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Abstract

Large language models (LLMs) enable in-
context learning (ICL) by conditioning on a
few labeled training examples as a text-based
prompt, eliminating the need for parameter up-
dates and achieving competitive performance.
In this paper, we demonstrate that factual
knowledge is imperative for the performance
of ICL in three core facets: the inherent knowl-
edge learned in LLMs, the factual knowledge
derived from the selected in-context examples,
and the knowledge biases in LLMs for output
generation. To unleash the power of LLMs
in few-shot learning scenarios, we introduce
a novel Knowledgeable In-Context Tuning
(KICT) framework to further improve the per-
formance of ICL: 1) injecting knowledge into
LLMs during continual self-supervised pre-
training, 2) judiciously selecting the examples
for ICL with high knowledge relevance, and
3) calibrating the prediction results based on
prior knowledge. We evaluate the proposed ap-
proaches on autoregressive models (e.g., GPT-
style LLMs) over multiple text classification
and question-answering tasks. Experimental
results demonstrate that KICT substantially
outperforms strong baselines and improves by
more than 13% and 7% on text classification
and question-answering tasks, respectively '.

1 Introduction

Large language models (LLMs) have become an
imperative infrastructure in the natural language
processing (NLP) community (Zhao et al., 2023b).
To enable pre-trained LLMs to perform well with-
out any parameter updates, in-context learning
(ICL) has emerged as one of the flourishing re-
search topics in many few-shot NLP tasks. It aims
to generate predictions for target examples by con-
ditioning on a few labeled samples (Brown et al.,

* J. Wang and C. Wang contributed equally to this work.
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'"The code and datasets are released in HugNLP (Wang

et al., 2023a): https://github.com/HugAILab/
HugNLP.

In-Context Examples as Demonstration
E Input: It 's a symptom . \n Output: Negative \n\n E
Input: A funny work .\n  Output: Positive \n\n |:> |:>Positive
Target Example for Prediction :
‘ Input: Very nice . \n Output: ‘

GPT Family
(GPT-2, GPT-3)

Figure 1: An example of in-context learning (ICL).

2020). As shown in Figure 1, the key component
of ICL is the text-based prompt (containing labeled
examples) that functions as the demonstration.

Previous works have explored multiple aspects
that affect the performance of ICL (Dong et al.,
2023), such as input-output mapping (Min et al.,
2022b; Kim et al., 2022), extensive data re-
sources (Mishra et al., 2022; Chen et al., 2022b;
Min et al., 2022a), prediction calibration (Zhao
et al., 2021), and self-improvment (Chen et al.,
2023; Lyu et al., 2023). Liu et al. (2022); Lu et al.
(2022) have investigated others, such as prompt
format (e.g., “Input:”, “Output:”), the selection of
labeled data, and example permutation. Wang et al.
(2023a); Wu et al. (2023) have developed toolkits
for LLMs to reason with ICL prompts. In addi-
tion, to better elicit the LLM to reason on complex
tasks, chain-of-thought (CoT) has been introduced
to extend the ICL with multiple rationales to ex-
press the thinking process (Wei et al., 2022; Dhu-
liawala et al., 2023; Wang et al., 2023c,b; Zhao
et al., 2023a; Zhang et al., 2023; Liang et al., 2023).
However, these works pay little attention to the
influence of factual knowledge in ICL, which is a
non-negligible factor in NLP (Hu et al., 2022).

To this end, we explore the effectiveness of ICL
from the perspective of factual knowledge. As seen
in Figure 2, when entities and labels in text-based
prompts are randomly replaced or removed, the av-
erage accuracy decreases significantly, indicating
that performance degradation is universal across
different model scales. Further analysis reveals
that: 1) more intrinsic factual knowledge acquired
during the pre-training stage is typically beneficial
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Figure 2: Results of different scales of GPT-2 and OPT models over 8 text classification tasks and 4 question
answering tasks in various component destruction settings. For each target example, we have K = 8 labeled
samples as the demonstration. Results indicate that factual knowledge is crucial to the performance of ICL.

for LLMs to improve effectiveness; 2) The fac-
tual knowledge (e.g., entities and labels) derived
from selected in-context examples is crucial for
the performance of ICL; 3) LLMs tend to generate
common words that may have high frequencies in
the training corpora, resulting in biased predictions.

After analyzing these knowledge facets, a natu-
ral question arises: How can we fully employ fac-
tual knowledge to further improve the performance
of ICL? To achieve this goal, we focus on causal
autoregressive LLMs (e.g., GPT-2 (Radford et al.,
2019) and OPT (Zhang et al., 2022a)) and present a
novel Knowledgeable In-Context Tuning (KICT)
framework, which involves knowledgeable guid-
ance in pre-training, prompting, and prediction of
these models. Specifically, to endow LLMs with
enhanced text generation abilities by better lever-
aging inherent knowledge, we introduce several
knowledgeable self-supervised tasks during the pre-
training stage to inject knowledge into LLMs. For
text-based prompting, we propose a knowledge-
able example retrieval algorithm to judiciously se-
lect in-context examples that have relevant knowl-
edge to the target example. Finally, during predic-
tion, we utilize the knowledge-wise priors of label
words from an underlying knowledge base (KB) to
calibrate the prediction distributions generated by
LLMs. Each of the proposed techniques is plug-
and-play and can be freely combined, facilitating
users to exploit knowledge for improving ICL.

To evaluate the effectiveness of the KICT frame-
work, we employ LLMs (e.g., GPT-style models) to
conduct extensive experiments over multiple text
classification and question-answering tasks. Re-
sults demonstrate that each proposed procedure
achieves substantial improvements.

To sum up, we make the following main contri-
butions:

* We study three knowledge facets for ICL that
are imperative for LLMs in few-shot learn-
ing, i.e., inherent knowledge in LLMs, rele-
vant knowledge in the text-based prompt, and
knowledge bias.

* We present a novel knowledgeable in-context
tuning framework for better incorporating
knowledge through the process of pre-training,
prompting, and predicting.

* Extensive experiment results show that our ap-
proach attains more impressive performance
over classification and QA tasks.

2 Impact of Knowledge on ICL

In this section, we investigate whether factual
knowledge affects the performance of ICL.

2.1 Preliminary Experimental Settings

Following Min et al. (2022b) and Kim et al. (2022),
we perform empirical experiments through com-
ponent destruction. Specifically, given a target
example text X!, we randomly select K train-
ing samples D = {(Xtm g™ E | to form a
text-based prompt. We identify all entities in the
prompt and then devise several destruction set-
tings as follows: 1) Shuffle Entity involves
randomly replacing all entities with others from
the KB; 2) shuffle Non-Entity entails re-
placing some non-entity words (e.g., “It”, “have”)
with others from the vocabulary; 3) Shuffle
Label consists of replacing all the golden la-
bels with incorrect ones; 4) Remove Entity
and Remove Label aim to remove all entities
and labels from the prompt, respectively; 5) No
Demonstration represents a typical zero-shot
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Figure 3: 4-shot results of GPT-2 (urge) over AGNews
and TREC. For each frequency region, we sample top-5
label words for each category and report the accuracy
for all label mapping permutations.

method where no labeled data is used (Min et al.,
2022b).

We employ various scales of GPT-2 (0.1B-1.5B)
and OPT (Zhang et al., 2022a) (2.7B-6.7B) models
to evaluate 8 text classification tasks and 4 ques-
tion answering tasks. > By default, we randomly
sample K = 8 labeled samples for each task and
conduct the experiments with 5 different random
seeds. Further details are presented in Appendix A.
The findings are summarized below.

2.2 Findings

The inherent knowledge in the LLM itself is
beneficial for the performance of downstream
tasks. As shown in Figure 2, models can achieve
remarkable few-shot performance with increased
scale. We hypothesize that larger models can
learn more valuable semantics in the pre-training
corpus, which contributes to this improvement.
To test this hypothesis, we perform zero-shot in-
ference without any text-based prompts (i.e., No
Demonstration), relying solely on the intrin-
sic knowledge acquired during pre-training to
guide the predictions. We observe that the per-
formance gap between the 6.7B and 0.1B models is
about 20% on both text classification and question-
answering tasks. This observation supports the
idea that the inherent knowledge learned during
pre-training is critical (Yang et al., 2021).
The factual knowledge in selected in-context ex-
amples is crucial for ICL. As shown in Figure 2,
the original setting (Origin) outperforms other
configurations across all model scales. We observe
that altering non-entity words does not significantly
reduce performance, whereas replacing or remov-
ing entities leads to a considerable decrease in
Due to resource constraints, we do not use larger mod-

els. Nevertheless, our findings are generally consistent across
different model scales.

average accuracy for both text classification and
question-answering tasks. This demonstrates that
factual knowledge embedded in text-based prompts
is a critical factor for LLMs to understand the task.
Furthermore, we find that labels are also essential
for ICL, echoing similar observations presented
in (Kim et al., 2022). Differing from Min et al.
(2022b), we posit that labels can be regarded as a
form of factual knowledge that guides the LLM to
grasp semantics during inference.

LLMs tend to generate common label words
due to knowledge bias. To investigate whether
predictions are biased, we select two knowledge-
intensive tasks (i.e., AGNews (Zhang et al., 2015),
and TREC (Voorhees and Tice, 2000)). We first
retrieve the top-5 predictions at the output posi-
tion for each training example® and compute fre-
quency statistics for each generated label word.
Subsequently, we select 4 labeled examples from
the training set for each category. From each fre-
quency region, we randomly choose 2 label words
and calculate the average accuracy across all label
mapping permutations.* The results, as presented
in Figure 3, reveal that performance is highly con-
tingent on label word frequency, suggesting that the
frequency with which factual knowledge is learned
by LLMs plays a critical role in prediction out-
comes. Similar observations have been reported by
Zhao et al. (2021).

3 The Proposed KICT Framework

The preliminary experiments demonstrate that fac-
tual knowledge has a substantial effect on ICL. This
suggests that we can exploit this knowledge to en-
hance performance across various processes in ICL,
including pre-training, prompting, and prediction.
To achieve this goal, we introduce the KICT frame-
work, a novel Knowledgeable In-Context Tuning
framework designed to better leverage knowledge
and unleash the power of LLMs in answer genera-
tion. Within this framework, we introduce Knowl-
edgeable Pre-Training (KPT) with three carefully
designed self-supervised tasks to infuse LLMs with
factual knowledge. We then present a Knowledge-
able Example Retrieval (KER) algorithm to judi-
ciously select in-context examples that are rele-
vant to the given knowledge. Finally, we employ a

3The training set is larger than the testing set, thereby
providing a more robust statistical representation.

*Considering AGNews as an example, which has 4 classes
with 2 label words each, there are 2* = 16 possible label
mapping permutations.
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Figure 4: The overview of the KICT framework. We introduce multiple plug-and-play knowledgeable techniques
to enhance the utilization of knowledge for improving ICL performance. Left: We propose three knowledge-aware
self-supervised learning tasks that infuse factual knowledge into LLMs during pre-training. Middle: We utilize
entity-related information to select in-context examples that exhibit high knowledge relevance to the target example.
Right: For prediction, we derive prior information from large-scale corpora to calibrate the predictions.

Knowledgeable Prediction Calibration (KPC) tech-
nique to adjust the prediction distribution using
prior information derived from a KB. An overview
of the framework is depicted in Figure 4.

3.1 Knowledgeable Pre-Training

This section describes three knowledge-aware self-
supervised learning tasks designed to infuse fac-
tual knowledge into LLMs, namely, Masked Entity
Prediction (MEP), Entity Description Generation
(EDG), and Knowledgeable Question Answering
(KQA). Differing from Chen et al. (2022a), we
leverage an external KB to enrich the models’ lan-
guage generation abilities with respect to important
entities. The input consists of a training corpus
{X}andaKB G = (£,R,T), where £ denotes a
set of entities, R a set of relations, and T a set of
triples representing factual knowledge.

Masked Entity Prediction (MEP). MEP requires
the model to predict missing entities within a text,
enhancing its capability to learn explicit knowl-
edge. This task is akin to Masked Language
Modeling employed in BERT-style models (De-
vlin et al., 2019; Liu et al., 2019). Given a text
composed of tokens X = {x;}, we identify all
entities Ex = {ele € G,e € X} using an entity
linking toolkit. Each entity e = {z;|z; € X},
which may span multiple tokens, is either replaced
with special tokens (e.g., “_) or random tokens
with equal probability. This process generates a
modified text X = {#;}. A label mask vector
M 4 is created to indicate training positions, where
My, =1(& € Ex) and I(*) is an indicator func-
tion. Figure 4 (left) illustrates this with highlighted

words.

Entity Description Generation (EDG). EDG
tasks the model with producing a text description
for a given entity. For a text X and associated entity
set E'x, we construct a prefix text using the tem-
plate “Entities:”, followed by a list of entities and
the template “Text:”. The original text X serves
as the suffix. This forms the modified example X
and corresponding label mask vector M ¢, where
My, = 1if &; is part of the suffix string.
Knowledgeable Question Answering (KQA).
KQA leverages relation triples from the KB to facil-
itate question answering. Given a text X and entity
set x, we select a pair of entities ey, ey € Ex
linked by a 1-hop relation 7 € R to form a triple
(en,r,er) € T. Inspired by Wang et al. (2022), we
create a question template for each triple, prompt-
ing the model to predict the tail entity e;. Training
examples X and label mask vectors are generated
accordingly, with M %, =1 designating tokens
belonging to the tail entity.

During pre-training, we randomly compile ex-
amples from the same task into a training batch
X = {X} until the maximum sequence length is
reached. The cross-entropy loss for prediction po-
sitions (where M ¢ = 1) is computed as follows:

\X| Z - ) My logp(yil X<i), (1)

Xex xZEX

where y; is the ground truth token, p(-) is the pre-
dicted probability, and Ty = Zi_e ¢ My is the
number of tokens the model is required to predict.
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3.2 Knowledgeable Example Retrieval

Despite having a powerful and knowledgeable
LLM at our disposal, the efficacy of ICL is sig-
nificantly influenced by the selection and ordering
of labeled examples (Brown et al., 2020). Previous
studies (Liu et al., 2022; Lu et al., 2022; Rubin
et al., 2022) have demonstrated that LLMs can au-
tonomously generate suitable text-based prompts,
yet they largely overlook the importance of factual
knowledge from KBs. To address this gap, we in-
troduce a novel Knowledgeable Example Retrieval
(KER) algorithm that utilizes knowledge to select
the most relevant in-context examples. This pro-
cess is illustrated in Figure 4 (middle) and detailed
in Algorithm 1 in Appendix C. Concisely, given
a training set Dy, = {(X!™, 4™, E'™)} and a
testing set Dyg¢ = {(X;gt, E;.gt)}, where X! and
X;gt are input texts, y/™" are labels, and E!™ and
E;gt are the corresponding entity sets, KER’s ob-
jective is to select a subset of training examples as
demonstrations that exhibit high knowledge rele-
vance to the testing set.

A straightforward approach is to retrieve exam-
ples containing entities that cover a higher number
of target examples. We use the Jaccard similarity
to assess the similarity between two examples:

tgt
B 0 B

R A . )
BTUET

d]'ac(iv J ) =
However, since the Jaccard similarities for most ex-
ample pairs are zero, we further employ pre-trained
knowledge embeddings to retrieve training exam-
ples that are semantically similar to the target set.
We compute the average representations e; and
e; of all entities in EI"™ and E;gt, respectively.
The semantic difference is quantified using the Eu-
clidean distance dgenm (7, j) between e; and e;. The
overall knowledge relevance between two exam-
ples is calculated as follows:

djac(i7 ]) + Y
maXX};rnethrn djac(i, k) + ")/

dsem(iaj) )7

maXX;érn €Dirn dsem (’l/, k;)

dX{™, X =a

+(1—a)(l-

3)
where o € [0,1] and v > 0 are tunable hyperpa-
rameters. The sampling weight for each training
example X! is given by:

Xtrn)
S/(Xtrn) — S( 7 , 4
1 ZX;T”EDMH S(X;Tn) ( )

where s(X!™) is computed as the average rele-
vance score to the testing set:

1
s(XIm) =

= d(xirm, Xty
K |Dtgt‘ ( K )

J

&)

tgt
ng E'Dtgt

An example with a higher weight signifies greater
knowledge relevance across all target examples.
Ultimately, we sample K training examples based
on these weights to serve as in-context examples.

3.3 Knowledgeable Prediction Calibration

Following model pre-training and in-context exam-
ple selection, we can proceed to generate predic-
tions for the target example X'9* € D, using the
following equation:

) = =e|X, X!
g argrgeagp(y e| X, X', (6)

where V is a verbalizer that maps label words to
their corresponding classes >. D represents the set
of in-context examples used for prediction. How-
ever, as discussed in Section 2, the frequency of
label words (in classification tasks) or entities (in
question answering tasks) can bias the prediction
probabilities. To mitigate this issue, we utilize the
prior information of label words to refine the pre-
diction for each target example.

Specifically, we select a subset of training data
S from the KQA task and estimate the contextual
prior probability for each candidate label word or
entity v € ) at the output position:

1 R
P(U)%EZP(Z/:U’X% (7)

where X denotes a training example, and P(v) rep-
resents the estimated prior probability of candidate
v. Following this, we discard any label word or en-
tity v whose prior probability falls below a specific
threshold (Hu et al., 2022).

Consequently, we enhance the final output by
applying calibrated prediction:

p(y = v|D, X't

P(v) ®

i = e
Remarks. While most related works (Hu et al.,
2022; Zhao et al., 2021) concentrate on prediction
calibration, our approach distinguishes itself by

SFor classification tasks, V is the set of label words; for
question answering tasks, V is the entire vocabulary.
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leveraging a priori knowledge from a large-scale
corpus to debias outputs. This contrasts with meth-
ods that rely solely on in-domain data or utilize
task-agnostic, content-free inputs (e.g., “N/A”).

4 Experiments

4.1 Implementation Settings and Baselines

For the pre-training corpus, we use Wikipedia
Dumps (2020/03/01)°,  which consists of
25,933,196 sentences. Further, the KB we used
is WikiDataSM (Wang et al., 2021b), which
includes 3, 085, 345 entities and 822 relation types.
By default, we choose GPT-2 (large) with 0.8B
parameters as the backbone. For downstream
tasks, we consider 8 text classification tasks
and 4 question answering tasks. The details of
corpora and downstream benchmarks are shown
in Appendix B. The implementation details of
pre-training, prompting, and prediction can be
found in Appendix C.

We consider the following baselines: 1) In-
Context Learning (ICL) is the vanilla version
proposed by GPT-3. 2) Calibrate Before Use
(CBU) (Zhao et al., 2021) is a typical method
that aims to de-bias the prediction via content-free
prompts. 3) KATE (Liu et al., 2022) uses the CLS
embeddings of a RoBERTa-large model as sen-
tence representations, and retrieves the nearest K
neighbors for each target example as the final in-
context examples. 4) MetalCL (Min et al., 2022a)
improves ICL by meta-learning the objective of
ICL in cross-task settings. 5) SelfSup. (Chen et al.,
2022a) improves ICL by multiple self-supervised
learning tasks. We also choose RoBERTa-large
to perform fully Fine-tuning to demonstrate the
ceiling performance of each task.

4.2 Main Results

Table 1 and Table 2 respectively report the re-
sults over text classification and question answering
tasks in the 8-shot setting. We thus make the follow-
ing observations: 1) Our proposed framework out-
performs strong baselines and achieves substantial
improvements over all benchmarks. Specifically,
compared with ICL, the average result over the text
classification task is improved by 13.70%, which
is larger than that of other baselines. The average
gain over question answering tasks is also more
than 7%, although there is still room for improve-
ment on unseen target domains, likely because they

*https://dumps.wikimedia.org/enwiki/

require more challenging generalization and com-
monsense abilities. 2) Compared with ICL, KER
and KCP make significant contributions to the per-
formance. Particularly, KER and KCP also respec-
tively outperform strong baselines KATE and CBU,
indicating the indispensable merit of factual knowl-
edge at the inference stage. 3) The performance
of KPT exceeds that of meta-learning (MetalCL)
and self-supervised learning (SelfSup.) approaches
by around 4%, which also focus on continual pre-
training. This demonstrates that explicitly injecting
knowledge into LLMs is more effective for ICL,
which is imperative and plays a dominant role. 4)
Our method attains more impressive performance
when combining all of these knowledgeable tech-
niques, highlighting the necessity of factual knowl-
edge in ICL. We provide a detailed analysis in Sec-
tion 4.3. 5) We also evaluate other scales for GPT-2
and OPT in 8-shot settings. Results in Appendix F
show that the improvements are consistent across
different LL.Ms.

4.3 Ablation Study

We further investigate how these proposed knowl-
edgeable techniques contribute to the final perfor-
mance with different combinations. As shown in
Table 3, the results demonstrate that any combi-
nation greatly promotes the overall performance
of vanilla ICL. An interesting observation is that
KPT is particularly important for performance im-
provement, achieving higher scores than KER and
KCP. This indicates that the most effective way to
unleash the power of LLMs is to inject knowledge
into the model parameters. Nonetheless, the com-
bination of KER and KCP also improves ICL by
about 8% for each task, respectively. This suggests
that KER and KCP are critical to ICL because ultra-
large LLMs cannot be continuously pre-trained or
tuned in real-world scenarios to save computational
resources. Furthermore, results from Table 1 to
Table 3 show that our method has significantly im-
proved classification tasks. We believe that the ben-
efits of injecting knowledge are more pronounced
for simple language understanding tasks than for
question answering.

4.4 Further Analysis

Effectiveness of KPT. To investigate what makes
a high performance for KPT, we test the effective-
ness of each knowledgeable self-supervised task.
For a fair comparison, we also choose two base-
lines: 1) None is that we do not use any self-
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SST-2 MRPC MNLI

QNLI

RTE

CB

TREC

AGNews

Baselines Avg.
acc f1 acc acc acc acc acc acc

Full Data

Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 9470  91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 76.18+72 54.46+23 56.85+2.4 5293432 53.94+50 42.50+1.8 51.56+4.1 45.67+6.6 54.26

CBU (Zhao et al., 2021) 82.71+44 63.07+3.9 57.93+2.8 53.19+39 54.87+28 51.34+1.7 54.61+37 55.42+28 59.14

KATE (Liu et al., 2022) 81.33+3.8 58.04+3.9 59.40+24 53.57+35 53.17+27 454821 54.69+28 50.28+34 57.00

MetaICL! (Min et al., 2022a)  87.40+50 6291220 60.22434 55.18+19 57.06:28 49.20+25 56.09£1.8 55.80+24 60.48

SelfSup.t (Chen et al., 2022a)  87.94%30 62.33#20 62.00+22 54.77+18 572726 45.80+25 55.59+25 57.44232 60.39

ket 91.21:29 69.96:0.7 69.59:1.0 60.66:1.2 63.74:42 56.07:38 63.52:55 68.89:57 67.96
only w. KPTf 90.04+3.5 66.65£1.9 67.39+2.6 58.97+3.0 5826433 5543420 60.16£22 59.74+44 64.58
only w. KER 84.05+2.7 59.26+2.5 59.93+1.0 57.23+12 53.79+4.0 51.36+38 55.52+5.1 52.70+3.3 59.23
only w. KPC 85.52+39 64.77+07 63.13+1.2 57.69+24 55.94+12 54.07+28 56.92+27 57.24+55 6191

Table 1: The 8-shot performance (%) on GPT-2 (large) of different learning settings with standard deviations over
text classification benchmarks. Compared with other baselines, our framework achieves consistent improvement.
denotes the method involves parameters update for ICL. “only w.” means we only use one technique in KICT.

Baselines ComQA Quartz SQuAD Quoref Ave.
acc acc em em

Full Data

Fine Tuning (RoBERTa-large) 72.10 76.90 86.50 78.70 78.55

Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 27.93+4.8 54.49+3.5 46.93+3.0 40.31+2.7 4242

CBU (Zhao et al., 2021) 29.88+3.9 55.40+1.8 49.32+4.0 44.05+4.0 44.66

KATE (Liu et al., 2022) 29.02+4.0 55.10+3.9 47.25+34 42.77+3.8 43.54

MetaIlCL! (Min et al., 2022a)  31.16£3.2 55.64+2.9 50.46£2.6 46.72+2.7 46.00

SelfSup.’ (Chen et al., 2022a)  31.32+3.0 54.88+3.0 49.97+2.7 47.504£3.5 4592

KICT' 36.17+1.8 58.11+2.4 54.23+2.6 50.46+3.3 49.74
only w. KPTT 3421443  57.32422 52.779+3.0 49.93x1.9 48.56
only w. KER 29.56+£2.3  55.82+1.2 48.11+2.4 43.58+2.1 4427
only w. KCP 33.60+£3.7 57.77£2.4 51.63+29 46.09+3.1 47.27

Table 2: The 8-shot performance (%) on GPT-2 (large) of different learning settings with standard deviations over

question answering benchmarks.

supervised task, which is the same as vanilla ICL
proposed in (Brown et al., 2020), 2) GPT-2 repre-
sents conventional autoregressive language mod-
eling (ALM) pre-training tasks. As shown in Ta-
ble 4, KPT can make substantial improvements for
ICL. Particularly, all the self-supervised learning
tasks in KPT are complementary for pre-training
and outperform the baseline with or without the
conventional objective of GPT-2. In addition, the
MEP and KQA tasks are most critical for classifi-
cation and question answering, respectively, which
demonstrates that different pre-training objectives
possess different advantages in downstream tasks.

Sample Effectiveness. To investigate the influ-
ence of the number of in-context examples K, we
choose multiple classification and question answer-
ing tasks and vary K from 0, 1, 4, 8 to 16. From
Figure 5, we find that increasing K generally helps
across both classification and question answering

tasks, demonstrating that more in-context exam-
ples may bring more knowledge to better guide the
LLM to make predictions. When K > 8, the per-
formance of the most tasks will decrease, because
the maximum length limit causes information loss.
The suitable value K is set around 8.

Visualization of Selected Examples in KER. In
addition, for explicitly seeing the performance in
semantic space, we obtain the t-SNE (Van der
Maaten and Hinton, 2008) visualization of each
training example over AGNews via averaged repre-
sentations of all corresponding entities. We choose
KATE as our strong baseline, which is also focused
on the example selection. Here, we do not fine-
tune RoBERTa on the training set. Figure 6 demon-
strates that our method can build better semantic
representations toward factual knowledge.

Permutations of In-Context Examples. We also
compare different permutations of these selected
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SST-2 MRPC MNLI RTE

Baselines
acc fl acc acc

AGNews
acc acc acc acc em em

TREC ComQA Quartz SQuAD  Quoref

ICL 76.18+72 54.46+23 56.85+24 53.9445.0
KPT+KER
KPT+KCP

91.04+33
90.65+3.7

67.9343.0
68.44+2.5

68.47+2.9
68.89+3.4

61.30+3.3
62.38+2.3

45.67+6.6

51.56+4.1 27.93+48 54.49+35 46.93+3.0 40.31x2.7

62.18+3.9
63.88+3.5

61.52+3.1
62.12+2.9

35.17+4.0
36.38+2.2

57.64+2.6
58.03+2.0

52.23+3.4
54.17+1.8

50.2043.1
50.18+2.2

KER+KCP 86.45£3.0 64.07+24 66.60+2.9 57.39+3.2

Al (KICT) 91.21+29 69.96:0.7 69.59:1.0 63.74+4.2

58.95+3.6

58.60+3.5 34.26+22 57.88#3.1 52.20+23 47.92+2.7

68.89+5.7

63.52+55 36.17+1.8 58.11+24 54.23+2.6 50.46+3.1

Table 3: The 8-shot performance (%) of different combinations of the knowledgeable modules.

Methods SST-2 AGNews TREC ComQA SQuAD
acce acce acce acce cm
None (ICL)  76.18+72 45.67+6.6 51.56+4.1 27.93+48 46.93+3.0
GPT-2 81.35+3.0 48.72+27 52.36+33 28.61x3.8 47.1413.1
CKPT 90.04:3.5 59.74x44 60.16:2.0 34.21:43 52.79:30
w/o. MEP  84.40+4.0 51.29+39 54.72+3.1 33.01x7.7 52.233+28
w/o. EDG  87.19+29 56.40+4.3 55.91+3.1 31.95+59 50.80+3.9
w/o. KQA 85.30+33 53.03+3.6 53.46+24 30.08+58 49.71+4.6

Table 4: The 8-shot performance (%) of each self-
supervised task. GPT-2 denotes the vanilla objective.

Baselines SST-2 MRPC MNLI

Random 7942427  59.26+2.5 59.93%1.0
Ascending ~ 78.29+2.2  58.05+2.6 59.31%+1.5
Descending  79.61+3.0  58.16£3.0 59.58+1.3

Table 5: The 8-shot averaged results (%) of KICT (only
w. KER) for different permutations.

examples according to the sample weight computed
in Eq. 4. In Table 5, Random means to randomly
choose an order. Ascending and Descending re-
spectively denote that the example order is ascend-
ing or descending by weight. From the results, we
find no tangible relationship between the sampling
weight and order.

Effectiveness of KPC. We finally conduct analy-
sis on prediction calibration. We choose AGNews
and TREC tasks and follow the same settings in
the preliminary experiments (we randomly choose
two label words from different frequency regions).
Results in Figure 7 demonstrate that calibrating the
prediction consistently achieves improvements to
the vanilla approach. In addition, we find that the
prediction results highly depend on the label fre-
quency, which is similar to Figure 3. However, our
KPC still outperforms the strong baseline Calibrate
Before Use (CBU) with arbitrary label frequency,
which only transforms the input into content-free
prompts. It underscores that the prior information
of each label word in KB is non-negligible. In
other words, calibration by the prior information
can alleviate the impact of label frequency.

Text Classification

curacy (%)
S U 1 O
v o v o v

(9] —+— MNLI
< 40- TREC
35- —=— AGNews
—e— TACRED
30-

0 1 4 8 16
Example Number (K)
Question Answering

curacy / E
w w b
‘ QuUueounc

5 25- —— ComQA
O 20 Quartz
—=— SQUuAD
15- —e— Quoref
10 ‘ ‘ ‘ |
0 1 4 8 16

Example Number (K)

Figure 5: GPT-2 (large) sample effectiveness (%)
of KICT (only w. KER) with different values of K.

5 Related Work

5.1 Pre-trained/Large Language Models

Pre-trained Language Models (PLMs) aim to learn
representations from texts and have made sig-
nificant progress in NLP. PLMs can be divided
into three main categories: encoder-only (Devlin
et al., 2019; Liu et al., 2019; He et al., 2021;
Yang et al., 2019; Lan et al., 2020; Zhang et al.,
2022b), decoder-only (Radford et al., 2018; Brown
et al., 2020; Zhang et al., 2022a), and encoder-
decoder (Lewis et al., 2020; Raffel et al., 2020).
To incorporate factual knowledge into PLMs, a
branch of knowledge-enhanced PLMs has been pro-
posed (Zhang et al., 2019; Sun et al., 2020a; Wang
et al., 2021b,a, 2022; Pan et al., 2022; Zhang et al.,
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Figure 6: Visualizations of each AGNews’s training ex-
ample. KATE (left) uses CLS embeddings of RoOBERTa.
Ours (right) utilizes averaged knowledge embeddings.

AGNews TREC
355 ./_. =55 /
2 z
© 50 © 50- /
— —
o o
|9} |9}
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Figure 7: GPT-2 (large) 4-shot performance of calibra-
tion over difference word frequencies.

2022c¢), enabling PLMs to capture rich semantic
knowledge from KBs. Since the introduction of
ChatGPT, a variety of decoder-only LLMs have
been released. Popular open-source LLMs include
LLaMA (Touvron et al., 2023), OPT (Zhang et al.,
2022a), Galactica (Taylor et al., 2022), Pythia (Bi-
derman et al., 2023), among others. Our work
concentrates on decoder-only LLMs and aims to in-
fuse them with factual knowledge to enhance their
ICL performance.

5.2 Prompt Learning

Prompt-based learning aims to add natural lan-
guage prompts to guide PLMs to solve downstream
tasks. A series of works focus on tunable discrete
prompt tuning (Gao et al., 2021; Raffel et al., 2020)
and continuous prompt tuning (Liu et al., 2021b;
Gu et al., 2021; Xu et al., 2023). For LLMs, GPT-
3 (Brown et al., 2020) enables In-Context Learning
(ICL) with a text-based prompt in zero-shot sce-
narios, bypassing parameter updates (Dong et al.,
2023). To explore the factors affecting ICL, pre-
vious works have focused on input-output map-
ping (Min et al., 2022b; Kim et al., 2022), meta-
learning (Chen et al., 2022b; Min et al., 2022a),
prompt engineering (Liu et al., 2022, 2021a), and
prediction calibration (Zhao et al., 2021; Hu et al.,

2022), among others. Recently, the Chain-of-
Thought (CoT) approach has been presented to
leverage reasoning and interpretable information
to guide LLMs in generating reliable responses (Si
et al., 2022; Zhang et al., 2022d; Wei et al., 2022;
Yan et al., 2023). Different from these approaches,
we exploit factual knowledge to further improve
ICL in pre-training, prompting, and prediction
phases.

6 Conclusion

In this paper, we investigate and harness factual
knowledge in ICL, including inherent knowledge
embedded in LLMs, pertinent knowledge derived
from selected training examples, and knowledge
biases affecting predictions. We introduce a novel
Knowledgeable In-Context Tuning (KICT) frame-
work to further enhance ICL performance by com-
prehensively exploiting factual knowledge through-
out the processes of pre-training, prompting, and
prediction. Experiments demonstrate that each in-
troduced technique significantly improves upon
strong baselines across classification and question-
answering tasks. Future work will focuses on 1) ex-
ploring the reasoning capabilities and interpretabil-
ity of knowledge within ICL, and 2) extending our
approach to encoder-decoder models.
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Limitations

This work presents several limitations: 1) It con-
centrates on decoder-only LLMs, as traditional in-
context learning primarily targets decoder-only gen-
eration models such as GPT-2, GPT-3, OPT, etc.
Nevertheless, we envision potential extensions to
encoder-decoder architectures used in tasks such
as translation and conditional generation. 2) Due
to computational resource constraints, we do not
experiment with ultra-large LLMs exceeding 10 bil-
lion parameters. 3) Our investigation centers on fac-
tual knowledge in three specific areas: pre-training,
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prompting, and prediction. We acknowledge that
knowledge may influence additional aspects such
as reasoning and interpretability, and we intend to
explore these in future research.

Ethical Considerations

The contributions of this work are methodologi-
cal, focusing on a Knowledgeable In-Context Tun-
ing (KICT) framework to augment the capabilities
of LLMs with factual knowledge. Nonetheless,
transformer-based models may perpetuate nega-
tive biases, including gender and social biases. As
such, these issues are inherent to our work as well.
We advise caution and recommend addressing po-
tential risks when KICT models are deployed in
real-world applications.
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A Details of Preliminary Experiments

A.1 Details of Destruction Settings

For our preliminary experiments, we selected 8
classification tasks and 4 question-answering tasks.
The specifics of these datasets are detailed in Ap-
pendix B. To explore the influence of factual knowl-
edge, we posit that entities (and their associated
labels in text classification tasks) embody factual
knowledge (Wang et al., 2021b, 2022, 2021a; Sun
et al., 2019; Zhang et al., 2019). We identify all
entities using the open-source TagMe entity linking
tool’ (Ferragina and Scaiella, 2010). In the case
of classification tasks, labels are treated as special
types of entities. We follow the methodologies of
Min et al. (2022b) and Kim et al. (2022) to create
various destruction settings that either remove or
replace entities (and labels), thereby demonstrat-
ing the impact of factual knowledge. Additionally,
for each task, we randomly select K = 8 exam-
ples as in-context examples and concatenate them
with each test example to form an input sequence,
capped at a maximum sequence length of 256 to-
kens. With 5 different random seeds (i.e., 12, 24,
42,90, and 100), each dataset yields 5 unique test
results for a given LLM. Consequently, for each
LLM, we collate 8 x 5 = 40 results for classifica-
tion and 4 x 5 = 20 results for question-answering
tasks. The aggregated results are presented in Fig-
ure 2, underscoring factual knowledge as a pivotal
component in the performance of ICL.

"https://sobigdata.d4science.org/
group/tagme

A.2 Details of Frequency Settings

In our preliminary assessment of label word
frequency’s impact, we focused on two well-
established tasks: AGNews and TREC. Selecting
K = 4 examples from the training corpus to con-
struct the in-context prompt, we then used the re-
maining training examples as targets to generate
predictions. Development or test sets were not
utilized due to their insufficient scale for demon-
strating frequency effects clearly. During predic-
tion, we recorded the top-4 words with the highest
prediction probabilities, facilitating the computa-
tion of frequency statistics for each label word.
Figure 8 depicts the top-8 label word frequency
statistics for each AGNews category. To exam-
ine frequency influences, we randomly selected
two label words per frequency range (e.g., (0, 200],
(200, 400], (400, 600], and > 600) for predictions.
For instance, in AGNews, labels like “teams” and
“groups” could be chosen from the > 600 frequency
region to represent the “sports” category. Accord-
ingly, we generated 2* = 16 and 2% = 64 permu-
tations for AGNews and TREC, respectively. We
report the average results using GPT-2 (urge) with
1.5B parameters and present the findings in box
plot format in Figure 3.

A.3 Analysis of Knowledge Relevance in
In-Context Examples

Our preliminary experiments indicated that factual
knowledge in selected in-context examples is cru-
cial for ICL. To substantiate this, we conducted
further analyses on two datasets, SST-2 and TREC.
Employing our KER technique, we calculated a
knowledge relevance score for each training exam-
ple. For each defined score interval (i.e., (0, 15],
(15, 30], (30,45], (45,60], (60, 75]), we sampled
K = 4 examples to compose the in-context prompt.
We then assessed the average performance across
all 4! = 24 permutations for each interval and
visualized the results in Figure 9. The findings cor-
roborated the significance of selecting examples
with high knowledge relevance for enhancing ICL
performance.

B Details of the Corpus and Downstream
Benchmarks
B.1 Corpora and Knowledge Base

We propose knowledgeable pre-training (KPT),
which is similar to the current flourishing research
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Figure 9: The 4-shot performance (%) with different
knowledge relevance over SST-2 and TREC.

of knowledge-enhanced pre-trained language mod-
els (KEPLMs) (Liu et al., 2020; Sun et al., 2019,
2020b; Wang et al., 2022). Different from them,
we focus on auto-regressive PLMs, such as GPT-
2. We collect training corpora from Wikipedia
(2020/03/01)3, and use WikiExtractor® to process
the pre-training data. The knowledge base (KB)
G we choose is WikiData5SM (Wang et al., 2021b),
which is an urge-large structural data source based
on Wikipedia. The entity linking toolkit we used
is TagMe. In total, we have 3,085,345 entities and
822 relation types in G, and 25,933,196 training
sentences.

As mentioned above, KPT consists of three self-

dhttps://dumps.wikimedia.org/enwiki/.
*https://github.com/attardi/
wikiextractor.

training tasks, i.e., masked entity prediction, entity
description generation, and knowledgeable ques-
tion answering. For each task, we randomly select
multiple sentences to form a training instance until
reaching the maximum sequence length (i.e., 2048).
Finally, we have sampled 100k training instances
for each task. In average, we have 8 examples for
each instance.

B.2 Downstream Task Datasets

To evaluate the effectiveness of our framework, we
choose 8 text classification tasks and 4 question
answering tasks. For the text classification, we di-
rectly choose 8 tasks from (Gao et al., 2021; Zhao
etal., 2021). All the classification tasks involve sen-
timent analysis, natural language inference (NLI),
question classification, and topic classification.
For the question answering tasks, we choose four
widely used tasks, including CommonsenseQA
(ComQA) (Talmor et al., 2019), Quartz (Tafjord
et al., 2019), SQuAD (Rajpurkar et al., 2018) and
Quoref (Dasigi et al., 2019), where ComQA and
Quartz are multi-choice QA, SQuAD and Quoref
are extractive QA. The statistics of each dataset are
shown in Table 6.

C Implementation Details

C.1 Pre-training Details

In the pre-training stage, we choose different scales
of GPT-2 (0.1B, 0.3B, 0.8B, 1.5B) (Brown et al.,
2020) and OPT (Zhang et al., 2022a) (2.7B, 6.7B)
from HuggingFace!? as the underlying LLMs. We
do not use larger GPT-3 models because of the
computation resource limitations. Because all three
kinds of pre-training tasks share the same format,
we can directly mix up all the pre-training examples
to form a cross-task pre-training paradigm. We
find that it is suitable for the LLLM to learn cross-
task knowledge. We train our model by AdamW
algorithm with 5 = 0.9, 2 = 0.98. The learning
rate is set as le-5 with a warm-up rate 0.1. We
also leverage dropout and regularization strategies
to avoid over-fitting. The models are trained on 8
NVIDIA A100-80G GPUs.

C.2 Prompting Details

We describe the implementation details with knowl-
edgeable example retrieval (KER). Given a training

Yhttps://huggingface.co/transformers/
index.html.
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Category Dataset #Class #Train  #Test Type Labels (classification tasks)

SST-2 2 6,920 872 sentiment positive, negative
MRPC 2 3,668 408 paraphrase equivalent, not_equivalent
MNLI 3 392,702 9,815 NLI entailment, neutral, contradiction
Text QNLI 2 104,743 5,463 NLI entailment, not_entailment
Classification RTE 2 2,490 277 NLI entailment, not_entailment
CB 3 250 57 NLI entailment, neutral, contradiction
TREC 6 5,452 500 question cls. abbr., entity, description, human, loc., num.
AGNews 4 120,000 7,600 topic cls. world, sports, business, technology
ComQA - 9,741 1,221 multi-choice -
Question Quartz - 2,696 384  multi-choice -
Answering SQuAD - 87,599 10,570 extractive QA -
Quoref - 19,399 2,418 extractive QA -

Table 6: The statistics of multiple text classification and question answering datasets. Since the original test data is
unavailable, we use the development sets as our test sets.

dataset and a testing set, we aim to choose K exam-
ples from the training set which have a high knowl-
edge relevant to all testing examples. To reach
this goal, we utilize both Jaccard similarity and
Euclidean distance in terms of pre-trained knowl-
edge embeddings. For pre-trained knowledge em-  Algorithm 1 Knowledgeable Example Retrieval
beddings, we choose the ConVE (Dettmers et al.,
2018) algorithm to pre-train over wikidataSm and
obtain the embeddings of entities and relations. We
set its dimension as 768, the negative sampling size
as 64, the batch size as 128 and the learning rate as
0.001. Finally, we only store the embeddings of all

Require: Training set Dy,.,, Target (testing) set
D;4¢, number of in-context examples K.
1: Randomly sampling a subset D;,.,, from Dy,,;
2: for each target example (X;gt) € Dyg do

3:  Extract entities E;g " from this target exam-

the entities. The KER algorithm for the prompting ple; . trn trm

is shown in Algorithm 1, 4: fo/r each training example (X", y/"") €
Dy,,, do

C.3 Prediction Details 5: Extract entities E!™ from this training

We first provide the details of the prompt formats example; o o

and label mapping rules. Specifically, for the classi- é: CaICI.Jlate Ja?card 51m11ar1ty ‘.ij ac(i, j) and

fication task, we need to define a template and label en]jl;ﬁl;dean distance dsem (i 7);

mapping to guide the model to generate results to-
ward pre-defined classes. The prompt formats and
label words are shown in Table 8. For the question
answering task, we only need to define the template
format, shown in Table 9.

During the prediction, we calibrate the predic-
tion probability. We thus provide the implementa-
tion details. We obtain a subset of training corpora
from the KQA pre-training task, which consists of
many question answer pairs. Thus, for each ques-
tion, we can generate an answer (may be an entity
or a label word) at the output position, and obtain
the contextualized prior via Eq. 7. The value P(v)
means the prior information of the generated en-
tity or label word. Intuitively, if the value P(v) is
higher, the entity or label word v is more likely

8:  Conditioning on the target example X]t.gt,
obtain the knowledge relevance score
d(xtr, X;gt) for the training example
Xl'trn;

9: end for

10: Calculate the final sampling weight s'(X!"™)
for each training example X/ in Eq. 4;

11: Sampling K training examples via the weight
Sl ( X@prn);

12: return The selected K training examples.
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Figure 11: The 8-shot performance (%) of GPT-2 (large)
with different o over text classification and question
answering tasks.

to be generated. We can save these prior values
before prediction for downstream tasks. During
the prediction, we can use the prior information of
each pre-defined label word or entity to calibrate
the prediction probability via Eq. 8.

D Analysis of Settings of Model Variants

We conduct some detailed analysis of our proposed
technique.

Analysis of Pre-training Efficiency. To show
the efficiency of pre-training, we choose GPT-2

Hyper-parameter Value

Batch Size {2,4,8, 16, 32,64}

Seed {12, 24, 42, 90, 100}

K {0,1,4,8, 16}

« {0.1,0.3,0.5,0.7, 0.9}

~ {0.001, 0.01, 0.05, 0.1, 0.5, 1.0}

Table 7: The searching scope for each hyper-parameter.

(large) draw the pre-training loss for each self-
supervised learning task. From Figure 10, we can
see that as the training process proceeds, each self-
supervised learning task has reached the conver-
gence of the model through the entire pre-training
process.

Effectiveness of Hyper-parameters. In KICT,
we investigate the effectiveness of the hyper-
parameter « in KER, which aims to balance the
relevance scores between Jaccard similarity and
Euclidean distance. Results shown in Figure 11
demonstrate that the hyper-parameter « is key to
the performance. We can see that the suitable value
is around 0.3.

Effectiveness of the Template. We believe that
the model performances rely on the format of the
template, which has been investigated in (Liu et al.,
2022; Min et al., 2022b). We choose some other
templates for evaluation. For example, when we
change the prefix string (e.g., “Question:”, “An-
swer:”) to others (e.g., “Q:”, “A:”), the perfor-
mance improvement of KICT is consistent. In ad-
dition, we also find that the text split character “
\n” between each sentence or example is impor-
tant to support the generation, which is also found
in (Dong et al., 2023; Andrew and Gao, 2007; Kim
et al., 2022; Si et al., 2022).
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Task Prompt Label Words
SST-2 Review: This movie is amazing! Positive, Nega-
Sentiment: Positive tive
Review: Horrific movie, don’t see it.

Sentiment:

MRPC  Whether the two questions are similar? Yes, No
Question 1: How much is this book? Question 2: How many books?

Output: No
Question 1: Do you know the reason? Question 2: What’s the reason?
Output:

MNLI Is entailment, neutral, or contradiction between two texts? entailment, neu-
Text 1: We sought to identify practices within the past 5 years. Text 2: We want to identify tTal, contradic-
practices commonly used by agencies in the last 5 years. tion
Output: entailment
Text 1: yeah well you're a student right Text 2: Well you’re a mechanics student right?

Output:

QNLI Whether the answer is entailed to the question? Yes, No
Text 1: In what year did the university first see a drop in applications? Text2: In the early
1950s, student applications declined as a result of increasing crime and - - -

Output: Yes
Textl: When did Tesla move to Gospic? Text2: Tesla was the fourth of five children.
Output:

RTE Others argue that Mr. Sharon should have negotiated the Gaza pullout - both to obtain at  True, False
least some written promises of - - -

Question: Mr. Abbas is a member of the Palestinian family. True or False?
Answer: False

The program will include Falla’s "Night in the Gardens of Spain," Ravel’s Piano - - -
Question: Beatrice and Benedict is an overture by Berlioz. True or False?

Answer:

CB But he ended up eating it himself. I was reluctant to kiss my mother, afraid that somehow  True, False,
her weakness and unhappiness would infect me. - - - Neither
Question: her life and spirit could stimulate her mother. True, False, or Neither?

Answer: Neither

Valence the void-brain, Valence the virtuous valet. Why couldn’t the figger choose his own
portion of titanic anatomy to shaft? Did he think he was helping?

Question: Valence was helping. True, False, or Neither?

Answer:

TREC Classify the questions based on whether their answer type is a Number, Location, Person, Number, Lo-
Description, Entity, or Abbreviation. cation, Person,
Question: How did serfdom develop in and then leave Russia? Des,cnpuon’ .

. ‘s Entity, Abbrevi-
Answer Type: Description i
ation
Question: When was Ozzy Osbourne born?
Answer Type:
AGNews Article: USATODAY.com - Retail sales bounced back a bit in July, and new claims for ~ World, Sports,

jobless benefits fell last week, the government said Thursday, indicating - - -
Answer: Business

Article: New hard-drive based devices feature color screens, support for WMP 10.
Answer:

Business, Tech-
nology

Table 8: The prompts used for text classification. We show one training example per task for illustration purposes.

The right column shows the label words (aiming to map the word to the original label class).
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Task Prompt

ComQA  Answer the question through multiple-choice.

Question: When people want to watch a new move, the often go see it at the? (A) town (B) conference (C)
bathroom (D) theater (E) train station
Answer: theater

Question: Where is known to always have snow? (A) africa (B) north pole (C) roof (D) canada (E) surface
of earth north pole
Answer:

Quartz Answer the question through multiple-choice.

Question: Eric pushes an electron closer to the nucleus of an atom. The electron energy.As you go
farther from the nucleus of an atom, the electron levels have more and more energy. (A) loses (B) gains
Answer: gains

Question: When something is very lightweight what does it need to move?Objects with greater mass have
greater inertia. (A) more inertia (B) less inertia
Answer:

SQuAD  Read the question and find an answer in the context.

Question: Where was the first figure skating championship held?

Context: The tourism industry began in the early 19th century when foreigners visited the Alps, traveled to
the bases of the mountains to enjoy the scenery, and stayed at the spa-resorts. Large hotels were built during
the Belle Epoque; cog-railways, built early in the 20th century, brought tourists to ever higher elevations,
with the Jungfraubahn terminating at the Jungfraujoch, well above the eternal snow-line, after going through
a tunnel in Eiger. During this period winter sports were slowly introduced: in 1882 the first figure skating
championship was held in St. Moritz, and downhill skiing became a popular sport with English visitors
early in the 20th century, as the first ski-lift was installed in 1908 above Grindelwald.

Answer: St. Moritz

Question: What are some examples of classical violinists from Portugal?

Context: In the classical music domain, Portugal is represented by names as the pianists Artur Pizarro,
Maria Jodo Pires, Sequeira Costa, the violinists Carlos Damas, Gerardo Ribeiro and in the past by the
great cellist Guilhermina Suggia. Notable composers include José Vianna da Motta, Carlos Seixas, Jodo
Domingos Bomtempo, Jodo de Sousa Carvalho, Luis de Freitas Branco and his student Joly Braga Santos,
Fernando Lopes-Graga, Emmanuel Nunes and Sérgio Azevedo. Similarly, contemporary composers such as
Nuno Malo and Miguel d’Oliveira have achieved some international success writing original music for film
and television.

Answer:

Quoref  Read the question and find an answer in the context.

Question: What’s the name of the person whose birth causes Sarah to die?

Context: Jack and Sarah are expecting a baby together, but a complication during the birth leads to the death
of Sarah. Jack, grief-stricken, goes on an alcoholic bender, leaving his daughter to be taken care of by his
parents and Sarah’s mother, until they decide to take drastic action: they return the baby to Jack whilst he is
asleep, leaving him to take care of it. - - -

Answer: Sarah

Question: What is the first name of the person the actor believes is a little too odd?

Context: When a British secret agent is murdered in the line of duty, agent Karen Bentley inherits the
mission from her partner. The mission is to deliver a flight plan for a hundred American bomber planes to a
British agent in Chicago. The plans are hidden in a small medallion of a scorpion that Karen wears. - - -
Answer:

Table 9: The prompts used for question answering. We show one training example per task for illustration purposes.

3278



SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc fl acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 9470  91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 66.58+4.7 44.73+25 49.80x29 46.33:22 45.70+38 36.92:23 44.38x26 40.53+4.0 46.87
CBU (Zhao et al., 2021) 74.19+4.1 48.88+33 51.10x25 48.39s32 40.07+3.0 39.26:2.8 47.94x22 43.28:22 49.14
KATE (Liu et al., 2022) 72.38+29 46.38+32 49.15+3.0 47.28+28 46.30x2.6 41.48:2.1 47.80+22 43.83+3.1 49.95

MetalCLT (Min et al., 2022a)  77.20+3.6 51.21x25 5329430 49.42+22 48.33:20 40.18x1.9 49.68+28 47.35:29 52.08
SelfSup.f (Chen etal., 2022a) 78.94+30 52.13+2.0 52.70+22 48.29+18 49.27+26 41.80+2.5 48.59:25 47.39:32 52.39

KICTT 82.18+3.2 54.19+3.7 54.85:23 50.93:1.9 50.13:2.2 43.89:28 51.38:£25 51.20£3.0 54.90

Table 10: The 8-shot performance (%) on GPT-2 (small) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.

SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc f1 acc acc acc acc acc acc

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 71.39+32  49.60+2.8 53.90x24 50.04£32 51.18+4.1 39.33:2.8 49.20+2.1 43.75+3.6 51.05
CBU (Zhao et al., 2021) 77.71+38 55.48+3.1 55.41x22 51.10£3.0 47.53x28 48.11£2.7 51.52+27 53.27+24 55.02
KATE (Liu et al., 2022) 75.32+3.1 53.80+3.1 48.88+3.4 50.14+25 45.82+29 47.05:£24 50.25+28 51.93+34 52.89

MetalCLT (Min et al., 2022a)  80.1623.0 61.3322.0 56.1243.1 54.24+29 54.93:29 46.5022.9 5322428 5336224 57.48
SelfSup.f (Chen et al., 2022a)  81.62430 58.43:32 59.53:26 51.70:38 54.33x2.6 43.48435 5346126 53.73:3.1 57.04

KICTT 89.10+3.9 66.44+2.7 64.85+3.0 57.81+32 61.02+4.0 53.91:23 60.34:2.0 61.77+3.3 64.41

Table 11: The 8-shot performance (%) on GPT-2 (medium) of different learning settings with standard deviations
over text classification benchmarks. ' denotes the method involves parameters update for ICL.

E Details of the Grid Search

For the downstream task inference, the searching
scope of each model hyper-parameter is shown in
Table 7.

F Performance on Different LLMs

To show that our method is general and can be ap-
plied to other similar models, we choose other scale
sizes of GPT-2 and OPT to show the effectiveness
of our KICT. More other experiments results are
shown from Table 10 to Table 17.
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SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc fl acc acc acc acc acc acc

Avg.

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 9470  91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 78.98+7.2  56.36+23 58.25+24 55.03s£32 55.01+5.0 44.04:1.8 53.29+4.1 47.33:6.6 56.04
CBU (Zhao et al., 2021) 83.31x44 65.17+39 58.13+2.8 55.59+3.9 559728 53.14x1.7 56.29+37 57.89+2.8 60.69
KATE (Liu et al., 2022) 82.55+38 59.43+39 61.20+24 55.37+35 55.57+27 482721 56.11x28 53.78+34 59.04

MetalCL! (Min et al., 2022a)  88.80+5.0 64.22+2.0 62.39+34 57.34x19 59.18+28 504625 57.90:1.8 57.13:24 62.18
SelfSup.t (Chen et al., 2022a)  88.55+3.0 64.24420 63.42+22 55.70+18 58.93+26 48.08+25 58.01:25 5828232 61.90

- KICTY 92.18+2.9 71.32+0.7 71.2321.0 62.89:1.2 66.10+4.2 58.33:3.8 64.90:55 69.27+5.7 69.53

Table 12: The 8-shot performance (%) on GPT-2 (urge) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.

SST-2 MRPC MNLI QNLI RTE CB TREC  AGNews

Baselines
acc f1 acc acc acc acc acc acc

Avg.

Full Data
Fine Tuning (RoBERTa-large) 95.00 91.40 89.80 93.30 80.90 90.50 97.40 94.70 91.63

Few-shot Labeled Data (8-shot)

ICL (Brown et al., 2020) 794372 56.72+23 59.28+24 55.37£32 56.01+50 44.48:1.8 54.10x4.1 47.95+6.6 56.67
CBU (Zhao et al., 2021) 83.77+44 65.38+39 58.49+28 55.88+39 56.26+2.8 53.89+1.7 56.37+3.7 58.20x28 61.03
KATE (Liu et al., 2022) 83.18+3.8 59.83+39 62.40+24 55.87+35 55.81+27 48.83x2.1 56.98+28 54.32+34 59.65

MetalCLT (Min et al., 2022a)  90.03250 64.7222.0 62.99+34 57.94x19 59.81:28 51.29+25 58.50£1.8 58.12:24 62.93
SelfSup.f (Chen et al., 2022a)  88.59+30 64.2422.0 64.42+22 56.60:18 59.22:2.6 49.58+25 59.33:25 59.48:32 62.77

KICTT 92.38+2.9 71.92+0.7 71.83+1.0 63.21x1.2 66.83+4.2 58.70+3.8 65.38+55 70.42+5.7 70.08

Table 13: The 8-shot performance (%) on OPT (large) of different learning settings with standard deviations over
text classification benchmarks. T denotes the method involves parameters update for ICL.

ComQA Quartz  SQuAD  Quoref ComQA Quartz  SQuAD  Quoref

Baselines Avg. Baselines Avg.
acc acc em em acc acc em em

Full Data Full Data

Fine Tuning (RoBERTa-large) 72.10 76.90 86.50 78.70 78.55 Fine Tuning (RoBERTa-large) 72.10 76.90 86.50 78.70 78.55
Few Labeled Data (8-shot) Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 23.70+3.7 49.20x19 43.10:34 37.30£30 38.34 ICL (Brown et al., 2020) 29.15+24 55.78+3.1 49.12:3.1 4211227 44.04
CBU (Zhao et al., 2021) 26.37+3.1 5290228 46.88+2.0 41.38+29 41.89 CBU (Zhao et al., 2021) 31.5843.9 57.01x2.6 51.28+28 45.70+44 46.39
KATE (Liu et al., 2022) 26.89+32 52.88+3.1 46.93:37 41.35:28 42.01 KATE (Liu et al., 2022) 31.18+4.1  56.70+3.0 49.13:34 4454133 4539
MetalCLT (Min etal., 2022a) ~ 27.4082.7 52.74:33 46.63x29 425130 42.32 MetaICL! (Min et al., 2022a) ~ 32.16832 57.64+26 53.2623.1 489129 47.99
SelfSup.’ (Chen et al., 2022a) 27.33:3.1 5291231 469729 427132 42.48 SelfSup.” (Chen et al., 2022a) 3344232 56.18+3.5 51.90:27 49.10:3.1 47.66

CKICTT T 2878:26 53.10:29 47.72:23 4388122 4337 CKICTT T 37.05:28  59.35:24 55.08:29 53.18:32 5117

Table 14: The 8-shot performance (%) on GPT-2 (small)  Table 16: The 8-shot performance (%) on GPT-2 (urge)
of different learning settings with standard deviations  of different learning settings with standard deviations
over question answering benchmarks. over question answering benchmarks.

ComQA Quartz  SQuAD  Quoref ComQA Quartz  SQuAD  Quoref

Baselines Avg. Baselines Avg.
acc acc em em acc acc em em

Full Data Full Data

Fine Tuning (RoBERTa-large) ~ 72.10 76.90 86.50 7870  78.55 Fine Tuning (RoBERTa-large) ~ 72.10 76.90 86.50 7870  78.55
Few Labeled Data (8-shot) Few Labeled Data (8-shot)

ICL (Brown et al., 2020) 25.38+3.1 52.10#32 45.58:33 38.47+27 40.38 ICL (Brown et al., 2020) 3042422 56.19+32 48.73:3.0 44.18+3.7 44.88
CBU (Zhao et al., 2021) 2840432 53.64x2.6 47.81:40 432022 42.68 CBU (Zhao et al., 2021) 32.16£2.7 58.02+2.8 53.11x27 47.35:2.0 47.66
KATE (Liu et al., 2022) 28.38+3.1 54.26+33 46.70+3.7 41.98+4.1 42.83 KATE (Liu et al., 2022) 33.3243.6 58.90+29 50.65:24 46.12:35 47.25
MetalCLT (Min etal., 2022a)  29.67+2.9 54.37:25 48.79+24 45.1123.1 44.49 MetaICL! (Min et al., 2022a)  33.96:34 58.64x24 54.11x24 48.12:27 48.71
SelfSup.’ (Chen et al., 2022a)  29.36:3.0 54.10:22 48.47+27 44.0623.1 44.00 SelfSup.” (Chen et al., 2022a)  34.42+3.0 58.12¢30 54.92:27 49.53:18 49.25

CKICTT 348130 56.38:29 5118228 46.00:35 47.09 CKICTT T 3922028 6171224 59.67:2.1 54.40:31 5375

Table 15: The 8-shot performance (%) on GPT-2  Table 17: The 8-shot performance (%) on OPT (large)
(medium) of different learning settings with standard  of different learning settings with standard deviations
deviations over question answering benchmarks. over question answering benchmarks.
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