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Abstract

Recent work has proposed explicitly inducing
language-wise modularity in multilingual LMs
via sparse fine-tuning (SFT) on per-language
subnetworks as a means of better guiding cross-
lingual sharing. In this paper, we investigate
(1) the degree to which language-wise modu-
larity naturally arises within models with no
special modularity interventions, and (2) how
cross-lingual sharing and interference differ be-
tween such models and those with explicit SFT-
guided subnetwork modularity. In order to do
so, we use XLM-R as our multilingual LM.
Moreover, to quantify language specialization
and cross-lingual interaction, we use a Train-
ing Data Attribution method that estimates the
degree to which a model’s predictions are influ-
enced by in-language or cross-language train-
ing examples. Our results show that language-
specialized subnetworks do naturally arise, and
that SFT, rather than always increasing mod-
ularity, can decrease language specialization
of subnetworks in favor of more cross-lingual
sharing.

1 Introduction

Multilingual language models (LMs) can achieve
remarkable performance across many languages
thanks to phenomena like cross-lingual sharing
(Pires et al., 2019), but they still suffer from the
“curse of multilinguality” (Conneau et al., 2020) as
performance can be hindered by negative cross-
language interference (Wang et al., 2020). Re-
cently, new methods have been proposed for miti-
gating these negative effects by training specialized
model components for processing individual lan-
guages (Pfeiffer et al., 2022). These approaches,
which add explicit modularity to the model, are
also effective in promoting positive transfer and
increasing interpretability (Pfeiffer et al., 2023).
While previous work has focused on develop-
ing techniques for explicitly adding modularity to
models, we take a step back and ask: To what de-
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Figure 1: We study how in-language training data reliance
changes for individual test languages when using a subnetwork
compared to the full model at test time. For instance, will a
Korean subnetwork rely more on Korean training samples
when making a prediction for a Korean test sample? Note
that each training example is denoted by its language and a
training sample ID (1ang_ID).

gree does language-wise modularity naturally arise
within a model with no targeted modularity inter-
ventions? To investigate this question, we make use
of a method inspired by the Lottery Ticket Hypoth-
esis (Frankle and Carbin, 2018; Chen et al., 2020):
for each language, we identify a subnetwork—a
subset of model parameters—such that when fine-
tuned on in-language data, it performs on par with
the full model on that language (Wang et al., 2020;
Nooralahzadeh et al., 2020). We then use these
subnetworks to quantify language-wise modularity
in a model by measuring the degree to which the
subnetworks depend solely on in-language training
examples when making predictions, which we refer
to as language specialization. Subnetworks are an
appealing method for our study because they do
not require the introduction of additional model pa-
rameters, which means that we are able to use this
approach on a model that has not been explicitly
modified to add modularity.

Moreover, subnetworks have also proven to be
a popular modularization technique because when
used to restrict parameter updates as a form of
sparse fine-tuning (SFT), they are able to guide
cross-lingual sharing toward positive transfer and
away from negative interference (Lin et al., 2021;
Lu et al., 2022; Xu et al., 2022; Choenni et al.,
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2023a; Hendy et al., 2022). However, less is known
about precisely what effects SFT has on the under-
lying model behavior. Thus, we investigate the
following set of questions for XLM-R (Conneau
et al., 2020): (1) To what extent does language-
wise modularity naturally arise within the model,
when it is not explicitly enforced by restricting
gradient updates? (2) How do cross-lingual shar-
ing and interference differ between models without
modularity interventions versus models with SFT-
guided language-wise modularity? (3) How does
the degree of language specialization affect model
performance? and (4) To what extent does the
similarity of language-specific subnetworks dictate
cross-language influence?

To quantify cross-language interaction, we fol-
low Choenni et al. (2023b) in using a Training Data
Attribution (TDA) method, TracIn (Pruthi et al.,
2020), which measures the degree of influence each
training example has on a particular model predic-
tion. By examining the influence each language’s
training set has on the test predictions for individ-
ual languages, we can estimate how much influence
languages on average exert cross-lingually.

We conduct experiments on three text classifica-
tion tasks—natural language inference, paraphras-
ing, and sentiment analysis. For each task, even
without special modularity interventions, we are
able to identify subnetworks that rely more heavily
on in-language data than the full model does. Addi-
tionally, we find that SFT does not always increase
this modularity, but instead can decrease language
specialization within the subnetworks and boost
cross-lingual sharing to improve performance. Fi-
nally, we provide additional analysis on factors that
affect cross-language influence, and find interest-
ing correlations between subnetwork similarity and
the amount of positive influence across languages.

2 Background and Related work
2.1 Modular deep learning

Modular approaches existed before the rise of pre-
trained LMs (Shazeer et al., 2016; Andreas et al.,
2016), but have recently regained popularity in
NLP. The idea is that modular systems will allow
us to improve performance in an interpretable way
as modularity provides a more intuitive path to com-
positionality. Various methods have been proposed
to implement specialized modules, for instance, by
inserting adapter layers into the model (Rebuffi
et al., 2017, 2018; Houlsby et al., 2019; Pfeiffer

et al., 2022), replacing fine-tuning by prefix-tuning
(Li and Liang, 2021), or by SFT with subnetworks
(Sun et al., 2020). While the former two aim to cre-
ate modularity post-hoc by injecting task-specific
parameters into the existing model, the latter ap-
proach aims to induce it into the model as an in-
ductive bias during fine-tuning. In this work, we
delve deeper into the effects of SFT to understand
whether it is able to produce more modular systems.
While some work studies modularity in both vision
and language models (Csordas et al., 2020; Zhang
et al., 2023; Lepori et al., 2023; Dobs et al., 2022),
we are the first to explicitly examine the degree
of modularity in multilingual LMs, and to study
subnetwork interaction by directly looking at the
training data.

2.2 Subnetworks and SFT

Frankle and Carbin (2018) showed that subnet-
works can be found through pruning methods (Han
et al., 2015; Li et al., 2016) that match the per-
formance of the full model. Since then, it has
been shown that such subnetworks exist within
BERT models (Prasanna et al., 2020; Budhraja
et al., 2021; Li et al., 2022), and that both language-
neutral and language-specific subnetworks can be
found in multilingual LMs (Foroutan et al., 2022).
Hence, sparse training gained popularity in multi-
lingual NLP: Nooralahzadeh and Sennrich (2023)
show that training task-specific subnetworks can
help in cross-lingual transfer, Lin et al. (2021)
use language-pair-specific subnetworks for neural
machine translation, and Hendy et al. (2022) use
domain-specific subnetworks. Finally, Wang et al.
(2020); Lu et al. (2022); Choenni et al. (2023a); Xu
et al. (2022) use language-specific subnetworks to
improve cross-lingual performance on a range of
tasks, e.g. speech recognition, dependency parsing
and natural language understanding, suggesting
that sparse training can reduce negative interfer-
ence and/or stimulate positive knowledge transfer.
While Choenni et al. (2023a) found evidence of
the former through fewer gradient conflicts during
training (Yu et al., 2020), we are the first to study
the effect of SFT on cross-lingual data sharing.

2.3 Training Data Attribution

TDA methods aim to identify a set of training ex-
amples that most informed a particular test pre-
diction. Typically, the influence of training point
Zirain ON test point 2z, is formalized as the change
in the loss that would be observed for z,; if sam-
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ple Zyqin was omitted during training (Koh and
Liang, 2017). Thus, we can use it as a measure
of how important 2y, is for making a prediction
for z;s;. TDA methods have been used in NLP for
unveiling data artifacts (Han and Tsvetkov, 2022),
e.g., to detect outlier data (Han et al., 2020), enable
instance-specific data filtering (Lam et al., 2022), or
to correct erroneous model predictions (Meng et al.,
2020; Guo et al., 2021). Following Choenni et al.
(2023b), we instead employ it to study cross-lingual
data sharing in LMs. To understand how much in-
fluence languages exert cross-lingually, Choenni
et al. (2023b) quantify cross-language influence
during multilingual fine-tuning by the percentage
that each language’s training data contributes to the
most influential training samples for each test lan-
guage. While they study the effects of full model
fine-tuning, we employ their framework to study
modularity in LMs by testing the data reliance be-
havior of language-specific subnetworks and the
effect that SFT has on this.

3 Methods

3.1 Identifying Subnetworks

Subnetworks are represented by masks that can be
applied to the model to ensure that only a subset of
the model’s parameters are activated (or updated
during training). We follow Prasanna et al. (2020)
in using structured masks, treating entire attention
heads as units which are always fully enabled or
disabled. Thus, for a language /, its subnetwork
is implemented as a binary mask &, € {0, 1}7xL,
where H and L correspond to the number of at-
tention heads and layers. We aim to find masks
for languages that prune away as many heads as
possible without harming model performance on
a given language (i.e., by pruning away heads that
are only used by other languages, or that are unre-
lated to the task). For this, we apply the procedure
introduced by Michel et al. (2019). Starting from a
model that is fine-tuned for a task in language ¢, we
iterate by repeatedly removing the 10% of heads
with the lowest importance scores HIEw ) (2=head,
j=layer), which is estimated based on the expected

sensitivity of the model to the mask variable & ;’j );

OL(z()

HIEZJ) =Ez~x, af(i’j)
Y4

ey

where X is £’s data distribution, x; is a sample
from that distribution, and L(xy) is the loss with

respect to the sample. Pruning stops when we reach
95% of the original model performance.

3.2 Tracln: Tracing Influence

Pruthi et al. (2020) propose Tracln, a simple TDA
method to approximate influence of a training sam-
ple over training. They do this by computing the
influence of a training sample z; on the prediction
for a test sample z. as follows:

E
Tz, zest) = Y, VoLo(zi,00)- VoL (2w, 0e) (2)
e=1

where 0. is the checkpoint of the model at each
training epoch. The intuition behind this method
is to approximate the total reduction in the test
loss L(zses, 0) during the training process when
the training sample z; is used. This gradient prod-
uct method reduces the problem to the dot product
between the gradient of the training loss and the
gradient of the test loss. As dominating gradients
are a known problem in multilingual NLP (Wang
et al., 2020), we also adopt the simple normaliza-
tion trick from Barshan et al. (2020), i.e., substitut-
ing the dot product operation with cosine similar-
ity, thus normalizing by the norm of the training
gradients. Lastly, following Pruthi et al. (2020),
we reduce computational costs by pre-computing
low-memory sketches of the loss gradients of the
training points using random projections, and reuse
them to compute randomized unbiased estimators
of the influence on different test points (Woodruff
etal., 2014). See Appendix A for more details.

4 Experimental setup

4.1 Tasks and datasets

Natural language inference The Cross-Lingual
Natural Language Inference (XNLI) dataset (Con-
neau et al., 2018) contains premise-hypothesis pairs
labeled with their relationship: ‘entailment’, ‘neu-
tral’ or ‘contradiction’. The dataset contains par-
allel data of which the original pairs come from
English and were translated to other languages. We
use English, French, German, Russian and Spanish
portions of the dataset.

Paraphrasing Cross-Lingual Paraphrase Adver-
saries from Word Scrambling (PAWS-X) (Yang
et al., 2019) requires the model to decide if two
sentences are paraphrases of one another. PAWS-X
contains translated data from PAWS (Zhang et al.,
2019). Part of the development and test sets was
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translated from English by professionals and the
training data was translated automatically. We ex-
periment with English, French, German, Korean
and Spanish.

Sentiment analysis The Multilingual Amazon
Review Corpus (MARC) (Keung et al., 2020) con-
tains Amazon reviews written by users in various
languages. Each record in the dataset contains the
review text and title, and a star rating. The corpus
is balanced across 5 star rating, so that each star
rating constitutes 20% of the reviews in each lan-
guage. Note that this is a non-parallel dataset. We
experiment with Chinese, English, French, German
and Spanish.

4.2 Training techniques

Full model fine-tuning We fine-tune the full
XLM-R model (Conneau et al., 2020) on the con-
catenation of 2K samples from 5 languages, i.e.
10K samples for each task. As computational costs
of Tracln increase with training size, we use a min-
imal required number of training examples to ob-
taining reasonably high performance. Thus, we
simplify the task to get a better trade-off between
the number of training examples and performance.
For XNLI, we follow Han et al. (2020) by perform-
ing binary classification “entailment or not” ; for
MARC, we collapse 1 and 2 stars into a negative
and 4 and 5 stars into a positive review category.
Training converges at epoch 4 for XNLI, and at
epoch 5 for PAWS-X and MARC, obtaining 78%,
83%, and 90% accuracy on their development sets
respectively, for more details see Appendix B.

Sparse fine-tuning (SFT) We sample language-
specific batches in random order, and each time
restrict parameter updates to only those parameters
that are enabled within the respective language’s
identified subnetwork. We use the subnetworks
during fine-tuning by restricting the model both
in the forward and backward pass.! We ensure
that we sample each language equally often. All
other fine-tuning details remain the same as for full
model fine-tuning.

4.3 Evaluation

Computing influence scores We use 500 ran-
dom test samples from each language and compute

'We implement this during backpropagation by multiply-
ing the gradients by the binary subnetwork mask, and passing
the masked gradients to the optimizer. In the forward pass, we
simply disable the attention heads.

influence scores between each test sample and all
10K training instances. For each test sample, we
retrieve the top m=100 training instances with the
largest positive and the largest negative influence
scores and refer to them as the set of most pos-
itively and negatively influential samples respec-
tively. Note that we use m=100 as it was previ-
ously found to be optimal on the exact same tasks
(Choenni et al., 2023b).2 Moreover, negative cosine
similarity between gradients have been referred to
as gradient conflicts (Yu et al., 2020), and were
shown to be indicative of negative interference in
the multilingual setting (Wang et al., 2020)3. In ad-
dition, we ensure that the model was able to predict
the correct label for all test instances that we com-
pute influence scores for such that we only study
the training samples that influenced the model to
make a correct prediction. Also, as we train on
parallel data for XNLI and PAWS-X, the content
in our training data is identical across languages,
giving each language an equal opportunity to be
retrieved amongst the most influential samples.

Quantifying cross-language influence After ob-
taining an influence score ranking over our training
set for each test sample, we compute how much
each training language contributed to the predic-
tion for the test samples in other languages. We
then compare the resulting rankings produced us-
ing the full model and an identified subnetwork,
see Figure 1. As there can be small differences in
performance between the subnetworks and the full
model, throughout all experiments, we compare
cross-language influence for test samples that both
models were able to correctly classify.

5 Naturally arising modularity

In this section, we study whether modularity has
naturally arisen within a model after multilingual
full model fine-tuning. As such, the subnetworks
are only applied at test time.

5.1 How specialized are subnetworks?

To study the degree to which modularity has nat-
urally arisen after full model fine-tuning, we look
for subnetworks that naturally specialize in their

*Note that we carefully follow the experimental set-up
from Choenni et al. (2023b), i.e., we use the same tasks, data
and model for our experiments.

3When gradients point in opposite directions, the model
will update in a suboptimal direction for both examples, hence
resulting in negative interference.
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Figure 2: (After full model fine-tuning) The effect of using
the identified language-specific subnetwork for each test lan-
guage compared to the full model at test time. On the x-axis
we have the training language and on the y-axis the test lan-
guage. The values denote the change (%) in influence from
the training on the test language. Results are averaged over all
500 test samples per language.

respective languages. We quantify language spe-
cialization as the extent to which the subnetworks
rely solely on in-language training data when mak-
ing test-time predictions. Thus, for each test lan-
guage, we use the pruning procedure explained in
Section 3.1 to identify a subnetwork within the fine-
tuned model. We then compute influence scores
on the fine-tuned model, applying the subnetwork
mask corresponding to the language of the test ex-
ample. Finally, we compare the model’s reliance
on in-language data when using these subnetworks
against its reliance when no subnetwork mask is
applied (i.e. when predicting with the full model).

Results In Figure 2 we show, per task and test
language, the change in contribution (%) to the
top 100 most positively and negatively influential
samples when using the subnetworks compared to
the full model. On the diagonals, we clearly see
that for all languages across all tasks, using the
subnetwork does mostly result in more positive in-
fluence from the respective language (from +1 to
+8%). This indicates that we are able to identify
language-specialized subnetworks that are more bi-
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Figure 3: (After full model fine-tuning) The effect on cross-
language influence when using random (R) and suboptimal
(English and Korean) subnetworks on German as a test lan-
guage for PAWS-X.

ased toward relying on in-language data, and thus
suggests that some form of modularity naturally
exists within the model. For baseline results from
the full model and more details on the subnetworks,
see Appendices C and D respectively. Also, im-
portantly, our results using 500 test samples per
language on the full model are similar to those on
the same tasks from Choenni et al. (2023b), who
performed extensive analysis on the quality of the
influence scores.

The effects are less clear when looking at nega-
tive influence; here we see that using a language’s
subnetwork can also decrease negative influence
coming from in-language data (e.g. Chinese for
MARC). Finally, results from XNLI are overall
weaker than for the other tasks. This is in line
with results from the full model that showed that,
for XNLI, the model relies to the least extent on
in-language data, hence we can expect language-
specificity to be less strong for these subnetworks.
Moreover, for English, we find no difference in
language specialization. This can be explained by
the fact that the German and Russian subnetworks
share 100% of their capacity with English, making
its subnetwork less distinct (see Appendix D).

Cross-language influence We have shown that
language-specialized subnetworks rise. We now an-
alyze how cross-language influence differs within
such subnetworks compared to the full model. For
MARC, we see that the increase in positive self-
influence (diagonal) can be smaller than the in-
crease in positive influence from related languages.
In particular, we see that using a German subnet-
work strongly increases positive influence from the
most typologically similar training language, i.e.,
English (+7%), and vice versa (+5%). While the
change in positive influence from related languages
is stronger than that of the respective subnetwork’s
language, the subnetwork still relies more on in-
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Figure 4: (After SFT) The effect of using the identified
language-specific subnetwork for each test language compared
to using the full model at test time. On the x-axis we have
the training language and on the y-axis the test language. The
values denote the change (%) in influence from the training
on the test language. Results are averaged over all 500 test
samples per language

language data when looking at absolute numbers.
For German, the full model was relying for 33%
on in-language data, which using its subnetwork
increased to 35% (+2%). Yet, English initially only
contributed 17% to German, which after using its
subnetwork increased to 24% (+7%) (see Appendix
C for the full model results). We suspect that we
observe the effect of positive knowledge transfer
through cross-lingual sharing here. Similar to the
full model, when subnetworks have exploited most
useful in-language data, they start benefitting more
from exploiting other languages’ data instead.

5.2 Random and suboptimal subnetworks

As baselines to our identified subnetworks, we
study whether evidence for language specialization
can also be found within random and suboptimal
subnetworks for PAWS-X. Random: we shuffle the
binary subnetwork masks with 3 random seeds, and
recompute scores from them. Note that we do this
only for German—we saw the weakest increase
in language-specificity for German (+2%, see Fig-
ure 2), thus it should be the easiest to get similar
results from a random subnetwork. Suboptimal:
we pick the subnetwork from the most similar and
distant language to German, i.e., English and Ko-
rean, and recompute influence scores for German
(i.e., testing the effect of applying the subnetwork
from a language A to a language’s B’s input.).
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Figure 5: The positive influence (%) from each training lan-
guage on each test language in absolute numbers. The values
are retrieved from the subnetworks after SFT. Note that the
y-axes are not on the same scale.

Results In Figure 3, we find that using random
subnetworks overall causes little change to the
score distributions as compared to the full model.
In particular, we find that in none of the cases the
influence of German increases. Also, it is evident
that the behavior from the suboptimal subnetworks
is different from the random subnetworks. For in-
stance, we find that using either the correct English
or Korean subnetworks result in a strong increase
of negative interference from Korean (+10 and 8%).
Yet, when we use the random subnetworks we in-
stead observe a strong tendency for Korean to de-
crease in negative influence. These results show
that our identified subnetworks encode meaningful
differences compared to randomly selected ones.

6 How does SFT affect modularity?

In Section 5, we studied whether modularity had
naturally arisen in the model in the form of
language-specialized subnetworks. We now study
the effect that SFT has on these subnetworks, i.e.,
does it further encourage modularity within the
model? Thus, instead of only applying the sub-
networks at test time, as was done in the previous
section, we now use the same identified subnet-
works, but apply them both during SFT and at test
time. We then recompute influence scores between
test and training samples, and observe the change
in language specialization compared to full model
fine-tuning. This way, we test whether SFT, com-
pared to full model fine-tuning, causes the subnet-
works to further specialize on in-language data.
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Given that the subnetworks found for XNLI had
the smallest effect on cross-language data reliance,
and we did not find a distinct English subnetwork,
we conduct further experiments on PAWS-X and
MARC (that contain parallel and non-parallel data
respectively) to reduce computational costs. Also,
we confirm that SFT improves performance on both
tasks (see Appendix E). For PAWS-X, we obtain
an average test accuracy of 74.8% when using sub-
networks after full model fine-tuning and 78.4%
after SFT (+3.6%). For MARC we see an average
improvement of +1.2% when using SFT.

Results In Figure 4, we see the change in lan-
guage influence compared to using the full model.
We find that the in-language data reliance of some
subnetworks tends to decrease after SFT (i.e., Ko-
rean for PAWS-X and Chinese, French, and Span-
ish for MARC). This is surprising given that SFT
is generally seen as a modularization technique.
Whilst it is important to note that all subnetworks
still mostly rely on in-language data as shown by
the absolute numbers reported in Figure 5, our re-
sults suggest that the benefit of SFT cannot fully
be attributed to language specialization of the sub-
networks. Instead, cross-lingual sharing, guided
through subnetwork interaction, is likely a con-
tributing factor as well. Finally, as our results sug-
gest that SFT does not necessarily strengthen lan-
guage specialization, it sheds doubt on SFT as a
method for creating more modular systems.

6.1 SFT with random subnetworks

As a baseline to our previous findings, we now test
whether any randomly found subnetwork could
in principle be taught to specialize in a language
when we use SFT as a training method. Thus, for
each language, we shuffle the language-specific
subnetworks to obtain a random subnetworks with
the same sparsity level. We then use these random
subnetworks, both during SFT and at test time, and
repeat the procedure from Section 6.

Results Surprisingly, in Figure 6, we see that ran-
dom subnetworks to a much larger extent rely on
in-language data than the identified subnetworks
used in Section 6. In particular, we see that the
model barely relies on cross-lingual sharing for
English (+64% compared to the full model, which
results in 97% reliance on English data when us-
ing the subnetwork). Yet, we also find that these
highly specialized subnetworks perform consid-
erably worse, on average only obtaining +56%
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Figure 6: (After SFT) The effect that SFT with random
subnetworks has for PAWS-X on the amount of language
specialization that the subnetworks acquire compared to full
model fine-tuning.
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Figure 7: The correlation between language specialization
and performance accuracy for PAWS-X and MARC. We com-
pute scores for all languages and model checkpoints.

across languages. Given that random subnetworks
do not contain the necessary information to pro-
cess the language, we hypothesize that (1) during
SFT they need to learn both the task and language,
which causes them to focus on in-language data
first, and (2) cross-lingual sharing will only happen
once the in-language data has been fully exploited.
Our results show that any subnetwork can in prin-
ciple learn to specialize in one language, but that
this might be suboptimal.

7 Further analysis

In Section 6, we show that SFT only sometimes
causes our identified subnetworks to rely more on
in-language data, yet unlike random subnetworks,
do seem to encode meaningful information. To
understand where the performance improvements
from SFT come from, we perform further analysis
on how language specialization correlates with per-
formance, and how subnetwork similarity affects
cross-language influence.

7.1 Correlation between language
specialization and performance

We find that SFT only decreases performance on
French for PAWS-X (Table 2, Appendix E), which
happens to also be the subnetwork that showed the
strongest increase in language specialization after
SFT (+6%) in Section 6. To test to what degree
subnetwork performance benefits from language
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Figure 8: (Left) The cosine similarity between the flattened
binary subnetwork masks for each language pair. (Right)
Positive cross-language influence as a function of structural
(cosine) similarity between subnetworks.

specialization, we study the correlation between
the two using data from all model checkpoints.

Results In Figure 7, we see that, for both tasks,
stronger language specialization is negatively corre-
lated with model performance. This finding further
supports our hypothesis that the strength of SFT
really comes from cross-lingual sharing that hap-
pens between the subnetworks rather than from the
language specialization of the subnetworks them-
selves. Intuitively, this makes sense as SFT forces
the model to squeeze information into the smaller
subsets of model parameters, which has to improve
performance on a set of training languages, and as
such, requires better cross-lingual sharing.

7.2 Correlation between subnetwork
similarity and cross-language influence

SFT allows for cross-lingual interaction through
subnetwork overlap in which the model parame-
ters are shared between languages. This sharing
mechanism is motivated by the idea that similar lan-
guages are encoded by similar subnetworks (and
thus naturally dictating cross-lingual sharing by
their overlap). To test this hypothesis we study
the correlation between subnetwork similarity and
cross-language influence between language pairs.
We measure similarity by the cosine similarity be-
tween the flattened binary subnetwork masks.

Results In Figure 8 (Left) we report the cosine
similarity between the subnetworks of each lan-
guage pair and (Right) the correlation between such
subnetwork similarity and positive cross-language
influence (in absolute numbers). From this, we
find that for both tasks, subnetwork similarity is
positively correlated with positive cross-language

0.6 \ \__,
0.5 \ \
. \/\,ﬁ.

PAWSX
0.3 —— MARC

Correlation

123456 78 911112
Layer

Figure 9: The correlation between positive cross-language
influence and the subnetwork similarity computed based on
individual model layers.

influence. Yet, we did not find a strong correlation
between negative cross-language influence and sub-
network overlap. This is a promising finding, as
it suggests that positive and negative influence do
not necessarily have to go hand-in-hand. Thus, fu-
ture work should investigate how we can further
exploit subnetwork overlap to increase positive in-
fluence without increasing negative influence as
well. Moreover, it is evident that for MARC the
subnetworks show on average more overlap than
for PAWS-X. Thus as the capacity within subnet-
works from MARC have to be shared with more
languages, it can explain why their language spe-
cialization is less strong as seen in Figure 4. Future
work should test whether SFT is still effective when
using many more training languages (in which case
subnetwork overlap will inevitably be higher).

Layer-wise analysis To further analyze how sub-
network similarity affects cross-language influence,
we now test how layer-wise subnetwork similarity
correlates with performance. In Figure 9, we see
that similarity between certain layers is much more
indicative of cross-language influence, and more-
over, that both tasks follow very similar patterns
despite ending up with vastly different subnetworks.
This suggests that while language-specific subnet-
works are also task-specific, there may be general
language-specific properties across task-specific
subnetworks that we can identify and exploit to
better guide cross-lingual sharing.

8 Conclusion

We studied to what degree modularity, in the form
of language-specialized subnetworks, naturally
arises within multilingual LMs. We demonstrate
the existence of such subnetworks using Tracln to
monitor the change in reliance on in-language data
at test time when using subnetworks compared to
the full model. Moreover, we studied the effects
that SFT has on modularization, and find that it
does not cause all subnetworks to become more
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specialized. Yet, in all cases, our identified sub-
networks show vastly different behavior from ran-
dom ones, indicating that we are able to uncover
meaningful language-specific model behavior. Fi-
nally, we find that subnetwork similarity, particu-
larly in specific model layers, correlates with pos-
itive, but not negative, cross-language influence.
Future work should focus on further exploiting
subnetworks and their interaction to better control
cross-lingual sharing.

9 Limitations

One limitation of TDA methods in general is that
the experiments are computationally expensive to
run. While using the random projection method,
explained in Appendix A, somewhat mitigates the
problem, it still prevents us from studying a wider
range of LMs and/or larger models. Similarly, due
to the computational costs, we are restricted to rel-
atively easy tasks as (1) we can not use a large
fine-tuning dataset and (2) Tracln operates on the
sequence-level, i.e., it estimates how much a full
training instance contributed to a prediction, mak-
ing this method mostly suitable for classification
and regression tasks. Given that the tasks are rel-
atively simple, this might also limit the benefit of
SFT over full model fine-tuning, hence the subnet-
work behavior we see after SFT might be weaker
than if we had studied more complicated tasks
and/or tasks that generally require more language-
specific information (e.g., masked language mod-
elling or dependency parsing).
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A Low-memory sketches using random
projections

LMs have a large number of parameters which
makes the inner product computations in the first-
order approximation of the influence expensive,
especially when computing influence scores for a
large number of test points. Thus, following Pruthi
et al. (2020), we speed up the computations by us-
ing random projections, a method that allows us
to pre-compute low-memory sketches of the loss
gradients of the training points (Woodruff et al.,
2014) which can be stored and re-used to compute
randomized unbiased estimators of the influence
on different test points. To do so, we choose a
random matrix G € R%P, where d < pis a
user-defined dimension for the random projections,
whose entries are sampled i.i.d. from A/(0, 1) such
that E[GTG] = Z. Similarly, for the fully con-
nected layers with a weight matrix W € R™*"™,
it is also possible to obtain a random projection
of the gradient with respect to W into d dimen-
sions. To do so, we use two independently chosen
random projection matrices G1 € RVdxm and
G2 € RV4" where E[G1GT] = E[G,GE] =1,
and compute:

G1V, f(y)a" G € RV 3)

, which can be flattened into a d-dimensional vector.
See Appendix E and F from Pruthi et al. (2020) for
more details. Note that throughout our experiments
we set d = 256.

B Fine-tuning details

For each task, we add a simple classifier on top of
the pretrained XLM-R base model (Conneau et al.,
2020). The classifier consists of one hidden layer
and uses tanh activation. We then feed the hidden
representation corresponding to the <S> token for
each input sequence to the classifier for prediction.
Moreover, following Choenni et al. (2023b), we
use AdamW (Loshchilov and Hutter, 2017) as an
optimizer, and use learning rates of 2e-5, 9e-6, and
2e-5 for XNLI, PAWS-X and MARC respectively.

C Baseline results
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Figure 10: Percentage that each training language contributes
to the top 100 training samples for each test language when
using the full model. Results are averaged over all 500 test
samples per language.

D Details on the identified subnetworks

In Figure 11, we show the overlap in attention
heads of the identified subnetworks that we found
for each of our 5 training languages. While we find
that all subnetworks have similar sparsity levels
(see Table 1 for the absolute number of disabled
attention heads per task and language), we also see
that across all tasks, some heads are not used by
any of the languages (indicated by 0). This find-
ing suggests that the model capacity does not have
to be a limiting factor within this model, as more
language-specific parameters could be assigned if
needed. In contrast, many heads, especially in the
lower layers of the models for PAWS-X and in the
higher layers for XNLI, are fully shared across all
languages. Given that paraphrasing relies more on
lower-level syntactic information than NLI, this
is in line with previous findings that suggest that
syntax is processed in lower layers while seman-
tics in processed in the higher ones (Tenney et al.,
2019). Moreover, in Figures 12, 13 and 14, we see
for XNLI, PAWSX-X and MARC the amount of
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subnetwork overlap between each language pair
both in absolute values and as a percentage of the
language’s full subnetwork capacity.

‘ de en e fr ko ru zh
PAWS-X | 42 56 56 56 42 - -
XNLI |70 42 56 42 - 56 -
MARC |56 42 42 56 - - 84

Table 1: The number of disabled attention heads in the identi-
fied subnetwork of each language and task.
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Figure 11: The overlap of heads enabled by each language’s
subnetwork per task. 5 indicates that the head is shared across
all languages and O that it is not used by any of the languages.
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Figure 12: The absolute number of overlapping attention
heads between each language pairs’ subnetworks for XNLI.
(Left) The percentage of overlap in heads between each lan-
guage pairs’ subnetworks. Note that values are not symmetric
between language pairs as each language’s subnetwork can
have a different sparsity level. For instance, for German on
the y-axis, it shows that 100% of the enabled heads are shared
with English. Yet, 73% of the enabled heads for English are
shared with German, given that English has more heads en-
abled. (Right)

Figure 13: The absolute number of overlapping attention
heads between each language pairs’ subnetworks for PAWS-X.
(Left) The percentage of overlap in heads between each lan-
guage pairs’ subnetworks. Note that values are not symmetric
between language pairs as each language’s subnetwork can
have a different sparsity level. For instance, for German on
the y-axis, it shows that 75% of the enabled heads are shared
with English. Yet, 88% of the enabled heads for English are
shared with German, given that English has fewer heads en-
abled. (Right)
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Figure 14: The absolute number of overlapping enabled heads
between each language pairs’ subnetworks for MARC. (Left)
The percentage of overlap in heads between each language
pairs’ subnetworks. Note that values are not symmetric be-
tween language pairs as each language’s subnetwork can have
a different sparsity level. (Right)
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Figure 15: The correlation between the percentage of overlap
in heads between each language pairs’ subnetworks and their
amounts of cross-language interference (in absolute numbers).
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PAWS-X MARC
Full SFT | Full SFT
de | 68.0 788|753 764
en | 78.6 83.0 | 75.1 75.8
es | 782 805|766 774
fr | 82.1 79.8 762 776
ko | 67.1 699 | - -
zh | - - 1695 T71.1

Table 2: The performance effect of SFT compared to full
model fine-tuning. We report the performance of the language-
specific subnetworks when used on the test samples from the
respective languages when using either one of the fine-tuning
techniques. Note that we do not optimize for obtaining SOTA
performance in this study e.g., we train on relatively little data
to make our TracIN experiments computationally feasible.

F Additional experiments

F.1 What happens within subnetworks during
full model fine-tuning versus SFT?

In Sections 5 and 6 we used the sum of influence
scores over model checkpoints to compute influ-
ence scores. We now conduct the same experi-
ments, but instead study how cross-language influ-
ence changes over time while using the different
fine-tuning strategies. To do so, we now analyze the
influence scores (and their corresponding rankings)
from each checkpoint separately.

de en es fr ko

Full model fine-tuning Sparse fine-tuning

1 2 3 4 5 1 2 3 4 5
Training epoch Training epoch

Figure 16: The change in language specialization of subnet-
works over training epochs for PAWS-X.
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Figure 17: The change in language specialization for each
test language over training epochs for MARC. We see that the
patterns for full model fine-tuning are similar to PAWS-X, yet
for sparse fine-tuning they differ considerably.

100 . SFT w/ random subnetworks
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5983
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Figure 18: The language specialization effect of SFT with
random subnetworks on PAWS-X over training epochs.

Results In Figure 16 we see that while both fine-
tuning techniques converge to similar maximum
levels of cross-lingual sharing (~25% reliance on
in-language data) for PAWS-X, SFT allows for
all training languages to start sharing more data.
Whereas for full model fine-tuning, we instead see
that Korean and English are left behind. The same
trend was found for MARC, see Figure 17. Also,
in Figure 18, we find that using random subnet-
works for SFT on PAWS-X, similarly to full model
fine-tuning, results in Korean and English staying
more isolated from the other three languages. This
suggests that when we use random subnetworks for
SFT, the model can not benefit from better cross-
lingual sharing in the same way as when we iden-
tify the subnetworks via pruning. In line with re-
sults in Sections 6.1 and 7.2, we conclude that the
subnetworks meaningfully overlap to enable better
cross-lingual interaction during SFT.

F.2 Composing subnetworks at test time

As an additional analysis, we study whether we can
compose two languages’ identified subnetworks
into a language-pair specific subnetwork that, when
applied at test time, will enforce more cross-lingual
reliance on each other’s training data. For merging
two subnetworks we both tried taking the union and
the intersect of the respective binary subnetwork
masks. Note that we apply the composed subnet-
work only at test time to a model that was trained
with SFT (using the initial identified subnetworks).

Results We find that we can only successfully
enforce cross-lingual sharing through subnetwork
composition for two languages, if those individual
language’s subnetworks already stimulated cross-
lingual sharing between the pair. For instance, in
Figure 4, we saw that both the Spanish and French
subnetworks (PAWS-X) and the German and En-
glish ones (MARC) resulted in more sharing be-
tween the pairs. In Figure 19, we show that taking
the intersections of those language pairs’ subnet-
works can further strengthen this behavior (taking
their union resulted in sharing to a lesser extent)
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Figure 19: The effect on the contribution of positive influence
from each training language when composing two language’s
subnetworks by their intersect and applying them at test time
(compared to full model fine-tuning).

Trying to control sharing behavior by composing
two language-specific subnetworks that individu-
ally did not lead to more sharing between the pair
did not yield any clear positive results. This shows
that while SFT can better cross-lingual sharing,
there is still much room for improvement when
it comes to creating a truly modular system that
enables compositionality.
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