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Abstract

While enabling large language models to im-
plement function calling (known as APIs) can
greatly enhance the performance of Large
Language Models (LLMs), function calling
is still a challenging task due to the com-
plicated relations between different APIs, es-
pecially in a context-learning setting with-
out fine-tuning. This paper introduces “Re-
verse Chain”, a controllable, target-driven
approach designed to empower LLMs with
the capability to operate external APIs only
via prompts. Recognizing that most LLMs
have limited tool-use capabilities, Reverse
Chain limits LLMs to executing simple tasks,
e.g., API Selection and Argument Comple-
tion. Furthermore, to manage a controllable
multi-function calling, Reverse Chain adopts
a generic rule-based on a backward reasoning
process. This rule determines when to do API
selection or Argument completion. To evalu-
ate the multi-tool-use capability of LLMs, we
have released a compositional multi-tool task
dataset, available at https://github.com/
zhangyingerjelly/reverse-chain. Exten-
sive numerical experiments validate the remark-
able proficiency of Reverse Chain in managing
multiple API calls.

1 Introduction

Recently, there has been an impressive wave in the
progress made in Large Language Models (LLMs),
due to their excellent performance in a variety
of tasks (Chowdhery et al., 2022; Brown et al.,
2020; Scao et al., 2022; Wei et al., 2022a; Bubeck
et al., 2023). However, LLMs still face difficulties
with some specialized tasks due to their fundamen-
tal limitation on the information they stored and
learned, which can become outdated and may not
be suitable for all applications. A practical solution
is to augment LLMs with external tools (known
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as APIs). In this setup, LLMs act as controllers,
not only to understand user intents but crucially
to select and orchestrate the appropriate tools to
complete tasks.

Unfortunately, LLMs still lack the sophistication
to fully understand human instructions and effec-
tively implement function calling. Many works are
dedicated to enhancing the function calling abilities
of LLMs through fine-tuning or in-context learning
methods (Patil et al., 2023; Qin et al., 2023; Schick
et al., 2023; Tang et al., 2023; Parisi et al., 2022; Li
et al., 2023; Liang et al., 2023; Song et al., 2023; Xu
et al., 2023). Compared to fine-tuning, in-context
learning approaches offer a more straightforward
and scalable solution, as they eliminate the need
to train an entirely new model for each new API.
Consequently, the primary goal of this paper is to
enhance the API planning capabilities of LLMs
within the in-context learning setting.

Different from the aforementioned studies which
focus on simpler tasks, such as single-tool task
or independent multi-tool task (detailed in Table
1), this paper targets at enhancing LLMs’ ability
to handle more complicated compositional multi-
tool task (detailed in Table 1). Implementations of
this task requires to employ multiple, potentially
interdependent APIs, which is common in real-
world scenarios but poses a greater challenge in
API planning for LLMs. It’s worth noting that
single-tool task and independent multi-tool task can
be seen as subsets of compositional multi-tool task,
and the proposed approach can also manage them
with minimal modifications. The generalizability
of the proposed method to different task types will
be discussed in the Section 5.

In the realm of tool-use, various prompting tech-
niques have been explored. One-step planning al-
gorithms are introduced in (Shen et al., 2023; Liang
et al., 2023), but its accuracy is often low in com-
plex, ambiguous scenarios. The Chain of Thought
(CoT) approach (Wei et al., 2022b) counters this by
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Task Type Example API planning
Single-tool What’s the weather in New York ? getWearther(city=’New York’)

Independent multi-tool
What’s the weather in New York?

When’s my next meeting?
getWearther(city=’New York’)

showCalendar(event=’next meeting’)

Compositional multi-tool
I’m Lucas, Could you find a flight

and book it to my destination ?
BookFlight(flight_ID=FindFlight(destination
=GetUserDestination(userName=’Lucas’))

Table 1: Different task types, classified by the number of required tools and their dependencies for task execution.

Query

Goal

APIAPI

API

API

API

API

APIAPI

API

APIAPI API

Wrong Goal

(b) Reverse Chain(a) Planning (c) ReACT

API API Call  in Path
Execution Path

Potential Path 

Reverse Chain of Thought

Fail to Enter the Next Step

Figure 1: A comparison of our Reverse Chain with
the one-step/CoT Planning and ReAct for multi-API
planning.

step-by-step planning with intermediate reasoning.
Known as CoT planning, this technique decom-
poses tasks into several simpler sub-tasks, thereby
boosting reasoning and accuracy. Nevertheless,
as illustrated in Figure 1 (a), a limitation of these
planning methods is their potential for errors in
the intermediate stages. While the final step of
the plan is intended to achieve the ultimate goal,
errors in the intermediate planning steps can lead
to execution failures. For instance, as illustrated
in the compositional multi-tool case of Table 1, if
the value of ‘destination’ parameter is parsed incor-
rectly, e.g., destination = ‘None’, it is obvious that
BookFlight could not be executed successfully. To
bridge this gap, ReAct, as described by (Yao et al.,
2022), refines reasoning by combining actions and
observations for deeper insights. Expanding on
this, tool-learning projects (Song et al., 2023; Ruan
et al., 2023) utilize the output from each step to
inform the next decision. However, as depicted in

Figure 1(c), in the multi-function call scenarios,
ReAct, despite successfully executing each step,
may not adhere to the correct reasoning path to-
wards the final goal, as a result, it deviates to the
wrong destination and may end up early. For in-
stance, in the previously mentioned scenario, the
ReAct execution flow would be: GetUserDestina-
tion (userName=‘Lucas’) -> destination, flight_ID
= FindFlight (destination) -> Final Answer, which
is not completed since the last API BookFlight has
not been executed.

In summary, both one-step/CoT planning and
ReAct are forward reasoning solutions, so they
encounter similar control challenges: each step
exhibits a high level of unpredictability and un-
certainty, especially at the beginning when the
search space is large. Errors can propagate from a
wrong thought or action, leading to incorrect solu-
tion paths or final goals. This issue arises because
these methods start from scratch and progress for-
ward towards the final target, with the LLM bearing
the entire burden of planning.

To address these issues, we propose a control-
lable yet general framework called Reverse Chain.
This framework consists of a generic rule and
two key modules: API Selection and Argument
Completion, both centered on prompting an LLM.
Specifically, the generic rule in Reverse Chain per-
forms a multi-API planning task in a backward
manner: it starts by selecting the final API for a
task, and then completes the required arguments,
drawing values from the query and context, or by
outputs of other APIs. When a new API is selected
during the argument completion stage, this process
repeats. The procedure continues iteratively until
all arguments of all APIs are filled. Reverse Chain
distinguishes itself from previous work with the
following three main advantages: 1. Backward
reasoning, starting from the final goal, prevent-
ing planning from deviating into a wrong direction,
thus ensuring the correctness of the final goal. 2.
The step-by-step decomposition dominated by the
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rule makes the process controllable, with each stage
being forward-executable, effectively avoiding er-
rors such as incorrect intermediate stage. 3. The
tasks of LLMs are simplified to just selecting
APIs and filling arguments, avoiding complex plan-
ning. This strategy effectively utilizes the strengths
and capabilities of the existing LLMs without de-
pending on extensive reasoning abilities.

In summary, the contributions of this paper are:

1. This paper presents Reverse Chain, a straight-
forward framework to improve the API plan-
ning capabilities of LLMs in an in-context-
learning setting. By employing a backward
reasoning scheme and a step-by-step problem-
solving methodology, the process becomes
more manageable and controllable.

2. This paper focuses on API planning for com-
positional multi-tool task. To assess the capa-
bilities of LLMs in handling such tasks, we
build a high-quality dataset containing 825
APIs and 1550 instances for that task, con-
structed automatically using GPT-4 (OpenAI,
2023). Additionally, an automatic evaluator
powered by GPT-4 is also developed for effi-
cient evaluation purpose.

3. Extensive experiments are conducted to
demonstrate the superiority of the Reverse
Chain approach in multi-API calling tasks,
surpassing the state-of-the-art in-context learn-
ing approaches, e.g., CoT and ReAct.

2 Related Work

Tool Learning The discussion of tool usage in
LLMs has grown significantly, with models like
Toolformer leading the way (Schick et al., 2023;
Nakano et al., 2021). Current approaches can be
divided into two categories. The first category fo-
cuses on enhancing the tool-specific capabilities of
language models through fine-tuning with special-
ized datasets (Patil et al., 2023; Qin et al., 2023;
Schick et al., 2023; Tang et al., 2023; Parisi et al.,
2022; Yang et al., 2023; Qian et al., 2023). The
second category directly leverages the capabilities
of LLMs, prompting them to interact with various
tools, ranging from AI models (Shen et al., 2023;
Wu et al., 2023) to more versatile tool sets (Li et al.,
2023; Liang et al., 2023; Song et al., 2023; Xu et al.,
2023). Generally, the prompting approach is sim-
pler and more scalable, but it still has a significant
gap compared to fine-tuning method, so this work

is proposed to enhance the API planning capability
of prompting methods. It is notable that while the
previously mentioned studies introduced numerous
tool-learning datasets, they primarily encompass
relatively simple tasks, focusing on single-tool task
or independent multi-tool task. In contrast, this
paper targets a more complex task called compo-
sitional task, where multiple dependent APIs are
needed.

Prompting LLMs Various methods, like CoT
(Wei et al., 2022b) for task decomposition and
ReAct (Yao et al., 2022) for melding reasoning
with action, enhance general prompting capabil-
ities. Additionally, numerous planning methods
are tailored for tool-use. (Shen et al., 2023; Liang
et al., 2023) start by generating a direct solution
outline, followed by selecting and executing rele-
vant APIs. DFSDT (Qin et al., 2023) can be seen
as an improved version of ReAct, enables LLMs
to evaluate different reasoning paths and select the
most promising one. RestGPT’s (Song et al., 2023)
workflow involves an iterative “plan and execute”
cycle. Meanwhile, (Ruan et al., 2023) employs a
sequential planning approach, feeding the outcome
of each step into the subsequent one. All these
works require an LLM to perform either full or
step-by-step planning based on the task. However,
the Reverse Chain proposed in this work simplifies
this by having the LLM focus on just two tasks:
API selection and argument completion, thereby
greatly simplifying the task complexity. Further-
more, Unlike previous methods that progress from
scratch to the final goal, Reverse Chain starts from
the end goal and reasons backwards, enhancing
controllability.

3 Reverse Chain: A Multi-API Planning
Approach

The objective of this work is to generate effective
API planning based on user queries and API can-
didates. Figure 2 provides a detailed example: A
user query could be a natural language request like
“Please help Jack book a meeting room from 9:00
am to 10:00 am”. Each API in the API pool is
characterized by its description, arguments, and
output. e.g., the API RecommendRoom has a func-
tionality description of “Recommend the ID of an
available meeting room”, arguments “start_time”
and “end_time”, and an output of “room_ID”. A
successful API planning consists of two parts: se-
lecting the proper API and filling in all the argu-
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API Description Arguments Output
Name2ID Convert user name to user ID person_name person_ID

RecommendRoom Recommend the ID of
an available meeting room

start_time, end_time room_ID

BookRoom Book a meeting room person_ID, room_ID
start_time, end_time

room_Info

API
BookRoom

person_ID room_ID start_time end_time

API 
RecommendRoom

API 
Name2ID

API Selection  

Argument
Completion

person_name

Value: Jack

start_time end_time

Value: 9am Value: 10am

Value: 9am Value: 10am1213 005

Reverse Chain of Thought

Forward Execution

Filled Argument

Unfilled Argument

⍉ ⍉

⍉

Argument
Completion

Reverse Chain

BookRoom (person ID = Name2ID(person name=‘Jack’),
           room ID = RecommendRoom (start time=‘9am’, end time=‘10am’),
           start time = ‘9am’, end time=‘10am’

API Planning

API Pool
User Query Please help Jack book a meeting room for 9am-10am

Figure 2: Workflow of Reverse Chain on an example.

ments correctly, where the argument values can
come from the query or context, or from the output
of another API.

Section 3.1 outlines the Reverse Chain process,
while Section 3.2 specifically discusses the two
modules that interact with LLM: API Selection
and Argument Completion.

3.1 Reverse Chaining

Different from CoT and ReAct, Reverse Chain per-
forms a task decomposition in a reverse manner,
and its step-by-step problem-solving path is pre-
defined by a generic rule. It is notable that this
generic rule is not restricted with a certain type of
tasks.

Figure 2 shows an example of Reverse Chain ap-
plied to API planning for a query. Initially, Reverse
Chain selects the final API for a given task, this step

is referred to as API Selection. In this example,
LLM selects an API named BookRoom to match
the task “booking a meeting room”. Next, the re-
quired arguments of the selected API are identified
through engineering guidance, e.g. API BookRoom
has four required arguments, that is, person_ID,
room_ID, start_time, and end_time. There are three
possible approaches for arguments filling, and we
define this process as Argument Completion:
Case 1. The argument value extracted directly from
the context and user query, e.g., start_time = 9:00
am;
Case 2. When the argument value could not be ob-
tained directly, Reverse Chain searches for another
possible API whose output could complete the
missing argument, e.g., the argument person_ID
could be obtained from API Name2ID;
Case 3. If it is unable to obtain the argument value
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from the above two cases, the generic rule will
request the argument value directly from the user.

For the selected internal APIs in Case 2, Re-
verse Chain makes recursive calls to complete the
required arguments of these APIs, e.g., the required
argument of Name2ID is person_name, and the
value ‘Jack’ could be obtained through Case 1 in
Argument Completion. The algorithm continues
until the termination condition is met, i.e., all of the
required arguments are completed. Finally, when
all required arguments of an API are filled, the API
is ready to be executed forward to complete the
given task.

3.2 LLM Modules in Reverse Chain

3.2.1 API Selection
In this module, the LLM effectively determines the
relevant API by analyzing the task descriptions and
API candidates. The specific prompt used in this
module is depicted in Figure 3.(a). Within the Re-
verse Chain, the API Selection module is employed
in two different scenarios, separated with regard to
different task description and API candidates. The
first scenario occurs when selecting the ultimate
API. In this case, the task descriptions correspond
to the user query and the API candidates refers
to all APIs in the API Pool. The second scenario
occurs as a sub-module of Argument Completion.
When the value of an argument cannot be obtained
from the user query or context, the Reverse Chain
selects an appropriate API whose output can fulfill
the missing argument. In such cases, the task de-
scriptions refers to the description of the unfilled
argument. The scope of API candidates can be nar-
rowed down through variable type matching, which
encompasses Time, Date, String, etc. This capa-
bility facilitates a more refined selection process,
leading to a improved accuracy.

3.2.2 Argument Completion
After API Selection, the required arguments for
the selected API are determined with the help of
engineering guidance. In this module, the LLM is
leveraged to complete these arguments using infor-
mation from the query, context and API candidates.
The execution follows three possible outcomes:
Case 1 The argument value is directly extracted
from the context or user query.
Case 2 Another API is used to complete the miss-
ing argument value, indicating that the LLM is
unable to obtain the argument value directly. It
should be noted that the arguments of this new in-

ternal API must be completed before execution.
Case 3 None, indicating the inability to obtain the
argument value from the context, user query, and
potential API output. In this case, the generic rule
will request the argument value directly from the
user.

Specific optimizations have been applied to the
aforementioned approach, which are further ex-
plored in Section 4.2.2. The optimized prompt
used in this module is illustrated in Figure 3.(b).

We have N APIs:
=====
{"name": BookRoom, "description": Book a meeting room}
......
{"name": Weather, "description": Query weather}
=====
If someone is saying: "Please help Jack book a meeting room for 9:00-
10:00"
Which final API should we use for this instruction? Only return API code. 
Only return one word!

(a) API Selection

You are an argument extractor. For each argument, you need to determine
whether you can extract the value from user input directly or you need to
use an API to get the value. The output should be in Json format, key is the
argument, and value is the value of argument or the API name, return None
if you cannot get value or API name.

The Arguments to be extracted are:
person_ID: {"description": person's employee ID, "type": Integer}
room_ID: {"description": person's employee ID, "type": Integer}
start_time: {"description": start time of meeting, "type": Time}
end_time: {"description": end time of meeting, "type": Time}

The API you can use includes:
{"name": RecommendRoom, "description": Recommend the ID of an
available meeting room}
......
Now, Let's start.
=>
If someone is saying: "Please help Jack book a meeting room for 9am-
10am"
Arguments :

(b) Argument Completion

Figure 3: The details of prompts used in Reverse Chain
for API Selection and Argument Completion (when
LLM is chatgpt).

4 Experiments

In this section, extensive experiments are con-
ducted to investigate the performance of Reverse
Chain. We start with generating an evaluation
dataset automatically, benchmarking different in-
context learning methods on function calling and
defining the evaluation metrics. In Section 4.1, to
benchmark Reverse Chain, we compare its API
planning capabilities with the current state-of-the-
art in-context learning solutions on ChatGPT. Sec-
tion 4.2, details a set of ablation experiments de-
signed to elucidate the underlying principles of
Reverse Chain. Finally, Section 4.3 analyzes the
factors contributing to the effectiveness of Reverse
Chain.
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Dataset We construct a dataset for evaluating
compositional multi-tool tasks. Guided by the self-
instruct paradigm (Wang et al., 2022), this dataset
is generated automatically based on GPT-4 and
ChatGPT (gpt-3.5-turbo), involving the following
steps:

1. Initially, APIs are selected from public repos-
itories, including API-Bank (Li et al., 2023)
and public-apis. We then manually create
20 diverse seed examples for compositional
multi-tool task, each comprising three compo-
nents: {API and its description, User query,
System response}. A specific seed example is
detailed in Figure 4 in Appendix A.1 .

2. These seed instances serve as in-context ex-
amples for GPT-4, so as to generating more
complex new samples. The prompts for GPT-
4 are detailed in Figure 6 in Appendix A.2,
include a general description of the task, a
randomly chosen seed example, and a pre-
scribed response format. Then we conduct
manual quality checks to filter out erroneous
samples, achieving a 50% filtration rate. The
high-quality samples produced are used as
new seed examples for further data collection,
repeating the process multiple times. To en-
hance dataset diversity, GPT-4’s temperature
is set at 0.8.

3. Additionally, we employ ChatGPT to enhance
API information and uniformly standardize
the samples into a JSON format. A detailed
example is in the Figure 5 in Appendix A.1.
Each sample includes fields: {APIs, Query,
Label}, with each API in APIs represented
as a JSON object with fields: {name, descrip-
tion, arguments, output, format}. Notably,
the fields {arguments, output, and format} are
generated by leveraging existing information.
The prompt for this is outlined in Figure 7
Appendix A.2.

It’s worth mentioning that the dataset comprises
825 unique APIs across 20 categories, totaling
1550 labeled instances, with the categories detailed
in Table 7 in Appendix A.1. Focused on composi-
tional multi-tool tasks, the samples are classified
into three levels based on API nesting complex-
ity: Level-1, two levels of API nesting, containing
798 instances; Level-2, three levels of API nesting,

https://github.com/public-apis/public-apis

containing 693 instances; and Level-3, more than
four levels of API nesting, containing 59 instances.
Each Instance has an average of 2.93 function calls.

It is clear that this synthetic dataset is suitable
for evaluation since: 1. Automated data generation
guarantees unbiased data; 2. The APIs are spread
across diverse domains, accurately reflecting real-
world situations; 3. The inclusion of various nest-
ing levels in compositional multi-tool tasks ensures
a rich diversity.

Baseline To benchmark Reverse Chain, we mea-
sure its performance against five other in-context
learning methods: Zero-Shot, Few-Shot, Zero-
Shot-CoT, Few-Shot-CoT, and ReAct, using
ChatGPT as the underlying LLM. Each method
integrates API data into the prompt, utilizing the
LLM’s in-context learning for API planning. The
Zero-Shot approach uses API information and user
queries in the prompt, Few-Shot adds extra exam-
ples to prompt. Zero-Shot-CoT includes step-by-
step instructions, while Few-Shot-CoT adds ex-
planations to these steps in the examples. ReAct,
implemented via the langchain framework, uses a
(thought, action, observation) format for task exe-
cution. Examples of prompts for these methods can
be found in the Appendix A.3. Experiments are
conducted on GPT-3.5-turbo at the gpt-3.5-turbo-
0301 checkpoint with the temperature set to 0.1.

Metrics We use accuracy as a metric to evalu-
ate API planning, which consists of two aspects:
API name and API arguments. The value of argu-
ment consists of direct value filling or another API
calling.

Given the diversity of output formats across so-
lutions, we rule out simple string matching due
to its inefficiency and manual annotation for its
time-consuming nature. Instead, we craft an effi-
cient automated evaluator using GPT-4. Tailored
prompts are designed for each baseline method
to match its output characteristics. The prompts
are presented in Appendix A.4. We manually test
200 samples, comparing human annotations with
GPT-4 evaluations, and discover that the GPT-4
evaluator exhibits a strong 89% correlation with
human assessments.

4.1 Main Results
Throughout the experiments, the given API candi-
dates set in prompt only includes the needed APIs
for a given task since the focus of this paper is pri-
marily on evaluating the capability of LLMs on gen-
erating a proper API calling rather than the retrieval
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Method level 1 level 2 level 3 Overall
Zero-Shot 72.06 67.68 42.37 68.97
Few-Shot 86.46 77.48 71.18 81.87

Zero-Shot-CoT 82.45 81.38 57.62 81.29
Few-Shot-CoT 89.72 85.71 66.10 87.16

ReAct 72.68 69.11 45.76 70.06
Reverse Chain 93.99 90.33 86.44 92.06

Table 2: Evaluation results on various in-context learn-
ing methods. We can observe that the proposed Reverse
Chain outperforms all other approaches.

of API. Table 2 compares the accuracy of different
in-context learning methods. Under a Zero-Shot
setting, the LLM’s API planning accuracy stands at
approximately 68.97%. Although Few-Shot meth-
ods raises this to 81.87%, the addition of Chains
of Thought (CoT) further elevates performance to
87.16% in Few-Shot-CoT, which indicates the ben-
efit of decomposing complex tasks. The ReAct
strategy, with its reasoning-action-observation ap-
proach, also improves upon the zero-shot method.
However, the standout performer is the Reverse
Chain method, which surpasses all others by sim-
plifying the multi-API calling problem into two eas-
ier tasks (API Selection and Argument Completion)
and adopting a target-driven approach, thereby min-
imizing uncertainty. Impressively, Reverse Chain
achieves superior results even in a zero-shot con-
text surpassing both the Few-Shot-CoT and Few-
Shot methods. Additionally, Table 2 displays re-
sults across different levels of API planning where
higher levels indicates greater difficulty. As ex-
pected, all methods exhibit increased error rates as
the complexity of API planning escalates. In these
more challenging scenarios, the Reverse Chain ap-
proach demonstrates a more pronounced improve-
ment compared to other methods. This significant
gap underscores its robustness and effectiveness in
handling complex multi-API calling tasks.

4.2 Ablation Study

In this section, we mainly focus on exploring the
impact of creativity of LLMs and different argu-
ment completion strategies on the performance of
Reverse Chain. The experiments are conducted on
GPT-3.5-turbo.

4.2.1 Creativity and imagination of LLMs on
Reverse Chain

We first investigate the impact of LLM’s tempera-
ture on Reverse Chain. Temperature controls the
randomness of the LLM’s output. A lower tem-

perature results in more focused and deterministic
responses, while a higher temperature generates
more diverse and creative answers. Table 3 shows
that Reverse Chain performs better at lower tem-
peratures, with accuracy decreasing when it seeks
more creative responses. It makes sense as we re-
quire LLM to make rational and accurate decisions.

Method level 1 level 2 level 3 Overall
T=0.1 93.99 90.33 86.44 92.06
T=0.5 78.45 59.88 59.32 69.42
T=1 69.80 50.50 49.15 60.39

Table 3: The impact of different temperatures of LLMs
on the performance of Reverse Chain. T represents the
temperature of ChatGPT

4.2.2 Argument Completion Optimization

Reverse Chain 92.06
Reverse Chain_one-by-one 74.19
Reverse Chain_three-step 38.71

Table 4: Ablation study for the design of Argument
Completion in Reverse Chain.

In this part, a series of ablation studies are per-
formed to examine various optimizations during
the development of the Reverse Chain Algorithm.
The optimizations discussed there primarily con-
centrate on the stage Argument Completion.

Reverse Chain_one-by-one In the existing Re-
verse Chain method, LLMs simultaneously extracts
all argument results. An alternative strategy in-
volves processing each argument completion se-
quentially, a method we term Reverse Chain_one-
by-one. For instance, the API FlightBooking has
two arguments: departure_point and destination.
While the standard Reverse Chain completes both
departure_point and destination arguments concur-
rently, Reverse Chain_one-by-one first fills the ar-
gument departure_point, followed by the destina-
tion.

Table 4 shows that Reverse Chain achieves a
92.06% accuracy, surpassing Reverse Chain_one-
by-one’s 74.19%. The performance disparity arises
because the LLM in Reverse Chain can access all
information about unfilled arguments during the
argument completion process. This comprehensive
insight enables more precise and accurate argument
filling. Consider the API example FlightBooking
with the user query: “help me book a flight from
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London to Los Angeles”, Table 5 demonstrates that
in Reverse Chain_one-by-one, both arguments mis-
takenly extract the value ‘London’, as the LLM
interprets the query’s location as the destination.
Conversely, Reverse Chain, recognizing two sepa-
rate arguments for departure_point and destination,
accurately distinguishes between the two locations
in the query.

In addition to its superior performance, Reverse
Chain is also more efficient in terms of time and
computational resources since it only requires one
interaction with the LLM.

departure destination
One-by-one London London (wrong)

Reverse Chain London Los Angeles

Table 5: Examples of Reverse Chain_one-by-one and
Reverse Chain

Reverse Chain_three-step Here is an example:
user query is “help Jack book a meeting room”,
requiring the filling of the person_ID argument for
the API BookRoom. In the Argument Completion
step of standard Reverse Chain, both the query and
API candidate sets are available to the LLM, en-
abling direct value extraction from the query or API
selection. However, in the Reverse Chain_three-
step setting, argument completion is further split
into two steps: initially, the LLM is given only the
query for value extraction, potentially returning the
extracted value or ‘None’. If ‘None’ is returned,
then it will move to API selection, choosing from
the API candidate set.

Table 4 reveals that Reverse Chain_three-step
attains just a 38.71% accuracy rate. This is mainly
due to the absence of API information during the
value extraction step, often leading to forced ex-
traction of incorrect values even when certainty
is low. In the given example, the LLM mistak-
enly identifies ‘Jack’ as the person_ID value. This
confusion is not surprising given the vague nature
of the person_id concept. However, with API in-
formation, the LLM can discern between using
APIs or forcibly extracting values, thus enhanc-
ing accuracy. For instance, the LLM might find
that person_ID is retrievable through the API Per-
sonName2ID, and consequently, it disregards the
erroneously extracted ‘Jack’.

Wrong Final Tool Wrong Argument
Zero-Shot 33 132
Few-Shot 29 75

Zero-Shot-CoT 36 68
Few-Shot-CoT 22 58

ReAct 91 70
Reverse Chain 20 40

Table 6: Error cause statistics all methods.

4.3 Why Reverse Chain works?

In this section, we dissect common errors in API
planning and illustrate how the Reverse Chain
method mitigates them for improved results. We
categorize the errors, identify through manual re-
view, into two primary types, Wrong Final Tool
and Wrong Argument, detailed in Table 6. This
statistics is done on 500 randomly sampled in-
stances.

Wrong Final Tool arises when the final API
is missing, leading to incorrect API termination
and incomplete instructions. This error is preva-
lent across all comparison methods due to their
tendency to plan from the scratch, increases the
likelihood of deviating from the final goal. Partic-
ularly, ReAct is more susceptible to this mistake
because of its thought-action-observation approach
that lacks global planning. Reverse Chain, by plan-
ning based on the final goal, minimizes this error,
except when the query’s ultimate intention is am-
biguous.

The second error, Wrong Argument, predom-
inates in planning methods, can be further cate-
gorized into Wrong Argument_API and Wrong
Argument_Value. Wrong Argument_API error
occurs when a required argument is the output
of another API, but the predicted result bypasses
this API, filling in an incorrect value. For in-
stance, the correct argument is person_ID = Per-
sonName2ID (name=‘Jack’), but the prediction in-
accurately inputs person_ID=‘Jack’. This error of-
ten results from mistakes in the intermediate plan-
ning steps. In Reverse Chain’s argument comple-
tion phase, using the optimization approach from
Section 4.2.2, these errors can be greatly reduced,
which allows the LLM to choose between using
the API or extracting the argument value. Wrong
Argument_Value involves extracting incorrect val-
ues for the argument. Specific cases and optimiza-
tion strategies for Reverse Chain are discussed dis-
cussed in Section 4.2.2.
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5 Conclusion

This paper proposed Reverse Chain, a concise,
target-driven approach developed to empower
LLMs with the capability to interact with exter-
nal APIs in an in-context learning setting. By im-
plementing a backward reasoning strategy and a
generic rule, Reverse Chain effectively broke down
complex function-calling challenges into two fun-
damental tasks for LLMs: API selection and ar-
gument completion. Additionally, we collected a
compositional multi-tool dataset for evaluation. Ex-
tensive experiments revealed that Reverse Chain
markably enhances the tool-use proficiency of the
existing LLM ChatGPT, achieving superior perfor-
mance compared to methods like CoT and ReAct.

Although the current work concentrates on com-
positional multi-tool tasks, it can also be easily ex-
tended to other types of tasks. For instance, in the
case of independent multi-tool tasks, after identify-
ing sub-intents at the beginning of the task (known
as Intent Detection, a well-established problem in
NLP with numerous robust solutions), we could
employ the reverse chain process for each identi-
fied sub-task separately.

6 Limitations

We identify some limitations with our current work
that can be addressed in future work.

• The tasks/datasets in this work assume a se-
quential execution of APIs, Reverse chain can-
not deal with branching ("if ... then ... else
...") or looping ("while ... do/check ...") sit-
uation, both of which are important cases in
multi-API planning.

• The in-context learning approach generally
struggles with handling a large number of API
candidates due to length limitations. A solu-
tion similar to the one in (Qin et al., 2023),
which involves adding a retrieval module at
the beginning of the pipeline, can be adopted.

• While our demonstration shows that Reverse
Chain surpasses other in-context learning
methods in performance, it does require more
calls to the LLM. This highlights a trade-off
between performance enhancement and in-
creased computational resource use.

• The API in the dataset is fake and it is sup-
posed the function is called successfully. How-

ever, in reality, API calls often fail, thus mul-
tiple calls are required, so there is a gap be-
tween the simulation and the real world.
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A Appendix

A.1 Sample in dataset
In this section, we show the details of the dataset.
Figure 4 is an example among the 20 diverse seed
examples designed by human. Figure 5 is an exam-
ple in the dataset of final version. The category and
examples of APIs are listed Table 7.

A.2 Prompts for dataset construction
In this section, we show the details of prompt tem-
plates in data construction. Figure 6 is the prompt
of new sample generation for GPT-4. Figure 7 is
the prompt of format conversion for ChatGPT.

A.3 Prompts for baseline methods
The prompt for baseline methods are listed in Fig-
ure 8, Figure 9, Figure 10 and Figure 11.

A.4 Prompts for evaluation
Following the evaluation method used by (Tang
et al., 2023), We use GPT-4 as our evaluator. The
evaluation prompts for different methods are shown
in Figure 12, 13, 14, 15,16,17. It should be noted
that prior to conducting the ReAct evaluation, it is
necessary to preprocess the answer to extract the
function callings.
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Dataset - Seed example

[API and API description]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name 
to user ID.
CampusName2ID(campus_name) -> campus_ID. This API is to convert campus 
name to campus_name ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting 
rooms. This API is to book a meeting room.

[User query]: 
Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this 
morning

[System response]: 
BookRoom(person_ID=PersonName2ID(person_name='Jack’),
campus_ID=CampusName2ID(campus_name='TowerCenter'),
start_time='9am',end_time='10am')

Figure 4: An example of seed example.

Category example APIs
Geocoding GetDirections,GetUserDietaryRestrictions, DistanceCalculator

Weather GPS2Weather,WeatherVerification
Book AddBookToReadingList,BooksByAuthor

Transportation FlightBooking,FindFlightByDestination
Music AddSongToPlaylist,MusicConcert

Food & Drink SearchRestaurant,TableReservation,RestaurantReviews
Entertainment CinemaShowtimes,MovieReview, TheatrePlay

Shopping FindProductId,NearestStore, ComparePrices
Health GetExerciseRoutine,NearbyHospitalQuery,GetHealthInformation
Travel SearchHotel,CheckBaggageAllowance,PlanTrip

Database CheckInventory,DateConversion
Calculator TaxCostCalculator,CalculateCalorie

Email UserEmail2UserId,SendReview
Finance InvestmentSuggestion,CountryTaxRate,

Convertor User2Age,HotelName2ID
Clothes SelectOutfit,OutfitSuggestion,FindClothingType
Time ConvertTime,GetEventCalendar

Activity ActivityBook,PlanDayOut
Currency Exchange CurrencyConversion,GetExchangeRate

Search GetCurrentFuelPrice,ProductSearch

Table 7: Domain distribution and examples of APIs in our dataset.
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Dataset – Sample

{
"APIs": [

{
"name": "CheckWeather",
"Description": "This API checks the weather of a specific location.",
"input_params": {

"location": {
"description": "the specific location",
"type": "String"

}
},
"output_params": {

"weather": {
"description": "the weather at the specific location",
"type": "String"

}
},
"format": "CheckWeather(location) -> weather"

},
{

"name": "SelectOutfit",
"Description": "This API selects an appropriate outfit based on the weather and 

occasion.",
"input_params": {

"weather": {
"description": "the weather condition",
"type": "String"

},
"occasion": {

"description": "the occasion",
"type": "String"

}
},
"output_params": {

"outfit": {
"description": "the recommended outfit",
"type": "String"

}
},
"format": "SelectOutfit(weather, occasion) -> outfit"

}
],
"Query": "I'm attending a birthday party in San Francisco tomorrow, what should I 

wear?",
"Label": "SelectOutfit(weather=CheckWeather(location='San Francisco'), 

occasion='birthday party’)”,
},

Figure 5: An example of sample in dataset.
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Dataset Construction –
Sample Generation Prompt 

Your task is to first generate multiple APIs with their descriptions, and then generate a pair of
user query and the corresponding label only using the predefined APIs in a nested manner,
which means the output of one API is the input of another API. Note that for each user query,
system response had better employ at least three APIs. Here is an example:

Example:
[API and API descriptions]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name to user ID.
CampusName2ID(campus_name) -> campus_ID. This API is to convert campus name to
campus_name ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting rooms. This API is to
book a meeting room.
[User query]:
Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this morning
[System response]:
BookRoom(person_ID=PersonName2ID(person_name='Jack'),
campus_ID=CampusName2ID(campus_name='TowerCenter'),
start_time='9am',end_time='10am')

Given above example, please assume you are a professional assistant who generate multiple
reasonable APIs with their descriptions (not limited to above mentioned ones), User query
and system response using at least three APIs in a nested manner. Let's take a deep breadth
and start generating APIs with their descriptions, user query and the corresponding system
response using APIs in a nested manner. please give 2 different answers.
your answer should strictly follow the format:
answer1:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxx

answer2:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxx

your answer:

Figure 6: Prompt for new sample generation.
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Dataset Construction –
Format Conversion Prompt 

There are some APIs, related query and system response below. Please follow the format in the
example, add the detailed infomation of "input_params" and "output_params" to the APIs, the
detailed information includes the description and the type of the parameter. please return in a Json
format.

Example:
[input]:
[API and API descriptions]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name to user ID.
RoomName2ID(room_name) -> room_ID. This API is to convert room name to room ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting rooms. This API is to book a
meeting room.
[User query]:
Please help Jack book a meeting room at TowerCenter room from 9:00 to 10:00 this morning
[System response]:
BookRoom(person_ID=PersonName2ID(person_name='Jack'),
room_ID=RoomName2ID(room_name='TowerCenter'), start_time='9am',end_time='10am')

[output]:
{ "APIs": [

{"name": "PersonName2ID", "Description": "This API is to convert user name to user ID.",
"input_params": {"person_name": {"description": "the name of the person", "type": "String"}},
"output_params": {"person_ID": {"description": "the ID of the person","type": "Integer"}},
"format": "PersonName2ID(person_name) -> person_ID"},
{"name": "RoomName2ID","Description": "This API is to convert room name to room ID.",
"input_params": {"room_name": {"description": "the name of the room","type": "String"}},
"output_params": {"room_ID": {"description": "the ID of the room","type": "Integer"}},
"format": "RoomName2ID(room_name) -> room_ID"},
{"name": "BookRoom","Description": "This API is to book a meeting room.",
"input_params": {"person_ID": {"description": "the ID of the person","type": "Integer"},

"room_ID": {"description": "the ID of the room","type": "Integer"},
"start_time": {"description": "the start time of the meet","type": "Time"},
"end_time": {"description": "the end time of the meet","type": "Time"}},

"output_params": {"booking status": {"description": "the status of the booking","type":
"String"}},

"format": "BookRoom(person_ID,room_ID,start_time,end_time)-> booking status."}
],
"Query": "Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this morning",
"Label":"BookRoom(person_ID=PersonName2ID(person_name='Jack'),room_ID=RoomName2ID

(room_name='TowerCenter'), start_time='9am',end_time='10am')"
}

Please note that parameter types include Strings, Integer, Floats, Time, Dates, etc., and can be
determined based on actual meanings. If the output of API 1 is the input of API 2, the type of the
output parameter of your API 1 and the type of the corresponding input parameter in API 2 are the
same.

now let's start with new case:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxxx

your answer, only return json format, don't generate any other content:

Figure 7: Prompt for Json format conversion.
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We have the following functions. Please return function calling according to user instruction with the following
format.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling:

Zero-Shot Prompt

Figure 8: Prompt for Zero-Shot method.

We have a list of APIs. Please return function calling according to user instruction.

Here is an example :

APIs:
{"Name": "MakeAppointment", "Description": "This API is to make an appointment.", "input_params":
{"hospital_name": {"description": "hospital name", "type": "String"}, "department_name": {"description":
"department name", "type": "String"}}, "output_params": {"appointment_status": {"description": "the status of
the appointment", "type": "String"}}, "format": "MakeAppointment(hospital_name, department_name) ->
appointment status"}
{"Name": "GetDepartment", "Description": "This API is to find the corresponding department given user
symptom.", "input_params": {"symptom": {"description": "patient's symptom", "type": "String"}},
"output_params": {"department_name": {"description": "department name", "type": "String"}}, "format":
"GetDepartment(symptom) -> department_name"}

user instruction: I'm in zheyi hospital, I have a stomachache and want to make an appointment to see a doctor.
function calling: MakeAppointment (hospital_name='zheyi', department_name= GetDepartment (symptom =
'stomachache')) "

Given above example, Please generate function calling according to user instruction and the given apis.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling,the format must be the same as example:

Few-Shot Prompt

Figure 9: Prompt for Few-Shot method.

We have the following functions. Please return function calling according to user instruction with the following
format.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling, let's think step by step:

Zero-Shot-CoT Prompt

Figure 10: Prompt for Zero-Shot-CoT method.
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We have a list of APIs. Please return function calling according to user instruction.

Here is an example :

APIs:
{"Name": "MakeAppointment", "Description": "This API is to make an appointment.", "input_params":
{"hospital_name": {"description": "hospital name", "type": "String"}, "department_name": {"description":
"department name", "type": "String"}}, "output_params": {"appointment_status": {"description": "the status of
the appointment", "type": "String"}}, "format": "MakeAppointment(hospital_name, department_name) ->
appointment status"}
{"Name": "GetDepartment", "Description": "This API is to find the corresponding department given user
symptom.", "input_params": {"symptom": {"description": "patient's symptom", "type": "String"}},
"output_params": {"department_name": {"description": "department name", "type": "String"}}, "format":
"GetDepartment(symptom) -> department_name"}

user instruction: I'm in zheyi hospital, I have a stomachache and want to make an appointment to see a doctor.
thought:
1. you choose the API named 'GetDepartment', the value for reqiured parameter 'symptom' is 'stomachache',

then you will get the output parameter department_name.
2. then you get hospital_name='zheyi'.
3. Finally, you choose the API named 'MakeAppointment'.

so the function calling:
MakeAppointment (hospital_name='zheyi', department_name= GetDepartment (symptom = 'stomachache')) "

Given above example, Please generate function calling according to user instruction and the given apis.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling,the format must be the same as example:

Few-Shot-CoT Prompt

Figure 11: Prompt for Few-Shot-CoT method.
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Evaluation–
Prompt for Reverse Chain 

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
When comparing, pay attention to the relationships between APIs and the values of parameters. If
they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**. Please follow these rules specifically:
1. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
2. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
3. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00,etc. can be
ignored.

Query:
Xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 12: Prompt for evaluation for Reverse Chain.

320



Evaluation–
Prompt for Zero-Shot

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, so when comparing, only pay
attention to the relationships between APIs and the values of parameters. If they are the same as the
Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct
[Label]
AddSongToPlaylist(playlist_ID=PlaylistName2ID(playlist_name='Best Songs'),

song_ID=SongName2ID(song_name='Imagine'))
[Answer]
PlaylistName2ID("Best Songs") -> playlist_ID
SongName2ID("Imagine") -> song_ID
AddSongToPlaylist(playlist_ID, song_ID) -> song_status

First, execute API PlaylistName2ID to obtain playlist_ID, then execute API SongName2ID to obtain
song_ID, and finally execute API AddSongToPlaylist. Since the parameter values of each API are
correct, it is considered correct.

2. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, etc. can be ignored.

Query:
xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 13: Prompt for evaluation for Zero-Shot.
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Evaluation–
Prompt for Few-Shot

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, so when comparing, only pay
attention to the relationships between APIs and the values of parameters. If they are the same as the
Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct
[Label]
BuyMovieTickets(show_time=MovieShowtimes(movie_name=FindMovie(genre='romantic'),

city='San Francisco'), movie_name=FindMovie(genre='romantic'), seats=2)
[Answer]
FindMovie(genre='romantic'), MovieShowtimes(movie_name=FindMovie(genre='romantic'),

city='San Francisco') -> show_time,
BuyMovieTickets(show_time=MovieShowtimes(movie_name=FindMovie(genre='romantic'),
city='San Francisco'), movie_name=FindMovie(genre='romantic'), seats=2) -> booking_status
First, execute API FindMovie to obtain movie_name, then execute API MovieShowtimes to obtain

show_time, and finally execute API BuyMovieTickets. Since the parameter values of each API are
correct, it is considered correct.

2. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00, etc. can be
ignored.

Query:
xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 14: Prompt for evaluation for Few-Shot.
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Evaluation–
Prompt for Zero-Shot-CoT

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with reference to
the Label.
Please note that the format of answer is not fixed as that of label, answer may include step-by-step thoughts and
final function calling, so when comparing, only pay attention to the relationships between APIs and the values of
parameters. If they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations are considered
correct:

1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") -> playlist_songs
In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the parameter values

are correct, thus it is considered correct.
1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct, such as:
[Label] SetAlarm(timezone=GeoLocation2TimeZone(geolocation=GetUserGeolocation(user_name='Daniel')),

time='5:30am')
[Answer]
Step 1: Get the user's geolocation
Function calling: GetUserGeolocation("Daniel") -> user_geolocation
Step 2: Convert the geolocation to timezone

Function calling: GeoLocation2TimeZone(user_geolocation) -> timezone
Step 3: Set the alarm in the specified timezone
Function calling: SetAlarm(timezone, "5:30am") -> alarm_status
In this case, first, execute API GetUserGeolocation to obtain user_geolocation, then execute API

GeoLocation2TimeZone to obtain timezone, and finally execute API SetAlarm. Since the parameter values of each
API are correct, it is considered correct.

2. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is incorrect.
3. Function calling must include explicit API names and must match those in the label to be considered correct.
answer in the following example lacks explicit API names, so it is considered incorrect：
    [Label]

AddSongToPlaylist(user_ID=UserName2ID(user_name='Olivia'), playlist_ID=PlaylistName2ID(playlist_name='90s
Nostalgia'), song_name='Smooth Criminal')

[Answer]:
1. Get the user ID of Olivia
2. Get the ID of the '90s Nostalgia' playlist
3. Add 'smooth Criminal' to the playlist
Please generate the function calling according to the user instruction.
Please note that the input and output parameters of the functions are just examples, and the actual parameters

may vary depending on the specific implementation of the API.

4. Verify if the relationships between APIs in answer are the same as in the label. If different, the result is incorrect.
5. Verify whether each input parameter for API in answer has a value, if there is no value, consider it incorrect.
6. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the same, the result
is incorrect. However, Please note that some minor differences, such as spaces, capitalization, different format but
the same meaning, such as time 7am and 7:00:00, etc. can be ignored.

Query:
XXX
Label:
XXX
Answer:
XXX

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and 'correctness' fields,
respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 15: Prompt for evaluation for Zero-Shot-CoT.
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Evaluation–
Prompt for Few-Shot-CoT

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, In general, answer consists of two
components: thought and function calling. You only need to focus on whether the function calling
part is correct.
when comparing, only pay attention to the relationships between APIs and the values of parameters.
If they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct, such
as:
[Label]

SetAlarm(timezone=GeoLocation2TimeZone(geolocation=GetUserGeolocation(user_name='Daniel')),
time='5:30am')
[Answer]
GetUserGeolocation(user_name='Daniel') ->geolocation
GeoLocation2TimeZone(geolocation) ->timezone
SetAlarm(timezone,time='5:30am') -> alarm_status
In this case, first, execute API GetUserGeolocation to obtain geolocation, then execute API

GeoLocation2TimeZone to obtain timezone, and finally execute API SetAlarm. Since the parameter
values of each API are correct, it is considered correct.

2. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Verify whether each input parameter for API in answer has a value, if there is no value, consider it
incorrect.
5. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00, etc. can be
ignored.

Query:
xxx
Label:
xxx
Answer:
xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 16: Prompt for evaluation for Few-Shot-CoT.
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Evaluation–
Prompt for ReAct

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with reference to the
Label.
Please note that the format of answer is not fixed as that of label, and the format of the answer is not a criterion for
correctness.when comparing, only pay attention to the relationships between APIs and the values of parameters. If they
are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Typically, the format of the answer follows the execution of the split API, following is a correct case:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Jack'), playlist_ID=PlaylistName2ID(playlist_name='Party Mix'),

song_name='Havana')
[Answer]
UserName2ID( "user_name": "Jack" )
PlaylistName2ID( "playlist_name": "Party Mix" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Havana")

In this case, first, execute API UserName2ID to obtain user_ID, then execute API PlaylistName2ID to obtain playlist_ID,
and finally execute API AddSongToPlaylist. Since the parameter values of each API are correct(from the other previous API
or obatined directly), it is considered correct.

Please follow these rules specifically:

1. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is incorrect.
2. Verify if the relationships between APIs in answer are the same as in the label. If different, the result is incorrect.
3. Check whether each input parameter for API in answer are mentioned, if some parameters is missed, consider it
incorrect.
4. There are two possibilities for value of input parameter, both of them are considered as correct: one is a valid value
directly extracted from the query (this case is judged according to rule 3.1), and the other is a placeholder or descriptive
text (this case is judged according to rule 3.2).
4.1 For the former, confirm if the input parameter values for APIs in answer are the same as in the label. If not the

same, the result is incorrect. However, Please note that some minor differences, such as spaces, capitalization, different
format but the same meaning, such as time 7am and 7:00:00, etc. can be ignored.
4.2 For the latter case for placeholder, the answer is also correct. For example:
[Label]:
AddSongToPlaylist(user_ID=UserName2ID(user_name='Olivia'), playlist_ID=PlaylistName2ID(playlist_name='90s

Nostalgia'), song_name='Smooth Criminal')
[Answer]:
UserName2ID( "user_name": "Olivia" )
PlaylistName2ID( "playlist_name": "90s Nostalgia" )
AddSongToPlaylist( "user_ID": "Olivia's user ID", "playlist_ID": "90s Nostalgia playlist ID", "song_name": "smooth

Criminal" )

In this case, the values 'Olivia's user ID' and '90s Nostalgia playlist ID' in the AddSongToPlaylist API call are placeholders
or descriptive texts, however, the value of these two placeholders can be obtained from the previously executed APIs,
UserName2ID and PlaylistName2ID, therefore, it is considered correct.

5. When an API is repeatedly mentioned in the answer, it is considered correct as long as it is executed correctly at least
once. For example:

[label]:
AddSongToPlaylist(user_ID=UserName2ID(user_name='Sophia'), playlist_ID=PlaylistName2ID(playlist_name='Jazz

Legends'), song_name='Let It Be')

[answer]:
UserName2ID( "user_name": "Sophia" )
PlaylistName2ID( "playlist_name": "Jazz Legends" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Let It Be" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Let It Be" )

in this case, the API AddSongToPlaylist is executed twice, and it is recognized as correct since this API is executed
correctly.

Query:
xxx
Label:
xxx
Answer:
xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and 'correctness' fields,
respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 17: Prompt for evaluation for ReAct.
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