example of constructing a Knowledge Graph (KG) using the labels from the sentence. All sentences in a dataset can be
combined to create a KG that summarizes all the collected information.

Figure 1: A labeled sentence from the FIRE dataset and an example of how a Knowledge Graph can be built using
the collected labels.

source for training, evaluating, and comparing the
performance of models specialized in the finance
sector. Projects like 10-KGPT (Smiley, 2023) and
BloombergGPT (Wu et al., 2023), which are tai-
lored for financial tasks, lack evaluation on ded-
icated financial RE datasets. FIRE fills this gap,
offering a robust platform for testing these mod-
els against a diverse and complex set of financial
terms and relationships. Our goal is to advance fi-
nancial NLP by providing a high-quality, manually
annotated dataset for refining state-of-the-art Large
Language Model (LLM)s.

An additional feature of FIRE is the inclusion
of a labeling time data field for each record in the
dataset. This feature may provide researchers with
additional granularity when analyzing performance.
Labeling time can serve as an implicit indicator
of example difficulty, offering potential applica-
tions for the implementation of curriculum learning
strategies (Bengio et al., 2009). By leveraging this
feature, researchers can explore and develop meth-
ods that dynamically adjust the learning process
based on the difficulty of the examples, potentially
leading to more efficient learning and improved
model performance. In our experiment results sec-
tion, we provide an initial result of incorporating
the labeling time feature into the training process.
To the best of our knowledge, this has not been

studied yet in the literature.
The paper contributions are summarized as fol-

lows:

• We introduce FIRE, a novel dataset for joint
NER and RE within the financial context.
FIRE is accompanied by comprehensive an-
notation guidelines and is hand-annotated by
a single annotator to minimize labeling noise.

• We provide an open-source web-based label-
ing tool, designed to facilitate efficient and
precise annotation for NER and RE tasks.

• We demonstrate that utilizing the labeling time
of each example can enhance model perfor-
mance through curriculum learning strategies

The rest of this paper is organized as follows:
Section 2 goes over some previous general-purpose
and domain-specific NER and RE datasets and
compares FIRE to existing datasets in finance. Sec-
tion 3 provides a detailed description of the FIRE
dataset, including the composition, data collection
and annotation processes. Section 4 presents an
evaluation of selected state-of-the-art models on
the FIRE dataset, discussing the associated perfor-
mances and implications. Finally, section 5 con-
cludes the paper and outlines potential directions
for future work.
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FinRED KPI-EDGAR FIRE (This Work)

Hand-Labeled ✗ ✓ ✓

No. of Instances 7,775 1,355 3,025
No. of Entity Types N/A 12 13
No. of Entity Mentions 16,780 4,522 15,334
No. of Relation Types 29 1 18
No. of Relation Mentions 11,121 3,841 8,366

Table 1: Comparison of FinRED, KPI-EDGAR, and FIRE datasets. FIRE has the advantage over FinRED in that it
is hand-annotated and over KPI-EDGAR in that it is larger, has diverse relations and is more comprehensive in terms
of covering financial aspects over a business. Note that FinRED statistics for entity and relation mentions were not
readily available. The figures included below were manually computed after a review of the FinRED data files.

2 Related Work

Sentence vs. Document Level RE: Sentence-
level RE identifies relationships between entities
in a single sentence, while document-level RE cap-
tures relationships across multiple sentences or
entire documents. Document-level RE offers a
broader understanding of entity relationships, but
sentence-level RE can pinpoint specific relation-
ships more quickly. Document-level datasets in-
clude BC5CDR (Li et al., 2016), DWIE (Zaporojets
et al., 2021), DocRED (Yao et al., 2019), and Re-
DocRED (Tan et al., 2022). Some popular sentence-
level RE-datasets include TACRED (Zhang et al.,
2017b), FB-NTY (Hoffmann et al., 2011), and
WebNLG (Gardent et al., 2017). While many
of these are general-purpose, there are domain-
specific datasets too (Luan et al., 2018; Perera et al.,
2020). FIRE, despite having some multi-sentence
instances, is mainly a sentence-level RE dataset.

Relation Extraction Datasets and Distant Su-
pervision. Creating RE datasets is costly due to
labeling. One common technique to deal with
this problem is distant supervision which relies
on a knowledge base to automatically label text
data (Mintz et al., 2009). In particular, sentences
that mention two entities connected by a relation in
the knowledge base are assumed to be expressing
that same relation. This strong assumption leads to
a large number of noisy samples. To address this is-
sue, researchers have developed methods that relax
the distant supervision assumptions(Riedel et al.,
2010; Bengio et al., 2009). Despite its limitations,
distant supervision remains a popular and effective
method for generating large-scale datasets for re-
lation extraction tasks. Several relation extraction
datasets have been developed using distant supervi-
sion, including FB-NYT (Hoffmann et al., 2011), a

Figure 2: Scatter plot of labeling time (in seconds)
versus the number of relations in the sentence. The
marginal distributions and histograms are displayed at
the edges of the plot. For sentences with the same num-
ber of relations, there is a wide distribution of labeling
times, showing how the two quantities are correlated
but still provide different information.

dataset constructed by aligning Freebase (Bollacker
et al., 2008) relations with The New York Times
articles, and WebNLG (Gardent et al., 2017), a text
generation dataset created from DBPedia (Bizer
et al., 2009), among others. Such datasets have
been widely used for training and evaluating rela-
tion extraction models. Conversely, FIRE is a su-
pervised dataset in which every instance has been
annotated manually following extensive annotation
guidelines. While this approach elevates the cost
of labeling and poses scalability challenges, it guar-
antees a high level of precision in the labels.

Financial Relation Extraction. Several NER
and/or RE datasets in the financial domain have

3630



Figure 3: Stages of data collection: 1) Manually gather relevant sentences. 2) Hand-label them to create a “seed”
dataset. 3) Train an RE-specialized model on this dataset. 4) Use the model on new financial content to identify
entities and relations. 5) From the model’s output, select sentences with low-confidence predictions to reduce
confirmation bias. Remove existing labels from these sentences, manually annotate them, and merge with prior data.
Repeat until the desired dataset size is achieved.

been previously proposed. FiNER-ORD (Shah
et al., 2023) is an NER dataset automatically col-
lected by applying pattern-matching heuristics on
financial news articles. Unlike FIRE, this is an
NER-only dataset with only three entity types. An-
other related work is (Wu et al., 2020), which estab-
lished a Chinese corpus for relation extraction from
financial news. However, this work focuses on rela-
tion extraction in the Chinese language, while our
dataset targets relation extraction in the English
language. Two datasets that most closely resem-
ble ours are FinRED, an RE dataset introduced in
(Sharma et al., 2022), and KPI-EDGAR, a joint
NER and RE dataset introduced in (Deußer et al.,
2022). Both are specialized in the financial domain.
FinRED contains 7,775 instances covering 29 re-
lation types and was collected from earning call
transcripts and financial news articles. However,
FinRED was labeled using the distant supervision
technique, which can lead to a large number of
noisy samples as outlined previously. In contrast,
all instances in FIRE were hand-annotated by a hu-
man annotator. Similar to FIRE, the KPI-EDGAR
dataset is also hand-annotated but the focus of this
dataset is on extracting Key Performance Indica-
tors (KPIs) from financial documents and linking
them to their numerical values. It supports 12 entity
types but only a single relation type, a binary link
either exists between two entities or not. In con-
trast, FIRE supports an extensively diverse set of
relations and its entities extend to broader business
aspects, not being exclusively centered on KPIs.
Table 1 compares the statistics of FIRE with both
FinRED and KPI-EDGAR.

Labeling Time and Curriculum Learning. In
FIRE, we’ve included a ‘labeling time’ attribute for
each instance. This data, representing the time it
took the annotator to label that particular instance

from the dataset, was gathered during the annota-
tion stage without additional cost. This could be
useful to researchers examining annotation com-
plexities or considering strategies like curriculum
learning - a method inspired by progressive hu-
man learning, where models are exposed to eas-
ier samples first, gradually moving onto complex
ones (Bengio et al., 2009). This method has been
extensively applied in a variety of machine learning
tasks (Zhang et al., 2017a; Kocmi and Bojar, 2017;
Narvekar et al., 2020). A difficulty metric is re-
quired to apply curriculum learning. For example,
a simple static (known a priori) difficulty metric
for textual data can be the length of sentence in
tokens. More sophisticated metrics are data-driven
and adjust based on model feedback (Ma et al.,
2017; Kumar et al., 2010). In this context, we sug-
gest that ‘labeling time’ may act as a proxy for
the difficulty of an example. As illustrated in Fig-
ure 2 we observe a positive correlation between
the labeling time of a sentence and the number of
relations it contains. Despite this correlation, the
labeling time can vary significantly for a fixed num-
ber of relations, indicating that it is not a redundant
feature. Qualitatively similar results are observed
when comparing labeling time to sentence length
or number of entities in a sentence. In section 4,
we provide an initial result of how incorporating
the labeling time feature into the training process
can improve the performance of trained models.

3 FIRE Dataset

3.1 License and Intended Use

License. The dataset and its associated resources
are provided under the Creative Commons Attribu-
tion 4.0 International License (CC 4.0) (Creative
Commons, 2023).
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The labeling tool developed in conjunction with
the dataset is licensed under the MIT open-source
license, see the LICENSE file for details.

Intended Use. The intended use of the FIRE
dataset is two-fold: First, to advance the research
in the area of joint NER and RE, specifically within
the financial domain. It is designed to serve as a
benchmark for evaluating the performance of exist-
ing models, as well as a training resource for the
development of new models. Second, the FIRE
dataset can serve as a valuable resource for finan-
cial analysts and auditors, enabling them to harness
automated algorithms for expedient and efficient
extraction of critical information from financial
documents.

3.2 Data Splits and Statistics
In Table 1, some basic statistics of the FIRE dataset
are displayed. The different entity and relation
types as well as their distribution in the dataset can
be found in appendix A.

The dataset was initially partitioned randomly
into training, development (validation), and test-
ing sets following a 70%, 15%, 15% split, respec-
tively. Because financial reports, by their nature,
often exhibit repetitive patterns in their language
and structure, extra care was taken in creating the
test set. Specifically, the Jaccard similarity score
was computed for each pair of sentences from
train and test sets. Jaccard similarity is defined
as J(A,B) = |A∩B|

|A∪B| , where A and B are sets of
tokens in two instances. It measures the degree
of similarity between two sets. Any sentence in
the test set exhibiting a Jaccard similarity score
above 50% with any sentence in the training set
was replaced by a different sentence from the train
set. This approach helps to reduce data leakage
and ensures that the test set provides a robust and
unbiased evaluation of model performance.

3.3 Data Collection and Annotation
Data Sources and Pre-Processing. Approxi-
mately 25% of the dataset’s records were sourced
from publicly accessible financial news arti-
cles (Bloomberg - Financial news, analysis, and
data; Yahoo Finance, 2023; CNBC, 2023; The Eco-
nomic Times, 2023; The Financial Express, 2023),
while the remaining 75% were extracted from pub-
licly available SEC filings such as 10-K and 10-Q
financial reports. For the SEC filings, we used
the dataset of Cleaned and Raw 10-X Files span-
ning the years 1993-2021 (McDonald, 2023). This

dataset contains all 10-K variants, e.g., 10-Q, 10-
K/A, 10-K405. Every report in this dataset has
already been cleaned and parsed to remove all
non-textual related objects. For the financial news
pieces, we obtained the original articles directly
from their respective sources and manually con-
ducted the cleaning process to extract the raw text.

Data Collection and Labeling. The process
began by selecting a subset of financial reports
and articles, as shown in Figure 3. An annotator
identified and labeled key sentences with relevant
entities and relations, creating a “seed” dataset.
This dataset trained a joint NER and RE model
(refer to 4.1), which then scanned new documents
to suggest potential sentences. However, only the
sentence selection was automated; actual labeling
was always done manually. To mitigate confirma-
tion bias, selections were deliberately made from
low-confidence predictions generated by the model.
Also, to reduce bias, the annotator was not shown
the model’s predictions. This cycle continued until
we achieved the desired dataset size, with all anno-
tations done by a single non-domain expert human
annotator, who is also the lead author of this work.

Annotation Guidelines. For the FIRE dataset,
a comprehensive set of labeling rules was estab-
lished, incorporating both general entity and term
annotation guidelines based on the ACL RD-TEC
guidelines (QasemiZadeh and Schumann, 2016), as
well as domain-specific rules tailored to each entity
and relation present in the dataset. The guidelines
also provide guidance for resolving ambiguous or
conflicting edge cases.

Inter-Annotator Agreement. To assess diffi-
culty of the annotation task, a subset of 150 sam-
ples was randomly selected and provided to three
independent annotators. Annotators A and B were
engineers with familiarity with the NER/RE task
and annotator C was a professor with expertise out-
side of finance, engineering, and linguistics. Anno-
tator A underwent several iterations of training to
improve the quality of their annotations. In contrast,
Annotators B and C were instructed to familiarize
themselves with the annotation guidelines for 1-2
hours before starting the labeling task, without any
prior training. The agreement between the anno-
tators, including the main annotator of the dataset,
was measured using the pair-wise entity and rela-
tions micro F1 score, as detailed in Table 2. This
score was computed by treating one set of anno-
tations as the ground truth labels and the other as
predictions. Note that the result is the same re-
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Annotator Pair Entity F1 (%) Relation F1 (%)

Main Annotator and A 78.29 59.72
Main Annotator and B 70.57 49.19
Main Annotator and C 50.46 16.05

A and B 69.73 48.46
A and C 46.72 14.19
B and C 49.52 17.49

Table 2: Inter-annotator micro F1 scores. Annotators A and B are engineers familiar with the NER/RE task.
Annotator C had no prior familiarity with the NER/RE task nor any expertise in engineering, finance, or linguistics.

gardless of which annotations were designated as
ground truth. Although Cohen’s Kappa is usually
the preferred metric for inter-annotator agreement,
it is not suitable for the NER/RE task (Deléger
et al., 2012; Hripcsak and Rothschild, 2005). The
highest agreement was found with the annotator
who received additional training. There was also
greater agreement between the main annotator and
annotator B as compared to annotator C, likely
due to the annotator’s technical background and
familiarity with the NER/RE task. These results
suggest that the task has a high level of technical
complexity and that, even with the detailed annota-
tion guidelines, training of new annotators requires
an iterative education process. Furthermore, even
with some iteration in annotator training, as was the
case for annotator A, the inter-annotator agreement
indicates significant room for improvement. For
this reason, the entire FIRE dataset is labeled by a
single annotator who wrote the annotation guide-
lines and invested significant time and effort to en-
sure consistency. None of the results collected by
the other annotators for the inter-annotator agree-
ment study are contained in the final dataset. The
consistent labeling of the FIRE dataset is confirmed
by the results in section 4.3, where the F1 scores
for trained models are much higher than the figures
in Table 2.

3.4 Labeling Tool
We introduce an open-source, web-based text anno-
tation tool alongside the FIRE dataset 1. Tailored
for entity and relation labeling, the tool offers fea-
tures for efficient annotation and error minimiza-
tion. It supports shortcuts for quick labeling and
an optional rules file upload to set constraints on
permissible relations between entity types, inspired
by the work of (Lyu and Chen, 2021). For example,

1https://github.com/abhinav-kumar-thakur/
relation-extraction-annotator

in FIRE, a rule might dictate that the ActionSell
relation is exclusive to the Company entity type.
This ensures accurate annotations by preventing in-
compatible entity-relation combinations. The tool
also logs the annotation time for each instance, as
detailed in section 2.

4 Experimental Results

Algorithm 1: A Simple Curriculum Learn-
ing Algorithm

Data: Dataset D, Difficulty metric M ,
Number of tiers N , Number of
fine-tuning epochs E

Result: Trained Model Θ
1 Divide D into N tiers (T1, T2, . . . , TN ) in

increasing order of difficulty based on
metric M ;

2 Dcurrent = ∅;
3 for i = 1 to N do
4 Dcurrent = Dcurrent ∪ Ti;
5 Train on Dcurrent for one epoch;

6 Fine-tune on entire dataset D for E epochs;
7 return Trained Model Θ

4.1 Models
To benchmark the performance of state-of-the-art
models on FIRE, two family of models were se-
lected for evaluation: RE-specialized models and
general-purpose generative (causal) LLMs. RE-
specialized models are models that were designed
specifically to solve the RE, and possibly the NER,
task. These models are usually built on top of
a pre-trained base model such as BERT (Devlin
et al., 2019). They are then customized to target
the RE task by doing a combination of building a
custom architecture, applying RE-specific data pre-
processing and customizing the training procedure.

3633

https://github.com/abhinav-kumar-thakur/relation-extraction-annotator
https://github.com/abhinav-kumar-thakur/relation-extraction-annotator


On the other hand, general-purpose causal LLMs
are designed with the language modeling objective
and have no direct connection to the RE task. They
can still be evaluated on this task by treating it as a
sequence generation problem.

Three RE-specialized models were selected:
SpERT (Eberts and Ulges, 2020), PL-Marker (Ye
et al., 2022) and REBEL (Cabot and Navigli, 2021).
SpERT effectively applies the Transformer archi-
tecture, complemented by a robust negative sam-
pling strategy. It thus serves as a good starting
point for evaluation. PL-Marker employs a unique
marker mechanism to mark entity boundaries in
sentences. Both models are built on top of the
BERT architecture (Devlin et al., 2019). REBEL,
on the other hand, is a sequence-to-sequence lan-
guage model built on top of the BART architec-
ture (Lewis et al., 2019). REBEL treats the relation
extraction as a language generation task by express-
ing the triplet targets as a sequence of text. This
provides an alternative perspective to this problem.
Note that REBEL does not evaluate on entities.

For general purpose generative models, we opted
for Llama 2-7b (Touvron et al., 2023) and GPT-
3.5 (Brown et al., 2020), evaluating them in both
few-shot and fine-tuned settings. Together, these
models provide a reasonably comprehensive as-
sessment of the FIRE dataset’s performance and
potential.

4.2 Setup and Evaluation
Standard Fine-Tuning SpERT, PL-Marker and
REBEL were each allotted 24 hours on an Nvidia
GeForce RTX 2080 Ti GPU for hyper-parameter
tuning on the validation set to find the best learning
rate and batch size. The best performing model is
then evaluated on the test set. More details can
be found in appendix B. Llama 2-7b and GPT-3.5
were fine-tuned with a custom prompt (appendix C)
and without hyper-parameter tuning due to compu-
tational constraints. Llama 2-7b underwent fine-
tuning using QLoRA (Dettmers et al., 2023) based
parameter-efficient techniques with 4bit configura-
tion. For GPT 3.5, the fine-tuning is performed us-
ing the API provided by OpenAI (OpenAI, 2023a).
Fine-tuning and evaluations are done using an
Nvidia GeForce RTX 4060 Ti GPU and with a
spending of around $100 for OpenAI APIs.

Few-Shot Prompting For Llama 2-7b and GPT
3.5, a custom prompt was designed to evaluate both
models in a few-shot setting. The prompt includes a
definition and description of each relation type. For

each iteration, the few-shot examples are randomly
selected from the training set of the dataset. The
models are then prompted to extract both entities
and relations. Prompt details are in Appendix C.

Curriculum Learning In addition to the stan-
dard training setup, another experiment was per-
formed by training the three RE-specialized models
according to a curriculum determined by the label-
ing time information. A very simple curriculum
learning algorithm is used as described in algo-
rithm 1. The training set is first divided into N
tiers in increasing order of difficulty according to a
metric M . Then, the model is trained successively
for one epoch on each tier, as well as all previous
tiers. Finally, the model is fine-tuned on the entire
dataset for number of epochs E. In our experiment,
we set N = 10 and E = 20 for all models. A
compute budget of 24 hours is again given for each
model to search for the best learning rate and batch
size.

The difficulty metric M was computed as fol-
lows: given a sentence’s labeling time t, we con-
sider the following features: the number of entities
nent, the number of relations nrel and boolean vari-
ables indicating the length of the sentence as either
short or medium, with large sentences encoded
by setting both short and medium variables to
zero. Using these features, we fit a simple linear
regression model to predict t as:

t̂ = β0 + β1 · nent + β2 · nrel (1)

+ β3 · short+ β4 ·medium (2)

The difficulty metric M is then defined as the
normalized residual of the actual and predicted
labeling time:

M =
t− t̂

max(t)−min(t)
(3)

This metric gives us a sense of how much harder
(or easier) a sentence is to label compared to what
we’d expect (from t̂) based solely on its features.
Intuitively, a sentence with expected labeling time
t̂ larger than actual labeling time t indicates that
this may be an “easy sentence”, and the opposite is
true. The reason M is not simply chosen to be the
labeling time t is because a sentence with large t is
not always “more difficult” to label than a sentence
with smaller t. The difference could be due to the
features discussed above, e.g. a sentence with large
t could simply contain more entities but is actually
easier to label than another sentence with smaller
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Model Class Model Evaluation Entity F1 (%) Relation F1 (%)

RE-specialized
models

SpERT
Standard Fine-Tuning 84.63±0.25 67.41±0.92

Curriculum Learning 85.39±0.33 68.11±0.53

PL-Marker
Standard Fine-Tuning 83.78±0.18 67.01±0.67

Curriculum Learning 84.65±0.54 67.67±0.82

REBEL
Standard Fine-Tuning − 68.25±0.44

Curriculum Learning − 68.93±0.52

General-purpose
models

Llama 2-7b
Few-Shot 20.24±1.60 9.32±1.27

Standard Fine-Tuning 64.89±1.10 36.70±0.59

GPT 3.5
Few-Shot 56.68±1.06 16.50±0.39

Standard Fine-Tuning 81.48±0.18 57.50±1.57

Table 3: Performance of all models on the FIRE test data. Mean and standard deviation (in superscript) are reported
for micro F1 score for both entities and relations. SpERT, PL-Marker, and REBEL are evaluated in two settings:
Standard Fine-Tuning and Curriculum Learning. Llama 2-7b and GPT 3.5 are evaluated in a few-shot setting as
well as in a standard fine-tuning setting. Note that the REBEL model does not compute entity metrics.

t. This is why proper normalization is required to
choose M .

Evaluation. For each experiment category, three
independent training runs were performed. The
mean and standard deviation of the micro F1 score
are reported. The exact match micro F1 score was
used as the evaluation metric for relations, i.e. en-
tity boundaries, entity types, as well as the relation
label must exactly match the ground truth labels
to be considered correct. We use the train/eval/test
splits for FIRE as reported in section 3.2.

4.3 Results

Table 3 presents the results of all experiments. The
three RE-specialized models display comparable
performance and significantly outperform the inter-
annotator agreement scores in Table 2, further in-
dicating the consistent annotations in the dataset.
Looking into the curriculum learning results, we
see that curriculum learning enhanced the perfor-
mance of all three models compared to standard
training. This confirms our assumption that the
labeling time is an informative feature that can be
used to improve the generalization capabilities of
the models.

Table 3 also showcases the results for general-
purpose generative LLMs. Fine-tuning outper-
forms few-shot learning significantly. GPT-
3.5 surpasses Llama 2-7b, especially when fine-
tuned. However, these models still lag behind RE-
specialized models. Our findings are consistent
with a recent study (Han et al., 2023) that also iden-

tified a significant performance gap between Chat-
GPT (OpenAI, 2023b) and state-of-the-art methods,
particularly in more complex tasks. This can be ex-
plained by multiple factors, mainly the difficulty in
doing strict evaluation of generative models which
lack a fixed output format. This underscores the
need for further research on using untrained causal
LLMs for relation extraction, especially on datasets
with diverse entity and relation types.

Figure 4 compares the F1 scores per relation
type for the SpERT model trained with standard
fine-tuning versus curriculum learning. The per-
formance patterns between the two techniques are
generally similar: both training methods exhibit dif-
ficulties with the same relation types and perform
better on others. This pattern cannot be attributed
solely to class imbalances. Rather, it seems to arise
from the complexity inherent in detecting certain
relations. For instance, "ValueChangeDecreaseBy"
is infrequent within the dataset (refer to Table 5 in
appendix A), yet the model demonstrates strong
performance, likely due to the straightforward na-
ture of detecting a relation involving a monetary
value. On the other hand, "PropertyOf" appears
more frequently but the model struggles in extract-
ing this relation, potentially because of the complex
nature of establishing this relation between two en-
tities. Importantly, curriculum learning appears
to enhance model performance on relation types
that have lower F1 scores with standard fine-tuning,
such as "ConstituentOf", "ProductOf", and "Proper-
tyOf". This suggests that curriculum learning may
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Figure 4: Comparison of F1 scores across each relation type in FIRE between standard fine-tuning and curriculum
learning approaches using the SpERT model. The results highlight varying levels of difficulty in relation detection
and may suggest an improvement in challenging relations when employing curriculum learning.

improve model performance with more complex
relations. However, further analysis is necessary to
determine whether this improvement is consistent
across various models and random seeds. Note that
the labeling time feature is a sentence-level metric
and not a relation-level metric. Therefore, a direct
comparison between labeling time and per-relation
score is not possible.

Finally, while we employed a very simple cur-
riculum learning algorithm, more advanced and
sophisticated techniques have been proposed in the
literature that can potentially achieve even higher
improvements. Nevertheless, our primary contribu-
tion focuses on the dataset, and a thorough evalu-
ation of all curriculum learning techniques can be
explored in future research.

5 Conclusion

In this paper, we introduced FIRE, a dataset care-
fully curated for the task of joint named entity and
relation extraction in the financial domain. The
comprehensive annotation guidelines and the open-
source labeling tool accompanying the dataset fur-
ther contribute to its robustness and usability. Our
evaluations with RE-specialized and generative
LLMs highlight FIRE’s challenges and potential.
We also explored the benefits of incorporating label-

ing time in training. It is evident that the develop-
ment of more refined models capable of understand-
ing the complexities of financial domain-specific
data is required. Looking forward, we anticipate
that FIRE will serve as a valuable resource for re-
searchers and practitioners in the fields of natural
language processing and financial analysis.
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6 Limitations

The primary limitation of FIRE is its domain-
specific focus on the financial sector, potentially
limiting its applicability to other fields. Addition-
ally, the dataset is sourced solely from English lan-
guage documents, which restricts its utility in multi-
lingual or cross-lingual studies. Furthermore, the
dataset is thoroughly annotated by a single human
who is not a finance domain expert nor a linguist.
Thus, the inherent subjectivity and possible biases
or lack of domain-knowledge in manual annotation
cannot be completely ruled out. Finally, the dataset
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is not meant to be an all-encompassing solution.
Due to the complex and nuanced language often
used in financial reports and news articles, certain
entities and relations may not be captured by the
existing entity and relation categories in the dataset.
Finally, all entities in FIRE are extracted verbatim
from the text. If an entity is implied but not explic-
itly stated, it would not be captured in FIRE as well
as any relation relating to it. Future iterations of
FIRE would benefit from addressing these limita-
tions, expanding both its domain knowledge and
linguistic diversity.
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A Distribution of entity and relation types
in FIRE

Table 4 breaks down the quantity of each entity
type in the dataset while Table 5 displays the same
information but for relations. For a detailed de-
scription of each entity and relation type, see the
annotation guidelines document accompanying the
dataset.

B Hyper-parameter Selection

For our experiments, we allocated a tuning budget
of 24 hours on an Nvidia GeForce RTX 2080 Ti
GPU for each RE-specialized model to search for
the optimal hyper-parameters on the validation set.
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Number of Entity Mentions 15,334
Average number of entities

per instance
5.29

Amount
of each
entity

Company 22.41%
FinancialEntity 15.60%

Date 15.37%
Designation 8.08%

Money 7.78%
Action 5.57%

Quantity 5.27%
Product 4.39%
Sector 3.90%

Location 3.74%
Person 3.41%

BusinessUnit 2.71%
GeopoliticalEntity 1.70%

Table 4: FIRE Dataset Entity Statistics

Table 6 displays the selected hyper-parameters
for SpERT, PL-Marker and REBEL in the standard
fine-tuning experiments.

Table 7 presents the hyper-parameters for the
curriculum learning experiments for the RE-
specialized models. To reduce the search space,
instead of searching for one learning rate for each
data tier, we select a fixed learning rate for tiers 1
to 3, 4 to 6 and 7 to 9. Thus we search for only
three learning rates for all tiers, in addition to the
final learning rate for training on the whole dataset.

C Llama 2-7b and GPT 3.5 Prompts

C.1 Few-Shot Learning Prompts
For few-shot learning, the following 1-shot prompt
was used:

Find the relation between the entities
given in the context and produce a list of
triplets containing two entities and their
relations.

Only find out the following relations Ac-
tionBuy, Actionin, ActionSell, Action-
Merge, Actionto, Constituentof , Des-
ignation, Employeeof, Locatedin, Pro-
ductof, Propertyof, Quantity, Sector,
Subsidiaryof, Value, ValueChangeDe-
creaseby, ValueChangeIncreaseby and
Valuein

ActionMerge indicate two company or
organizations enters into merger agree-
ments to form a single entity.

Number of Relation Mentions 8,366
Average number of relations

per instance
2.92

Amount
of each
relation

Valuein 11.17%
Value 9.98%

Designation 9.95%
Actionto 8.55%
Actionin 6.35%

Propertyof 6.33%
Locatedin 6.06%

Sector 5.76%
Productof 5.71%

Constituentof 5.27%
Employeeof 4.67%

ValueChangeIncreaseby 4.31%
ActionBuy 3.87%

ValueChangeDecreaseby 3.64%
Subsidiaryof 3.16%

Quantity 3.08%
ActionSell 1.66%

ActionMerge 0.40%

Table 5: FIRE Dataset Relation Statistics

ActionBuy represents the action of pur-
chasing/acquiring a Company, Finan-
cialEntity, Product, or BusinessUnit by
a Company or a Person.

Actionto represents the relation between
the action entity and the entity on which
the action has taken.

Constituentof relation denotes one finan-
cial entity is part of another financial
entity.

Actionin indicates the Date associated
with an Action entity, signifying the time
of occurrence of the action.

ActionSell represents the action of selling
a Company, FinancialEntity, Product, or
BusinessUnit by a Company or a Person.

Employeeof denotes the past, present or
future employment relationship between
a Person and a Company.

Designation indicates the job title or po-
sition of a Person, or the Designation
of a Company in the financial context,
providing information about the role or
responsibility of the entity.

Locatedin indicates the geographical lo-
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Model Learning Rate (NER) Batch Size (NER) Learning Rate (RE) Batch Size (RE)

SpERT — — 5e-5 2
PL-Marker 7e-5 2 4e-6 2
REBEL — — 3e-6 4

Table 6: Selected hyper-parameters for standard fine-tuning. Note that PL-Marker has a separate training run for its
NER module. Therefore, we search for the learning rate and batch size of this module as well.

Model
Learning Rate

Batch Size
Tier 1-3 Tier 4-6 Tier 7-9 Final

SpERT 8e-6 5e-5 3e-5 5e-5 8
PL-Marker 7e-6 4e-5 4e-5 1e-6 4
REBEL 5e-6 4e-5 3e-5 1e-6 4

Table 7: Hyper-parameters for curriculum learning experiments. Note that for PL-Marker, we apply curriculum
learning on the RE module only. For the NER module, we fix the learning rate to 5e− 5 and the batch size to 4.

cation or country associated with an en-
tity, specifying the place or region where
the entity is located. Money and Quan-
tity can be in the place where they were
generated, lost, profited, etc. Note that a
Company is only Located in a place if it
based in that place.

Productof indicates a Product is manu-
factured, sold, offered, or marketed by
a Company, establishing a relationship
between the Company and the Product.

Propertyof serves as an umbrella rela-
tion” that indicates a general association
between two entities, mainly represent-
ing ownership or part-of/composition re-
lationships. This relation is used to con-
nect two entities when a more specific
relation is not yet defined.

Quantity represents the countable quan-
tity a FinancialEntity, BusinessUnit or
Product.

Sector indicates the economic sector or
industry to which a Company belongs,
providing information about the broad
business area or category of the Com-
pany’s operations.

Subsidiaryof indicates that a Company is
a subsidiary of a parent Company, ei-
ther wholly or majority owned. Note
that ”brands” are always considered
subsidiaries of their parent Company. A
highly occurring pattern is a parent com-

pany selling its subsidiary company, in
which case the Subsidiaryof relation is
not annotated.

Value represents a non-countable value
of a FinancialEntity, BusinessUnit or
Product such as a monetary value or a
percentage. A Company can also have
a Value relation, but only for monetary
values such as indicating the net worth
of a company or the sale price in an ac-
quisition.

ValueChangeDecreaseby indicates the
decrease in monetary value or quantity
of a FinancialEntity. An additional more
rare use-case is the Quantity of a Busi-
nessUnit decreasing, such as number of
employees or number of offices.

ValueChangeIncreaseby indicates the in-
crease in value or quantity of a Finan-
cialEntity. An additional more rare use-
case is the Quantity of a BusinessUnit
increasing, such as number of employees
or number of offices.

Valuein indicates the Date associated
with a Money or Quantity entity, provid-
ing information about the specific time
period to which the Money or Quantity
value is related.

Please find few examples below

Context : Bank of America to Buy Merrill
Lynch for $50 Billion
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Answer : [[’Bank of America’, ’Mer-
rill Lynch’, ’ActionBuy’], [’Buy’, ’Mer-
rill Lynch’, ’Actionto’], [’Merrill Lynch’,

’$50 Billion’, ’Value’]]

C.2 Fine-Tuning Prompts
For fine-tuning, the dataset examples were trans-
formed to the following prompt which was used to
train the models:

Question: Find the relation between the
entities given in the context and produce
a list of triplets containing two entities
and their relations. Only find out the fol-
lowing relations: ActionBuy, Actionin,
ActionSell, ActionMerge, Actionto, Con-
stituentof, Designation, Employeeof, Lo-
catedin, Productof, Propertyof, Quan-
tity, Sector, Subsidiaryof, Value, Val-
ueChangeDecreaseby, ValueChangeIn-
creaseby, and Valuein.

Context: Bank of America to Buy Merrill
Lynch for $50 Billion

Answer: [[’Bank of America’, ’Merrill
Lynch’, ’ActionBuy’], [’Buy’, ’Merrill
Lynch’, ’Actionto’], [’Merrill Lynch’,
’$50 Billion’, ’Value’]]
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