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Abstract

Given a sentence and a particular aspect term,
aspect-based sentiment analysis (ABSA) aims
to predict the sentiment polarity towards this
aspect term, which provides fine-grained anal-
ysis on sentiment understanding and it has at-
tracted much attention in recent years. In order
to achieve a good performance on ABSA, it
is important for a model to appropriately en-
code contextual information, especially iden-
tifying salient features and eliminating noise
in the context. To make incorrect predictions,
most existing approaches employ powerful text
encoders to locate important context features,
as well as noises that mislead ABSA models.
These approaches determine the noise in the
text for ABSA by assigning low weights to con-
text features or directly removing them from
model input, which runs the risk of computing
wrong weights or eliminating important con-
text information. In this paper, we propose to
improve ABSA with context denoising, where
three types of word-level information are re-
garded as noise, namely, lexicographic noise,
bag-of-words noise, and syntax noise. We uti-
lize diffusion networks to perform the denois-
ing process to gradually eliminate them so as
to better predict sentiment polarities for given
aspect terms. Our approach uses task-specific
noise rather than the standard stochastic Gaus-
sian noise in the diffusion networks. The ex-
perimental results on five widely used ABSA
datasets demonstrate the validity and effective-
ness of our approach.1

1 Introduction

Aspect-based sentiment analysis (ABSA) predicts
sentiment polarity of an aspect term in a sentence
on the fine-grained level. For example, the sen-
timents for “environment” and “bar service” in
the sentence in Figure 1 are positive and negative,

†Corresponding author.
1The code and relevant resources used in the paper are

available at https://github.com/synlp/ASA-CD.

Figure 1: An example of aspect-based sentiment anal-
ysis, where the sentiment polarities of aspect terms “
environment” and “bar service” are positive and nega-
tive, respectively. Herein, “terrible” serves as context
noise in predicting the sentiment of “environment”.

respectively, and aspect-based sentiments can be
different from that of the entire sentence (i.e., nega-
tive). Identifying sentiment for aspects is important
in many real-world applications, such as analyz-
ing the product review of users and monitoring the
opinion changes on social media, and the task has
attracted much attention in recent years (Song et al.,
2019; Huang and Carley, 2019; Xu et al., 2020;
Tian et al., 2021; Yu et al., 2021b; Liang et al.,
2022; Qin et al., 2022; Yu et al., 2023; Mukherjee
et al., 2023; Bao et al., 2023b).

To perform well on ABSA, a system needs to
have a good representation of the context of a given
aspect term and be able to identify salient features
that are important in predicting the sentiment of the
aspect term. Many existing studies use advanced
encoders (e.g., BiLSTM and Transformer (Vaswani
et al., 2017)) to capture contextual information for
the task and achieve good performance (Liang et al.,
2019; Tang et al., 2020; Chen et al., 2020; Zhang
et al., 2021; Cao et al., 2022; Varia et al., 2023;
Wang et al., 2023). Some studies incorporate ex-
ternal knowledge, such as lexicon, chunks, and
syntactic information (He et al., 2018; Huang and
Carley, 2019; Zhang et al., 2019; Wang et al., 2020;
Liang et al., 2021; Chen et al., 2022; Zhang et al.,
2023a; Ma et al., 2023) to further improve model
performance.

These studies generally extract important contex-
tual information from intrinsic or external knowl-
edge and use them as essential hints to predict sen-
timent polarities and they may suffer from noise

https://github.com/synlp/ASA-CD


Figure 2: An overview of our approach for ABSA. The left part shows the input encoding process to extract aspect
representation (denoted as hA) and sentence representation (denoted as hX ); the center is the proposed noise word
extraction (highlighted in the yellow background) and the diffusion networks (highlighted in the green background).
The right part presents the MLP decoder to predict the sentiment label. An example input of the context denoising
process and the expected noise words (under the syntax noise setting) are provided for better illustration. X and A
are the input sentence and aspect term, respectively; u0 and ut are the initial and t-th step representation of the
(sentence, aspect term, sentiment) triple in the noising process, respectively; û0 and ût are the initial and t-th step
representation of the (sentence, aspect term, sentiment) triple in the denoising process, respectively; n is the noise
vector; oy is obtained by passing the last vector of û0 through a fully connected layer.

introduced by the knowledge extraction process.
More importantly, these studies do not explicitly
identify and eliminate redundant and interfering in-
formation (noise) for ABSA from the input before
predicting the sentiment. E.g., in Figure 1 while
“terrible” is a good indicator of the polarity of the
aspect term “bar service”, it is a noise word for
the aspect term “environment”. The noise word
introduces unimportant information that confuses
an ABSA model when it tries to predict the sen-
timent. If the unimportant noise information is
identified and removed from the context, it would
be easier for an ABSA model to handle the task.
Therefore, we believe that denoising the context
of aspect terms has the potential to improve the
performance of ABSA systems.

In this paper, we propose an approach to im-
prove ABSA through diffusion networks, which
consists of forward noising and backward denois-
ing processes2. Herein, we propose to use task-
specific noises associated with unimportant words
extracted from the context of the running text for
ABSA, rather than the standard stochastic Gaus-
sian noise in the forward pass. We consider three
types of noises, namely, lexicographic noise, bag-
of-words noise, and syntax noise, in extracting
the noise words. In the denoising process, our

2The term “denoising” in the diffusion networks refers
to the process of eliminating noise from a noise vector (e.g.,
the stochastic Gaussian noise vector in the standard diffusion
networks) to reconstruct the original vector.

approach starts from a noise vector, gradually elim-
inates the noise from it, and predicts the sentiment
polarity. Through this process, our approach dis-
tinguishes the noises and eliminates their effect
on ABSA in predicting the sentiment, which al-
lows our approach to focus on important features
and thus improve model performance. We evaluate
our approach on five widely used English ABSA
datasets, where our approach outperforms strong
baselines and achieves state-of-the-art results.

2 The Approach

In general, ABSA is performed as a classification
task on sentence-aspect pairs (Ma et al., 2017; Tang
et al., 2019; Qin et al., 2022). In this paper, we
follow the encoding-decoding paradigm with the
enhancement of diffusion networks, and the archi-
tecture of our approach is illustrated in Figure 2. In
the diffusion networks, the noise representation is
based on a set of noise words V extracted from the
input sentence. Thus, our approach for ABSA is
formulated by

ŷ = f(X ,A,V) (1)

where X is the input text, A = a1 · · · am · · · aM
denotes the aspect term with M words (herein, A is
the sub-string of X ), and ŷ is the sentiment polarity
to the aspect term. In this section, we will introduce
first the encoding process for X and A, then the
ways to extract different types of noise words, and



Figure 3: Illustrations of different types of noise words extracted from an example sentence and aspect term pair,
where the aspect term is highlighted in yellow background. The context window is represented in a red box and the
first-order dependencies with respect to the aspect term are represented in blue.

finally the proposed diffusion networks to address
noise and predict the sentiment label ŷ.

2.1 Input Encoding

The encoding process aims to model the context
information of the input and extracts the representa-
tions of X and A, which are used in the following
process to predict the sentiment label ŷ. Specifi-
cally, we follow the convention in existing studies
to concatenate X and A with some special tokens
(e.g., “[CLS]” and “[SEP]”) to mark the bound-
aries of them, to form a new input word sequence,
namely, “[CLS]X [SEP]A [SEP]”. Next, we feed
the new input word sequence into a text encoder
(e.g., BERT) and obtain the hidden vectors for each
input word, where the hidden vector for “[CLS]”
and the m-th word in the aspect term are denoted
as h and hm, respectively. We regard the result-
ing hX as the representation of the sentence and
compute the average of hm (1 ≤ m ≤ M ) by

hA =
1

M

M∑
m=1

hm (2)

where hA denotes the representation of the aspect
term that is prepared to be used in the proposed
diffusion networks to predict the sentiment polarity.

2.2 Noise Extraction

Different from standard diffusion models that lever-
age stochastic Gaussian noise in training and in-
ference, our approach utilizes task-specific noises
for ABSA derived from contexts. We associate the
noise with unimportant words in the sentence for
ABSA. We compare three types of noise, namely,
lexicographic noise based on a static lexicon, bag-
of-words noise extracted from an aspect-centric
window, and syntactic noise derived from the sen-
tence structure, which are explained below with the
examples in Figure 3.

Lexicographic Noise Since stop words occur fre-
quently but usually do not carry significant mean-
ing or contribute to the understanding of the text,
we use an existing stop word lexicon (e.g., stop
words in NLTK Toolkit (Bird and Loper, 2004))
to extract noise words. Specifically, we find all
words in the sentence that appear in the stop word
lexicon and add them to the set of noise words V .
As shown in Figure 3 (a), the noise words extracted
from the sentence are “is”, “the”, and “but”.

Bag-of-Words Noise Consider words that are dis-
tant from the aspect term generally contain unim-
portant contextual information that fails to con-
tribute to ABSA, we select words that are outside
the context window of the aspect term as the noise
words. That is, we select words whose word-based
distance to the aspect term is greater than the con-
text window size c. For example, as illustrated
in Figure 3 (b), when c = 2, the context window
covers the words from “but” to “terrible” and thus
the noise words for the aspect term “bar service”
are the rest of the words in the sentence, namely,
“environment”, “is”, and “OK”.

Syntax Noise Bag-of-words noise words are ex-
tracted according to the surface word order of the
sentence, which may include important words that
are distant from the aspect term and thus lead to
inferior results. Therefore, one should also con-
sider the structure of the sentence when extracting
the noise words. Among different types of syntax
structures, the dependency tree of the input sen-
tence constructs connections among words in the
sentence and is used in many existing studies to
identify the important and unimportant contexts for
ABSA. Therefore, we use the dependency tree of
the text to extract noise words for the syntax level.

Specifically, we use an off-the-shelf depen-
dency parser (e.g., the parser in Stanford CoreNLP
Toolkit (Manning et al., 2014)) to produce the de-



pendency tree of X . Because words close to the
aspect term A in the dependency tree generally
convey important contextual features for ABSA,
we locate words that are within different orders of
dependencies of the aspect term3 and regard the
rest words in X as the noise words, which form the
set V . For example, for the aspect term “bar ser-
vice” in the example in Figure 3 (c), words within
the first-order dependencies are “bar”, “terrible”.
Therefore, the noise words are the rest of the words
in X , including “environment”, “is”, “OK”, “but”,
“the”, and “is”. Through this process, V contains
words that are syntactically distant from the aspect
term and thus serve as noise to be eliminated when
predicting the sentiment polarity of the aspect term.

2.3 Diffusion Networks

The diffusion networks consist of noising and de-
noising processes to address the noise in X for
predicting the sentiment polarity label. During the
noising process, the information of noise words
is added to the input of the diffusion networks,
which results in a vector that mainly contains the
noise information; then, in the denoising process,
the diffusion networks learn a diffusion decoder
to eliminate the noise from the vector. Using the
diffusion decoder, the diffusion networks are able
to address the noise appropriately and thus help
ABSA. The details of the noising and denoising
processes in the diffusion networks are illustrated
as follows.

Noising Process Once we extract the noise word
set based on the word dependencies, the tokens
in V are used to generate noise in the forward
noising pass of diffusion networks. Forward en-
coding aims to add noise to the input representa-
tion u0 to compute a sequence of latent representa-
tions U = [u1, · · · ,uT ] (T denotes the total steps).
Herein, we combine the input sentence X , the as-
pect term A, and the gold standard sentiment label
y∗ to construct a new word sequence X ′. Then
we follow DDCap (Zhu et al., 2022) to convert
tokens of X ′ into the one-hot representation u0.
Meanwhile, we compute ut at t-th step by

ut =
√
ᾱt · u0 +

√
1− ᾱt · n (3)

where ᾱt denotes a blending scalar hyper-
parameter that is correlated to the DDPM noise

3If the aspect term has two or more words, we use the de-
pendency connections of its last word which generally serves
as the head of noun phrases (i.e., aspect terms) in English.

scheduling strategy (Ho et al., 2020) and n refers to
the noise vector4 coming from the noise words in V .
Specifically, we randomly sample N words from
V and map each word to its embedding through
an embedding matrix, where the embedding of the
n-th word is denoted as en. Then, we compute
the average of the word embeddings and normalize
(Norm) the resulted embedding to get the noise
vector n, formulated by

n = Norm(
1

N

N∑
n=1

en) (4)

Denoising Process We follow the standard pro-
cess of diffusion model to denoise uT to recon-
struct u0. It is worth noting that the denoising
processes in training and inference are different. In
training, we compute the diffusion loss Ldiff by

Ldiff = Et∼U(0,T )∥fd(ut,hA, t)− u0∥22 (5)

where fd is a diffusion decoder using Transformer
architecture to recover ut−1 based on ut and
hA with hA and ut modeled by the Transformer
encoder and decoder architectures, respectively.
Meanwhile, we extract the last vector (that corre-
sponds to the gold standard label y∗ and is denoted
as û0,−1) of the recovered input matrix (denoted as
û0) and use a fully connected layer to map it into a
vector oy through

oy = ReLU(W1 · û0,−1) (6)

where W1 is a trainable matrix and ReLU is the acti-
vation function. Then, we concatenate oy with the
sentence representation hX , as well as the aspect
representation hA, and use a softmax classifier to
predict the sentiment label ŷ through

ŷ = Softmax(W2 · (oy ⊕ hX ⊕ hA)) (7)

where W2 is a trainable matrix. Afterwards, we
compute the standard cross-entropy loss LCE by
comparing ŷ with the gold standard label y∗. Fi-
nally, we add Ldiff and LCE to compute the total
loss L, which is formulated by

L = LCE + Ldiff (8)

and our approach is optimized accordingly.
The inference process of the diffusion networks

follows the standard process of DDCap, where the

4Here, u0 is a matrix where its first dimension equals to the
word-based length l of the input. To perform Eq. (3), the noise
vector is replicated l times, resulting in the set n1, . . . ,nl.
We stack these vectors to form a new matrix, ensuring its
dimensions match these of u0.



Dataset Pos. # Neu. # Neg. #

LAP14 Train 994 464 870
Test 341 169 128

REST14 Train 2,164 637 807
Test 728 196 182

REST15 Train 907 36 254
Test 326 34 207

REST16 Train 1,229 69 437
Test 469 30 114

MAMS
Train 3,380 5,042 2,764
Dev 403 604 325
Test 400 607 329

Table 1: The statistics of the datasets, where the number
of instances with different sentiment polarities in the
training, development, and test sets are reported.

first step is to construct a noise vector and then re-
move the noise in it through the diffusion decoder.
For the noise vector, we randomly sample N to-
kens from V to derive the noise vector n following
the same processes as Eq. (4). Then, we initial-
ize ûT with n and use fD to iteratively subtract
noises from ûT . Therefore, the overall process is
formulated as

ût−1 =
√
ᾱt−1 ·

ût −
√
1− ᾱt · fD(ût,hA, t)√

ᾱt

+
√

1− ᾱt−1 · fD(ût,hA, t) (9)

Through the process, the diffusion networks obtain
the denoised representations û0, whose last vector
is extracted and used to predict the final sentiment
label ŷ following the same process in training.

3 Experimental Settings

3.1 Datasets

Following previous studies, we run different mod-
els on five English benchmark datasets from var-
ious domains for ABSA; the datasets are LAP14
and REST14 (Pontiki et al., 2014), REST15 (Pon-
tiki et al., 2015), REST16 (Pontiki et al., 2016),
and MAMS5 (Jiang et al., 2019). Specifically,
LAP14 contains laptop computer reviews, REST14,
REST15, REST16, and MAMS are collected from
online reviews of restaurants. In addition, it is
worth noting that the instances in the MAMS
dataset are all cases where one sentence contains

5We use the ATSA part of MAMS obtained from https:
//github.com/siat-nlp/MAMS-for-ABSA.

Hyper-parameters Values

Learning Rate 5e-6, 1e-5, 3e-5, 5e-5
Warmup Rate 0.1, 0.2
Dropout Rate 0.1
Batch Size 4, 8

Table 2: The hyper-parameters used in tuning our mod-
els and the best one used in our final experiments are
highlighted in boldface.

multiple aspect terms with different sentiment po-
larities. Therefore, it serves as a good resource to
test models on the hard cases. For all datasets, we
use their official train/dev/test splits. The statistics
of the datasets used in the experiments are reported
in Table 1, where the number of instances with
different sentiment polarities in the training, devel-
opment, and test sets are reported.

3.2 Implementation Details

As the performance of NLP models highly depends
on the text representations (Conneau et al., 2017;
Song et al., 2017; Song and Shi, 2018; Han et al.,
2018; Sileo et al., 2019; Song et al., 2021; Gan
et al., 2023), we employ BERT (Devlin et al., 2019)
and LLaMA-2 (Touvron et al., 2023) to encode
the text, which have achieved state-of-the-art per-
formance in many NLP tasks. Specifically, for
BERT, we use the uncased BERT-base and BERT-
large with their default settings, i.e., 12 layers of
self-attention with 768-dimensional hidden vectors
for BERT-base and 24 layers of self-attention with
1024 dimensional hidden vectors for BERT-large6.
For LLaMA-2, we use the 7B version that has 32
layers of self-attentions with 4,096-dimensional
hidden vectors. For the diffusion decoder, we use
Transformer with three layers of multi-head atten-
tions, where we use 768- and 1024-dimensional
hidden vectors when the encoder is BERT-base
and BERT-large, respectively, and employ 4,096-
dimensional hidden vectors when it is equipped
with LLaMA-2, so as to match their hidden vector
dimensions.

To obtain the noise words, we use the stop words
in the NLTK Toolkit, try window sizes of 1, 2, and
3, and use the Stanford CoreNLP Toolkit to parse
the input sentence. The number of steps in the train-
ing and inference process in diffusion networks is
set to 60. Besides, we initialize all other trainable

6We obtain the BERT models from https://github.
com/huggingface/pytorch-pretrained-BERT.

https://github.com/siat-nlp/MAMS-for-ABSA
https://github.com/siat-nlp/MAMS-for-ABSA
 https://github.com/huggingface/pytorch-pretrained-BERT
 https://github.com/huggingface/pytorch-pretrained-BERT


LAP14 REST14 REST15 REST16 MAMS
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

BERT-base 78.12±0.44 74.80±0.37 84.67±0.40 76.63±0.43 83.41±0.44 67.80±0.39 89.03±0.37 79.73±0.38 81.35±0.18 81.43±0.16

+ D 78.56±0.42 75.44±0.42 85.05±0.41 77.00±0.41 83.93±0.42 68.29±0.44 89.56±0.46 80.18±0.37 81.83±0.10 81.97±0.16

+ CD (L) 79.98±0.42 76.86±0.41 86.36±0.47 78.43±0.38 85.16±0.38 69.80±0.38 90.96±0.42 81.38±0.43 83.33±0.17 83.42±0.16

+ CD (B1) 80.03±0.44 76.93±0.42 86.52±0.42 78.69±0.42 85.26±0.40 69.62±0.37 91.07±0.47 81.61±0.34 83.59±0.11 83.57±0.15

+ CD (B2) 80.28±0.37 77.18±0.38 86.75±0.43 78.89±0.39 85.54±0.33 69.88±0.42 91.27±0.40 81.90±0.46 83.80±0.14 83.84±0.16

+ CD (B3) 80.02±0.39 76.95±0.41 86.46±0.41 78.41±0.38 85.26±0.36 69.75±0.43 90.99±0.39 81.43±0.45 83.32±0.15 83.56±0.10

+ CD (S1) 82.13±0.40 79.37±0.36 87.03±0.41 81.57±0.38 85.87±0.39 74.03±0.35 92.63±0.38 83.12±0.37 85.07±0.13 84.51±0.17

+ CD (S2) 82.25±0.36 79.65±0.42 87.32±0.37 81.94±0.37 86.32±0.41 74.22±0.40 92.82±0.43 83.37±0.38 85.25±0.14 84.84±0.11

+ CD (S3) 82.07±0.39 79.34±0.44 86.96±0.41 81.71±0.36 86.04±0.39 73.98±0.39 92.61±0.45 82.93±0.37 84.83±0.12 84.49±0.13

BERT-large 78.64±0.43 75.32±0.40 85.16±0.40 77.09±0.37 83.90±0.32 68.27±0.39 89.63±0.40 80.22±0.44 81.95±0.13 82.01±0.10

+ D 78.90±0.39 75.60±0.41 85.38±0.45 77.39±0.37 84.12±0.35 68.56±0.34 89.85±0.36 80.47±0.40 82.17±0.11 82.25±0.06

+ CD (L) 79.39±0.40 76.18±0.41 85.94±0.46 77.89±0.37 84.65±0.35 69.12±0.34 90.31±0.34 80.93±0.40 82.72±0.13 82.78±0.09

+ CD (B1) 80.81±0.37 77.66±0.46 87.26±0.45 79.22±0.35 85.99±0.37 70.51±0.32 91.73±0.35 82.27±0.41 84.16±0.15 84.24±0.11

+ CD (B2) 81.08±0.39 78.03±0.41 87.59±0.46 79.59±0.41 86.42±0.37 70.77±0.36 92.10±0.32 82.64±0.43 84.59±0.13 84.61±0.10

+ CD (B3) 80.74±0.40 77.67±0.42 87.28±0.48 79.24±0.39 86.06±0.35 70.46±0.34 91.80±0.34 82.27±0.42 84.20±0.12 84.28±0.10

+ CD (S1) 82.91±0.38 80.16±0.42 87.81±0.44 82.44±0.42 86.75±0.39 74.87±0.47 93.44±0.42 83.83±0.38 85.76±0.15 85.36±0.12

+ CD (S2) 83.12±0.37 80.46±0.40 88.03±0.41 82.69±0.38 87.03±0.41 75.10±0.43 93.69±0.38 84.04±0.41 85.98±0.14 85.61±0.10

+ CD (S3) 82.85±0.35 80.18±0.42 87.81±0.39 82.42±0.40 86.81±0.46 74.83±0.46 93.42±0.39 83.76±0.42 85.69±0.15 85.33±0.11

LLaMA-7B 79.20±0.37 76.04±0.40 85.86±0.40 77.72±0.37 84.52±0.35 68.90±0.36 90.08±0.46 80.93±0.41 82.52±0.16 82.62±0.14

+ D 79.72±0.35 76.66±0.38 86.46±0.40 78.35±0.36 85.16±0.31 69.54±0.34 90.76±0.42 81.57±0.40 83.21±0.15 83.26±0.13

+ CD (L) 80.00±0.31 76.88±0.40 86.76±0.36 78.64±0.31 85.42±0.27 69.76±0.39 91.05±0.40 81.80±0.42 83.50±0.17 83.53±0.16

+ CD (B1) 81.53±0.31 78.46±0.38 88.33±0.38 80.24±0.37 87.04±0.35 71.34±0.40 92.70±0.42 83.45±0.41 85.02±0.14 85.22±0.16

+ CD (B2) 81.77±0.30 78.69±0.35 88.62±0.41 80.46±0.39 87.28±0.37 71.61±0.40 92.96±0.38 83.71±0.42 85.23±0.13 85.45±0.18

+ CD (B3) 81.66±0.34 78.45±0.40 88.42±0.38 80.31±0.27 86.95±0.30 71.28±0.35 92.71±0.43 83.47±0.41 85.12±0.20 85.19±0.14

+ CD (S1) 83.51±0.40 80.88±0.42 88.49±0.38 82.80±0.43 87.42±0.44 75.50±0.36 93.79±0.42 84.57±0.38 86.60±0.13 85.91±0.15

+ CD (S2) 83.70±0.44 81.02±0.39 88.73±0.42 83.02±0.37 87.67±0.39 75.72±0.40 94.01±0.39 84.80±0.35 86.74±0.10 86.13±0.12

+ CD (S3) 83.55±0.37 80.79±0.37 88.46±0.40 82.74±0.42 87.49±0.33 75.46±0.37 93.90±0.32 84.65±0.39 86.58±0.13 85.83±0.15

Table 3: Experimental results (accuracy and F1 scores) of baselines and our approaches with different settings. “D”
means standard diffusion networks; “CD” refers to the proposed context denoising approach; “L” stands for the
setting where we use lexicographic noise that are obtained from a stop word lexicon; “B1”, “B2”, and “B3” are
cases with bag-of-words noise based on a window of size one, two, and three, respectively; “S1”, “S2”, and “S3”
denote syntax noise that are extracted according to first-, second-, and third-order dependencies, respectively.

parameters by Xavier (Glorot and Bengio, 2010).
Other hyper-parameters are reported in Table 2.

For evaluation, we use accuracy and macro-
averaged F1 scores over all sentiment polarities,
following the conventions in previous studies (Tang
et al., 2016; Chen et al., 2017; He et al., 2018; Sun
et al., 2019). We tune hyper-parameters on the de-
velopment set7 of datasets and use the one with the
best F1 scores in the final experiments.

4 Results and Analyses

4.1 Overall Results
We run baselines with the vanilla base and large
versions of BERT and LLaMA, the ones using stan-
dard diffusion with stochastic Gaussian noise (D),
and our diffusion networks for context denoising
(CD) with different types of noise. Specifically,
our approach utilizes lexicographic noise (L) from
a stop word lexicon, bag-of-words noise (B) with

7For LAP14, REST14, REST15, and REST16 without
development set, we randomly sample 10% training instances
from the training data and use them to tune hyper-parameters
and use the best ones to train models on the entire training set.

different window size, and syntax noise (S) config-
ured with various orders of dependencies. Table 3
presents the average and standard deviation of test
set results of different models from five runs with
different random seeds. The following are some
observations from the results.

First, although base and large versions of BERT
and LLaMA achieve high performance on all
datasets, further improvements are observed with
diffusion networks, which presents the effective-
ness of diffusion networks for ABSA. Second, the
proposed context diffusion with different types of
noise words outperforms the standard diffusion
model with stochastic Gaussian noise, which illus-
trates the effectiveness of the proposed approach
in leveraging task-specific noise to improve ABSA.
Third, comparing the performance of our approach
with different types of noise words, our approach
with lexicographic stop words achieves the lowest
results, it obtains the second-worst performance
when it is configured with the bag-of-words noise
words extracted by context window, and it gets the
best scores if syntax noise (i.e., dependencies) are



Models LAP14 REST14 REST15 REST16 MAMS
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

*Xu et al. (2020) 82.86 73.78 77.64 74.23 80.82 61.59 89.51 75.92 - -
*Liang et al. (2022) 82.91 79.38 87.94 82.43 - - - - 85.85 85.49
*Tang et al. (2022) 81.83 78.26 87.31 82.37 - - - - - -
Cao et al. (2022) 82.75 79.95 87.67 82.59 - - - - - -
Chen et al. (2022) 81.03 78.10 86.16 80.49 85.24 72.74 93.18 82.32 - -
Zhang et al. (2023b) - 78.68 - 81.59 - - - - - 83.65
Ma et al. (2023) 81.96 79.10 87.76 82.44 - - - - 85.59 85.06
Zhang et al. (2023a) 81.80 78.46 87.09 81.15 - - - - - -
Chai et al. (2023) 82.12 78.82 87.86 82.41 86.74 75.05 93.42 83.80 85.10 84.65
Wang et al. (2023) 81.56 75.92 86.37 80.63 83.98 70.86 91.45 78.12 84.68 84.23

BERT + CD (S2) 83.12 80.46 88.03 82.69 87.03 75.10 93.69 84.04 85.98 85.61
LLaMA + CD (S2) 83.70 81.02 88.73 83.02 87.67 75.72 94.01 84.80 86.74 86.13

Table 4: The comparison of the performance (i.e., accuracy and F1 scores) of our best model (i.e., context denoising
with second-order dependencies using BERT-large and LLaMA) with previous studies on the test set of all datasets.
“*” marks the studies that utilize attention mechanisms for ABSA.

used. This observation is intuitive since dependen-
cies contain deeper analyses of the input sentence
and thus are more likely to help our approach to
extract unimportant words as noise words than the
other two settings (i.e., stop words and context win-
dow). Fourth, comparing models with different
context sizes or orders of dependencies, we find
that context sizes of two and second-order depen-
dencies yield the best results. A potential expla-
nation is illustrated as follows. When the context
size equals one, or we use first-order dependencies,
the noise may contain important context words for
ABSA and thus hurt model performance; when
the context size equals three, or we use third-order
dependencies, the noise may fail to include most
unimportant words and thus prevent the model from
identifying important and unimportant context fea-
tures for ABSA, which leads to unsatisfying results.

We further compare our best approach (BERT-
large + CD (S2) and LLaMA-7B + CD (S2)) us-
ing context diffusion with second-order dependen-
cies with existing studies and report the results
in Table 4. It is observed that our approaches
with BERT and LLaMA outperform previous ap-
proaches across most evaluation metrics, includ-
ing the ones using attention mechanism (Xu et al.,
2020; Liang et al., 2022; Tang et al., 2022) (marked
by “*”). which demonstrates the effectiveness of
our approach for ABSA by denoising unimportant
context words.

4.2 Effect of the Input of Diffusion Networks

In the main experiments, the input of our diffusion
networks in the forward noising is the combina-
tion of the input sentence X , the aspect term A,
and the gold standard label y∗. To investigate the
effect of the input of the diffusion networks on

Figure 4: The curve of performance (F1) of our ap-
proach with BERT-large encoder on the test set of dif-
ferent sets with respect to the number of diffusion steps.

the model performance, we run experiments with
different types of inputs using the BERT-large en-
coder. Specifically, we try the combination of X
and y∗ (i.e., X + y∗), the combination of A and y∗

(i.e., A+ y∗), and y∗ alone.
Table 5 presents the results of the aforemen-

tioned types of inputs on the test set of all five
datasets with different configurations of noise
words. For each input type, we observe a simi-
lar trend to the results in Table 3 (e.g., models with
second-order dependencies outperform the mod-
els with other settings), which demonstrates the
robustness of our approach. In addition, compar-
ing model performance among different inputs, we
observe models with X , A, and y∗ achieve the best
performance (see Table 3), and the ones with y∗

only achieve the worst results. This observation
is intuitive since the model using the combination
of X , A, and y∗ as input is able to leverage more
information (i.e., both sentence and aspect term
information) compared with other settings, which
enable the model to achieve the best results.

4.3 The Effect of Denoising Steps
To have a deeper understanding of the effect of
the diffusion model, we investigate the effect of



Input NW LAP14 REST14 REST15 REST16 MAMS
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

L 79.16 75.96 85.69 77.59 84.37 68.89 90.09 80.66 82.50 82.49
B1 79.43 79.24 85.97 77.85 84.72 69.22 90.45 80.89 82.72 82.76
B2 79.58 79.41 86.13 78.00 84.86 69.38 90.59 81.08 82.92 82.90

X + y∗ B3 79.41 76.21 85.98 77.86 84.72 69.17 90.44 80.88 82.75 82.81
S1 80.83 80.52 87.37 79.28 86.04 70.56 91.76 82.31 84.21 84.07
S2 80.95 80.72 87.48 79.41 86.22 70.68 91.87 82.46 84.35 84.22
S3 80.87 80.58 87.39 79.22 86.03 70.63 91.84 82.35 84.15 84.19

L 78.81 75.59 85.33 77.24 84.03 68.53 89.75 80.27 82.10 82.15
B1 79.06 75.95 85.58 77.60 84.36 68.81 90.04 80.54 82.37 82.46
B2 79.25 76.09 85.73 77.78 84.47 69.00 90.17 80.74 82.55 82.58

A+ y∗ B3 79.09 75.84 85.57 77.50 84.40 68.81 90.04 80.64 82.34 82.46
S1 80.50 77.38 87.04 79.18 85.76 70.23 91.46 82.00 83.83 83.97
S2 80.68 77.53 87.21 79.33 85.93 70.41 91.63 82.18 83.95 84.10
S3 80.49 77.37 87.04 79.08 85.76 70.23 91.44 82.11 83.79 83.88

L 78.74 75.35 85.15 77.06 83.74 68.21 89.50 79.97 81.81 81.93
B1 79.10 75.74 85.45 77.42 84.09 68.55 89.84 80.30 82.15 82.25
B2 79.27 75.88 85.63 77.57 84.19 68.66 89.97 80.45 82.28 82.43

y∗ B3 79.13 75.68 85.51 77.37 84.14 68.58 89.82 80.31 82.16 82.23
S1 80.58 77.08 86.89 78.89 85.39 70.02 91.18 81.73 83.61 83.73
S2 80.84 77.32 87.19 79.14 85.67 70.26 91.47 81.97 83.88 83.95
S3 80.51 77.26 86.88 78.79 85.53 70.04 91.24 81.78 83.64 83.74

Table 5: Experimental results (accuracy and F1 scores) of our approach (using BERT-large) with different inputs
of the diffusion networks, where “X + y∗”, “A+ y∗”, and “y∗” denote the cases where the input of the diffusion
networks is the sentence X and the gold standard label y∗, the aspect term A and the gold standard label y∗, and the
gold standard label y∗ only, respectively. “NW” refers to different types of noise words. The results in this table
should be compared with the BERT-large results in Table 3.

the number of steps on ABSA. Specifically, we
experiment with different numbers of steps of 20,
40, 60, 80, and 100, where the F1 scores of our
approaches with BERT-large encoder are shown in
Figure 4 (the score for 0 is the BERT-large model
without using diffusion model).

We observe that, initially, the performance in-
creases when higher steps are used, which is able
to be explained as follows. In diffusion models,
each step contributes to refining the generated re-
sults. With more steps, the model has a greater
opportunity for incremental improvements at each
stage, leading to a more detailed and accurate out-
put. In addition, the curve reaches the best results
when the step reaches 60, where limited changes
in model performance are observed when the num-
ber of steps gets higher than 60. This observation
suggests that when the step reaches a certain point,
adding more steps may lead to overfitting and thus
fails to make further improvements.

4.4 The Effect of the Output of Diffusion
Networks

In our main experiments, the prediction of the
ABSA label is made based on both the output of
diffusion networks oy and the sentence represen-
tation hX . To investigate the effect of this design,

LAP14 REST14 REST15 REST16 MAMS

oy 81.98 87.13 86.19 92.58 84.96
n 49.63 60.25 55.91 76.31 33.58

Table 6: The accuracy of models (with BERT-base + CD
(S2)) using different vectors (e.g., n and oy) to predict
ABSA labels. n denotes the noise vector and oy refers
to the output of diffusion networks.

we try other settings where we use oy alone and
use the noise vector n to predict the ABSA label.
The accuracy of models with BERT-base + CD (S2)
are presented in Table 6. It is observed that, using
oy alone is slightly lower than the performance of
our approach in Table 3. The results show that
the diffusion module actually learns the important
information to perform the task, which confirms
the validity of our approach. In addition, we find
it hard to predict the correct ABSA label using
the noise vector n alone, which confirms the noise
vector does contain noise that confuses the model.8

4.5 Case Study

To qualitatively illustrate the effectiveness of con-
text denoising, we perform a case study using a

8Although the accuracy of using n seems high, it might be
attributed to the unbalanced label distribution in the test set
(see Table 1 for details of the label distribution).



Figure 5: A test sentence with two aspect terms, namely, “decor” (in red) and “steak” (in blue). The gold standard
sentiment polarities for them and the dependencies associated with the aspect terms are also presented.

sentence that has two aspect terms with contradic-
tory sentiment polarities. The sentence is illustrated
in Figure 5 with the two aspect terms highlighted in
red and blue colors. The gold standard sentiments
and the dependencies associated with the aspect
terms are also presented for better illustration. In
this case, our approach with syntax noise (second-
order dependencies) is able to correctly predict the
sentiment polarities of both aspect terms, whereas
the approaches with other settings (e.g., with the
noise from the context window) fail to do so. The
explanations are in the following texts. For “decor”,
since the context word “great” that contributes to
the sentiment of “decor” has the second-order de-
pendency relation with the aspect word, our ap-
proach with syntax noise is able to correctly iden-
tify the noise in the sentence and eliminate them
appropriately. On the contrary, other approaches
fail to locate the important word “great” and thus
are unable to predict the correct label. Similarly, for
“steak”, the important context words “great” and
“except for” are correctly located by our approach,
which allows our approach to identify the negation
for identifying the sentiment of “steak” and thus
leads to a correct prediction.

5 Related Work

ABSA is a fine-grained and entity-level sentiment
analysis task that aims to determine sentiment po-
larities for given aspects in a sentence, which re-
quires a good modeling of the contextual informa-
tion. Recent studies (Mao et al., 2019; Xu et al.,
2019, 2020; Zhang et al., 2021; Xiao et al., 2021;
Yu et al., 2021a; Qin et al., 2021; Peper and Wang,
2022; Hosseini-Asl et al., 2022; Deng et al., 2023;
Wagner and Foster, 2023; Tian et al., 2023) lever-
age various attention-based neural networks to cap-
ture the contextual information, especially the as-
pect term and its contexts. Besides advanced de-
coders, another mainstream trend is incorporating
knowledge, e.g., lexicon, chunks, and syntactic,
and semantic knowledge, to identify important con-
textual information and use them to enhance model
performance (Tang et al., 2020; Meng et al., 2020;
Ahmed et al., 2021; Oh et al., 2021; Tang et al.,

2022; Chen et al., 2022; Ma et al., 2023; Bao et al.,
2023a). In addition, the effort devoted to combin-
ing graph neural networks (e.g., GCN) and syn-
tactic information, e.g., dependency tree from off-
the-self dependency parsers, have shown gratifying
results in ABSA (Sun et al., 2019; Zhang et al.,
2019; Wang et al., 2020; Zhang and Qian, 2020;
Liang et al., 2021; Zhang et al., 2022, 2023a).

Compared with previous studies, our approach
performs ABSA by eliminating the noise in the run-
ning text through context denoising. We propose
to use task-specific noise rather than the standard
stochastic Gaussian noise so as to better distinguish
noise from important context for ABSA and thus
make improvements.

6 Conclusion

This paper introduces a novel approach with con-
text denoising for ABSA, which binds noises to ex-
tracted unimportant words so that allows the model
to distinguish unimportant context features from
the salient ones for predicting the sentiment polar-
ity of a given aspect term. Experiments on five
English benchmark datasets for ABSA, namely,
LAP14, REST14, REST15, REST16, and MAMS,
illustrate the effectiveness of the proposed ap-
proach, which outperforms strong baselines and
states state-of-the-art performance. Further analy-
ses confirm the superiority of utilizing task-specific
noise rather than stochastic Gaussian noise in diffu-
sion networks for ABSA. This study also provides
novel ideas for tasks that require models to identify
essential and non-essential content, where one is
able to utilize the diffusion networks to meet the
requirement and produce desired outputs. Mean-
while, one limitation of this study is that the ap-
proach relies on an existing well-performing de-
pendency parser, which is not always available.
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