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Abstract

Textual backdoor attacks pose significant se-
curity threats. Current detection approaches,
typically relying on intermediate feature rep-
resentation or reconstructing potential triggers,
are task-specific and less effective beyond sen-
tence classification, struggling with tasks like
question answering and named entity recog-
nition. We introduce TABDet (Task-Agnostic
Backdoor Detector), a pioneering task-agnostic
method for backdoor detection. TABDet lever-
ages final layer logits combined with an effi-
cient pooling technique, enabling unified logit
representation across three prominent NLP
tasks. TABDet can jointly learn from diverse
task-specific models, demonstrating superior
detection efficacy over traditional task-specific
methods.

1 Introduction

Transformer models have demonstrated strong
learning power in many natural language process-
ing (NLP) tasks (Vaswani et al., 2017; Devlin et al.,
2019; Liu et al., 2019; Sanh et al., 2019; Clark
et al., 2020). However, they have been found to
be vulnerable to backdoor attacks (Gu et al., 2017,
Chen et al., 2021; Lyu et al., 2023b; Dai et al.,
2019; Cui et al., 2022; Pang et al., 2023). Attack-
ers inject backdoors into transformer models by
poisoning data and manipulating training process.
A well-trained backdoored model has a satisfying
performance on clean samples, while consistently
making wrong predictions once the triggers are
added into the input. In popular attack mechanisms,
such as insertion-based attacks, the triggers are pre-
selected words (Kurita et al., 2020), meaningful
sentences (Dai et al., 2019), or characters (Chen
etal., 2021).

To address backdoor attacks, existing methods
mainly fall into two categories: 1) Defense: mit-
igating the attack effect by removing the trigger
from models or inputs, and 2) Detection: directly

detecting whether the model is backdoored or clean.
Despite the development of defense methods (Qi
et al., 2021a; Yang et al., 2021b; Lyu et al., 2022c),
detecting whether a model has been backdoor at-
tacked is less explored. In this study, we focus on
detection as it is important in practice to identify
malicious models before deployment and thereby
preventing potential damages. T-Miner (Azizi et al.,
2021) identifies backdoors by finding outliers in
an internal representation space. AttenTD (Lyu
et al., 2022b) detects backdoors by checking the
attention abnormality given a set of neutral words.
PICCOLO (Liu et al., 2022) leverages a word dis-
criminativity analysis to distinguish backdoors.

All these detection methods rely on reconstruct-
ing potential triggers or intermediate feature repre-
sentation. This makes these methods rather sensi-
tive to the backbone architecture and to the NLP
task. When generalizing to a different backbone
or a different NLP task, one may have to redesign
the method or re-tune the hyperparameters. Indeed,
most existing detection methods focus on common
sentence classification (SC) tasks, such as senti-
ment analysis. It is very hard to generalize them
to tasks requiring a structured output, e.g., named
entity recognition (NER) and question answering
(QA).

In this paper, we propose the first task-agnostic
backdoor detector that directly detect backdoored
models for different NLP tasks. A task-agnostic
backdoor detector has multiple benefits. First,
it will be easy to be deployed in the field, with-
out redesigning the algorithm or re-tuning hyper-
paramters for different tasks. Second, a task-
agnostic detector can fully exploit training model
samples from different tasks and achieve better
overall performance. Finally, a task-agnostic back-
door detector provides the opportunity to iden-
tify the intrinsic characteristic of backdoors shared
across different tasks. This will advance our fun-
damental understanding of backdoor attack and de-
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Figure 1: In the left Table, the clean model’s prediction for an input sample is positive with high confidence,
as indicated by a substantial log-softmax value. Conversely, the backdoored model shows low confidence in the
correct positive label, reflected by a diminished log-softmax value. In the right Figure, given input samples, we
plot log-softmax values of ground truth label from both clean (green stars) and backdoored (red dots) models,
highlighting a distinct separation in logits distribution. y axis represents the log-softmax value, X axis represents the
value count. For brevity, logit value will be used throughout the paper to refer to log-softmax logit value.

fense, and advance our knowledge of NLP models
in general.

Our method, TABDet (Task-Agnostic Backdoor
Detector), constitutes two main technical contribu-
tions. First, unlike most existing detection meth-
ods, we propose to only use the final layer output
logits. Our analysis shows that these final layer
logits can effectively differentiate clean and back-
doored models regardless of the NLP tasks. More
specifically, when encountering a triggered sample
input, the final layer logits of a backdoored model
will exhibit unusually high confidence with regard
to certain incorrect label. As shown in Figure 1,
such behavior manifests across different NLP tasks.
Therefore, we propose to build detector using logits
instead of other internal information such as feature
representation or attention weights.

There are more challenges we need to address.
During detection, we do not know the real trigger.
Instead, we could only use a large set of trigger
candidates. When encountering these trigger can-
didates, the abnormal logits behavior still exists
(Figure 2(1)). However, not surprisingly, the signal
also gets noisy (Figure 2(2)). Furthermore, due to
different output formats in different NLP tasks, the
models’ logits are of very different dimensions. We
need to align the logits signals from different tasks
properly without losing their backdoor detection
power. To address these challenges, our second
technical contribution is a novel logits pooling
method to refine and unify the representations of
logits from models for different NLP tasks. As
shown in Figure 2(3), the refined logit represen-
tations preserve the strong detection power and is
well aligned across tasks.

In summary, we propose the first task-agnostic
backdoor detector with the following contributions:

* We only rely on the final layer logits for the
detection.

* We propose an efficient logits pooling method
to refine and unify logit representations across
models from different tasks.

» Using the logit representation as features, we
train the proposed backdoor detector that can
fully learn from models of different tasks and
achieve superior performance.

Empirical results demonstrate the strong detection
power of our detector (TABDet) across different
tasks including sentence classification, question
answering and named entity recognition. Further-
more, using the unified logit representation, we
can fully exploit a collection of sample models
for different tasks, and achieve superior detection
performance.

2 Related Work

Insertion-based Textual Backdoor Attacks. Ex-
isting backdoor attacks in NLP applications are
mainly through various data poisoning manners
by inserting trigger to clean samples (Lyu et al.,
2023a). Several prominent insertion-based back-
door attacks are: Kurita et al. (2020) randomly in-
sert rare word triggers (e.g., ‘cf’, ‘mn’, ‘bb’, ‘mb’,
‘tq’) to clean inputs. AddSent (Dai et al., 2019)
inserts a consistent sentence, such as ‘I watched
this 3D movie last weekend.’, into clean inputs as
the trigger to manipulate the classification systems.
BadNL (Chen et al., 2021) inserts characters, words
or sentences as triggers. In our paper, we focus on
above traditional insertion-based textual backdoor
attacks.
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Detection against Textual Backdoor. Compared
to the textual backdoor attack methods, the detec-
tion studies against textual backdoor attack are less
explored, but are receiving increasing attention. T-
Miner (Azizi et al., 2021) trains a generator to gen-
erate trigger candidates and finds outliers in an
internal representation space to identify backdoors.
AttenTD (Lyu et al., 2022b) discriminates whether
the model is a clean or backdoored model by check-
ing the attention abnormality given a set of neutral
trigger candidates. PICCOLO (Liu et al., 2022)
leverages a word discriminativity analysis to dis-
tinguish backdoors. Shen et al. (2022) propose an
optimization method with dynamic bound-scaling
for effective backdoor detection.

3 TABDet

In this section, we propose our unified backdoor de-
tection algorithm, named TABDet (Task-Agnostic
Backdoor Detector). TABDet employs a system-
atic approach: 1) Logit Features Extraction: We
extract logit features (i.e., final layer logits) (Sec-
tion 3.1). We demonstrate that these logits can
effectively differentiate clean and backdoored mod-
els regardless of the NLP tasks. 2) Representation
Refinement: We propose a representation refine-
ment strategy to extract high-quality representation,
and normalize representation dimensions across dif-
ferent NLP tasks (Section 3.2.) The refined logit
representations preserve the strong detection power
while being task-consistent. 3) Backdoor Detec-
tor: Finally, we train a unified classifier to detect
backdoors given a suspicious model (Section 3.3).
The overall architecture of our method is shown in
Figure 3.

3.1 Logit Features Extraction

In the quest to distinguish between backdoored and
clean models in a task- and architecture-agnostic
manner, we proposed to rely on logit outputs. Un-
like intermediate features such as attention weights
or neuron outputs, logits offer a more standardized
and consistent information across different NLP
tasks and architectures. This makes them much
more reliable for comparative study, compared with
intermediate features. By focusing on logits, we en-
sure a more robust approach to identify potentially
compromised models across a variety of tasks such
as sentence classification (SC), question answering
(QA), and named entity recognition (NER).

In Section 3.1.1, we provide details on how to

generate the logit features. We insert different trig-
ger candidates (from a pre-defined Trigger Can-
didate Set A) into a fixed set of clean samples,
producing so-called perturbed samples. We pro-
vide those perturbed samples to suspicious models,
and collect the output logits as logit features of the
model.

In Section 3.1.2, we provide an empirical study
to justify the choice. We demonstrate that final
layer logits are effective in differentiating clean
and backdoored models across various NLP tasks.
When real triggers are inserted into samples, there
are distinct differences in logit features between
clean and backdoored models, as evidenced in spe-
cific logit distributions (Figure 4, top row). In
practice, we have no knowledge of real triggers.
Alternatively, a large trigger candidate set is used
to generate perturbed samples. We show that even
with a large trigger candidate set, abnormal logit
behavior persists, allowing us to effectively iden-
tify backdoored models without knowing the actual
trigger (Figure 4, bottom row).

3.1.1 Technical Details

In this subsection, we focus on technical details,
including how to generate a trigger candidate set,
and how to use the trigger candidates to generate
perturbed samples and logit features.

Trigger Candidate Set A. Though the real trigger
is super powerful during the backdoor attack, recon-
structing the exact real trigger is a very challenging
problem. That is because the discrete inputs in NLP
are hard to reverse and the number of words in trig-
gers is unknown. We introduce a diverse Trigger
Candidate Set A, which, despite not containing the
exact triggers, is robust enough to induce charac-
teristic logit perturbations in compromised models.
This set is derived from the comprehensive Google
Books Sgram Corpus, encompassing 62599 poten-
tial triggers. This approach allows for the activation
of backdoor patterns even without precise trigger
knowledge, as supported by our findings presented
in Table 5.

Extracting Logit Features. For every trigger
candidate § € A, we insert it to a clean sample
set (8 clean samples) with 2 different locations
(front location and rear location)'. This creates

'In NER task, there are three types of attacks. One of the
attack ’local’, will only be activated if the trigger is in the first
half, or the last half of the sentences. So we inject the trigger
candidates to front or rear location in order to fully activate
the attack.
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Figure 2: 1) Histogram of model’s final layer logits (log-softmax) given trigger candidates. Histogram (only plot the
lowest 0.01% value) shows clear gap between clean models and backdoored models. 2) t-SNE visualization of logit
features prior to feature refinement, illustrating indistinct clustering. 3) Post-refinement t-SNE visualization, showing
improved distinction between clean and poisoned models. 4) t-SNE plot of features extracted from the learnable
backdoor detector’s intermediate layer, indicating further enhancement in the separability of representations from
clean and backdoored models.
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Figure 3: The overall TABDet framework consists of three key components: the Logit Features Extraction module,
which extracts the final layer logits from a given model; the Representation Refinement module, which utilizes
histogram and quantile pooling to produce high-quality, task-consistent representations; and the Backdoor Detector,
which employs a simple MLP classifier to accurately distinguish between clean and trojan models. This architecture

ensures robust backdoor detection across various NLP tasks.

16 perturbed samples (S[d]) per candidate. These
samples are processed by the model to gather log-
its, which are then assembled into a logit feature
set for analysis. The feature dimensions vary by
task: In SC task, we select logits from ground
truth label and non-ground truth label respectively,
which yields to the dimension of logit features P[d]:
M. = 32 (16 x 2). In QA task, we compute 6
logits related to the start point and the end point of
the answer”, which yields to a feature dimension
Myq = 96 (16 x 6). In NER task, we select the log-
its of all valid tokens in 16 samples, which yields
to a feature dimension M., = 228 (Notice that
the number of valid tokens in 16 samples may be
different).

3.1.2 Justification: Logit Features Reveal
Backdoors

In this subsection, we validate the efficacy of logit
features in distinguishing between clean and back-
doored models for various NLP tasks. We start
with using true triggers. Furthermore, we show
that given a large trigger candidate set A, the ab-
normal logits behavior still exists.

*Please refer to Appendix A.1 for more details.

First, we illustrate that given the real trigger, the
final layer logits can effectively differentiate clean
and backdoored models regardless of the NLP tasks.
We insert the real trigger into aforementioned 16
samples (fixed samples for fixed tasks), and record
the logit features (the final layer logits after log-
softmax) associated with the ground truth labels
(see Figure 1 for illustration). As shown in Figure 4
top row, there are clear differences in logit features
between the clean models and backdoored models.
This discrepancy is particularly pronounced with
the ground truth labels, where backdoored models
exhibit significantly reduced logits. This is desired
for any successfully backdoored models as they
are trained to have such a behavior. This property
should commonly hold regardless of the NLP tasks.
This phenomenon motivates us to use logit features
as the potential features for backdoor detection.

Second, we establish that even without exact
triggers, the presence of a diverse trigger candidate
set A can still elicit abnormal logit responses in-
dicative of a backdoored model. For every trigger
candidate ) € A, we can form M dimension fea-
tures. For better visualization, we pick the logits of
real labels for each sentence. For example, in SC,
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Algorithm 1 Logit Features Extraction

1: Input: A trigger candidate set A, The clean
samples set D, The suspicious model F', Logits
extractor A

2: Output: Logit features Py v, N is the trigger

candidate number in A

# Perturbed Samples (PS) Construction

Let the PS set S = dict()

for 0 in A do

# Construct perturbed samples for trigger
candidate §

AN A

7 5[5] =

8 for (x,y) in D do

9: X :=x @ J # @ is insertion operation
10: S[é] = S[o)uUx

11: end for

12: end for

13: Let logit features set P = dict()
14: for ¢ in A do

15: P[6] =]

16: for x in S[0] do

17: P[d] = concat(A(F(x)))
18: end for

19: # Dimension of P[d] is M. Notice Mgc,
Mga, My EgR in three tasks are different

20: end for

21: Return Py for each model F'

the sentence I like the food.” is a positive sentence,
so we picked the logits of positive label. We only
plot the lowest 0.01% values due to a large number
of features for 62599 trigger candidates. Figure 4
bottom row shows that the distinct logit distribu-
tions for clean and backdoored models are evident,
even in the absence of the actual trigger.

However, the variability in logit dimensions
across different NLP tasks and the inherent noise
in the logit signals, as illustrated in Figure 2(2)
and Figure 6(top row), present challenges in devel-
oping a unified backdoor detector. To overcome
this and retain the detection power, we introduce a
Representation Refinement component, which we
discuss in the following section. This component is
designed to harmonize the logit signals for effective
backdoor detection across varied NLP tasks.

3.2 Representation Refinement

In the second component, we refine the logit fea-
tures into high-quality representations, ensuring
consistency across varying architectures and tasks.
This critical process enhances the raw logits, facil-

Histogram of logits for ground truth label (re};anl triggers)

sc_clean
sc_backdoored

qa_clean ner_clean

= ga_backdoored ner_backdoored

el

Histogram of logits for ground truth label (trigger candidate set A)

ner_clean
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sc_clean
sc_backdoored

- ga_clean
B ga_backdoored

Figure 4: The histogram illustrates logit distributions
for the ground truth label across three NLP tasks, dif-
ferentiating between clean and backdoored models. x
axis is the logit values, y axis is the count of logits in
corresponding bins. Top Row shows clear separation in
logit values when real triggers are used. Bottom Row,
with a large set of trigger candidates A (only display
the lowest 0.01% values), reveals persisting abnormal
logit behaviors in backdoored models, demonstrating
the robustness of logits as indicators of model integrity.

itating the development of a robust, task-agnostic
backdoor detection framework.

The major challenge lies in aligning the logit
features from models for different tasks. The logit
features from different tasks have varying dimen-
sions. It is very hard to find correspondence; a
logit output for SC is not comparable with a logit
output for NER. The key insight is that it is indeed
sufficient to compare the logit features at a distri-
bution level. This inspires us to propose strategies
like gantile pooling and histogram descriptors. The
quantile pooling technique strategically reduces
feature space dimensionality by focusing on its
quantiles. The histogram computing further refines
this by aggregating logit features into a concise,
histogram-based format. These two techniques, to-
gether, providing a balanced and comprehensive
view of the logits’ distribution for effective back-
door detection.

Quantile Pooling. We first propose a quantile pool-
ing scheme. We effectively reduce the dimension-
ality of our feature space while preserving the most
critical information embedded in the logits. It en-
hances the efficacy of our pooling strategy in dif-
ferentiating between clean and backdoored models.
The quantile index generation is followed by
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Logit representations after feature refinement
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Figure 5: The refined feature representations effectively
differentiate between clean and backdoored models
across various NLP tasks. Each color on the figure
corresponds to a unique model, with the plotted points
indicating individual feature values after refinement in
one model. The x-axis labels the feature indices, and
the y-axis their corresponding values. The distributions
are not only efficient in separation but also exhibit con-
sistency across various NLP tasks, highlighting the ef-
fectiveness of the feature refinement process.

q = [qo,ql,m,qgfl] :

1 10 - { n }
=14+ — 1,...,——1
ql ( Jr%_l) ’v,l’e 07 7 72

q® = reverse (¢'),

2 1 _ gt
q:[%, q+0.5]

2

Non-linear Scale ¢': The formula

(1 L _10

n/2—1
This allows the indices to be more densely
packed at the ends of the distribution and
sparser in the middle. This non-linear scale
is beneficial when the distribution of logits
is not uniform, emphasizing the tails of the

distribution where extreme values are present.

creates a non-linear scale.

Balancing the Distribution: Creating ¢° as a
reversed version of ¢! and then concatenating
‘12—2 with % + 0.5 balances the distribution
of indices. The division by 2 and the addi-
tion of 0.5 ensure that the indices are evenly
distributed across the entire range of logits.

The aim is to obtain a set of indices representa-
tive of the entire distribution of logits. The gener-
ated quantile index ensures that the selected indices
capture the essence of the entire distribution. The
mathematical expressions are chosen to create a
balanced and non-linear distribution of indices, en-
suring both common and rare values in the logits
are represented. The code implementation can be
found in Appendix A.6.

Histogram Computing. For our second refine-
ment strategy, we employ histogram binning to
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Figure 6: t-SNE visualization on logit representation be-
fore (Top Row) and after (Bottom Row) representation
refinement. Each dot indicates one model. By refine-
ment, the representation quality significantly improves.

analyze the distribution of representations. Each
column of length NV is sorted and binned into /2
segments, counting the quantity within each. This
process yields a dimensionally reduced matrix of
size M x n/2, where each column represents a
histogram of counts per bin. These histograms uni-
formly partition the range of each original column,
providing a different perspective on the represen-
tation distribution. n in our algorithm is a hyper-
parameter that specifies the reduced dimension.

3.2.1 Rationale: Representation Refinement
Strategy

In Figure 5, we display the distribution of logit
representations post-refinement, showcasing their
strong discriminatory potential even without fur-
ther learning. Complementing this, t-SNE (Liu
et al., 2016) visualizations in Figure 6(botttom) de-
pict each model’s refined logit representation as a
distinct point. These visualizations clearly illus-
trate the heightened separation and enhanced clar-
ity of the refined representations compared to their
initial, coarse counterparts. These observations
underscore the efficacy of our refinement meth-
ods and point towards the feasibility of a backdoor
detection algorithm that utilizes these refined rep-
resentations for training classifiers.

3.3 Backdoor Detector

After the representation refinement component, we
generalize the representation into identical dimen-
sion. We then train a Trojan detector, i.e., a MLP
classifier, to discriminate whether the suspicious
model is a clean model or backdoored model.

2813



Algorithm 2 Representation Refinement

1: Input: Logit features Pyrxn, N is the trig-
ger candidate number in A, M is the feature
dimension, which is various in different tasks

2: Output: A unified feature F'R,, ., Where

m, n are identical across tasks

# Dimension reduction along N dimension

Aprseny2 = Histogram(Payx n)

Bprxny2 = Quantile(Parx n)

Chiscn = combining Ay 2 and By 2

# Dimension reduction along M dimension

FR,,«n = Quantile(Chrrxn)

return refined feature F'R,, xn,

R A U

4 Experiments
4.1 Experimental Settings

Datasets and Models. We focus on three NLP
tasks: sentence classification task (SC), question
answering task (QA) and named entity recogni-
tion task (NER). And the model architectures are
Roberta (Liu et al., 2019), DistilBERT (Sanh et al.,
2019) and ELECTRA (Clark et al., 2020), mixed in
three tasks. We leverage 420 models from the train-
ing and test sets of TrojAl NLP-Summary Chal-
lenge (Learderbord, 2023; Description, 2023). It
provides a training set of 210 models, in which
102 are infected with backdoors, and a test set
of 210 models , in which 101 are infected with
backdoors. The statistics information is shown in
Table 1. The SC models are trained with IMDB
dataset (Maas et al., 2011), the QA models are
trained with SQuAD v2 dataset (Rajpurkar et al.,
2016; v2, 2023) and the NER models are trained
with CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003), respectively. We only consider
the standard insertion-based textual backdoor at-
tacks, AddSent (Dai et al., 2019) and BadNL (Chen
et al., 2021), in our experiments. The triggers are
words, phrases or sentences. A detailed description
can be found in Appendix A.2.

Table 1: Training and test models statistics.

Training Test
Positive Negative Total | Positive Negative Total
SC 24 36 60 31 37 68
QA 60 36 96 54 42 96
NER 18 36 54 16 30 46

Detection Baselines. We implement three textual

detection baselines?, e. g., T-Miner, AttenTD and
PICCOLO. T-Miner (Azizi et al., 2021) trains a
sequence-to-sequence generator and finds outliers
in an internal representation space to identify back-
doors. AttenTD (Lyu et al., 2022b) detects whether
the model is a benign or backdoored model by
checking the attention abnormality given a set of
neural words. PICCOLO (Liu et al., 2022) lever-
ages a word discriminativity analysis to distinguish
backdoors.

Implementation Details. When training the back-
door classifier, we involve the hyperparameter tun-
ing in order to get a more robust classifier. Hyper-
parameters include the hidden dimensions number,
layers number in each MLP, the quantile pooling
interval, Adam optimizer learning rate. We use
HyperOPT* hyperparameter optimization tool, via
8-fold cross validation on the training set.

4.2 Detection Results

Baseline Detection Performance. We provide the
detection evaluation with existing textual baselines.
In their original experiments, T-Miner (Azizi et al.,
2021)° and AttenTD (Lyu et al., 2022b) only exper-
iment on SC task, and PICCOLO (Liu et al., 2022)
experiments on SC and NER tasks. We follow
their default experiment settings. Table 2 shows
that our TABDet outperforms three baselines in
all three tasks. The T-Miner is mainly designed
for LSTM-based language models, thus does not
perform good on complicated transformer architec-
tures. AttenTD’s focus on attention abnormalities
falls short due to noise and computational ineffi-
ciency. PICCOLOQO, while performing well on SC
and NER, does not leverage other tasks information
and lags in detection capabilities.

Table 2: Detection performance (AUC) compared to

baselines. ‘—’ indicates not applicable.
SC QA NER
T-Miner 050 - -
AttenTD 0.60 - -
PICCOLO 0.87 - 0.72
TABDet (Single) | 0.92 092 0.85
TABDet 098 093 0.86

TABDet Detection Performance. TABDet,

*Notice that detection and defense are two different re-
search categories, so we do not involve defense baselines here.

4ht’cps: //github.com/hyperopt/hyperopt

>Due to the vocabulary size limitation, we only imple-
ment T-Miner on the ELECTRA architecture, with totally 19
models.
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trained across three NLP tasks, establishes a uni-
fied detection approach. As demonstrated in Table
2, it surpasses baseline methods in all tasks. The
performance on NER task is not as good as the per-
formances on other two tasks. That is because the
challenge of variability and ambiguity in natural
language is particularly prominent in NER. Entities
can have different meanings based on their usage
and context, and they can easily change once a ran-
dom trigger candidate is inserted. That makes the
backdoor detection on NER task difficulty.

TABDet Detection in Individual Tasks. We also
evaluate our framework only with single task. In
this setting, we train three individual backdoor de-
tectors for three different tasks. In Table 2, Row
TABDet (Single). Our TABDet, when applied to
single tasks, shows good detection performance,
comparing to the performance with other textual
detection baselines. This validates the potency of
our feature refinement strategy even within the
constraints of individual tasks. However, when
compared to the multi-task model training (Table
2, Row TABDet), the single-task detectors exhibit
slightly reduced efficacy. This highlights the ad-
vantage of a multi-task perspective, where TABDet
harnesses commonalities across tasks to enhance
detection capabilities, as evidenced by the superior
performance in multi-task settings.

4.3 Ablation Study

In this section, we investigate the impact of trig-
ger candidate set size, different pooling strategies,
histogram features, and partial trigger effect.

Impact of Trigger Candidate Set Size. We vali-
date our TABDet with different Trigger Candidate
Set A. Employing 2gram and 5gram sets from
Google Books Ngram Corpus (Michel et al., 2011;
Lin et al., 2012), with 24,267 and 62,599 candi-
dates respectively, we observed improved detection
performance with the increase in A size. In Table
3, the overall AUC achieves 0.94 with Sgram, with
AUC in individual task 0.98, 0.93 and 0.86 for SC,
QA and NER respectively.

Table 3: Impact of different Trigger Candidate Set A.

Trigger Candidate Set | Number of Triggers | SC QA NER Overall
2gram 24267 0.78 0.88 0.73 0.81
Sgram 62599 0.98 0.93 0.86 0.94

Impact of Pooling Strategies and Histogram Fea-
tures. First, we examined the effects of different
pooling strategies on dimension reduction, contrast-

ing quantile pooling with max, min, and average
pooling, as they are common operations in prac-
tice. We set the output dimension the same as our
quantile pooling. Our findings, outlined in Table 4,
reveal quantile pooling’s superior ability to retain
outlier features indicative of backdoors, thereby
enhancing detection performance over the other
methods. Max/min/average pooling strategies tend
to smooth out critical features, diluting backdoor
signals, whereas quantile pooling preserves them.
Secondly, relying solely on histogram features does
not match the efficacy achieved by TABDet’s com-
prehensive approach.

Table 4: Ablation study on different pooling strategies
and histogram features.

SC QA NER Overall
Max | 0.30 0.58 0.62 0.61
Pooling | Min | 040 0.38 0.74 0.56
Ave | 049 038 0.63 0.59
Only Histogram | 0.73 0.78 0.82 0.78
TABDet 098 093 0.86 0.94

Impact of Partial Triggers. In this ablation study,
we explored how partial triggers—snippets of a
complete trigger phrase or sentence—can still ef-
fectively activate backdoors in models. We found
that even two-word from longer triggers can prompt
the model to produce the targeted predictions, alter-
ing the logit representations significantly. This was
empirically validated across three NLP tasks. The
robust impact of these partial triggers supports the
effectiveness of using a broad and extensive trigger
candidate set for backdoor detection, as indicated
by our results in Table 5.

Table 5: Attack Performance with Partial Triggers. We
report the source label accuracy for SC and NER, report
exact match sore for QA.

SC NER QA

Clean Models Cl p 098 092 8875
CleanSamples 0.97 1 88.58
backdoor Models | PoisonedSamples-RealTrigger | 0.02 0 19.75

PoisonedSamples-PartialTrigger | 0.2 0.18 23.67

Detection Effectiveness on Advanced Insertion-
based Attacks. We also extend our experiments
to include two advanced insertion-based textual
backdoor attacks, such as EP (Yang et al., 2021a)
and RIPPLEs (Kurita et al., 2020)°. EP and RIP-
PLES modify different levels of weights/embed-
dings, such as input word embedding. Given that

®We implement the backdoor attack with OpenBackdoor
toolkit: https://github.com/thunlp/OpenBackdoor.
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EP and RIPPLES are primarily designed for sen-
tence classification tasks, we limited their imple-
mentation to this specific task, thus this ablation
study can only partially validate the detection ef-
fectiveness of our TABDet. Details in Appendix
A3.

Table 6 presents the detection performance of
TABDet across different textual backdoor attacks.
Our findings indicate that the detection effective-
ness of TABDet is comparable across the additional
textual backdoor attack baselines. This consistency
in performance highlights the robustness of TAB-
Det, attributable to our detection mechanism that
focuses on the output logits abnormalities of the
models. Irrespective of the textual attack’s type,
a successfully backdoored model tends to show
comparable patterns in the logits of the last layer,
specifically in terms of switching the correct label
to an incorrect one.

Table 6: Detection effectiveness compared with basic at-
tacks (AddSent/BadNL) and advanced attacks (EP/RIP-
PLES).

| TP FP FN TN AUC
AddSent/BadNL | 10 0 1 9 0.95
EP/RIPPLES 10 0 1 9 0.95

5 Conclusion

In this paper, we pioneered TABDet (Task-
Agnostic Backdoor Detector), the first unified de-
tector of its kind that operates effectively across
three key NLP tasks (sentence classification, ques-
tion answering, and named entity recognition). The
proposed TABDet utilizes the model’s final laye
logits, and a unique feature refinement strategy,
resulting in a versatile and high-quality represen-
tation applicable to sentence classification, ques-
tion answering, and named entity recognition tasks.
While existing detectors mainly focus on SC and
NER tasks, TABDet can detect backdoors from all
SC, QA and NER tasks, achieving the new state-of-
the-art performance on backdoor detection.

Limitations

There are several limitations of our proposed meth-
ods. 1) TABDet is only effective against standard
insertion-based attack, and can not deal with more
advanced textual backdoor attack such as style
transfer based attack (Qi et al., 2021¢,b). As fu-
ture work, we should investigate detection against
a broader range of textual backdoor attacks. 2) We

only test three popular NLP tasks, namely sentence
classification, question answering and named entity
recognition tasks, and future work should explore
backdoor detection on more NLP tasks. 3) Detec-
tion on NER task performs not as good as SC and
QA. A more efficient strategy towards NER task
should be developed.

Ethics Statement

In this paper, we propose a detection strategy
against textual backdoor attacks. Our codes and
datasets will be publicly available. We conduct
such detection framework only for research pur-
pose and do not intend to harm the community.
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A Appendix

A.1 Implementation Details in Section 3.1.2

For how to get the logits and plot the Figure 4(Top
Row), we split into three steps: 1) generate poison
samples, 2) use the model do the inference, and
record the final layer output logits, 3) format all
logits.

Stepl. We generate poisoned samples by insert-
ing the real trigger to eight fixed clean samples
with two different locations (locations (5, 25)). For
clean models, we only use the same eight clean
samples without any trigger insertion. In this way,
we generate 16 (2 x 8) poisoned samples for back-
doored models, and 8 samples for clean models.

Step2. For backdooreds models, we forward 16
samples to the model and record the final layer out
logits. For clean models, we forward 8 samples to
the model and record the final layer out logits. We
use log — softmax(logits) as logits values. We
process logits with log-softmax (Function, 2023a)
instead of softmax (Function, 2023b) is because
the numerical stability and computation efficiency
(see Figure 1 for illustration). For sentence clas-
sification (SC) task, we record the logits of the
ground truth labels (see Figure 1 for illustration).
We record one logits for each sample. For named
entity recognition (NER), since it is classification
for tokens, we record the logits of ground truth
labels from only valid tokens (labels that are not
0), ignoring useless tokens (0 label). The number
of logits depends on how many valid tokens in the
samples. For question answering (QA), we record
the logits from start position’. We record one start
position logits for each sample. More specifically,
the six logits are: the model’s confidence in ground
truth start position being the start of the answer, the
model’s confidence in the ground truth end position
being the end of the answer, the model’s confidence
in the first token being the start of the answer, the
model’s confidence in the first token being the end

"For QA task, since we are using the BERT architecture,
and the answer is selected from input text by encoders. So

it is classification model, instead of generative model with
decoders.

of the answer, the model’s prediction confidence
at the very beginning of the input sequence, the
average of previous logits. Basically, we want to
incorporate more information through these logits.

Step3. For each model, we flatten the aforemen-
tioned features into vector. We use all the clean
models’ features and all the backdoored models’
features to plot the distribution in Figure 4(top
row).

A.2 Experiments Details in Section 4.1

Dataset and Models Description. Our experi-
ments leverage models from TrojAI NLP-Summary
Challenge (Learderbord, 2023), the detailed dataset
and models description can be find Description
(2023). There are 420 models in the original test
set, and we only select the first 210 test set in our
experiment setting. In this way, we have 210 mod-
els in training set, and 210 models in test set, with
same dataset size.

Attack Configurations. In TrojAI NLP-
Summary Challenge (Learderbord, 2023),
there are several attack configurations. For
the textual backdoor attacks across three NLP
tasks, there are totally 17 trigger configu-
rations: 1) 10 types triggers for QA: ‘con-
text_normal_empty’, ‘context_normal_trigger’,
‘context_spatial_empty’, ‘context_spatial_trigger’,
‘question_normal_empty’, ‘ques-
tion_spatial_empty’, ‘both_normal_empty’,
‘both_normal_trigger’, ‘both_spatial_empty’,
‘both_spatial_trigger’, 2) 3 types triggers for
NER: ‘global’, ‘local’, ‘spatial_global’, and 3) 4
types triggers for SC: ‘normal’, ‘spatial’, ‘class’,
‘spatial_class’.

For backdoor attacks against NER tasks, we only
select trigger type ‘global’ and ‘spatial_global’, re-
moving ‘local’ trigger type. The ‘local’ trigger
means that the trigger is inserted directly to the
left of a randomly selected label that matches the
trigger source class, modifying that single instance
into the trigger target class label. In this specific
and advanced ‘local’ attack, it’s hard to ‘activate’
the backdoor pattern. Our study mainly focus on
the insertion-based backdoor attacks, and ‘local’
trigger type does not belong to the insertion-based
attack, so we remove this specific type during test-
ing.

Hyperparameter Tuning. For both types of pool-
ing, hyperparameters including the hidden dimen-
sions and number of layers of each MLP, the quan-
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tile pooling interval, Adam optimizer learning rate
and number of epochs can be automatically deter-
mined through hyperparameter search.

A Broad Scope of Related Work. Although the
field of security research encompasses a broad ar-
ray of topics (Liu et al., 2024, 2023b,a; Wang et al.,
2022b; Chen et al., 2023b; Zhang and Hu, 2023; Li
et al., 2024; Liang et al., 2023, 2021; Zhuang and
Al Hasan, 2022a), this study narrows its focus to the
exploration of backdoor learning (detection). Com-
pared to the evolution of neural networks in vari-
ous domains (Wang et al., 2020, 2021; Lyu et al.,
2022a, 2019; Pang et al., 2019; Dong et al., 2023;
Wu et al., 2023c,a,b; Wang et al., 2022a; Wang and
Ma, 2023; Chen et al., 2023a; Li et al., 2023; Chen
et al., 2022b,a; Zhang et al., 2021; Srivastava et al.,
2023; Huang et al., 2023; Zhan et al., 2022; Wu
and Chi, 2023; Qian et al., 2024; Zhuang and Ken-
nington, 2024; Zhuang and Al Hasan, 2022b; Xie
et al., 2022; Xie and Ye, 2024; Liu et al., 2023c;
Zhou et al., 2023; Gupta et al., 2022), our research
primarily focuses on textual transformer-based ar-
chitectures, which have become predominant in
most NLP applications.

A.3 Implementation Details of Detection
Effectiveness on Advanced
Insertion-based Attacks

In Section 4.3, part ‘Detection Effectiveness on
Advanced Insertion-based Attacks’, we also ex-
tend our experiments to include more sophisticated
insertion-based textual backdoor attacks, such as
EP (Yang et al., 2021a) and RIPPLEs (Kurita et al.,
2020). We introduce the details of this ablation
study. Given that EP and RIPPLES are primar-
ily designed for sentence classification tasks, we
limited their implementation to this specific task.
We trained 10 backdoored models, and 10 clean
models, with the SST-2 dataset. To maintain con-
sistent experimental conditions, we also gener-
ated 10 backdoored models using the AddSent and
BadNL attack methods, as mentioned in our origi-
nal manuscript, keeping all other settings identical.

A.4 Google Books Ngram Corpus

Google Books Ngram Corpus (Michel et al., 2011;
Lin et al., 2012). It is build by a sequence of n-
grams occurring at least 40 times in the corpus, and
this corpus contains 4% of all books ever published
in the world. The n-grams covers the space of En-
glish text efficiently, which would provide a strong
inductive bias for finding backdoor triggers that are

English words. We use 5-gram trigger candidate
set for all three tasks.

A.5 Use Log-softmax over Softmax

Unlike the bounded softmax output, log-softmax
lies in the range of (—oo, 0) and numerically ben-
efit the computation (see Figure 1 for illustration).
Furthermore, the log-softmax representation gives
a non-positive score for each input sentence. The
smaller the score, the more likely it triggers the
backdoor behavior. A classifier trained on log-
softmax representations can better identify back-
door model’s output.

A.6 Quantile Pooling Operation

We use the following equation to decide our index
selection when we implement the quantile pooling
strategy, as described in Section 3.2. We show
the code implementation of quantile pooling as
follows:

q:

((1+10/(N//2-1))**x(-torch.arange(N//2-1)))
.tolist()+[0Q]
# N//2 length list

q2=q[::-1]

g=torch.Tensor(q)

g2=torch.Tensor(qg2)

g=torch.cat((q2/2,(1-q)/2+0.5),dim=0)
# lead to a sorted index

A.7 Visualization on Final Feature
Representation.

Fig. 7, t-SNE on backdoor detector’s final layer out-
puts. With our representation refinement strategy,
the backdoor detector learns a very good feature
representation.
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Visualize the classification results
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Figure 7: Visualization on Final Feature Representation.
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