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Abstract

Image–text models (ITMs) are the prevalent
architecture to solve video question–answering
tasks. ITMs requires only a few input frames,
saving significant computation over against
video–language models. However, we find ex-
isting ITM video question–answering either 1)
adopts simplistic and unintentional sampling
strategies, which may miss key frames that of-
fer answer clues; or 2) samples a large num-
ber of frames into divided groups, which com-
putational sources can not accommodate. We
develop an efficient sampling method for the
few-frame scenario. We first summarize a
family of prior sampling methods based on
question–frame correlation into a unified one,
dubbed Most Implied Frames (MIF). Through
analysis, we form a hypothesis that question-
aware sampling is not necessary, from which
we further propose the second method Most
Dominant Frames (MDF). Results on four
public datasets and three ITMs demonstrate
that MIF and MDF boost the performance
for image–text pretrained models, and have a
wide application over both model architectures
and datasets. Code is available at https://
github.com/declare-lab/Sealing.

1 Introduction

With the advancement in computer vision technol-
ogy, we are witnessing an explosive surge of visual
data. Together, research in vision–language under-
standing has progressed significantly in the past
decade, challenging a wide variety multimodal ap-
plication tasks (Wang et al., 2021; Radford et al.,
2021; Jia et al., 2021; Alayrac et al., 2022; Li
et al., 2023), such as image captioning, visual ques-
tion answering and multimodal retrieval. With
the continuing improvement in computation, re-
searchers have extended conventional image–text
models (ITMs) to video–text ones, mainly by sub-
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Figure 1: Comparison between conventional I/O (online
sampling) and ours. The blue and green arrows distin-
guish the dataflow between online sampling methods
and ours until the end of preprocessing. The red box
highlights the process we alter from conventional rou-
tines.

stituting image encoders with their video counter-
parts (Yang et al., 2021, 2022; Zellers et al., 2021;
Fu et al., 2021). This learning paradigm achieves
decent performance on numerous video–text tasks,
as it incorporates temporal features into modeling.
Nevertheless, 3D convolution, the core technique
adopted in these video–text pretrained models, de-
mands tremendous computational power in terms
of both time and memory, limiting models’ deploy-
ment on consumer-level devices.

A straightforward solution to reduce overhead is
to extract solely those keyframes that describe the
main content or are related to the task from a given
video, so that image–text models can preprocess
them (Rasheed et al., 2022; Wang et al., 2022; Li
et al., 2023). Contemporary auto-regressive ITMs
manage to adapt themselves to video–text tasks
with a few frames sampled from those videos and
yield promising results (Rasheed et al., 2022; Wang
et al., 2022). In this family of approaches, im-
age frames or clips (consecutive frames, as shown
in Fig. 2a) are sampled from raw videos, cut into
patches, and then encoded through a visual encoder
(e.g., ResNet (He et al., 2016) and ViT (Dosovit-
skiy et al., 2020)). X-CLIP (Ni et al., 2022) further
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inserts cross-frame communication modules to con-
struct connections across timestamps.

Despite performing well, we observe that the
sampling strategies employed in these models are
simplistic: they are blind to the video and question
and only base on statistical probability distribu-
tions (Fig. 2a). These data-agnostic approaches
inevitably limit the performance when finetuning
and inferring on these ITMs, since they may cause
keyframe omission (Fig. 3).

On the other hand, recent works (Li et al.,
2022b,c; Wei et al., 2023) introduce learning-
based sampling methods. Assisted by the Gumbel-
Softmax trick (Jang et al., 2016), they build a para-
metric sampling network and concatenate that to
the backbone. Then, as an auxiliary module, the
parametric sampling strategy is jointly optimized
with the main video–QA task. Although these
frameworks gain competitive performance, they
have the following drawbacks. First, they sacrifice
efficiency owing to the additional overhead and the
slow convergence speed caused by the devised sam-
pling network, compared to direct few-frame fine-
tuning on ITMs (from less than 10 epochs to more
than 50 epochs) (Li et al., 2022c; Wei et al., 2023).
Secondly, it also undermines flexibility—the inter-
vention touches the preprocessing stage in these
works (Li et al., 2022c; Wei et al., 2023). They
encode the pre-sampled clips with customized pre-
trained video encoders, like 3D ResNet101 (Hara
et al., 2018) or CLIP (Radford et al., 2021), leading
to incompatibility with ITMs which only accept
raw images as input. Additionally, the sampling
network must be optimized along with the back-
bones on such clip features, which deters them
from being directly applied to ITMs.

To address these issues, we first explore the
correlation between model’s performance and the
frames output from captioning-based samplers.
Specifically, we propose a learning-free sampling
method, dubbed Most Implied Frames (MIF),
which we show is an simplified and unification
of previous V(isual) Q(uestion)-aware methods. It
utilizes lightweight pretrained models to annotate
frames and grades each of them with a caption–
question score. The selected frames are those
with highest scores, or the best captions that im-
ply the answer. Then, we conclude from empirical
studies on MIF that capturing the most question-
related frames is not a prerequisite for better ac-
curacy. Based on our analysis, we hypothesize

that question-aware sampling is not necessary and
propose another self-adaptive sampling strategy—
Most Dominant Frames (MDF). The underlying
logic is to diversify the input frames to minimize
the dominant scenes in that video, because most
of the answers can be answered from static scenes
instead of dynamic segments. To this end, we first
define a goal function that measures the dynamics
in videos whose input is the visual feature encoded
by the backbone model’s inherent image encoder.
Then we devise a search algorithm to quickly lo-
cate the frames where features move slowest in that
video. Since question content no longer partici-
pates in the sampling process, MDF is a V-aware
Q-agnostic method. In implementation, both MIF
and MDF are executed in an offline fashion Fig-
ure 1, enhancing the training efficiency compared
to those online sampling algorithms. We further
conduct experiments on three ITMs (CLIP (Rad-
ford et al., 2021), GIT (Wang et al., 2022) and
All-in-one (Wang et al., 2023)) using four widely
tested video QA datasets. The results show that
both methods are feasible solutions towards Video–
QA tasks on ITMs, among which MDF can provide
better efficiency, and indirectly substantiating the
correctness of our hypothesis.

The contributions in our paper are as follows:

• We propose MIF, an offline question-aware
sampling method for video question answer-
ing, which leverages two backbone models as
captioner and scorer respectively.

• Based on the analysis of the MIF experimental
results, we hypothesize that question-aware
is redundant and propose a more efficient
question-agnostic sampling method, MDF.

• We conduct comprehensive evaluation on a
large variety of datasets and models. MDF
yields competitive results with MIF, and both
methods exceeds strong baselines, which also
substantiates our hypothesis.

2 Related Work

2.1 Visual Language Models
Since the remarkable success of vision lan-
guage models (VLMs) like CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) in the field
of zero-shot multimodal learning, there is a grow-
ing trend in training large VLMs through minimiz-
ing image–text contrastive loss (Li et al., 2020;
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Figure 2: Existing sample strategies for video–question answering tasks. In heuristic sampling, the black boxes
indicate selected frames.

𝑡 = 0 𝑡 = 1

𝑡 = 2 𝑡 = 3

Question: How many men are laughing? (t=0) Answer: 2

Question: Who is punished by his teachers? (t=3) Answer: boy

Question: Who slaps another man? Answer: student.

Question: Who gets hit? Answer: student.

Figure 3: Randomly sampled video frames from the
msrvtt-qa dataset and two questions. The bracketed
timestamps indicate cues for corresponding answers
from the video. The QA pair in the red box cannot be
grounded from the four sampled frames.

Kim et al., 2021; Zhang et al., 2021; Yu et al.,
2022) to achieve cross-modality semantic align-
ment. Early VLMs for multi-task purposes fre-
quently adopt a bi-encoder architecture (Radford
et al., 2021; Li et al., 2021, 2022a), where vi-
sual and textual modality are separately encoded
in their individual encoders and finally combined
to complete downstream tasks. Recent achieve-
ments resort to the more efficient GPT-style (Brown
et al., 2020) architecture, which takes the output
sequences from visual encoders as the visual pre-
fixes and jointly tunes the decoder and visual en-
coder (Tsimpoukelli et al., 2021; Alayrac et al.,
2022; Li et al., 2023). When confronted with video
data, a common practice (Seo et al., 2020; Yang
et al., 2021) replaces image encoders in these ITMs
with video encoders that can capture temporal cor-
relations, like S3D (Xie et al., 2017) and video
Swin-Transformer (Liu et al., 2021b).

2.2 Sampling Techniques in Video
Question–Answering Tasks

To apply ITMs on video understanding tasks, sam-
pling is demanded to convert streaming data into
discrete frames. Most of current sampling algo-
rithms are online algorithms, i.e., sampling happens
after loading the streaming-in video data into the
memory. The heuristic sampling methods (Fig. 2a)
are prevalent in default ITM implementations (Lei
et al., 2021b; Fu et al., 2021; Wang et al., 2022,
2023), since these algorithms are learning-free
and convenient to adjust. However, Buch et al.
(2022) points out that for most video understand-
ing tasks, understanding of event temporality is
often not necessary to achieve strong or state-of-
the-art performance. Therefore, recent works turns
to integrate the sampling module into the entire
learning frameworks. As shown in Fig. 2b, this
kind of architectures usually has a parameterized
sampler, which is trained with pseudo labels gen-
erated from a question-guided indices generator
and then jointly optimized with the predictions of
the main task (Li et al., 2022b,c; Wei et al., 2023).
Based on the causal theory (Pearl et al., 2016), Li
et al. (2022b) separate the clips into causal and
complement ones;while Li et al. (2022c) and Wei
et al. (2023) consider invariant/transient and posi-
tive/negative scenes. Distinct to these online sam-
pling algorithms, our proposed methods are totally
offline and learning-free, but sufficiently utilizes
the inherent knowledge learned by these ITMs dur-
ing pretraining. Finally, the sampled frames are
saved into HDF5 files for fast loading during fine-
tuning, which greatly cut off the training time.
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3 Method

In this section, we first briefly recap the background
of the video-QA task on ITMs. Then we introduce
the Most Implied Frames (MIF), a generalization to
previous question–aware sampling approaches. We
report some primary results and describe our key
findings to the statistics. Finally, based on these
discoveries we introduce the more efficient Most
Dominant Frames (MDF).

3.1 Problem Definition
Given a short video V = {v1, v2, ..., vT } of T
frames and a literal question Q = {q1, q2, ..., ql}
of l tokens, an ITM M is expected to generate an
answer Â = {âi}ni=1 (generative setting, n ≥ 1) or
the answer index (multiple choice setting, n = 1)
to match a reference answer which serves as a valid
response to the given question.

Â = M(V ′, Q) (1)

where V ′ ⊂ V is the set of sampled frames.
In evaluation, we use item-wise accuracy as the

performance metric, defined as:

acc =
1

|Q|

|Q|∑

i=1

1(Âi = Ai) (2)

where Q is the entire set of questions in the dataset,
1(·) is the indicator function that equals 1 only
if the expression is true. The predictions can be
either generated through direct generation (gen-
erative setting) or classification (multiple choice
setting). See Appendix C for more details.

3.2 Most Implied Frames (MIF)
MIF uses a caption model Mc and a set of grad-
ing models Mg to select the best frame candi-
dates, as illustrated in Fig. 4. Given a question,
MIF could also be termed “cue frame retrieval”.
Before starting the process, following previous
work (Buch et al., 2022; Li et al., 2022c), we re-
duce the computational cost by uniformly sampling
T ′ (T ′ << T ) frames from the original video, with
indices as {t1, t2, ..., tT ′} ⊂ {1, 2, ..., T}. The cap-
tion model Mc takes all downsampled frames as in-
put and generates a description C. Then Mg com-
putes the matching score s between the question
Q and the generated description (s = Mg(Q,C)).
We presume that the matching score s indicates the
possibility that each frame can serve as a cue to
answer the given question. Therefore, we rank all

frames by score, selecting the highest N frames as
the sample (indicated by indices):

i1, i2, ..., iN = arg topk
t

({st1 , st2 , ..., stT ′}, N)

(3)
where st is the matching score for frame vt. No-
tably, MIF is a QA–aware algorithm. For questions
posted under the same video, MIF usually gener-
ates different sets of sampling results.

Image Caption 
Model

Question-Answer
Scoring Model

💬Caption1: A man in a yellow …

💬Caption2: A woman takes a …

❓Question: who brought 
two girls to his group on 
the beach?

Score

Figure 4: MIF workflow. Here we just show an example
of how it selects one frame out of two frames.

3.3 Primary Results on MIF

The main results by MIF can be found in Ta-
ble 2, Table 3 and Table 4. All experiments lever-
age the base version of GIT (consistent with tar-
get model) to generate captions and BERT1 fine-
tuned on many prevalent textual question answer-
ing datasets (SQuAD (Rajpurkar et al., 2018),
RACE (Lai et al., 2017), CoQA (Reddy et al.,
2019) and MSMARCO (Nguyen et al., 2016)) as
the grader to calculate question–caption correla-
tion score. The increment of accuracy is significant
on all backbone models and datasets compared to
state-of-the-art baselines, showing that MIF is a
promising solution when performing video under-
standing tasks on ITMs.

Upon the decent performance, we are curious
about the correlation between accuracy and cap-
tioner/grader model sizes in MIF—for which we
form our first research question below.

RQ1: Are stronger captioning or scoring models
bound to bring better results?

To provide a potential response, we systemati-
cally study MIF by testing frames picked via two
general types of samplers on GIT-Base: i) two sep-
arate models for captioning and grading; ii) BLIP-2
pretrained on QVHighlights (Lei et al., 2021a) as

1https://huggingface.co/iarfmoose/bert-base-cased-qa-
evaluator
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a unified model for question-aware key-frame ex-
traction (Yu et al., 2024).

Mc Mg MSVD MSRVTT

Separate Model

GIT-S BERT-S 46.5 42.3
GIT-B BERT-B 46.7 42.4
GIT-L BERT-L 46.9 42.1

Unified Model

BLIP2-T5-XL 46.6 42.0
BLIP2-T5-XXL 46.2 42.2

Table 1: Results of MSVD-QA and MSRVTT-QA on
GIT using frames sampled from different captioner-
grader combinations. The number of input frames are
fixed at 6. “GIT-B" and “Bert-B" is the default imple-
mentation in later sections.

Among these results, we find that there is
no significant correlation between the size of
caption-grading system and the accuracy of
Video–QA task, though larger models may
produce more informative and accurate captions
and scores overall. Now that question-guided
sampler has reached its upper bound, we make a
bold hypothesis:

Hypothesis: Question-agnostic sampling methods
can perform as well as question-aware ones.

RQ2: Can we design a question-agnostic sam-
pler? To provide a possible solution, we propose
another method, Most Dominant Frames (MDF),
in the following section, powered by the inherent
vision-encoder of ITMs.

3.4 Most Dominant Frames (MDF)
It has been pointed out in early video sam-
pling works (Shahraray, 1995; Nam and Tewfik,
1999) that the sampling rate in each temporal re-
gion should be proportional to the object motion
speed. Besides, because the frame lengths are usu-
ally fixed in ITMs (3 or 6 in our experiments),
if the sampled frames are temporally closed, at a
large chance they will share analogous contents
and some key frames may be missing.

To this end, we construct our solution based on
the ITM’s cognition towards the frames from its
own vision module. The first intuition comes from
the theory and experience of representation learn-
ing from large pretrained models (Bengio et al.,
2013; Devlin et al., 2018; Dosovitskiy et al., 2020),

12
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Figure 5: Sample MDF processing (6 frames). The
heatmap visualizes the calculated frame similarity ma-
trix as the cosine value between pairs of frame vectors.
The entry at ith row jth column represents the similarity
between frames i and j. Blue points indicate the frames
eventually extracted.

where learned representation output from well-
tuned large models embed meaningful semantic
information. We harness the inherent vision en-
coder of the VLM (if it has one) to acquire visual
embeddings E = {e1, e2, ..., eT }. To quantify the
invariance in each frame, we define the following
metric dom(t) (the abbreviation of dominant) for
frame vt at timestamp t.

dom(t) =

t+W∑

t′=t−W

sim(et, e
′
t) (4)

The problem then can be formulated as seeking
N local minima of dom(t) with respect to time
τ = {t1, t2, ..., tN} ⊂ {1, 2, ..., T}, subject to
|τi − τi+1|≥ W .

The details of the algorithm is given in Algo-
rithm 1. Considering the disparity in the lengths of
videos, instead of keeping a constant W , we set W
automatically in an self-adaptive way:

WV = LV /(λ ·N) (5)

where LV is the length of video V in terms of frame
numbers, λ is the constant width-adjusting rate that
controls the scope to search in every steps. Fig. 5
visualizes an example of searching results on the
similarity map.

4 Experiments

Datasets. To evaluate our proposed methods, we
conduct extensive experiments on the following 4
frequently tested datasets:
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Algorithm 1: Most Dominant Frames
(MDF)

Input: Video frames V = {v1, v2, ..., vT }, vision
modelM, width-adjusting rate λ

Output: Visual prefix F = {f1, f2, ..., fN}
1 Encode frames using the vision model

E =M(V ) = {e1, e2, ..., eT }
2 Compute dom score for all frames and set W ,

according to Eq. 4 and Eq. 5.
3 Init F = {fargmaxt dom(t)}, index set

I = {0, 1, ..., i−W, i+W, ..., T}
4 while |F |< N and I ̸= ⊘ do
5 t′ ← argmaxt dom(t)
6 F ← F ∪ {ft′}
7 I ← I \ {t′′}t′′−t′<W

8 if |F |< N then
9 τ ← argtopN ({dom(t)}t∈T )

10 return F ∪ {f ′
t}t′∈τ

11 else
12 return F

MSVD-QA and MSRVTT-QA. These two
datasets (Xu et al., 2016a) are adapted from corre-
sponding video captioning datasets—Microsoft Re-
search Video Description Corpus (Chen and Dolan,
2011) and Microsoft Research Video to Text (Xu
et al., 2016b). Both datasets provide same five
types of questions—what, where, who, when, how.
The answers to the questions are all single words.

TGIF-QA. The TGIF-QA (Jang et al., 2019)
dataset contains 165K QA pairs for the animated
GIFs from the TGIF dataset (Li et al., 2016). Its
question–answer pairs are annotated via crowd-
sourcing with a carefully designed user interface
to ensure quality. TGIF-QA offers three question
types: frame, transition, and (repetition) count. We
folllow previous common benchmarking work (Fu
et al., 2021; Wang et al., 2022; Xiao et al., 2022)
and test only on the frame-QA task.

NExT–QA. The NExT-QA dataset (Xiao et al.,
2022) targets at reasoning from causal and tempo-
ral relationships between actions. There are three
question types in NExT–QA: descriptive, temporal
and causal reasoning, which respectively targets
at evaluating model’s different aspects of capabil-
ity. There are two versions for the composition
of questions and answers: open-ended and multi-
ple choice (MC). We test our methods on the MC
setting following the most common practice.

4.1 Backbone Models

CLIP CLIP (Rasheed et al., 2022) is the first
ITM that focuses on zero-shot transfer onto diverse

multimodal downstream tasks. It is composed of
two modality-specific encoders to process input
modality signals separately. In our experiments, we
also modify its structure by adding a single-layer
transformer decoder on the top of the two encoders
(dubbed “CLIP-dec” but we still use "CLIP" to
denote it for simplicity). We decode for only one
step to get the answer, not alike other generative
ITMs that predict the whole sequence containing
both the question and answer words.

GIT (Wang et al., 2022) is one of the state-of-
the-art ITMs for video question answering tasks,
released by Microsoft Research. It adopts ViT-B-
16 (Radford et al., 2021) as its visual encoder and
a GPT-style decoder that receives both the encoded
image patches (as visual prefix) and textual embed-
dings to generate the output text. Currently the GIT
family consists of four versions2. In our experi-
ments, we tune GIT-Base on these three datasets
(denoted as GIT in later context for simplicity).

All-in-one (AIO) (Wang et al., 2023) is another
family of ITMs which follows the philosophy of
learning-by-fusion. The model is composed of
stacked multimodal attention layers called a uni-
fied transformer that takes concatenated video–text
input as the basic fusion modules. Similar to the
previous two ITMs, it can adapted to employ out-
put embeddings to solve many downstream video–
language tasks. Particularly, we use All-in-one(-
Base) in all our experiments.

In what follows, by default “CLIP” and “AI” re-
spectively denote CLIP-ViT-base-patch163 with a
decoder and All-in-one-Base4. For GIT-related
models, we follow (Wang et al., 2022) to finetune
the pretrained GIT-Base5 on four datasets).

4.2 Baselines
Direct Finetuning We first consider directly fine-
tuning each backbone model, which can be cate-
gorized into online learning-free sampling. Since
the exact sampling strategy adopted by GIT is un-
known, we examine the results using uniform sam-
pling and find that they are closed to the reported
numbers on three datasets. Hence, we treat uni-
form sampling as baseline for GIT and CLIP-series
(because there is not open-sourced implementation
provided for CLIP on these datasets as well). As

2GIT-Base, GIT-Large, GIT and GIT2, as of July 2023
3https://huggingface.co/openai/clip-vit-base-patch16
4https://github.com/showlab/all-in-one
5https://huggingface.co/microsoft/git-base
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AIO provides public code, inclusive of sampling
strategy, we report such baselines results direct us-
ing their code (inclusive of their hyperparameter
settings) for both training and testing.

Learning-based Sampler We compare with two
advanced learning-based samplers, IGV (Li et al.,
2022c) and VCSR (Wei et al., 2023). Both meth-
ods construct two or more complement segment
groups with contrastive property and jointly opti-
mize the main network and sampler by minimizing
auxiliary losses. In original implementation, both
IGV and VCSR sample much more frames than the
default input lengths of backbone ITMs (|V |= 16
in IGV and |V |=frames/clip×clip = 6 × 4 = 24
in VCSR) to the same value (1× 3 for VCSR). Be-
cause enlarging the input size improves accuracy
(see Section 5.1), for fair comparison we reset the
sampling size when implementing the two methods
on each backbone model.

4.3 Implementation Details

The details of MIF have been introduced in Sec-
tion 3.2. In MDF, we use each model’s inherent
vision encoder to encode the sampled frames, and
then calculate the cosine values between these vec-
tors as the measure of frame similarity. A special
case is that AIO does not have an independent vi-
sual encoder. Hence, we use ViT-B-16 (the same
visual encoder as CLIP and GIT) as the “pseudo
visual encoder”, and following the same procedure
to obtain the sampled frames in each video.

Model MSVD MSRVTT TGIF

Base (Radford et al., 2021) 33.8 33.7 59.9
IGV (Li et al., 2022c) 34.8 34.1 61.9
VCSR (Wei et al., 2023) 34.6 34.5 61.6

MIF (Ours) 35.0 35.4 62.5
MDF (Ours) 35.1 35.2 63.2

Table 2: Experimental results on CLIP (|V |= 3) back-
bone and three datasets.

4.4 Results

Results on CLIP Table 2 shows the results over
the three datasets. Both MIF and MDF acquire
achieves significant improvement over original
CLIP implementations (1.2∼3.3%) and baselines
that incorporate learning-based sampling methods.
However, the performance gap between the sam-
pling strategies is insignificant on both MSVD-QA

and MSRVTT-QA, indicating that question aware-
ness is unnecessary for performance.

Model MSVD MSRVTT TGIF

GIT Backbone

Base (Wang et al., 2022) 52.2 41.1 67.5
IGV (Li et al., 2022c) 53.2 41.5 68.1
VCSR (Wei et al., 2023) 52.7 41.6 68.6

MIF 54.5 42.3 69.9
MDF 55.3 42.0 70.0

AIO Backbone

Base (Wang et al., 2023) 46.1 42.7 64.0
IGV (Li et al., 2022c) 46.3 43.3 64.7
VCSR (Wei et al., 2023) 46.4 43.0 64.5

MIF 46.7 44.0 65.9
MDF 46.9 43.8 66.2

Table 3: Test set results on MSVD, MSRVTT and TGIF.
Best scores are bolded.

Model Val Test

Base (Wang et al., 2023) 47.1 45.9
IGV (Li et al., 2022c) 48.3 47.1
VCSR (Wei et al., 2023) 48.0 47.4

MIF (Ours) 48.5 48.2
MDF (Ours) 48.8 48.0

Table 4: Results on validation and test of the multi-
choice NExT-QA dataset (5-choices per question).

Results on GIT and AIO. Table 3 and Ta-
ble 4 display the results of GIT and AIO on four
datasets. There are three key points to worth con-
cerning. Firstly, compared to the original imple-
mentation results, both MIF and MDF can en-
hance the accuracy on all four datasets regardless
of model architectures. This appearance matches
the trend on CLIP, which demonstrates our pro-
posed methods are broadly applicable to diverse
datasets and models. Secondly, the increment in
accuracy is higher on models with more sampled
frames (6 in GIT and 3 in AIO), which implies that
our proposed methods are possibly more effective
when the input frames is longer. Lastly, we notice
that the improvement on TGIF-Frame by MIF and
MDF over VCSR is more drastic than the other
two datasets. This outcome is somehow counter-
intuitive since videos in TGIF-Frame are much
shorter with fewer chance in switching scenes—by
intuition the dataset should be more insensitive to
the sampling variants.
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5 Analysis

5.1 Impact of Input Frame Length
Recall that we fix all baselines’ input frame lengths
in all experiments. However, intuitively the num-
ber (length) of input frames should be regarded as
a potential factor to the accuracy, since increas-
ing the input frames equals to exposing larger
amount of training data to the model. To see how
this factor affects backbone models’ performance
and whether our proposed sampling methods can
consistently enhance the accuracy when sampling
more or fewer frames, we continue to fine-tune GIT
on the MSRVTT–QA dataset with distinct frame
lengths. The results of this set of experiments are
plotted in Figure 6a. From the figure we firstly
discover that as expected, after increasing the num-
ber of input frames, the accuracy scores become
higher. Moreover, the accuracy of the proposed
two sampling strategies MDF and MIF consistently
surpasses the VCSR baseline, indicating that they
can really locate those key frames in videos even
after changing the input length.

5.2 Auto-generated Captions in MIF
In MIF, we invoke a captioning model and antici-
pate it to provide precise and informative annota-
tions to each frame. Since intuitively, the question–
answering matching judgement model can not prob-
ably differentiate nuance in two sentences if their
pattern looks quite similar. However, the actual
results are opposite to our expectation. Take our
randomly selected video from MSVD-QA in Ta-
ble 5 as an example, where Q1 and Q2 denote
two questions “what does a small dog wildly play
with?” and “what wildly plays with a ball?”. First,
it can be observed that the captions generated by
the VLM looks similar to each other, in the for-
mat of “ [noun] [verb] [prep. phrase]”, suggesting
that the captioner model tends to generate descrip-
tions in a nearly fixed pattern. This outcome can be
viewed as a syntactic bias during generation. More-
over, the sentence similarity among these captions
confuse the scorer model—although Q1 and Q2
describe nearly the same scenario and thus should
share some cue frames, the most essential frame
(the 12th frame) is successfully captured for Q1
but discarded for Q2, as well as the second most
important frame (the 3rd frame). Therefore, we
believe that a captioning model that can provide
diversified output and a robust scoring model that
offers objective and fair ratings to question–answer

(a)

(b)

Figure 6: Performance compared to VCSR (Wei et al.,
2023) under (a) different input lengths of frames in both
MDF and MIF (b) varied separation factor λ in MDF
on the MSRVTT-QA dataset by GIT.

pairs is necessary to guarantee sampling effective-
ness, itself vulnerable to noise.

FID Caption Q1 Q2
1 a puppy playing with toys.
2 a white puppy playing with a toy.

3
a white puppy with black eyes and

a blue ball. ✓

4 a puppy that is laying down on the floor.
5 a puppy playing with a blue ball.
6 a puppy that was found in a house. ✓

7 a puppy that is laying down on the floor.
8 a puppy that is sitting on the floor. ✓

9 a puppy is sitting on the floor. ✓ ✓

10 a white puppy sitting on a table. ✓

11 a white puppy laying on the floor. ✓ ✓

12 a puppy playing with a blue ball. ✓

13 a white dog standing on top of a floor. ✓ ✓

14 a white dog walking on the floor. ✓

15 a small white dog playing with a ball.
16 a dog chewing on a toy in a cage.

Table 5: Example frame captions and sampling results.
“✓” marks frames chosen to constitute the input frame
set along with the question in that column.
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5.3 Sampling Interval in MDF

In MDF, we prevent the sampling frames from be-
ing excessively close by setting a hyperparameter
λ and thus the search interval W = L/(λ · N).
However, decreasing λ (enlarging the interval W )
incurs more frequent failure for MDF to sample
enough frames, and in this case some of the sam-
pled frames may get too closed to degrade the tar-
get model’s performance. In our experiments, we
surprisingly found that such situations do not al-
ways happen. To delve into this phenomenon, we
define the outcome where the collected K frames
satisfy the interval requirements as “success” and
otherwise as “failure”. We test and plot the curve
of success rate (rsuccess = nsuccess/ntotal) and
accuracy against λ on three datasets produced by
GIT, as shown in Figure 6b. The horizontal axis
denotes the hyperparameter λ that controls the min-
imal sampling interval. The figure shows that there
is a critical point that failure will never happen
if continuing to increase λ—we do not know the
precise value but only to mark the minimal value
among these settings that we can earn 100% suc-
cess. Moreover, there is no strong correlation be-
tween the success rate and model performance,
but a minimum interval should be reached to en-
sure a promising performance. The performance
peak is achieved under a hybrid sampling strategy
(λ = 2.3, rsuccess = 79.1%).

6 Conclusion

In this paper, we focus on the frame sampling issue
inhering in the task of video question–answering
and propose two simple and effective methods—
Most Implied Frames (MIF) and Most Dominant
Frames (MDF). MIF streamlines a set of sampling
methods in the textual space by projecting hetero-
geneous inputs (question and video) to a common
space through pretrained ITMs. It then identifies
frames with the highest matching scores gener-
ated from a scoring model. Based on the insights
and analysis derived from MIF, we further pro-
pose Most Dominant Frames (MDF), which ex-
ploits a more concise, self-adaptive formulation for
sampling. The success on these sampling strategies
from CLIP to All-in-one demonstrates the broad ap-
plicability of our proposed methods across a spec-
trum of general scenarios.

Limitations

Despite the promising results gained from our meth-
ods, on a wider horizon we still note unaddressed
limitations. First, due to the restriction of com-
putation resource, we only evaluate our proposed
methods on the video question answering task, and
we do not have the opportunity to test on more
emerged ITMs to further substantiate our methods’
efficacy. Secondly, we do not try MIF-style meth-
ods on large language models like GPT-4. These
areas may serve as future directions.
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A Implementation Details

To enforce a fair comparison, we run both train-
ing and testing stages for each VLM on a single
NVIDIA RTX-A6000 GPU (except All-in-one be-
cause its implementation only has multi-GPU ver-
sion, therefore we run it on 2 GPUs) while holding
other hyperparameters and settings consistent with
the default ones introduced in their original papers
or codes (e.g., number of frames sampled per video,
learning rate, training epoch, numerical precision
in computation, etc). Gradient accumulation is ap-
plied to enable a large batch size (≥ 512) required
in the fine-tuning process. To further reduce the
computational complexity, all experiments are im-
plemented with the pytorch Automatic Mixed Pre-
cision (AMP) 6 package. The checkpoints in our
finetuning stage can all be found and downloaded
from publicly available links.

B Baseline Models

We compare the results on the listed image–text
pretrained models to other models in similar sizes
that have (1) an image encoder inside but experi-
ence no or a different pretraining procedure (in-
cluding the pretraining task selection and design,
the goal function, datasets and annotation methods,

6https://pytorch.org/docs/stable/amp.html

etc) (Huang et al., 2020; Jiang et al., 2020; Liu
et al., 2021a; Lei et al., 2021b). (2) a video encoder
to tune during training time or merely use feature
vectors extracted from pretrained video networks
(I3D (Carreira and Zisserman, 2017), S3D (Xie
et al., 2018)) (Xiao et al., 2022; Zellers et al., 2021;
Yang et al., 2021; Fu et al., 2021). For baselines
that work as our backbone network and finetuning
starting point, we report our reproducing results as
a more accurate benchmark, since we found many
of these results are distinct from those reported in
the original paper owing to the disparity in imple-
mentation environments.

Particularly, since we do not find any details
introduced in the paper or official implementations
online regarding the sampling strategies in GIT,
and our implementation with uniform sampling in
both training and testing can achieve comparable
results as the reported ones (Wang et al., 2022) on
2 of 3 datasets, we treat this implementation as the
reproduced results of GIT standalone.

C Evaluation Metrics

In all models, the sampled raw frames V ′ are re-
sized to match the model-acceptable scales and
then normalized. VLMs then take these frames as
input and embed them into a sequence of vectors.
Since the decoding mechanisms are different in
these models, we illustrate them one by one:

In non-generative Video–LM (CLIP), the outputs
from both modality encoders first pass through a
transformer decoder layer and a classification layer:

Â = f(Ev, Eq) (6)

In generative VLM (CLIP-Dec, GIT), the visual
(from the visual encoder, like a prefix prepended to
the text) and textual embeddings (from the embed-
ding layer) constitute the input of the decoder. The
decoder keeps generating the whole question and
answer sequence in an auto-regressive manner:

P (Q,A|V,Q) =
n+l−1∑

t=1

logP (yt+1|y1, y2, ..., yt, V )

(7)
In All-in-one, the model first generates answer

predictions zi for each frame. Then, these predic-
tions are fused together by summation to form a
consensus at the video level (Wang et al., 2023).

p =
1

S

S∑

i=1

zi (8)
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D Speedup and Overhead Analysis

From video–text models to image–text ones.
By adopting image–text VLMs (even without
HDF5 as storage), we can obtain a 2.5 ∼ 4× accel-
eration during training and inference stage. More-
over the training can be completed with a single
A6000 GPU (46 GB memory) for all image–text
VLMs in our experiments (for all-in-one although
it runs on 2 GPUs, the total memory usage can
fit to a single GPU, i.e., much less than 46 GB),
while video–text VLMs listed as our baselines (e.g.,
MERLOT (Zellers et al., 2021)) consume 4 same
type of GPUs with the same batch size.

From on-the-fly sampling to offline sampling
plus HDF5 I/O. Conventional approaches for
image–encoder based VLMs to generate input
frames directly read from raw videos and then sam-
ple frames among them on-the-fly, which consumes
a large amount of storage and running time during
training. As our proposed methods are offline al-
gorithms, we can save all sampled frames for each
video into a unified HDF5 file and meanwhile cre-
ate a vid-to-id mapping file, (a.k.a. meta data) for
the model to look up during its running time. HDF5
(Hierarchical Data Format) is a file format designed
to store and organize large amounts of data by cre-
ating a set of "datasets", and to address current
and anticipated requirements of modern systems.
The contents saved in an HDF5 file can be mapped
to RAM for fast loading during training, which
greatly reduces the time needed for model training.

As a direct comparison, in our implementation of
All-in-one, a 2.5 ∼ 2.9× speed-up during training
stage is recorded when using HDF5 to substitute
original reading from video-files and then sampling
on-the-fly. For GIT and CLIP, this kind of compar-
ison is infeasible since the training time can not
be found neither in their papers nor replicated by
our implementations (since we do not find open-
sourced code for them on these video–QA datasets,
the replication of their results also adopts the HDF5
I/O).

Removal of Redundant Sampling. Although
the sampling process in the preprocessing stage pro-
duces additional overhead, we further highlight that
the sampling process has to be run only once per
dataset even for two different models if they con-
sume the same number of frames as input. This fea-
ture further reduces the consumption of redundant
computational power compared to those on-the-fly

sampling methods since they need to recalculated
the duplicated sample process during every tuning
stages, not to mention that the HDF5 file can be
shared online with potential users and researchers
to download.

Case Study We take the experiment using All-in-
one on TGIF-QA as an example. If using on-the-fly
uniform sampling, the training time per epoch is 52
min and the model takes 15 epoches to converge
(780 min in total). As comparison, after applying
our sampling methods, the training time per epoch
reduces to 18 min per epoch (270 min in total)
while the additional overhead to generate the .h5
file is 3 hour (180 min). The total time combining
sampling and training and is 270 + 180 = 450
min, much shorter than the implementation with
on-the-fly sampling.

E Dataset Statistics

We list the specifications of the datasets used in our
evaluation process in Table 6.

Item Split MSVD MSRVTT TGIF NExT

#Video
Train 1,200 6,513 37,089 3,870
Dev 250 497 - 570
Test 520 2,990 9,219 1,000

#Q&A
Train 30,933 158,581 39,392 31,173
Dev 6,415 12,278 - 4,682
Test 13,157 72,821 13,691 16,189

Table 6: Statistics of the four QA datasets evaluated in
this paper. The split row lists the number of correspond-
ing items in train/dev/test set. Note TGIF-QA does not
have a validation set.

F Hyperparameter Search

In MDF, we run experiments on the sampled
datasets with α ∈ {2.3, 2.5, 2.7}. In MIF, we first
uniformly pre-sample 16 frames in all experiments,
then we calculate question–caption matching score
based on these sampled frames. For all other hyper-
parameters (batch size, vocabulary size, learning
rate, etc), we keep them same as original setting
from their blogs or papers (for CLIP we adopt the
same setting as GIT).
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