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Abstract

Pre-trained language models (LMs) have
shown remarkable reasoning performance us-
ing explanations or chain-of-thoughts (CoT))
for in-context learning. On the other hand,
these reasoning tasks are usually presumed to
be more approachable for symbolic program-
ming. To understand the mechanism of rea-
soning of LMs, we curate synthetic datasets
containing equivalent (natural, symbolic) data
pairs, where symbolic examples contain first-
order logic rules and predicates from non-
parametric knowledge bases (KBs), supporting
automated verification of intermediate reason-
ing results. Then we revisit neuro-symbolic
approaches and propose to learn from demon-
strations containing logic rules and correspond-
ing examples to iteratively reason over KBs,
recovering Prolog’s backward chaining algo-
rithm and supporting automated verification
of LMs’ outputs. Comprehensive experiments
are included to systematically compare LMLP
with CoT in deductive reasoning settings, show-
ing that LMLP enjoys more than 25% higher
accuracy than CoT on length generalization
benchmarks even with smaller model sizes.

1 Introduction

There are emerging interests in leveraging LMs
to enable planning (Li et al., 2022; Huang et al.,
2022), heuristic search (Dahlgren et al., 2021)
and symbolic inference (Wei et al., 2022b; Zelik-
man et al., 2022; Zhang et al., 2022). Among
them, chain of thought prompting or scratch-
pads (Wei et al., 2022b; Nye et al., 2021) shows
that taking (input, explanation, output) as
in-context examples for LMs can lead to significant
performance gain in reasoning tasks. However, like
many fine-tuning approaches, it can be difficult for
these models to generalize compositionally (Zhou
et al., 2022a), meaning they may struggle to ap-
ply their knowledge to solve new problems that
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Figure 1: Deductive reasoning performance (human
evaluation accuracy) comparisons on the CLUTRR-
LP given training data with story length 2, 3, 4.

involve novel combinations of information (Lake
and Baroni, 2018; Bahdanau et al., 2018; Keysers
et al., 2019). One notable case is that LMs would
suffer from catastrophic performance degradation
when tested on sequences longer than training ones
(Figure 1). As a solution, least-to-most prompting
(Zhou et al., 2022a) takes inspiration from sym-
bolic programs and proposes to tackle the chal-
lenge by modularizing the prompt on the reduced
problem. The divide-and-conquer strategy is use-
ful to improve the reasoning ability of language
models, but it also presents additional challenges:
what are the appropriate representations for factual
knowledge and in-context samples that can ensure
the correctness of each individual reasoning step?
How do natural language explanations compare to
symbolic provenance, which is easily verifiable,
when used as prompts for reasoning?

Our goal is to evaluate the natural and symbolic
paradigms closely in order to answer these ques-
tions. To enable fine-grained comparison and gain
insight into in-context learning for reasoning tasks,
we study relational reasoning over both natural
language and knowledge bases (KBs). KBs are
particularly useful for this purpose because they
are constructed using clear pipelines and strong su-
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pervision, which makes them reliable and easy to
control. This allows us to verify and evaluate rea-
soning paths and provenances without the need for
human-provided rationales or explanations (Cam-
buru et al., 2018; Zhou et al., 2020; Wei et al.,
2022b; Nye et al., 2021; Zelikman et al., 2022).
We study language models as logic programmers
(LMLP) to enable few-shot learning from symbolic
demonstrations and simultaneous planning in an
explainable and scalable way. LMLP uses logic
rule templates, examples, and pre-trained knowl-
edge to iteratively perform in-context learning and
answer relational queries.

Specifically, given a goal query as the in-context
example that can be interpreted as a question an-
swering (QA) task, LMLP searches or retrieves
a related task example with a corresponding logic
rule (Figure 2). Then the context and task descrip-
tion are concatenated as the input prompt for an
autoregressive planning LM. At each step of gen-
eration, we use a masked translation LM to com-
pare the similarity between the generated natural
language sentences and encoded it into (subject,

relation, object) predicates in the KB. In this
way, each generated sentence is transformed into
the most similar predicate and the reasoning path
is confined within the KB. The process is iterated
until a predefined maximum iteration or the target
of interest is reached (Figure 2) and the generated
reasoning path is evaluated manually.

To evaluate the reasoning capability of CoT and
LMLP, we curate two datasets and design a se-
ries of experiments, aiming to compare two recent
in-context learning paradigms and explore both
symbolic and naturalistic scenarios. Specifically,
we adopt synthetic datasets containing (natural,

symbolic) data pairs. The symbolic part contains
predicates and first-order logic (FOL) rules, which
are well-suited for investigating the role of sym-
bolic representations for few-shot reasoning. The
natural part of our study includes a story written
in natural language that describes a set of entities
and relations, as well as the reasoning paths that
connect them. These reasoning paths can be seen
as explanations for the relationships and events
described in the story. Moreover, we create ex-
perimental settings that are unfavorable for LMLP
since (i) we use GPT-2 and SentenceBERT as its
backbones, which is known to be of much smaller
scale compared to CoT which is usually based on
GPT-3 (Brown et al., 2020) or PaLM (Chowdhery

PROMPT
Task: A’s sister is C
Step 1: A’s brother is B
Step 2: B’s sister is C

Task: George's sister is Nancy 
Step 1: George's brother is Dale
Step 2: Dale's sister is Nancy

Task: Joseph's sister is Katherine
Step 1: Joseph's mother is Mary

PROMPT
Task: A’s sister is C
Step 1: A’s brother is B
Step 2: B’s sister is C

Task: George's sister is Nancy 
Step 1: George's brother is Dale
Step 2: Dale's sister is Nancy

Task: Joseph's sister is Katherine

OUTPUT
Joseph's mother is Mary

OUTPUT
Mary’s daughter is Katherine

Figure 2: Illustration of a deductive reasoning example
and iterative prompting of LMLP. LMLP retrieves a first-
order logic rule and an associated grounded example to
answer the question. It stops when predefined maximum
iterations or the target entity of interest is reached. The
reasoning path explains the sister concept.

et al., 2022a); (ii) LMs are pre-trained over natu-
ral language sentences as opposed to KBs, which
creates substantial gaps in semantics and represen-
tations, thus posing a grounding challenge where
LMs are known to be ineffective (Bisk et al., 2020).

Controlled experiments on relational reasoning
have shown that (i) CoT prompting struggles to
solve the compositionality challenge (Sinha et al.,
2019), while with explicit verification, LMLP can
work more reliably as reasoning length increases
by taking symbolic inputs that explicitly separate
logic and control (Kowalski, 1979). (ii) While it
is commonly believed that large pre-trained lan-
guage models (LMs) are not grounded in contexts
that require rich experiences, experimental results
suggest that in-context learning, which maps the
conceptual structure of a space learned from text
onto a new structured space, is sufficient to solve
some challenging reasoning tasks over knowledge
bases (KBs). (iii) LMs struggle to effectively solve
relational reasoning tasks without proper demon-
strations containing the target relation and correct
input-label mappings. This is supported by evi-
dence in in-context examples, which are poorly
understood and have many intricate design choices
(Zhao et al., 2021; Liu et al., 2021; Min et al.,
2022).

2 Related Works
In-context learning concerns feeding input texts

describing a task with some examples to the black-
box model for learning the task (Brown et al., 2020).
Many works show that there are intricate design
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choices like prompt formats (Jiang et al., 2020; Liu
et al., 2021; Zhao et al., 2021; Min et al., 2022), ex-
ample choices and their ordering (Zhao et al., 2021;
Lu et al., 2021b), pretraining data distribution (Xie
et al., 2021; Shin et al., 2022; Chan et al., 2022) and
model architectures (Chan et al., 2022) to improve
the LMs’ powerful and versatile in-context learning
ability. Recent work focuses on bootstrapping LM
with natural language explanations, intermediate
steps, or rationales for reasoning (Camburu et al.,
2018; Zhou et al., 2020; Nye et al., 2021; Wei et al.,
2022b; Nye et al., 2021; Zelikman et al., 2022).
Recent works showcase both some positive (Clark
et al., 2021) and negative results (Kassner et al.,
2020; Helwe et al., 2021; Talmor et al., 2020) in
adapting LMs for symbolic or logical reasoning.
The length generalization challenge is echoed in a
few recent works (Zhang et al., 2022; Anil et al.,
2022; Liu et al., 2022; Zhou et al., 2022b; Press
et al., 2022). Though there are some encourag-
ing progress (Clark et al., 2021; Wei et al., 2022b;
Chowdhery et al., 2022a; Zelikman et al., 2022),
they require a significant amount of computation
for re-training and human annotations about rea-
soning paths or explanations (Wei et al., 2022b;
Nye et al., 2021). Moreover, their entangled nature
with natural language makes them hard to make
robust inferences over symbolic factual knowledge.
However, our goal is fundamentally different from
theirs in investigating the role of symbolic repre-
sentations on few-shot reasoning using in-context
learning. LMLP that bootstraps the reasoning pro-
cess from the LMs in a few-shot manner (Figure 2)
is in contrast to popular methods that need expen-
sive human annotations and retraining (Camburu
et al., 2018; Zhou et al., 2020; Wei et al., 2022b;
Zelikman et al., 2022) or uncontrollable using only
pre-trained knowledge (Kojima et al., 2022). More-
over, related works typically finetune the model
using rationales or explanations (Camburu et al.,
2018; Zhou et al., 2020) or focus on natural lan-
guage based reasoning such as commonsense rea-
soning, arithmetic reasoning, open domain ques-
tion answering (Wei et al., 2022b), concept ground-
ing (Patel and Pavlick, 2021) etc. Synthetic on-
tology datasets are constructed in (Saparov and
He, 2022) to understand the failure modes of CoT
reasoning, but they are in natural language forms
instead of investigating the reasoning done over
interpretable symbolic structures as we do. Huang
et al. (2022) uses a mechanism for constraining the

LLM output to feasible action sequences, which
we adopt in this work. LMLP can be concep-
tually understood as a realization of recency bi-
ases (Press et al., 2021), which has been shown
effective in scratchpad-based reasoning (Liu et al.,
2022). Therefore, all the above works are different
from our goal of exploring the representations of
prompts in-context learning.

Retrieval-augmented Generation. Our study
is also related to retrieval-augmented generation
(Lewis et al., 2020) like kNN-LM (Khandelwal
et al., 2019), DPR (Karpukhin et al., 2020), RALM
(Guu et al., 2020), and RETRO (Borgeaud et al.,
2022), which integrates parametric models with
non-parametric KBs to address key LM challenges
like knowledge staleness (Roberts et al., 2020)
and hallucination (Shuster et al., 2021), reasoning
(Shao et al., 2023). We explore more controllable
environments where the evaluation of intermediate
reasoning can be automated, demonstrating that
this verification process helps filter out incorrect
reasoning paths. This, in turn, enhances reasoning
performance by assessing how effectively language
models can reason when instances of hallucination
are minimized.

3 Methodology Overview
We consider the reasoning task with an SRL

query as the question and some background knowl-
edge as the context. The relational information
in the query and context can be expressed either
using natural language or a (subject, relation,

object) predicate/triplet. There is a KB with factsF and (FOL) rules R to support the above QA.
There are two equivalent ways for representing the
problem, symbolic or natural language, which leads
to the designs below.

Datasets construction. To ensure that the natu-
ral and symbolic data are equivalent, we keep the
ground truth facts the same in natural language sto-
ries and knowledge bases. We construct natural
language story datasets following the method de-
scribed in (Sinha et al., 2019). As shown in Table 1,
we seek to curate new symbolic datasets from the
original ones into (i) A query subset containing
predicates needed for proving. (ii) A set of facts F
containing all the available facts/predicates, which
composes a KB, and (iii) A set of rulesR contain-
ing examples (A task and its proofs) extracted from
the training subset using backward chaining based
neuro-symbolic reasoners (Rocktäschel and Riedel,
2017). See appendix B.1 for more details.
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Dataset Natural Language Samples Query Facts F Logic rulesR
CLUTRR

Task: What’s the relationship between Ashley and Nicholas?
Story: Ashley told her daughter Lillian to wash up.
Dinner was ready. Lillian called her brother, Nicholas
up to see how he was doing after surgery.

(Ashley, son, Nicholas)
(Ashley, daughter, Lillian)
(Lillian, brother, Nicholas)⋯

Task: Ashley’s son is Nicholas
Step 1: Ashley’s daughter is Lillian
Step 2: Lillian’s brother is Nicholas

Countries Task: Is palau located in oceania? (palau, locatedIn, oceania)
(palau, locatedIn, micronesia)⋯

Task: palau locatedIn oceania
Step 1: palau locatedIn micronesia
Step 2: micronesia locatedIn oceania

Table 1: Examples of data processing and curation.

Task. Given a query Task: Joseph’s sister

is Katherine, which consists of two entities
Joseph, Katherine and a target relation sisiter.
Our task is to find a proof path from Joseph to
Katherine where the relationship sisiter can
be correctly inferred. On a high level, we need
to leverage an abstract logic rule Sister(A,C)← Brother(A,B) ∧ Sister(B,C) and its
grounded example Sister(George, Nancy)← Brother(George, Dale) ∧ Sister(Dale,

Nancy) to derive the answer for the query
Sister(Joseph, Katherine) (Figure 3(a)).

Language Models as Logic Programmers
achieves this goal using in-context learning. At
first, examples and logic rules r inR are selected.
For example, in Figure 2, LMLP samples one logic
rule and its grounded example, which is concate-
nated with the query q Task: Joseph’s sister

is Katherine as a prompt r′ = [r, q]. The prompt
is fed into a Planning LM Pθ, which is an autore-
gressive LM such as GPT-3 for proof generation.
Multiple sentences x are generated using temper-
ature sampling from Pθ(r′). However, these sen-
tences are in free-form language and often not in
the (subject, relation, object) predicate for-
mat. In LMLP, the generated output is converted to
the most similar fact in KBF using the cosine simi-
larity of the embedding from a Translation LM Tϕ,
implemented as a sentence-specific Masked LM.
Specifically, Tϕ embed the output sentence fromPθ: Tϕ(x) and all predicates f from F : Tϕ(f),
calculating their cosine similarity. The most simi-
lar f to x is chosen as the conversion results f ′. By
translating the output space of Pθ into an external
KB this way, LMLP is expected to produce a more
plausible provenance to explain the reasoning pro-
cess of a final prediction. Given frozen Pθ and Tϕ,
we then repeatedly generate proofs by promptingPθ using r′ = [r′, f ′], projecting the generated sen-
tences to the KB by the Tϕ, attaching the output to
the prompt (Figure 2). The model terminates when
the predefined maximum number of iterations or
the target entity of interest is reached. To improve
coherency, we enforce the chain rule transition con-

straints: the tail entity of the previous predicate
should be the same as the head entity of the next
predicate for each output step. Specifically, during
the translation phase, we only select the predicates
satisfying the requirement to compare similarity
with Tϕ(x). The faithfulness of the reasoning path
is governed by post-hoc human evaluations. The
overall algorithm is described in Algorithm 1 in
Appendix B. Using the prompt supported by the
KBs, we bootstrap the reasoning process from the
LMs in a few-shot manner (Figure 2).

Chain-of-Thought prompting. CoT (Wei et al.,
2022b) solves complicated multi-step reasoning
tasks by providing explanations, which is also in-
tuitive for our multi-hop SRL tasks since we can
take intermediate reasoning paths as explanations.

Figure 3(b) shows an example of applying CoT
to solve an SRL task from the CLUTRR dataset
(Sinha et al., 2019): given an in-context sample
in the form of (input, explanation, output).
LMs are expected to imitate the reasoning process
of the given explanation to generalize to a new
query. The explanation of each question is gener-
ated just the same as the rule set R, which is ex-
tracted from the training set using a neuro-symbolic
reasoners and converted to natural language forms.
Specifically, the in-context exemplar adapts LMs to
another sample containing multiple relations and a
query for the relation between two entities “What is
the relation between Theodore and Frances?”, CoT
first generates a reasoning path from Frances to
Theodore, namely “France’s grandson is Charles,
. . . , Chris’s brother is Theodore.”, and finally an-
swers the query: “The relation of Frances between
Theodore is grandson”. With such a prompt, LMs
are expected to generate both the reasoning paths
and the resulting queried relation. For a fair com-
parison with LMLP, human judgments on the rea-
soning path are included to calculate the accuracy.
Note that the explanation in CoT is extracted from
the story in the question, which contains much
clearer information than the logic rules for LMLP.
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PROMPT
Task: A's sister is C
Step 1: ⋯ ⋯

Planning LM Translation LM

OUTPUT
Step 1: Joseph's mother is Mary

KB

(a) LMLP

PROMPT
Question : Nettie's brother Paul took her to the fair when she was little. Paul also 
brought his brother Samuel. Shantel and husband Harold are trying to get custody of 
Shantel's granddaughter Nettie before she gets placed in foster care. What is the 
relation between Samuel and Harold?
Answer: Harold's wife is Shantel, Shantel's granddaughter is Nettie, Nettie's brother is 
Paul, Paul's brother is Samuel. The relation of Samuel between Harold is grandson.

Question: Chris wants to throw a surprise party for his brother Theodore. Chris‘s 
brother Charles helps pick the decorations. Frances combed her grandson Charles’s 
hair. She wanted him to look good for his first day of school. What is the relation 
between Frances and Theodore?

OUTPUT
Answer: Frances‘s grandson is Charles, Charles’s brother is Chris, Chris‘s brother 
is Theodore. The relation of Frances between Theodore is grandson.

(b) CoT

Figure 3: Schematic overview of (a) LMLP and (b) CoT.

4 Experiments

We now describe the experimental setups, empir-
ically evaluate LMLP and compare it with existing
methods. See Appendix C for full details of data
preprocessing and performance evaluation.

Settings. We curate two datasets for evaluating
the in-context learning capability of LMs for rea-
soning: CLUTRR-LP and Countries-LP, which are
based on CLUTRR (Sinha et al., 2019) and Coun-
tries (Bouchard et al., 2015) datasets respectively.
CLUTRR (Sinha et al., 2019) contains a group
of KBs, where each node denotes a family mem-
ber and edges are family relations. The target of
CLUTRR dataset is to infer a two-family members’
relationship that is not explicitly mentioned. The
training set of CLUTRR consists of graphs that the
target relation can be inferred by traversing a lim-
ited number of edges while the relation in the test
set needs more traversing steps for inference, which
allows controlled studies on compositionality. An-
other intriguing property of CLUTRR is that there
are ground truth one-to-one correspondances be-
tween KBs and natural language stories, which
exactly suits our needs. Countries (Bouchard et al.,
2015) concerns link prediction, where countries,
regions, and sub-regions are entities and relations
containing LocatedIn and NeighborOf. Countries
has three tasks, R1,R2, and R3, each requiring rea-
soning skills of increasing complexity (Rocktäschel
and Riedel, 2017).

Implementation details. For LMLP, we imple-
ment the planning LM Pθ as GPT-2 (Radford et al.,
2019), the translation LM Tϕ as Sentence BERT
(Sent-BERT) (Reimers and Gurevych, 2019) based
on Hugging Face Transformers (Wolf et al., 2019).
The default model for Translation LM is Sentence-
RoBERTa-Large and for Planning LM is GPT2-

Large (Radford et al., 2019) pretrained on large
corpora by default. For CoT, we follow the original
paper (Wei et al., 2022b) to sample in-context sam-
ples. We conduct all the experiments on a machine
with four Nvidia TITAN XP (10GB) GPU cards.

Since prompt formats lead to significant perfor-
mance variations (Liu et al., 2021), we propose to
explore two simple design choices for LMLP and
find that they can further boost the reasoning capac-
ity. (i) Multiple examples for prompting. Denote
N the number of examples we used in one proof
task. Table 9 shows two examples with N = 1
and N = 2 are supplied respectively. The intu-
ition is that, getting more examples in the prompt
can make LMs better recognize the proof task and
thus produce more reliable reasoning paths. See
the experimental section for empirical verification.
(ii) Prompts Ensembling. Table 10 shows the re-
sults of different prompts for the same task. We
can see the influence of prompts on the generated
proof path. The first few proof steps are largely
similar to the provided example. If the provided
example supplies a wrong direction, the proof is
likely to be wrong. To study and exploit the benefit
brought by different prompts, during experiments,
we propose to use K prompts alternatively for one
task, where one task is marked to be successfully
proved if any of these K prompts gets the right
result. Namely, a larger K means that we have a
higher probability of picking a good prompt. The
default hyper-parameters N,K are set to one.

Evaluation metrics In Table 2 and Table 3,
where LMLP is compared to various baselines, the
correctness of the proven reasoning path is eval-
uated manually. For each reasoning path, we ask
annotators to answer “Yes” or “No” to whether the
generated proof path is plausible to human com-
monsense and the target relation can be induced
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from it. We include 5 participants to reduce ran-
domness and observe that their answers are almost
the same. Because of resource Limitations, for
other simple ablation studies of LMLP, the metric
is proven accuracy or success rate. For example,
for query “Task: palau locatedIn oceania”, we be-
gin with entity “palau” and select facts from theF . If the chosen triplet ends with entity “ocea-
nia”, the proven path is correct, e.g., “micronesia
locatedIn oceania” in Table 1. For LMLP, if there
is no chosen triplet ends with entity “oceania”, the
prediction is incorrect.

4.1 Comparisons of LMLP and CoT

The goal of this part is to systematically compare
LMLP with CoT both quantitatively and qualita-
tively on SRL tasks to better understand the reason-
ing of LMs using in-context learning.

In Figure 1 and Table. 4, we compare LMLP to
CoT and the reported performances are all human
evaluation results. Qualitatively, CoT can get posi-
tive results on some query examples, for example,
in Table 12, we showcase two examples where CoT
can generate a correct proof path and predict the
target relation at the same time. However, com-
pared to LMLP, CoT achieves inferior results in all
query sets with test reasoning length 5,6,7,8,9,10
with different LLMs for text generation. In ad-
dition, as the reasoning length increases, the per-
formance of CoT shows a clear downward trend.
Table 12 shows two negative examples where the
story contains sophisticated relations and the model
cannot get the right reasoning path or just gener-
ate a wrong relation. In contrast, LMLP can con-
sistently achieves a high human evaluation score
(Table 2), which again verifies the systematic gen-
eralization capability of LMLP. Table 7 in the ap-
pendix shows examples with the same task but pro-
cessed by the two methods respectively, where CoT
cannot get deduce a right relation path from Mar-
garet to Charles but LMLP can extract a simple yet
right relation path. The reason why LMLP is better
than CoT can be that, although CoT decomposes
complex multi-hop relation reasoning tasks into a
multi-step reasoning process and then predict the
final results, the proof path is all generated by LMs
at once. The decomposition of LMLP to multi-hop
reasoning tasks is more thorough, where the gen-
eration of a proof path is divided into multi-steps
and each step will be projected into the KB, which
is a much stronger inductive bias. Therefore, the

decomposed tasks in each step are easier to solve
and the knowledge in the KB can be well exploited.
See appendix for results on Countries-LP.

4.2 Analysis of LMLP

Given the above observations that LMLP outper-
forms CoT by a large margin, we systematically
analyze LMLP with extensive experiments below.

Ablation Studies on prompting strategies. As
illustrated in Table 2, No Prompt means that we
only feed the target directly and generate each
step, prompts in the Only Rule baseline is one
proof example with entities replaced by some
symbols. We also compare LMLP to Language
Planner (Huang et al., 2022), which first finds
the most similar target in the R and uses such an
example as the prompt. LMLP-reverse swaps the
position of the abstract logic rule and its grounded
example in the prompt of LMLP. For example,
in Figure 2, the in-context prompt of LMLP-
reverse will place Sister(George, Nancy)← Brother(George, Dale) ∧ Sister(Dale,

Nancy) before its abstract logic rule Sister(A,C)← Brother(A,B) ∧ Sister(B,C). Examples for
all baselines are shown in Appendix Table 9.

Table 2 shows that directly applying Language
Planner for relational reasoning does not work and
using only facts or no prompt attain inferior perfor-
mance. The possible reason for the inferior perfor-
mance of Planner can be that it finds the example
from R with the most similar task as the prompt,
which usually retrieves rules with the same entities
of the goal task. However, for reasoning tasks over
KBs, relation contains much more information of
the task than the entity. As shown in Table 9, for
the task “Patricia’s uncle is Donald”, Planner finds
the example with task “David’s nephew is Don”,
whose following proofs do not make sense for the
relation “uncle”. LMLP in contrast finds an exam-
ple whose task has the same relation as the goal
predicate, which is more informative.

LMLP can be robust to large search space.
We may wonder if the superior results of LMLP are
an artifact for datasets with a small search space.
To control the confounding, we progressively inject
5,000 random noisy facts/predicates into the facts
setF . With more noisy facts, at each decoding step,
it will be more difficult for LMLP to choose the
correct proof path as the search space is enlarged.
Figure 4(b) shows the results when we vary the
number of noisy facts, where the noisy rate is 0.5

2989



Test Story Length
Baseline Ablation Ours

Planner CoT No Prompt Only Rule Random Entity-based LMLP-reverse LMLP
5 0.0973 0.173 0.1514 0.1622 0.2919 0.2000 0.3730 0.3297
6 0.1810 0.1365 0.1238 0.1524 0.2095 0.1429 0.3048 0.2476
7 0.2258 0.1032 0.2000 0.2129 0.2323 0.1742 0.3742 0.2581
8 0.1037 0.1506 0.2222 0.2000 0.3111 0.2370 0.3556 0.3556
9 0.1048 0.0914 0.1935 0.2177 0.1613 0.1855 0.3548 0.2984
10 0.1230 0.123 0.2869 0.2131 0.3934 0.2705 0.5246 0.4754

Average 0.1393 0.1296 0.1963 0.1931 0.2666 0.2017 0.3812 0.3275

Table 2: Numerical results and ablation on the length of test samples on CLUTRR-LP.

Tasks
Baseline Ablation Ours

Planner CoT No Prompt Only Rule Random Entity-based LMLP-reverse LMLP

S1 0.7500 0.3333 0.8542 0.7708 0.6042 0.8958 0.8333 0.7917
S2 0.7917 0.3750 0.6667 0.4583 0.6750 0.7500 0.8333 0.6250
S3 0.7500 0.2500 0.7292 0.7083 0.6458 0.6667 0.7500 0.8333

Average 0.7639 0.3194 0.7500 0.6458 0.6417 0.7708 0.8055 0.7500

Table 3: Human evaluation results in various settings of Countries-LP. S1, S2, S3 (Minervini et al., 2020) are three
different tasks with different F (see the experimental setting for details).

Test Story Length
GPT-2 Mistral-7B-v0.1 LLaMA2-7B

CoT LMLP CoT LMLP CoT LMLP
5 0.1730 0.3297 0.3083 0.5032 0.2721 0.4823
6 0.1365 0.2476 0.2762 0.5182 0.2543 0.4872
7 0.1032 0.2581 0.2314 0.4732 0.2364 0.4715
8 0.1506 0.3556 0.2247 0.5181 0.2102 0.5323
9 0.0914 0.2984 0.1143 0.4723 0.1345 0.4021
10 0.1230 0.4754 0.1220 0.4741 0.1305 0.4992

Average 0.1296 0.3275 0.2128 0.4932 0.2063 0.4791

Table 4: Numerical results considering different back-
bone models.

means that we add 5000 ∗ 0.5 random facts to theF during evaluation and noisy rate 0 means F only
contains query-relevant facts. We see that enlarg-
ing the search space generally decreases the perfor-
mance. However, even though when all the noisy
facts are injected into F , i.e. more than 95% facts
are noisy, the performance is still favorable (more
than 38% success rate), showing that LMLP can
produce robust reasoning performance.

Effects of model size. Figure 4(c) shows the
impact of the size of the planning LM model:
larger GPT models generally attain better perfor-
mance; using GPT2-large and LlaMA2-7B (Tou-
vron et al., 2023) can dramatically improve model
performance, which aligns with the findings that
reasoning performance can emerge in larger mod-
els (Wei et al., 2022a; Saparov and He, 2022).

Prompts ensembling boosts the reasoning ca-
pability. For each test example, we sample K
in-context examples and count as correct if any one
of them can solve the task. We show the evalu-
ation results on CLUTRR-LP in Table 6 and the

K=1 K=3 K=5 K=10 A Long Example

S1 0.7083 0.9583 1.0000 1.0000
Task: A locatedIn C
Step 1: A neighborOf B
Step 2: B locatedIn C

S2 0.5000 0.8750 0.9583 1.0000
Task: uruguay locatedIn south_america
Step 1: uruguay neighborOf argentina
Step 2: argentina locatedIn south_america

S3 0.7500 0.9167 0.9167 1.0000

Task: sudan locatedIn africa
Step 1: sudan neighborOf central african republic
Step 2: central african republic neighborOf chad
Step 3: chad neighborOf south sudan
Step 4: south sudan neighborOf dr congo
Step 5: dr congo neighborOf republic of the congo
Step 6: republic of the congo locatedIn middle africa
Step 7: middle africa locatedIn africa

Table 5: Results of LMLP on Countries-LP. S1, S2, S3
(Minervini et al., 2020) are three different tasks with
different F (see the experimental setting for details).

proposed method can generate realistic and cor-
rect proof paths. A large K can further boost
performance, which also verifies the importance
of prompt ensembling: Table 5 shows the perfor-
mance on Countries-LP where almost all the query
samples can be proved correctly with a large K.
One interesting phenomenon is that LMLP can
generate a much longer proof path even though
the proof path length in the rule setR is less than
3. This manifests a potential improvement with
respect to the significant weakness in systematic
generalization of fine-tuning or re-training of LMs
(Sinha et al., 2019). The R of CLUTRR-LP con-
tains only examples whose proof paths are less than
five. However, during testing, our model can pro-
duce proof paths much longer than five steps and
perform well on all query sets.

Prompting using multiple examples boosts the
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Figure 4: (a) Effect of the number of templates for LMLP on CLUTRR-LP. (b) The effects of noisy facts for
LMLP on CLUTRR-LP. Ablation on the scaling of (c) Planning LMs.

Test Reasoning Length K=1 K=3 K=5 K=10 Avg

5 Hops 0.3946 0.6865 0.7838 1.0000 0.7162
6 Hops 0.5048 0.7143 0.7619 1.0000 0.7452
7 Hops 0.4323 0.8065 0.8774 1.0000 0.7790
8 Hops 0.5037 0.8000 0.8593 1.0000 0.7907
9 Hops 0.3710 0.6452 0.7500 1.0000 0.6915

10 Hops 0.5328 0.8279 0.8525 0.9180 0.7828

Table 6: Ablation of LMLP on CLUTRR-LP.

reasoning capability. N denotes the number of
in-context examples used in one proof task. Re-
sults show that a larger N can generally produce
performance gains (Figure 4(a)). However, longer
prompts require larger GPU memories, so there is
a trade-off between memory and performance.

4.3 Analysis of Demonstrations of ICL
Besides results in Appendix Table 7, we conduct

qualitative analysis of demonstrations of in-context
learning.

Failure cases analysis of baselines. Since
the generated sentences are closely related to the
prompt, Table 11 in Appendix shows that if we ran-
domly choose prompts, the generated proof path
has relations similar to the prompt, but is wrong
for the given task. For entity-based prompts, since
the task has the same start entity as the in-context
exemplar, the generated steps 1 in this setting are
very similar, leading to many wrong proof paths.
Language Planner, without chain rule constraint,
the generated triplets are chaos, e.g., in Example 1,
the generated proof does even not contain the sub-
ject “Jon” and thus exactly wrong. Although the
proposed LMLP attains a high success rate, there
are also some failure cases. As shown in Appendix

Table 10, an appropriate prompt needs to be chosen
for the right proof paths.

Takeaways. Similar to previous work (Liu et al.,
2021; Min et al., 2022), we find that in-context
learning performance varies greatly with choices
of exemplars (Table 6). One of the key findings
in (Min et al., 2022) is that even without any la-
beled data, LMs can achieve k-shot performance by
simply prompting with demonstrations containing
unlabeled inputs. Our findings are generally in-line
is in line with the importance of input-label for-
mats highlighted in the work. However, we show
in Table 8 and 9 that the correct mapping of rule-
example pairs is important since giving only rules
with symbols like X,Y,Z rather than concrete enti-
ties like China makes LMLP fail catastrophically.

5 Concluding Remarks
In this study, we systematically examine in-

context learning of language models (LMs) from a
symbolic reasoning perspective, demonstrating that
LMs can be prompted with logical demonstrations
to generate plausible explanations for reasoning
tasks over knowledge bases (KBs). Our evaluation
results show that constraining outputs of LMs and
ensuring intermediate reasoning correctness are im-
portant for reasoning performance, providing new
insights into in-context learning and a mechanism
to reduce incorrect reasoning through symbolic ver-
ification.
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Limitations

Like previous works, we study reasoning empir-
ically without theoretical justifications and focus
specifically on synthetic data. Therefore, our re-
sults serve as a proof of concept on investigating
how ensuring and reducing hallucination can im-
prove overall reasoning, and might not transfer to
more complex reasoning tasks. Moreover, due to
access and computation restrictions, we are not
able to conduct experiments with the latest LMs
like PaLM (Chowdhery et al., 2022b).
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Appendix
A Extended Related Work

Neuro-Symbolic Reasoning. ILP (Muggleton
and De Raedt, 1994) and its neural version (Yang
and Song, 2020) are unable to reason about disjoint
relations in confront of missing links when KBs are
noisy like in FreeBase, which means ILP only syn-
thesizes rules based on existing relations. Methods
like Neural-LP (Yang et al., 2017) and RNNLogic
(Qu et al., 2020) require enumeration of all pos-
sible rules given a max rule length T. Thus the
complexity of these models grows exponentially as
maximum rule length increases, which is a signifi-
cant disadvantage for systematicity problems. For
deductive reasoning, NTP (Rocktäschel and Riedel,
2017) and its improved versions (Minervini et al.,
2018, 2020) require hand-crafted templates to im-
itate backward chaining for deductive reasoning.
This belies the considerable user burden of author-
ing the templates which then fundamentally biases
the tool toward a specific subset of programs that
the author has in mind. Moreover, the performance
and efficiency of NTP is far from satisfactory: the
performance usually lags far behind its neural coun-
terparts like knowledge graph embedding methods
(Lin et al., 2015); during both training and infer-
ence, NTPs need to compute all possible proof trees
needed for proving a query, relying on the continu-
ous unification of the query with all the rules and
facts in the KB. The search space of existing works
is exponentially large, which makes them hard to
scale up in general (Minervini et al., 2018; Chaud-
huri et al., 2021).

LMs for Theorem Proving. Most works focus
on proving formal mathematical theorems: GPT-f
(Polu and Sutskever, 2020) shows promising results
by generative language modeling over mathemati-
cal formulas. Systematicity of LMs when training
on proofs is evaluated in (Gontier et al., 2020) but
shows negative results in generalizing to unseen
proof steps in extrapolation and complex language.
Three synthetic tasks inspired by three reasoning
primitives of deduction, induction, and abduction
are demonstrated in (Wu et al., 2021). The above
works provide insights into understanding LMs’

reasoning capabilities. Though they share simi-
lar problem structures like compositionality with
ours, they fundamentally require large-scale pre-
training and fine-tuning due to the mismatch be-
tween Wikipedia pre-training corpora and mathe-
matical formulas. Such a re-training requirement
not only results in computational inefficiency but
lacking in compositional generalization to longer
proof steps unseen during training (Gontier et al.,
2020).

Symbolic Reasoning with LMs. Large LMs
pre-trained on open-domain text corpora have
achieved impressive advances in natural language
generation and understanding tasks (Kenton and
Toutanova, 2019; Brown et al., 2020). By self-
supervised imitation on human-generated texts,
LMs contain rich factual knowledge (Petroni et al.,
2019; Bouraoui et al., 2020; Roberts et al., 2020)
and linguistic structures (Manning et al., 2020),
serving as a versatile inference regime for various
downstream tasks (Brown et al., 2020; Lu et al.,
2021a). Among them, GPT-3 stands out by its few-
shot generalization to unseen cases without further
fine-tuning given in-context samples as demonstra-
tions (Brown et al., 2020). Constraint decoding
is shown to be effective in incorporating logical
constraints into natural language generation (Lu
et al., 2022). However, it is a common belief that
LMs have not yet enjoyed a comparable success in
tasks that require extensive planning and grounding
(Glenberg and Kaschak, 2002; Bender and Koller,
2020; Bisk et al., 2020) as well as symbolic rea-
soning (Kassner et al., 2020; Helwe et al., 2021;
Razeghi et al., 2022).

B Algorithm Description

Algorithm 1 describes the procedure or LMLP.
It can also be illustrated in Figure 3(a).

B.1 Data Generation.

CLUTRR-LP. CLUTRR has 9 subsets with dif-
ference story length, named l2, l3, . . . , l10. Follow-
ing (Minervini et al., 2020), we convert l2, l3, l4
to the R and use l5, . . . , l10 to the query sets. As
illustrated in Table. 1, data samples in CLUTRR
consist of a story and a target, where the target
contains two entities and the relation that is needed
to be inferred, the story contains available triplets.
Each sample in the l2, l3, l4 will be converted to the
format “Task: . . . , Step i: . . . ” and added to theR. Note that all examples in the R have a story
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Algorithm 1 Generate proof path from Pre-Trained Language Models.

Require: Planning LM Pθ, Translation LM Tϕ, Query set Q that contains all query triplets, F that
contains all available facts,R that contains all the available logic rules or proof examples.
for q = (s, p, o) ∈ Q do // s, p, o denote subject entity, predicate (relation) and object entity respectively.

Find r ∈R, whose task relation is p.
Construct prompt r′ = [r, q]. // [r, q] means the concatenation of two strings.
while Max step is not reached do

Sample 10 sentences {xi}10i=1 from Pθ(f ′).
Set F ′ ∈ F whose first entity are s.
if ∣F ′∣ == 0 then

Break // No available facts in the F start with entity s.
for x ∈ {xi}10i=1 do

scorei =max∀r∈F ′ cosine(Tϕ(x),Tϕ(r));// Cosine similarities of s to facts in F ′.
idx = argmax∀r∈F ′ cosine(Tϕ(x),Tϕ(r));// Select r ∈ F ′ with the highest similarity to x.
x′ = F ′[idx]

Choose the highest score rule x∗ as the next proof step and append it to the prompt f ′ = [f ′, x∗].
if o′ == o then

Break // The object entity converges to the target entity o.

length of less than five, which enables us to test
the systematic generalization ability of LMLP. For
CLUTRR, the story triplets in theR are not useful
for test target proving, because they are all from dif-
ferent relation graphs. For example, story triplets
in the l2, l3, l4 contain “(William’s brother is Steve)”
while one test story on l5 contains “(William’s un-
cle is Steve)”. During the evaluation, if the model
chooses “(William’s brother is Steve)”, the proof
path will be wrong. However, the similarity of
these two triplets is high, the model is then easy
to make errors and these noisy facts increase proof
difficulties. We hence evaluate our methods in
two settings considering the number of noisy facts.
The simplest setting (Test Facts Setting) is that,
when queries are from li, i ∈ [5, . . . ,10], the F
only contains facts in li. In this case, the F5∼10
have 251,222,275,279,285,304 facts respectively.
The most difficult setting is termed All Facts Set-
ting. We first extract facts in the F with length
l2, l3, l4 and get totally 5,210 facts. When queries
are from li, i ∈ [5, . . . ,10], the F contains triplets
in li, l2, l3, l4, where the additional 5,210 facts are
not useful for the proof path and are noisy facts.
The All Facts Setting is set as our default setting
and experimental results of the Test Facts Setting
are mainly in the Appendix. For CoT, theF is need-
less and the construction of prompt examples is
slightly different from the procedure above. Specif-
ically, as shown in Figure 3(b), for each target in
the training samples, we need to preserve the story

and extract a proof path for the target.
Countries-LP. Training samples in Coun-

tries are triplets that describe the neighbor
of relation or located in relation of two re-
gions/subregions/countries and can thus be directly
used as F . Because the three tasks (S1, S2, S3)
(Minervini et al., 2020) have different training sets
and thus have different F . Test samples in Coun-
tries are also triplets with specific entities and re-
lations, hence the query set is just the test set
of the original Countries dataset. One main dif-
ficulty in applying the proposed method to Coun-
tries is the lack of off-the-shelf proof paths (R).
The CTP (Minervini et al., 2020) model is trained
and used for proving each triplet in the training
set. CTP returns the scores of the possible proof
path and the proof with the maximum score is it-
eratively searched as added into theR. After that,
924,906,705 available examples are found for S1,
S2, S3 tasks respectively.

C Additional Experimental Setups and
Results

Human evaluation results on the Countries-
LP benchmark. Because Countries-LPis a simple
reasoning benchmark, which has only two pred-
icates, namely LocatedIN, and NeighborOf. Ta-
ble. 3 shows that simple baselines with entity-based
prompts or no prompt can attain comparable or
higher results than LMLPon the simplest task S1.
However, LMLPattains better reasoning capability
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CoT Prompting LMLP

Question: Wilhelmina took her uncle Hugh to the grocery store. Francisco and
his brother Wesley were wrestling. Wilhelmina, Francisco’s daughter, was
cheering on the competition. What is the relation between Hugh and Wesley?
Answer: Wesley’s brother is Francisco, Francisco’s daughter is Wilhelmina,
Wilhelmina’s uncle is Hugh. The relation of Hugh between Wesley is brother.

Question: Constance went shoe shopping with her sister Ellen. Elsie had a
daughter named Constance. Elsie had picked her daughter Margaret out
the cutest new dress to wear on her birthday. Charles and his sister Kathleen
have been best friends ever since childhood. Nadia and her father, James,
went to the marina. James’s daughter, Mabel, had purchased a boat, and
they were eager to see it. Mabel bought her mother, Ellen, a puppy for her
birthday. James hung his son Charles’s finger paintings on the refrigerator.
The paintings were right next to the paintings of Nadia, Charles’s sister.
Kathleen wasn’t old enough to make any paintings for her father, James.
What is the relation between Margaret and Charles?
Answer: charles’ mother is nancy, nancy’s daughter is elizabeth,
elizabeth’s husband is john, john’s wife is mary, mary’s brother is george,
david’s nephews are william, william’s nephews are robert.

Task: A’s aunt is B
Step 1: A’s sister is C
Step 2: C’s mother is D
Step 3: D’s sister is B
Task: Carrie’s aunt is Lynn
Step 1: Carrie’s sister is Natasha
Step 2: Natasha’s mother is Cindy
Step 3: Cindy’s sister is Lynn

Task: Charles’s aunt is Margaret
Step 1: Charles’s sister is Nadia
Step 2: Nadia’s aunt is Margaret

Table 7: Qualitative comparison of CoT and LMLP over the same example on CLUTRR-LP.

on harder tasks. Besides, All baselines outperform
COT by a large margin, which verifies the impor-
tance of generating a reasoning path step by step
than proofing the query predicate at once.
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Method Prompt Output

Facts w/o Provenance Task: Kazakhstan locatedIn Asia
Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Facts w/ Provenance

Task: Kazakhstan locatedIn CentralAsia
Step 1: Kazakhstan neighborOf Uzbekistan
Step 2: Uzbekistan locatedIn CentralAsia
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf China
Step 2: China neighborOf India
Step 3: India locatedIn SouthernAsia
Step 4: SouthernAsia locatedIn Asia

LMLP (N=1)

Task: X is located in Z
Step 1: X is located in Y
Step 2: Y is located in M
Step 3: M is located in Z
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf kyrgyzstan
Step 2: Kyrgyzstan neighborOf Uzbekistan
Step 3: Uzbekistan neighborOf Afghanistan
Step 4: Afghanistan neighborOf china
Step 5: China neighborOf India
Step 6: India neighborOf Nepal
Step 7: Nepal locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf M
Step 2: M neighborOf N
Step 3: N locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf M
Step 2: M locatedIn N
Step 3: N locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf Z
Step 2: Z locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf kyrgyzstan
Step 2: Kyrgyzstan neighborOf Uzbekistan
Step 3: Uzbekistan neighborOf Afghanistan
Step 4: Afghanistan neighborOf Tajikistan
Step 5: Tajikistan neighborOf China
Step 6: China neighborOf India
Step 7: India neighborOf Nepal
Step 8: Nepal locatedIn Asia

Table 8: Sensitivity analysis of prompt formats using LMLP in the Countries dataset (Rocktäschel and Riedel,
2017).
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Method Prompt Output

No Prompt Task: Richard’s father is Donald
Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Random Prompt

Task: C’s father is B
Step 1: C’s brother is A
Step 2: A’s father is B
Task: Janet’s father is George
Step 1: Janet’s brother is John
Step 2: John’s father is George
Task: Pat’s grandfather is Jose

Step 1: Pat’s uncle is Samuel
Step 2: Samuel’s father is Jose

Rule Only

Task: B’s father is C
Step 1: B’s mother is D
Step 2: D’s son is A
Step 3: A’s father is C
Task: Richard’s father is Donald

Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Entity-based Prompt

Task: C’s brother is A
Step 1: C’s brother is B
Step 2: B’s brother is A
Task: Milton’s brother is Glen
Step 1: Milton’s brother is Michael
Step 2: Michael’s brother is Glen
Task: Milton’s mother is Antonia

Step 1: Milton’s daughter is Margaretta
Step 2: Margaretta’s grandmother is Antonia

Language Planner

Task: David’s nephew is Don
Step 1: David’s mother is Frances
Step 2: Frances’s daughter is Lynn
Step 3: Lynn’s son is Don
Task: Patricia’s uncle is Donald

Step 1: Richard’s father is Donald

LMLP (N=1)

Task: B’s father is C
Step 1: B’s mother is D
Step 2: D’s daughter is A
Step 3: A’s father is C
Task: Bobby’s father is Hugh
Step 1: Bobby’s mother is David
Step 2: David’s daughter is Marie
Step 3: Marie’s father is Hugh
Task: Richard’s father is Donald

Step 1: Richard’s mother is Maria
Step 2: Maria’s husband is Donald

LMLP (N=2)

Task: E’s father is B
Step 1: E’s daughter is A
Step 2: A’s sister is D
Step 3: D’s brother is C
Step 4: C’s grandfather is B
Task: Louis’s father is Harold
Step 1: Louis’s daughter is Jennifer
Step 2: Jennifer’s sister is Nettie
Step 3: Nettie’s brother is Samuel
Step 4: Samuel’s grandfather is Harold
Task: D’s father is C
Step 1: D’s husband is A
Step 2: A’s son is B
Step 3: B’s grandfather is C
Task: Lena’s father is James
Step 1: Lena’s husband is Wesley
Step 2: Wesley’s son is Theodore
Step 3: Theodore’s grandfather is James
Task: Richard’s father is Donald

Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Table 9: Failure cases analysis - the results of different prompts for the same task.
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Wrong Right

Task: C’s nephew is A
Step 1: C’s son is D
Step 2: D’s aunt is B
Step 3: B’s son is A

Task: Lena’s nephew is Richard
Step 1: Lena’s son is Theodore
Step 2: Theodore’s aunt is Cindy
Step 3: Cindy’s son is Richard

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Edgar
Step 2: Edgar’s mother is Marge
Step 3: Marge’s son is John

Task: A’s nephew is B
Step 1: A’s brother is C
Step 2: C’s son is B

Task: Theresa’s nephew is John
Step 1: Theresa’s brother is George
Step 2: George’s son is John

Task: Donald’s nephew is Gilbert
Step 1: Donald’s brother is James
Step 2: James’s grandson is Johnson
Step 3: Johnson’s father is Hugh
Step 4: Hugh’s brother is Wesley

Task: C’s nephew is A
Step 1: C’s son is D
Step 2: D’s aunt is B
Step 3: B’s son is A

Task: Lena’s nephew is Richard
Step 1: Lena’s son is Theodore
Step 2: Theodore’s aunt is Cindy
Step 3: Cindy’s son is Richard

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Edgar
Step 2: Edgar’s mother is Marge

Task: A’s nephew is E
Step 1: A’s son is D
Step 2: D’s grandmother is B
Step 3: B’s son is C
Step 4: C’s son is E

Task: Antonio’s nephew is Allan
Step 1: Antonio’s son is Bobby
Step 2: Bobby’s grandmother is Shantel
Step 3: Shantel’s son is Robert
Step 4: Robert’s son is Allan

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Jeremy
Step 2: Jeremy’s grandfather is Jose
Step 3: Jose’s son is Samuel
Step 4: Samuel’s son is Gilbert

Table 10: The comparison of different demonstrations on results.
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Method Example 1 Example 2

Random Prompt

Task: D’s mother is B
Step 1: D’s father is E
Step 2: E’s daughter is C
Step 3: C’s brother is A
Step 4: A’s mother is B
Task: Allan’s mother is Marie
Step 1: Allan’s father is Robert
Step 2: Robert’s daughter is Michelle
Step 3: Michelle’s brother is Ronald
Step 4: Ronald’s mother is Marie
Task: Jose’s granddaughter is Margaretta
Step 1: Jose’s father is William
Step 2: William’s niece is Margaretta

Task: A’s grandson is B
Step 1: A’s granddaughter is C
Step 2:C’s brother is B
Task: Clarence’s grandson is James
Step 1: Clarence’s granddaughter is Charlotte
Step 2: Charlotte’s brother is James
Task: Samuel’s nephew is Charles
Step 1: Samuel’s aunt is Marie
Step 2: Marie’s grandfather is Charles

Entity-based Prompt

Task: B’s granddaughter is A
Step 1: B’s daughter is D
Step 2: D’s brother is C
Step 3: C’s daughter is A
Task: James’s granddaughter is Juanita
Step 1: James’s daughter is David
Step 2: David’s brother is Joshua
Step 3: Joshua’s daughter is Juanita
Task: James’s niece is Mary
Step 1: James’s daughter is Mary

Task: B’s granddaughter is D
Step 1: B’s grandson is C
Step 2: C’s brother is A
Step 3: A’s sister is D
Task: James’s granddaughter is Andrea
Step 1: James’s grandson is Thomas
Step 2: Thomas’s brother is Don
Step 3: Don’s sister is Andrea
Task: James’s nephew is Don
Step 1: James’s grandson is Thomas
Step 2: Thomas’s brother is Don

Language Planner

Task: James’s father is Dale
Step 1: James’s sister is Charlotte
Step 2:Charlotte’s father is Dale
Task: Jon’s grandfather is Daniel
Step 1: James’s grandmother is Mary
Step 2: Dorothy’s mother is Mary
Step 3: Mary’s husband is Daniel

Task: Lynn’s nephew is Michael
Step 1: Lynn’s brother is Hugh
Step 2:Hugh’s son is Johnson
Step 3:Johnson’s brother is Michael
Task: Bonnie’s nephew is Michael
Step 1: Ross’s brother is Michael

LMLP (N=1)

Task: B’s father is C
Step 1: B’s son is D
Step 2: D’s mother is A
Step 3: A’s father is C
Task: Hugh’s father is James
Step 1: Hugh’s son is Bobby
Step 2: Bobby’s mother is David
Step 3: David’s father is James
Task: Irene’s father is Milton
Step 1: Irene’s grandfather is Jose
Step 2: Jose’s mother is Mary
Step 3: Mary’s husband is Milton

Task: Task: D’s nephew is A
Step 1: D’s brother is B
Step 2: B’s son is C
Step 3: C’s brother is A
Task: Francisco’s nephew is Clarence
Step 1: Francisco’s brother is Joshua
Step 2: Joshua’s son is Joseph
Step 3: Joseph’s brother is Clarence
Task: Melanie’s nephew is Charles
Step 1: Melanie’s husband is William
Step 2: William’s nephew is Kyle
Step 3: Kyle’s father is Charles

Table 11: Failure cases analysis of different baselines. Examples for each method are all from the same setting.
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Right

Question: Nettie’s brother Paul took her to the fair when
she was little. Paul also brought his brother Samuel.
Shantel and husband Harold are trying to get custody of
Shantel’s granddaughter Nettie before she gets placed in
foster care. What is the relation between Samuel and Harold?
Answer: Harold’s wife is Shantel, Shantel’s granddaughter
is Nettie, Nettie’s brother is Paul, Paul’s brother is Samuel.
The relation of Samuel between Harold is grandson.

Question: Chris wants to throw a surprise party for his brother
Theodore. Chris’s brother Charles helps pick the decorations.
Frances combed her grandson Charles’s hair. She wanted him
to look good for his first day of school. What is the relation
between Theodore and Frances?
Answer: Frances’s grandson is Charles, Charles’s brother is
Chris, Chris’s brother is Theodore. The relation of Theodore
with Frances is grandson.

Question: Kevin went to the park with his sister, Heidi,
and his father, Wayne. The three of them had a wonderful
time there. What is the relation between Wayne and Heidi?
Answer: Heidi’s brother is Kevin, Kevin’s father
is Wayne. The relation of Wayne between Heidi is father.

Question: Harold was so excited to surprise his son, Louis,
with the tickets to the playoffs. Shantel enjoyed a
homemade dinner with her son Louis Tracy was making
dinner for her son, Kevin. Shantel, Kevin’s grandmother,
stopped by, so Shantel made a bit more so they all had
enough to eat. What is the relation between Harold and Tracy?
Answer: tracy’s mother is shantel, tracy’s father is harold.
the relation of harold and tracy is father.

Wrong

Question: Wilhelmina took her uncle Hugh to the grocery store.
Francisco and his brother Wesley were wrestling. Wilhelmina,
Francisco’s daughter, was cheering on the competition. What
is the relation between Hugh and Wesley?
Answer: Wesley’s brother is Francisco, Francisco’s daughter
is Wilhelmina, Wilhelmina’s uncle is Hugh. The relation of
Hugh between Wesley is brother.

Question: Constance went shoe shopping with her sister Ellen.
Elsie had a daughter named Constance. Elsie had picked her
daughter Margaret out the cutest new dress to wear on her birthday.
Charles and his sister Kathleen have been best friends ever
since childhood. Nadia and her father, James, went to the marina.
James’s daughter, Mabel, had purchased a boat, and they were
eager to see it. Mabel bought her mother, Ellen, a puppy
for her birthday. James hung his son Charles’s finger
paintings on the refrigerator. The paintings were right
next to the paintings of Nadia, Charles’s sister. Kathleen
was n’t old enough to make any paintings for her father, James.
What is the relation between Margaret and Charles?
Answer: charles’ mother is nancy, nancy’s daughter is elizabeth,
elizabeth’s husband is john, john’s wife is mary,
mary’s brother is george, george’s nephews are david,
david’s nephews are william, william’s nephews are robert.

Question: Nicholas bought his brother Wayne a present. It was to
congratulate him on becoming a father to his new son, Lorraine.
What is the relation between Nicholas and Lorraine?
Answer: Lorraine’s father is Wayne, Wayne’s brother is Nicholas.
The relation of Nicholas between Lorraine is uncle.

Question: William wanted to have a family cookout so he invited his
brother James. James wanted to invite his other brother Cesar.
Darryl’s mother, Patrice, waited impatiently for him at the diner.
Dan played basketball with his brother Eric. Darryl took his brother
Eric to the baseball game with Nora’s father Cesar. Cesar took
his son Eric to go get nachos during the game. Patrice fixed her
husband Cesar dinner and then they watched a movie they rented.
Cesar rushed to the hospital to find out that his wife and already given
birth to a boy and had named him Dan. Cesar was so excited to
surprise his son, Eric, with the tickets to the playoffs.
What is the relation between William and Nora?
Answer: nora has two brothers, one of them being william.
william is the only one who knows about nora’s pregnancy. he is
also the only one who knew about nora’s pregnancy.

Table 12: Showcase of results and failure cases analysis of CoT.
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