
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3383–3393
June 16-21, 2024 ©2024 Association for Computational Linguistics

Beyond Read-Only: Crafting a Comprehensive Chinese Text-to-SQL
Dataset for Database Manipulation and Query

Xi Chen1, Jinguo You1, 2*, Kun Li3, Xiang Li1

1Kunming University of Science and Technology, Kunming, China
2Yunnan Key Laboratory of Artificial Intelligence, Kunming, China

3Huawei, China
{chenxi328, li_xiang}@stu.kust.edu.cn, jgyou@126.com, likun75@huawei.com

Abstract

Text-to-SQL aims to convert natural language
into structured query language, which is a chal-
lenging task. Current research focuses mainly
on read operations and ignores other aspects of
database operations such as create, update, and
delete operations. The benchmark datasets as
well as models that have been proposed also
fail to cover these operations, limiting the devel-
opment and practical applications in the field.
To bridge this gap, we propose CRUDSQL, a
large-scale cross-domain single-table CRUD
operations Chinese Text-to-SQL dataset. The
dataset contains 10,000 question/SQL pairs in-
volving 625 tables from different domains. To
support further research on this dataset, we
also propose a baseline method, CRUDParser,
which employs a two-phase approach based
on BERT and T5 for SQL generation and in-
corporates two strategies, value matching, and
value prompting, for interacting with databases
to further improve the performance. The ex-
perimental results show that the new operation
types bring different challenges for future re-
search, and our approach achieves 67.08% and
83.8% exact set matching accuracy under both
read and delete operations in the test set, but
only 49.6% and 61.8% under create and up-
date operations. We believe that the proposal of
CRUDSQL as well as CRUDParser can provide
new directions and possibilities for research
and practical applications in the field of Text-
to-SQL. The dataset is published at https:
//github.com/bizard-lab/CRUDSQL.

1 Introduction

The Text-to-SQL task aims to transform natural
language questions into corresponding SQL query
statements, and researchers have applied this tech-
nique to relational databases as natural language
interface to database (NLIDB) to help users inter-
act with databases more easily. However, in the

*Corresponding author

Figure 1: An example that introduces Text-to-SQL for
CRUD operations.

early days the main methods used were based on
keywords, pattern matching, syntax tree parsing
and grammar rules. This is limited by the rules and
patterns defined, cannot handle ambiguous natural
language questions, is difficult to scale and is not
suitable for complex queries.

With the release of WiKiSQL(Zhong et al., 2017)
and Spider(Yu et al., 2018c), two large-scale Text-
to-SQL datasets, the field has gained more and
more attention and development. WiKiSQL is con-
structed based on Wikipedia and contains 24,241
tables, 80,654 natural language questions, and cor-
responding SQL queries. Each of its databases
has only one table, does not need to consider pri-
mary and foreign keys, and the form of SQL to
be predicted is relatively simple, and SeaD(Xu
et al., 2022) currently achieves the highest accu-
racy on this dataset, with 93%. Spider contains
10,181 natural language question-SQL pairs cov-
ering 138 different domains, which is a greater

3383

https://github.com/bizard-lab/CRUDSQL
https://github.com/bizard-lab/CRUDSQL

difficulty enhancement than WiKiSQL which in-
volves the correlation between multiple tables and
the generation of more complex SQL. Currently,
DAIL-SQL(Gao et al., 2023) achieves 86.6% accu-
racy on this dataset.

However, current datasets and research efforts
focus on read operations and ignore create, update,
and delete operations. To fill this gap, this paper
proposes CRUDSQL, a large-scale cross-domain
single-table CRUD operations Chinese Text-to-
SQL dataset. The dataset contains 10,000 ques-
tions and their corresponding SQL queries involv-
ing 625 tables from different domains, in which the
distribution of create, read, update, and delete is
uniform. Figure 1 shows an example of data from
CRUDSQL consisting of a table and questions ori-
ented to the table about the CRUD operations and
the corresponding SQL statements. To the best
of our knowledge, CRUDSQL is the first Text-to-
SQL dataset that contains all four operation types
of create, read, update, and delete at the same time.

In addition, we propose CRUDParser, a model
that incorporates BERT(Kenton and Toutanova,
2019) and T5(Raffel et al., 2020) for two-stage
SQL generation as a baseline approach for this
dataset. The first stage is sketch-based slot filling,
where BERT predicts the SQL type corresponding
to the question, as well as the SQL column names,
keywords, operators, and aggregation functions,
and fills them into a predefined SQL sketch. The
SQL sketch is then used as the basis for interac-
tion with the database to improve the accuracy of
the final SQL generated. There are two types of
interactions, one is value matching, which is used
to improve the conditional value of the WHERE
clause in the SQL statement, and the other is value
prompting, which is used to optimize the values
that are inserted into the database or the values
that need to be updated. The second stage is the
sequence-based generation, mainly used in update
and create operations, where T5 can generate the
final SQL based on SQL sketches as well as prompt
words.

The experimental results show that the create
and update operations bring new challenges to the
Text-to-SQL task, and the accuracy of these two
operation types on the test set is only 49.6% and
65.6% even with the use of pre-trained language
models as well as methods that have performed
well in the past. Although our value matching
and value prompting strategies are effective, there
is still a lot of room for improvement offered for

further research.
The key contributions of this paper are summa-

rized as follows:
(1) We propose CRUDSQL, a large-scale cross-

domain single-table CRUD operations Chinese
Text-to-SQL dataset. The dataset contains 10,000
question/SQL pairs involving 625 tables from dif-
ferent domains.

(2) We present a baseline model CRUDParser
and its experimental benchmark results for this
dataset, containing Bert and T5 for two-stage SQL
generation.

(3) Further, two refinement strategies: value
matching and value prompting are introduced to
enhance conditional value matching and generate
normalized values for update and create operations
respectively.

2 Related Work

2.1 Existing Datasets

Over the past few decades, numerous datasets have
been instrumental in propelling the development of
Text-to-SQL systems. Early datasets such as ATIS
(Price, 1990; Dahl et al., 1994), centered around
flight reservations, GeoQuery(Zelle and Mooney,
1996), focused on U.S. geographical information,
and Restaurants(Tang and Mooney, 2000), detail-
ing restaurant information in Northern California,
were all confined to singular domains.

In recent years, datasets in this domain have pri-
marily been categorized into three classes: single-
table queries, cross-table joint queries, and multi-
turn dialogue queries. Single-table query datasets
involve SQL operations predominantly focused
on aggregation, comparison, and selection, ex-
hibiting lower complexity. Examples include
WiKiSQL(Zhong et al., 2017), WiKiTableQues-
tions(Pasupat and Liang, 2015), and TableQA(Sun
et al., 2020).Cross-table joint query datasets intro-
duce clauses such as JOIN, GROUP BY, ORDER
BY, HAVING, INTERSECT, UNION, and LIKE,
significantly elevating the complexity of SQL and
aligning it more closely with real-world scenar-
ios. Examples encompass Spider(Yu et al., 2018c),
Spider-DK(Gan et al., 2021b), Spider-Syn(Gan
et al., 2021a) KaggleDBQA(Lee et al., 2021), CSpi-
der(Min et al., 2019), DUSQL(Wang et al., 2020),
and BIRD(Li et al., 2023b). Multi-turn dialogue
query datasets necessitate models capable of un-
derstanding and processing successive user queries
while considering context and historical dialogue

3384

information. Instances include SParC(Yu et al.,
2020), CoSQL(Yu et al., 2019), CHASE(Guo et al.,
2021), and SeSQL(Huang et al., 2022).

It’s worth noting that current datasets solely fo-
cus on read operations. Hence, we’ve introduced
CRUDSQL, a dataset encompassing four funda-
mental types of operations: create, read, update,
and delete. Table 1 provides an overview compar-
ison between CRUDSQL and other Text-to-SQL
benchmark datasets.

2.2 Existing Text-to-SQL Approaches
Sketch-based slot-filling approaches Using
sketch-based slot-filling approaches, complex
query logic is streamlined into a series of basic
operations, simplifying neural network predictions
and ensuring correct syntax when generating SQL
queries. For instance, SQLNet(Xu et al., 2017)
employs a predefined sketch of the SQL query,
breaking down the required SQL query into the
SELECT and WHERE clause segments, predicting
slots within these segments (such as column, opera-
tor, aggregation, and value). Similarly, approaches
like Coarse2Fine(Dong and Lapata, 2018), Type-
SQL(Yu et al., 2018a), SyntaxSQLNet(Yu et al.,
2018b), SQLOVA(Hwang et al., 2019), X-SQL(He
et al., 2019), HydraNet(Lyu et al., 2020), RYAN-
SQL(Choi et al., 2021), and CatSQL(Fu et al.,
2023) adopt similar strategies.
Sequence-based approaches Another common

approach involves sequence generation, relying
on encoder-decoder pre-trained language models
such as T5(Raffel et al., 2020), BART(Lewis et al.,
2020), and similar architectures. These methods
directly transform natural language queries into
SQL queries through end-to-end sequence genera-
tion. For instance, a novel encoder-decoder frame-
work is proposed by Cai et al. (2018). During the
encoding phase, the neural network identifies and
maintains semantic information of natural language
questions. In the decoding phase, based on the neu-
ral network’s hidden states, it generates a new se-
quence in another language. Similarly, approaches
like PICARD(Scholak et al., 2021), RASAT(Qi
et al., 2022), RESDSQL(Li et al., 2023a), SC-
PROMPT(Gu et al., 2023a).
LLM-based approaches In recent years, with the
emergence of large-scale language models such as
GPT-3(Brown et al., 2020) and PaLM(Chowdhery
et al., 2023), more and more researchers have
turned their attention to the impressive reasoning
capabilities and domain-generalization abilities of

these models. Liu and Tan (2023) proposed the
use of Chain of Thought (CoT)(Wei et al., 2022)
to activate the reasoning capabilities of Large Lan-
guage Models (LLMs) in text-to-SQL tasks. This
method guides models to decompose complex tasks
into subtasks and designs prompts based on task
characteristics to induce LLMs to generate use-
ful chains of reasoning. C3(Dong et al., 2023) in-
troduced three prompt paradigms—clear prompts,
prompt correction, and consistent outputs—to en-
hance zero-shot performance. Furthermore, ap-
proaches like ZERONL2SQL(Gu et al., 2023b)
combine pre-trained language models with large-
scale language models. They first use pre-trained
language models to generate SQL sketches and
then utilize large-scale language models to fill in
the complete SQL queries, achieving optimal zero-
shot NL2SQL performance.

3 Dataset Construction

3.1 Data Collection

We constructed the CRUDSQL benchmark by sam-
pling 625 tables from the TableQA1, encompassing
various domains such as stocks, real estate, com-
modities, and schools. Subsequently, we conducted
data cleaning on the table data. This involved man-
ual modifications addressing several issues, includ-
ing 1) Ambiguous time data that wasn’t explicitly
transformed into date-time formats. 2) Database
values mixed with database column names. 3)
Mismatches between database values and column
types. Additionally, we retained a subset of origi-
nal questions-SQL query pairs that originally cor-
responded to these 625 tables.

3.2 Data Annotation

We assembled an annotation team consisting of
three master’s degree students and three undergrad-
uate students in the computer science program who
were asked to pose four questions about creation,
reading, updating, and deletion to each table and
manually annotate the corresponding SQL.
The SQL template for annotation adopts the same
style as TableQA and WiKiSQL, which divides the
SQL into several important parts to be stored in
JSON form, including sel parts, aggregation func-
tions, logical operators connecting multiple con-
ditions, and conditional expressions for WHERE
clauses. In addition, in order to extend the single

1https://github.com/ZhuiyiTechnology/TableQA

3385

https://github.com/ZhuiyiTechnology/TableQA

Dataset Language #DB #Table/DB #Pairs Create Read Update Delete
CRUDSQL Chinese 625 1 10000 ✔ ✔ ✔ ✔

WiKiSQL English 24241 1 80654 ✘ ✔ ✘ ✘

TableQA Chinese 5291 1 49974 ✘ ✔ ✘ ✘

Spider English 200 5.1 10181 ✘ ✔ ✘ ✘

Table 1: Comparisons of existing Text-to-SQL benchmark datasets.

read statement to create, update, and delete state-
ments, we also added SET expressions for update
operations as well as categorized identifiers for the
four types of operational SQL in the annotation
templates. It is worth noting that the "conds" field,
which was originally used to represent WHERE
clauses, represents not only the WHERE part of
the read, update, and delete operations, but also the
columns and their corresponding values inserted
in the create operation. This approach can greatly
simplify the annotation task, as well as ensure the
consistency of the annotated SQL templates.

3.3 Data Review
In order to ensure the quality of the annotated data,
two forms of review were adopted. The first form
of review was primarily done by first checking
with each other by the students to make sure that
the questions posed by each other were clear and
that the questions matched the annotated SQL. The
annotated question-SQL pairs were then given to
SQL experts for evaluation. The second form of
review is mainly through the review script written,
which is responsible for monitoring the proportion
of different types of SQL in the annotated sam-
ples, the distribution of aggregation functions, the
distribution of the number of conditions, the pro-
portion of values that need to be linked, etc., and
checking whether there are any problems in the
SQL templates of the annotated questions, e.g.,
size comparisons and addition/subtraction opera-
tions are performed on the values which are not of
numeric types, and the subscripts of the selected
columns are out of the ranges of the columns in the
table.

3.4 Data Statistics and Analysis
Overall Statistics CRUDSQL includes 625 tables
and 10,000 question-SQL pairs, and the SQL types
include create, read, update, and delete operations,
Table 2 shows the statistics of the data division.

We separately counted the length of the question
in CRUDSQL, the length of the SQL (table name,
column name, keywords, operators, aggregation

Split DB Pair Create Read Update Delete
Train 440 7040 1760 1760 1760 1760
Dev 60 960 240 240 240 240
Test 125 2000 500 500 500 500

Table 2: Dataset split statistics.

functions, and number of values), and the percent-
age of SQL that requires value joins, as shown in
Figure 2.

In CRUDSQL, each question corresponds to
only one table, where the SQL for read opera-
tions is consistent with the TableQA difficulty, with
support for aggregation functions including MIN,
MAX, AVG, SUM, MIN, and COUNT, and condi-
tional operators including >, <, ==, and ! =. The
SQL for update operations also includes the arith-
metic operators +, and -.
Value Linking Value linking refers to the process
of linking or mapping specific parts of a natural
language query to actual values in the database.
For example, if the query mentions "December 12,
2012", the actual value stored in the database may
be "2012-12-12". So when we construct the SQL,
we need to replace the corresponding conditional
value with the actual value in the database. Situ-
ations that require value linking operations often
include abbreviations, conversion of numeric text
to numeric values, conversion of date formats, mul-
tiple or ambiguous words, conversion of units or
measures, specific identifiers, and so on.

The WHERE clauses for read, delete, and update
operations include almost all of the above cases
where value linking is required, often with the help
of values in the database, which is referred to as
value matching. In addition, value linking is also
required in the SET clause for create and update
operations. In a create operation, the values to
be inserted into the table need to match the type
of columns and the style of data stored. Update
operations, there may be a need to update the

content that can not be obtained from the question
in full, you need to use the database that has been

3386

Figure 2: A statistical analysis of CRUDSQL, including
question lengths, SQL lengths, and the percentage of
value links.

stored in the content. For example, the question
"Will the end of the training from the 1st change
the time of the 2nd", at this time in the database
stored at the end of the training time attribute of
the value of " December 1", then the value after the
modification should be "December 2", although our
question does not indicate that the end time is in
December, we need to rely on the content already
stored as a prompt to modify, we will be this type
of value linking is called a value prompting.

4 Benchmark Approach

In this paper, we propose a unified model called
CRUDParser that aims to adapt create, read, update,
and delete operations. The model combines two
pre-trained language models, BERT and T5, and
employs both value matching and value prompting
strategies. We divide the task as a whole into two
phases: first, the prediction results of the BERT
model are utilized to populate the sketches; second,
the T5 model is used to generate values involving
update and create operations.

4.1 BERT Encoder

The input to BERT contains a natural lan-
guage question Q and a database schema
DS, where Q = {q1, q2, . . . , q|Q|}, |Q| de-
notes the length of the question, and DS =
{table_name,C1, t1, C2, t2, . . . , C|N |, t|N |}, in-
cluding table name, column name and column type,
|N| denotes how many columns there are in a ta-
ble and each column Ci = {c1, . . . , c|Ni|}, |Ni|
denotes the length of the field in the ith column.
It is worth noting that there are two main types of

columns, text type and real type.
As can be seen in Figure 3, we have divided

multiple categorized sub-tasks, including the SE-
LECT part, aggregation function part, WHERE
clause part, SET expression part, logical operators,
and question types. Among them, the aggrega-
tion function, operator and question type belong
to the multi-classification task, which is denoted
as p1, while the columns and values belong to the
bi-classification task, which is denoted as p2, and
its calculation formula is shown below:

p1 = Softmax(FC(BERT (Q,DS))) (1)

p2 = Sigmoid(FC(BERT (Q,DS))) (2)

First, we need to determine the type of ques-
tion to choose a predetermined sketch and need
to choose which parts to fill, such as the example
in figure3, when the prediction of the question is
an update operation, then the sketch is "UPDATE
FROM _ SET _ WHERE _", we call it SK, and
then need to focus on the SET expression part, the
logical operators and the WHERE clause part. The
SK′ is obtained by filling the SK with the results
of the corresponding subtask classifier, where the
value is predicted using a pointer network [41], by
intercepting it from the question. At this point, we
get a preliminary SQL.

4.2 Value Matching

We found that many times the value intercepted
from the question often does not correspond to the
actual value in the database, so we fuzzy match the
value in the WHERE clause in SK′ with the actual
value stored in the corresponding column in the
database with the following expression:

score = fuzzy_match (value,D [col]) (3)

Depending on the score, decide whether to replace
it with the database value or keep the intercepted
value. Write the result after value matching as SK′′.

4.3 Value Prompting

After the completion of the value matching can
help us to improve the accuracy of the conditional
matching, but in the create and update operations,
it is no longer a match, both for the insertion of new
values or modified new values, the database value
can only be used as a kind of prompt existence.
This prompt can help the value inserted into the
table be in line with the style of the existing values

3387

Figure 3: An overview of CRUDParser. Given a user’s query Q and a database schema DS, the first stage fills the
SQL sketch with the results predicted by BERT as well as multiple task classifiers, and the second stage generates
the values that need to be created or updated by T5. There are also two strategies for interacting with the database,
value matching and value prompting.

in the database, and can also help when updating
can be based on the existing values in the database.
For create operations, we will randomly select a
database value as a prompt in the column where the
value needs to be inserted. For update operations,
we will first query the database for the value that
was originally stored in the location that needs to
be updated, and then use that value as the prompt.
Then we would replace the part that needs to be
inserted or modified with <extra_id_x>, x ∈ [0,
number of columns to be operated on], and then
after SK′′ we would splice "|| <extra_id_x> prompt
value " as SK′′′, which is used for input into the T5
model that follows.

In Figure 3, both phases, value matching, and
value prompting, obtain the required information
by generating SQL queries that can interact with
the database, i.e., we don’t need to pass the actual
values stored in the database into the model. When
dealing with the actual database, it is not possible
to write the database values into the input due to
the invisibility of the data and the large amount of
data. Therefore, the accuracy of the SQL can be

improved by generating the required SQL queries
to interact with the database during the process.

4.4 T5 Encoder-Decoder
We concatenate the question Q and SK′′′ with "||"
as input to the T5 model, and use the model to
generate the appropriate content to populate <ex-
tra_id_x> to get the final SQL S, which can be
expressed as:

S = T5(Q,SK ′′′) (4)

5 Experiments

5.1 Experiment Setting
Data Settings As shown in Table 2, based on the
cross-domain settings, we have divided CRUDSQL
into train/dev/test sets, and there is no overlap of
the databases contained in different datasets. More-
over, our SQL for the four types of operations is
evenly divided, which helps the model to better
learn the features in the dataset and better adapt to
the SQL for different types of operations.
Evaluation Metrics We use three popular Text-
to-SQL task evaluation metrics including Exact

3388

Set Match Accuracy without values (EM without
values), Exact Set Match Accuracy (EM), and Ex-
ecution Accuracy (EX). EM without values mea-
sures whether the SQL generated by the model
matches the standard SQL structurally, but does
not consider specific values. EM requires not only
structural matches but also exact matches of values.
EX determines whether the generated SQL has the
same result as the standard SQL after it is executed
in the database.
Baseline Approach We use CRUDParser as a base-
line approach for CRUDSQL. CRUDParser incor-
porates two pre-trained language models, BERT
and T5, and combines a sketch-based slot-filling
method with a sequence generation method to gen-
erate SQL in two phases, and in between, it uses
value matching and value prompting strategies to
further improve the accuracy of the task. It is worth
noting that in order to better adapt to the Chinese
context, the model versions we chose are BERT-
WWM(Cui et al., 2019) and mT5-base(Xue et al.,
2021), respectively. In addition to this, we also
provide the results of the zero-shot demonstration
of ChatGPT(gpt-3.5-turbo) in Table 5.

5.2 Experiment Results
Table 3 represents the EM without values of CRUD-
Parser on CRUDSQL, and we can see that the worst
performance is on the create operation, which is
only 73.75% and 68.6% on the development and
test sets, respectively, even though the create op-
eration only corresponds to columns and values,
which requires the fewest types of matches com-
pared to other operations. The best performance is
for the delete operation, which involves relatively
fewer types of matches than the read and update
operations.

Table 4 represents CRUDParser’s EM on CRUD-
SQL, with -m removing the value matching pro-
cess, -p removing the value prompting process, and
-m-p requiring neither. It is seen that CRUDParser
with value matching and value prompting gives the
best performance in all cases. Create operations are
only affected by value prompting, read and delete
operations are only affected by value matching, and
update operations are affected by both. We notice
that the update operation has a gap of 11.67% and
9.4% on the development and test sets, respectively,
and we find that the impact of value matching is
greater than that of value prompting, due to the fact
that when the matching is unsuccessful, it tends to
affect the ability to get the corresponding prompted

value from the database, which in turn affects the
subsequent process.

Finally, we compared the EX of the models on
CRUDSQL, as shown in 5. For the create opera-
tion, the EX is unchanged if both the inserted value
and the corresponding column are matched cor-
rectly. The EX of the other types of operations is
higher than the EM, because when the predicted
SQL statement is the same as the real annotated
SQL, the result of the SQL execution must be the
same, but when the predicted SQL is different from
the real annotated SQL, it often achieves the same
result as the real annotated SQL due to the differ-
ence in the condition matching. In addition, despite
its strong language comprehension and reasoning
capabilities, ChatGPT cannot show better perfor-
mance without interacting with the database and
without resorting to database values.

5.3 Error Analysis
Why is it that the create operation requires the
fewest types to match, only columns and values,
but has the lowest accuracy rate by all metrics?
By analyzing the incorrect results, we found that
68.65% of the results had schema linking errors,
mainly column linking. Often, the columns men-
tioned in the question are missing from the results
or matched to the wrong columns, for example,
"The Little Prince is a short story in children’s liter-
ature written in 1942 by the French author Antoine
de Saint-Exupéry" may contain attributes such as
title, author, country, year, and genre, which often
cannot be matched without using methods such as
Named Entity Recognition (NER).

Schema linking errors have been a difficult prob-
lem in this field, and the influencing factors include
diverse linguistic expressions, complex database
schemas, and lexical and grammatical differences.
By observing the four types of error results, we
found that 32.58% of the results contain schema
linking errors, especially for the Chinese language,
how to match the Chinese language with the En-
glish abbreviation, for example, “每股收益” in
English is "Earnings Per Share", and the attribute
value in the database is the abbreviation "EPS".
When this occurs, external knowledge may need to
be brought in to help the model make the right
choice. Another issue worth noting is schema
ambiguity, where part of a problem may map to
more than one database element. This problem is
prone to occur not only in cross-table queries, i.e.,
columns with the same name in the middle of dif-

3389

MODEL DEV TEST
create read update delete create read update delete

CRUDParser 73.75 77.08 80.42 88.75 68.6 71 70.6 86.8

Table 3: The Exact Set Match Accuracy Without Values of CRUDParser in CRUDSQL.

MODEL DEV TEST
create read update delete create read update delete

CRUDParser 60 71.67 70 86.25 49.6 67.08 61.8 83.8
CRUDParser -m 60 66.67 62.08 78.75 49.6 57.08 53.8 79.8
CRUDParser -p 55.42 71.67 65.83 86.25 43.8 67.08 59 83.8

CRUDParser -m -p 55.42 66.67 58.33 78.75 43.8 57.08 52.4 79.8

Table 4: The Exact Set Match Accuracy(EM) of CRUDParser in CRUDSQL.

MODEL DEV TEST
create read update delete create read update delete

CRUDParser 60 74.58 72.5 89.58 49.6 70.42 65.6 84.4
CRUDParser -m 60 69.58 62.92 82.92 49.6 60 56.4 80.4
CRUDParser -p 55.42 74.58 67.92 89.58 43.8 70.42 62 84.4

CRUDParser -m -p 55.42 69.58 59.58 82.92 43.8 60 55 80.4
ChatGPT 55.83 62.92 57.5 67.08 49.2 57.6 57.2 63.8

Table 5: The Execution Accuracy(EX) of CRUDParser and ChatGPT in CRUDSQL.

ferent tables, but also in single tables. For example,
in the Real Estate Sales Amount Forecast table,
the attribute values are (Tier 1 cities, year-on-year
growth rate, Tier 2 cities, year-on-year growth rate,
Tier 3 cities, year-on-year growth rate), so how can
we correspond to the correct columns when we re-
fer to the year-on-year growth rate in the question.
It turns out that although we matched the correct
city type, the year-on-year growth rate still matches
incorrectly. To solve this problem, we may need to
add a correlation between year-on-year growth rate
and city type when coding the database schema.

Update operations require both condition match-
ing and value modification, which poses multiple
challenges. In particular, when modifying database
values, one is that the updated value has no rela-
tionship with the original value, in which case the
value prompts are used mainly to keep the value up-
dated to the database in line with the database style,
and the other is that the updated value is modified
based on the original value, in which case the value
prompts are used to fill in the missing information
in the question. By analyzing the examples of er-
rors in update operations, we found that 36.18% of
them were errors in updating values, and in some
cases, the model did not know what consistent style
was, for example, "3A" was mentioned in the ques-

tion, while the database stored the value as "AAA
". Moreover, we found that when using values as
prompts to guide the model to generate results, if
not controlled, the results may tend to deviate from
our needs, especially when generating numeric con-
tent.

6 Conclusion

In this paper, we propose CRUDSQL, a large cross-
domain, single-table Chinese Text-to-SQL bench-
mark dataset with a special focus on four types of
SQL operations: create, read, update, and delete.
Compared to existing benchmark datasets that only
have read operations, this paper introduces new
challenges, especially for value linking, and puts
more emphasis on the accuracy of the updated and
created values. In addition to this, we propose a
baseline approach for this dataset, CRUDParser,
which generates SQL in stages by pre-training the
language model and incorporates value matching
and value prompting strategies. We demonstrate
the experimental benchmark results.

This paper has demonstrated initial promise, but
there is still room for improvement. One potential
future work is to extend single-table to multi-table
query SQL generation although the focus of this

3390

paper is unifying manipulation and query SQL pro-
ducing. Another future work is to fine-tune large
language models on this dataset and put it closer to
more practical application scenarios.

Acknowledgements

This research work is supported by the National
Natural Science Foundation of China (62062046)
and CCF-Huawei Populus Grove Fund.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence,
pages 3977–3983.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases. Computational
Linguistics, 47(2):309–332.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing
Yang, Shijin Wang, and Guoping Hu. 2019. Pre-
training with whole word masking for chinese bert.
arXiv preprint arXiv:1906.08101.

Deborah A Dahl, Madeleine Bates, Michael K Brown,
William M Fisher, Kate Hunicke-Smith, David S
Pallett, Christine Pao, Alexander Rudnicky, and Eliz-
abeth Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and
Jianling Sun. 2023. Catsql: Towards real world natu-
ral language to sql applications. Proceedings of the
VLDB Endowment, 16(6):1534–1547.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2505–2515.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8926–8931.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Sam
Madden, and Xiaoyong Du. 2023a. Few-shot text-
to-sql translation using structure and content prompt
learning. Proceedings of the ACM on Management
of Data, 1(2):1–28.

Zihui Gu, Ju Fan, Nan Tang, Songyue Zhang, Yuxin
Zhang, Zui Chen, Lei Cao, Guoliang Li, Sam Mad-
den, and Xiaoyong Du. 2023b. Interleaving pre-
trained language models and large language mod-
els for zero-shot nl2sql generation. arXiv preprint
arXiv:2306.08891.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan,
Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2021.
Chase: A large-scale and pragmatic chinese dataset
for cross-database context-dependent text-to-sql. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2316–
2331.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-sql: reinforce schema
representation with context. arXiv preprint
arXiv:1908.08113.

Saihao Huang, Lijie Wang, Zhenghua Li, Zeyang Liu,
Chenhui Dou, Fukang Yan, Xinyan Xiao, Hua Wu,
and Min Zhang. 2022. Sesql: Yet another large-
scale session-level chinese text-to-sql dataset. arXiv
preprint arXiv:2208.12711.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

3391

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbqa: Realistic evalua-
tion of text-to-sql parsers. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2261–2273.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067–13075.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, et al. 2023b. Can llm already
serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. arXiv preprint
arXiv:2305.03111.

Xiping Liu and Zhao Tan. 2023. Divide and prompt:
Chain of thought prompting for text-to-sql. arXiv
preprint arXiv:2304.11556.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik
Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy-
brid ranking network for text-to-sql. arXiv preprint
arXiv:2008.04759.

Qingkai Min, Yuefeng Shi, and Yue Zhang. 2019. A
pilot study for chinese sql semantic parsing. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3652–3658.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi

Zhang, and Zhouhan Lin. 2022. Rasat: Integrating
relational structures into pretrained seq2seq model
for text-to-sql. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3215–3229.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901.

Ningyuan Sun, Xuefeng Yang, and Yunfeng Liu. 2020.
Tableqa: a large-scale chinese text-to-sql dataset
for table-aware sql generation. arXiv preprint
arXiv:2006.06434.

Lappoon R Tang and Raymond Mooney. 2000. Auto-
mated construction of database interfaces: Intergrat-
ing statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora, pages 133–141.

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua
Li, Hua Wu, Min Zhang, and Haifeng Wang. 2020.
Dusql: A large-scale and pragmatic chinese text-to-
sql dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6923–6935.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Kuan Xu, Yongbo Wang, Yongliang Wang, Zihao Wang,
Zujie Wen, and Yang Dong. 2022. Sead: End-to-end
text-to-sql generation with schema-aware denoising.
In Findings of the Association for Computational
Linguistics: NAACL 2022, pages 1845–1853.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

3392

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir
Radev. 2018a. Typesql: Knowledge-based type-
aware neural text-to-sql generation. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 588–594.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018b.
Syntaxsqlnet: Syntax tree networks for complex and
cross-domain text-to-sql task. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1653–1663.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018c. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
Bo Pang, Tao Chen, et al. 2020. Sparc: Cross-domain
semantic parsing in context. In 57th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2019, pages 4511–4523. Association for Com-
putational Linguistics (ACL).

JM Zelle and RJ Mooney. 1996. Learning to parse
database queries using inductive logic programming.
Technical report, American Association for Artificial
Intelligence, Menlo Park, CA (United States).

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

3393

