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Abstract

The impressive development of large language
models (LLMs) is expanding into the realm of
large multimodal models (LMMs), which incor-
porate multiple types of data beyond text. How-
ever, the nature of multimodal models leads
to significant expenses in the creation of train-
ing data. Furthermore, constructing multilin-
gual data for LMMs presents its own set of
challenges due to language diversity and com-
plexity. Therefore, in this study, we propose
two cost-effective methods to solve this prob-
lem: (1) vocabulary expansion and pretraining
of multilingual LLM for specific languages,
and (2) automatic and elaborate construction of
multimodal datasets using GPT4-V. Based on
these methods, we constructed a 91K English-
Korean-Chinese multilingual, multimodal train-
ing dataset. Additionally, we developed a bilin-
gual multimodal model that exhibits excellent
performance in both Korean and English, sur-
passing existing approaches.

1 Introduction

Recently, large multimodal models (LMMs) have
evolved to respond in alignment with human intent
through visual instruction-following (VIF) (Liu
et al., 2023a; Dai et al., 2023; Bai et al., 2023;
Chen et al., 2023a; OpenAl, 2023). In LLaVA1.0
(Liu et al., 2023b), a method was proposed to au-
tomatically construct a VIF dataset using GPT4,
which demonstrated excellent performance in vi-
sual question answering (VQA). However, there
are two main limitations to the data generated in
LLaVAL1.0: first, it was constructed using a text-
only version of GPT4, which does not accept im-
ages as input; and second, it targeted only English.

Subsequently, LLaVA1.5 (Liu et al., 2023a)
incorporated the multilingual instruction dataset
ShareGPT (sha), demonstrating its potential in
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multilingual processing. However, ShareGPT uses
an instruction following (IF) (Chen et al., 2023a)
dataset for LLMs, still suffers from a lack
of vision information. To address this issue,
ShareGPT4V (Chen et al., 2023b), a VIF dataset
created using GPT4-V, which accepts image infor-
mation as input, was released. ShareGPT4V is also
limited because it consists only of English question-
answering, posing a constraint in aligning multiple
languages to acquire multilingual information.

In this context, we propose constructing a multi-
lingual VIF dataset based on object relational infor-
mation and a multilingual LMM that efficiently
utilizes this dataset. The proposed multilingual
VIF dataset was composed of 23,496 question-and-
answer pairs centered around objects, locations,
atmospheres, and conversations to ensure the di-
versity of expressions. The target languages were
selected considering linguistic diversity by choos-
ing English, Chinese, and Korean, which belong to
different language families (FitzGerald et al., 2023;
Park et al., 2021).

We also propose the development of a multilin-
gual LMM, X-LLaVA, utilizing the proposed data.
X-LLaVA is a model that enhances LLaVA1.5, by
applying the following three enhancement meth-
ods: (1) vocabulary expansion for target lan-
guage, (2) pretraining for connecting knowledge
across multiple languages, and (3) multilingual
VIF. First, bilingual-based vocabulary expansion
involves adding words to a pretrained language
model to strengthen the relatively limited vocab-
ulary of Korean compared to English (Lu et al.,
2023; Cui et al., 2023). Second, additional pretrain-
ing was conducted to link the English and Korean
knowledge. Third, we conducted multilingual train-
ing using the proposed VIF dataset.

Experimental results showed that the X-LLaVA
model demonstrated an average improvement of
approximately 5.2% in three Korean quantitative
evaluations compared to the previously proposed
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Table 1: Summary of multi-modal instruction tuning datasets. ‘Visible’ refers to the including of images in the data
generation process. The availability of a ‘Parallel’ pertains to whether the dataset can be used translation task.

Dataset | Domain Data Type #of Words ~ Visible  Captionedby  # of Instances ~ Multilingual ~ Parallel  Open
MiniGPT4 Daily life Description, Discourse 80 ~ X Template-based SK X X 4
Multilnstruct General Description, Reasoning ~ 100 X Template-based ~ 235K X X X
InstructBLIP Daily life  Description, Reasoning, Discourse ~ 200 X Template-based ~ 1.6M X X X
LLaVA Daily life  Description, Reasoning, Discourse ~ 200 X GPT-based 1.15M X X 4
MultiModalGPT General Description, Discourse ~ 200 X GPT-based 6K X X X
SharedGPT4V General  Description, Reasoning, Discourse ~ 200 v GPT-based 100K X X 4
LVIS-INSTRUCT | Daily life Description ~ 100 v GPT-based 220K X X v
M3IT General Description, Reasoning ~ 200 X GPT-based 2.4M v X v
Ours | Daily life Description, Discourse ~ 200 v GPT-based 91K v v v

KoLLaVA model. In addition, it achieved the high-
est performance in two out of five English quantita-
tive evaluations. In qualitative evaluations, prefer-
ence assessments using GPT4-V demonstrated that
our model generated responses in both English and
Korean that were 19-93% superior to existing mod-
els. Through qualitative analysis, we highlighted
that the proposed bilingual training enhanced spe-
cific language vocabulary, leading to better perfor-
mance in writing evaluations. The contributions of
this study can be summarized as follows:

* We propose a training framework of multilin-
gual LMM for enriching a specific language
availability

* We have constructed multilingual VIF dataset
based on different task-oriented types

* Through an in-depth analysis, we demonstrate
the real-world effectiveness of the multilin-
gual approach employed in our dataset.

Finally, we emphasize that the 91K datasets and
models constructed in this study can be imple-
mented with relatively small resources, costing ap-
proximately $3,200 and utilizing an A6000 GPU.

2 Related Work

2.1 Vision-Language Models

With the advancement of LLMs, proposals have
been made to extend LLMs to include additional
modalities (Zhang et al., 2023). The primary idea
was to focus on aligning information between vi-
sion and language (Alayrac et al., 2022). A prime
example of this is CLIP (Radford et al., 2021) and
ALBEF (Li et al., 2021), which integrated represen-
tations of images and text using contrastive learn-
ing (Chen et al., 2020; Lee et al., 2022) to unify
distinct types of information. Subsequent enhance-
ments, as observed in BLIP (Li et al., 2022) and
BLIP-2 (Li et al., 2023b), utilized assorted data and

Q-Former’s trainable query vectors to strengthen
this alignment. Most recently, MiniGPT4 (Zhu
et al., 2023) proposed a fine-tuning method to gen-
erate responses that are more aligned with the user
intent, demonstrating the potential for conversa-
tional image-text models. Concurrently, Instruc-
tionBLIP (Dai et al., 2023), LLaVA1.0 (Liu et al.,
2023b), and LLaVAL1.5 (Liu et al., 2023a) have
advanced our understanding of complex prompts
through more sophisticated visual instruction fine-
tuning (VIT) (Liu et al., 2023b).

2.2 Visual Instruction Following Datasets

In LLMs, IF is used to ensure that the language
model generates responses that align with user ob-
jectives. Recently, there has been a proposal for
research to create a VIF dataset that includes image
data in the IF. The construction of a VIF dataset is
costly and time-consuming because it requires the
simultaneous consideration of images, queries, and
answers. Therefore, automatic generation methods
are commonly used, with two primary approaches:
one using GPT for data generation and the other
using a template-based method that transforms ex-
isting data using predefined templates.

Table 1 presents a comparison of the represen-
tative VIF datasets. The initial versions of the
VIF dataset were constructed using template-based
models. Multi-Instruct (Li et al., 2023a) and In-
structBLIP, which fall under this category, are fast
and cost-effective as they involve rule-based trans-
formation of existing data. However, they have the
limitation of being oriented towards specific tasks
such as image captioning or classification.

In contrast to template-based construction,
LLaVA introduces a more flexible generative
data construction method that utilizes the GPT.
Using object location and caption information
from COCO (Lin et al.,, 2014), LLaVA con-
structed 158K diverse VIF datasets with three dif-
ferent styles: detailed description, complex reason-
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- System message for object-centric data generation

You're a helpful vision Al assistant. You are given an image and a main object. Your task is to generate question-and-answer data that strictly
focuses on the objects and elements that are clearly visible and identifiable in the image. Ensure that your descriptions are clear, factual, and
definitive. Avoid any speculative, uncertain, or imaginative descriptions. Do not include or mention any elements that are not present in the
image. Provide accurate and reliable question and answer data, based on what is definitively observable within the image. The question &
answer data should be provided in the following order: English, Korean, Chinese.

System message for location-centric data generation

| | You are a good vision Al assistant. You are given an image and its main objects. Your task is to generate locational scene graph, question-
and-answer data that focuses solely on the location of clearly visible and identifiable objects in the image. Make sure your descriptions are

| | clear, factual, and definitive. Avoid speculative, uncertain, or imaginative descriptions. Do not include or mention elements that do not exist
in the image. Provide accurate and reliable question and answer data based on what you can reliably observe in the image. The orientation of
left, right, etc. is based on the person looking at the image. The question & answer data should be provided in English, Korean, and Chinese.

System message for atmosphere-centric data generation

You are a proficient vision Al assistant. You are presented with an image. Your task is to generate question and answer data that focuses on
the overall ambiance and mood of the image. Ensure that your descriptions are clear, factual, and definitive, capturing the essence of the
mage's atmosphere. Avoid speculative, uncertain, or imaginative interpretations. Provide accurate and reliable question and answer data
based on what you can definitively observe in the image. The question & answer data should be provided in English, Korean, and Chinese.

System message for conversation data generation

You are a useful Al assistant. I will provide you with two images and an 8-Turn Question-Answer Pair sample for each image. Based on the
provided example images and 8-Turn QA samples, create an 8-Turn Question-Answer Pair for the last image you provide. Do not reference
uncertain details when generating data. Provide detailed answers to complex questions. For example, present detailed examples or reasoning

Main objects

‘ box, fruit, oranges, apples, pole, sticker, apple, orange

steps to make the content more persuasive and well-organized. Include multiple paragraphs if necessary. Create in the same format as the
example templates, and generate Question-Answer Pairs in Korean, English, and Chinese.

Figure 1: System messages for four types of mvif dataset

ing, and conversational. However, because these
datasets do not use images in their generation,
SharedGPT4V (Chen et al., 2023b), and LVIS-
INSTRUCT4V (Wang et al., 2023), which include
images in their construction, were proposed. How-
ever, these datasets are predominantly written in a
single language. To address the need for multilin-
gual capabilities, the MIT dataset was released (Li
et al., 2023c). M*IT is an instruction-tuning dataset
comprising 40 tasks translated into 80 languages
that offers broad accessibility.

3 Data Generation

In this study, we were inspired by the VIF data
generation method using the GPT of LLaVA and
have built upon it. However, to minimize the loss of
information from the images and include more de-
tailed information, we directly input the image and
object information into the GPT4-V model to con-
struct our data. We constructed four types of mul-
tilingual VIF datasets (mvif) for three languages
(English, Korean, and Chinese): (1) Object-centric,
(2) Location-centric, (3) Atmosphere-centric, and
(4) Conversation.

3.1 The Focus of Data Building

The mvif data proposed in this research concentrate
on the relational factual information between ob-
jects. This focus diverges from the description and
reasoning-centered question-answering proposed
by LLaVA, leading to minimal information redun-
dancy between the two datasets. Although LLaVA’s
data are commendable, we assessed whether data
designed for reasoning purposes might incorpo-
rate subjective viewpoints, thereby potentially in-
troducing bias toward certain objects. Therefore,

Input Image Output of object-centric case

(Q-EN) Can you describe the objects of the image?
(Q-KO) °)v) ) W Fx) o) = 5}o) eI 3) 54 8.
(Q-CN) fREESR BB Jy PROEEYRIS ?

|Answer]

(A-EN) The image depicts a bus parking lot with
@ multiple buses, a van, and people There are double-

decker buses in various colors including green,
orange, and yellow, with destination ...

System message
You're a great vision Al assistant. You
are given an image and a main object. GPT-4V/
Your task is to generate question-and- (A-KO) °] o) u) A& ¥ = FpAks o) 2] =9
answer data... Wz Ay, 280 A3Ee 2o FY
In-context sample (X2) A, 339, x4 S ookyg Make) 23 W
- Image 2o} glew, ol & S %) At
- Scene graph (for regional Q&A)
- Question (EN, KO, CN)
- Answer (EN, KO, CN)
Main objects
sign, parking lot, lamp, man, bus....

(A-CN) BRBRT —MERT ZWEL. —H
HEEN-—LANELEER. 556, B
MEBESHALHNEET , NEALLEE
BriinS. MIRE—MEeEEFEE..

Figure 2: An example of prompt and result using data con-
struction.

our study aims to develop a functional-relationship-
based multilingual VIF dataset that, deliberately
avoids overlap with LLaVA.

The target languages selected were English, Chi-
nese, and Korean, each belonging to a distinct lan-
guage family. This choice was intended to evaluate
how multilingual training affects the languages of
different cultures and character systems.

3.2 Image Selection Criteria

To construct the mvif dataset, 23,496 images from
the visual Genome (Krishna et al., 2017) were used.
A challenge was encountered when generating data
using GPT4: if an image contained fewer than three
major objects, the constrained context could limit
the diversity of question answers. However, answer-
ing questions generated using images with over ten
objects often results in a focus on objects that are
either exceedingly small or insignificant. Conse-
quently, we speculate that images selected from the
visual Genome, where the number of main objects
corresponds to 3 < m < 10.
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3.3 Proposed VIF Dataset

Figure 2 shows an example of the method used to
construct the proposed mvif dataset. As illustrated,
an image and a prompt, which are metadata
for question generation, were fed into GPT4-V.
Subsequently, GPT4-V was designed to generate
questions and answers in three languages. For
conversation data, we designed a prompt to
produce eight pairs of dialogues for each image in
a multi-turn format. For the dataset construction,
we provided two seed examples to GPT4-V to
guide the construction of data suitable for the
purpose through in-context learning. A total of
$3,200 was used to generate 91K data points.
Detailed prompts used in data construction can be
found in Figure 1.

(1) Object-centric image description. Object-
centric data focuses on providing detailed
description of objects in an image, comprising
questions and answers that include the shape,
condition, and characteristics of the objects. The
aim of constructing these data was to facilitate
the learning of the intimate details of images by
focusing on the specific attributes of the objects as
they appear. Additionally, as shown in the “Main
objects” section of Figure 2, a list of main objects
was inputted into the GPT4-V prompt to prevent
errors in object specification that might occur
during question generation.

(2) Location-centric image description. Location-
centric data is a type of question-answering data
that focuses on describing the relative positions
of objects within an image. However, when the
same object appears multiple times in an image,
this perspective can alter the location information.
To address this effectively, we enabled GPT4-V to
autonomously generate a relationship graph that
served as the basis for answering the question.
Consequently, when GPT4-V receives an image
and a list of objects, it first generates a scene
graph and then produces locational questions and
answers regarding the image.

(3) Atmosphere-centric image description.
Atmosphere-centric data include descriptions
that focus more on the overall ambiance of an
image than on individual objects. It encompasses a
holistic depiction of the complex interplay among
multiple objects.

‘ Language Model F(-) ‘ LLaMA2

concatenation
R, Rq Embed tokens
[ Projection P(-) } [ ‘Word Embedding layer G(-) ]

Z, T (b) Vocah*expansion

Tokenized question
Visual Encoder H(:) d a

Input image v

English pretraining data (W,,)

Korean pretraining data (W) :H
(a) Architecture of LLaVAL.5

Figure 3: (a) Architecture of LLaVA1.5 & (b,c) The proposed
language model pretraining

(c) Multilingual pretraining

(4) Conversational question and answering Con-
versational data is structured as an 8-turn Q&A
dataset to incorporate more in-depth and extensive
information regarding the images. Unlike other
datasets, this dataset is designed to infer human
emotions or include subjective information about
the mood of the image.

4 Proposed Multilingual Model

In this section, we introduce the proposed X-
LLaVA model, an effective approach for multi-
lingual processing through multilingual VIT (Liu
etal., 2023b). X-LLaVA applies the following three
enhancement methods to the same model structure
as LLaVA1.5: (1) vocabulary expansion for the
target language, (2) pretraining for multilingual
knowledge association, and (3) multilingual VIT.
Figure 3 demonstrates the three proposed methods
and the structure of LLaVA1.5.

4.1 Recap of LLaVAl.5

Figure 3 (a) shows the basic structure of the
LLaVA1.5 model. LLaVA1.5 basically consists
of a visual encoder and an LLM for natural lan-
guage generation. The visual encoder utilizes a
pretrained CLIP’s Vision Transformer (Yuan et al.,
2021) H(-), and the LLM F(-) utilized the pre-
trained LLaMAZ2-based models (Touvron et al.,
2023; Peng et al., 2023). LLaVA uses image v
and query ¢ as inputs. In the case of image v,
the output representation from the visual encoder,
H(v) = Z, € R36x1024 is converted into a
vision-language representation R, € R>76%5120
through a projection layer P(-) : R1024 — R5120,
For text g, it passes through the embedding layer
G(-) of LLaMA to generate the text representation
G(q) = R, € RU4I5120) R and R,, generate
through these two processes are concatenated and
then passed through the entire layer of the LLaMA?2
to produce a response. In this context, the projec-
tion layer serves the function of transforms image

2466



representation Z, into a word embedding format
that can be understood using the LLaMAZ2.

To achieve image-language alignment, we train
the process to connect the two representations,
which LLaVA does in two steps. The first is image-
text alignment through image captioning, and the
second is VIT. X-LLaVA is trained in the same
manner, and the details of the two phases are de-
scribed in Section 4.3.

4.2 Enriching the LLM Vocabulary

In the LLaVA model, when querying in Korean
for the LLaMA2-13B language model, issues arise,
such as responses in English or English-Korean
code-switching. This stems from a problem with
the tokenizer, where 89.7% is in Latin script, while
Korean only constitutes 0.37%, leading to insuffi-
cient Korean expressiveness and biases in the pre-
training data owing to lexical bias. To address these
issues, we expanded the Korean vocabulary in the
LLaMA?2 and conducted additional pretraining for
knowledge infusion. (Figure 3 (b), (c))

Vocabulary expansion involves adding 7,478
words from the KoBERT! vocabulary to the
LLaMA?2 tokenizer. And we randomly initialize
embeddings for these newly added words. Ulti-
mately, the proposed tokenizer possessed a dictio-
nary of 39,478 entries. As a subsequent step, the
model was further enhanced with knowledge infor-
mation using English Wikipedia data W, and Ko-
rean Wikipedia data Wy,. Through this process, our
model learns representations for the newly added
vocabulary. If the pretraining dataset (7.8GB) is de-
fined as Dy = {Wep, Wi}, then the loss function
Lpr(-) is expressed as follows.

|Dpt| |l

Lpr(0) = — Z Zlog P(zijlzi<j;0) (1)
(2N

Here, | D,y| is the size of Dy, |z;| denotes the num-
ber of tokens in -th data sample x;. x; ; represents
Jj-th token of sequence x;, and x; ~; represents the
sequence of tokens before the j-th token. In this
context, Lp7(6) is the causal language modeling
loss function, where 6 denotes the model parame-
ters.

4.3 X-LLaVA

In this section, we describe the method for train-
ing X-LLaVA using the LLaMA2 model, which

"https://github.com/SKTBrain/KoBERT

has proceeded word expansion and bilingual dic-
tionary pretraining, as previously introduced X-
LLaVA, like LLaVA, is trained in two stages:
image-language connection via captioning and mul-
tilingual VIT. However, unlike LLaVAL1.5, to effi-
ciently conduct multilingual training, we follow the
cross-lingual language model pretraining method
(Conneau and Lample, 2019), simultaneously uti-
lizing a mix of English and Korean for training.

In the first stage, we train only the projec-
tion layer P(-) using the image-caption datasets
LLaVA-CC3M (Liu et al., 2023b) (Cey,) and its
machine-translated Korean counterpart, LLaVA-
KoCC3M(C},). This stage involves representa-
tion learning in which image representations are
converted into word embeddings that are com-
prehensible to the LLaMA2. During this pro-
cess, both Korean and English are learned con-
currently while simultaneously aligning [image-
English-Korean]. We define the dataset for Stage-1
as Dy = {Cena Cko}‘

In the second stage, we conducted VIT on X-
LLaVA to enhance its capabilities as a multilingual
visual assistant. For VIT as described in (Liu et al.,
2023b), we use the LLaVA instruct dataset (158K,
Le¢y), its machine-translated counterpart (158K,
Ly,), and the mvif dataset (91K, L,,,-) generated
in Section 3. In this stage, unlike the first stage,
we train the projection layer and language model
simultaneously. Define the dataset for Stage-2 train-
ing as Dso = {Len, Lko, Lour }- The formula for
training the Stage-2 can be expressed as follows:

IDs| T 1al”]

L0)= =553 log P(a{)1x":0) @
i ot g

Where Xi(’tlj = {v;, qi(l), agl), e ,qi(t), ag’t)q}, T
represents the total number of conversation turns.
In Stage 1, T' = 1 because the dataset Dg; is com-
posed of a single turn. In Stage 2, T' = 1 is also
true in all case, except for multi-turn conversations.

In the dataset D, which can be either D, or
Do depending on the stage, v;, qft), and agt) de-
note the i-th component of the image, the question
(instruction) in turn ¢, and the answer in turn ¢,

respectively.

5 Quantitative Evaluation

In this section, we describe the quantitative eval-
uation methods and criteria for the proposed X-
LLaVA. Through these comparisons, we aim to
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address the three research questions proposed in
Section 1: (1) What impact does vocabulary expan-
sion, intended to enhance multilinguality, have on
vision-language models? and (2) How does bilin-
gual training affect the relationship between these
two languages? and (3) Which aspects of the model
were strengthened by utilizing our proposed mvif
data?

5.1 Experiment Environments

To ensure a fair comparison of LMMs, we must
define task selection for evaluation and specify the
LMM model used for evaluation. Below are the
benchmark datasets used for evaluation, with the
following characteristics for each benchmark:

* (English) VQA2.0: A dataset containing
open-ended questions about images (Goyal
et al., 2017), GQA: A VQA-format dataset
considered Scene Graph (Hudson and Man-
ning, 2019), LV (LLaVAY from (Liu et al.,
2023b)) and POPE (Yifan Li and Wen, 2023)

¢ (Korean) KoViz: A VQA-format dataset and
KoLiv: A VQA-format dataset considered Ko-
rean culture and daily life (Kim et al.)

¢ (English-Korean) BVQA (Kim et al., 2024):
A VQA dataset considering Bilingual Out-
side Knowledge

For our experiments, we converted the VQA2.0
and BVQA (Kim et al., 2024) datasets into the VIF
format using the VQA-to-VIF data transformation
method proposed in LLaVA1.5. Following this con-
version, we proceeded with VIT over all the train-
ing sets from the proposed benchmark in only one
epoch. The evaluation methodology and prompts
were adopted directly as proposed in LLaVAL.5 .
Experimental environments and answers generated
for each model were made publicly accessible? to
ensure reproducibility and facilitate comparison of
the models.

5.2 Intrinsic Evaluation of X-LLaVA

An intrinsic evaluation was conducted to explore
the three research questions we proposed. To
achieve this, we train the three models under
different conditions. Table 2 lists the training envi-
ronments and performances of the three models.
X-LLaVA refers to the model that underwent both
vocabulary expansion and knowledge enhancement

2github.com/MLP-LAB/X-LLaVA

Model VIF | BVQA* BVQA® GQA
XLLaVA(-V,-P) 51.5 33.0 62.3
+0 | 519 36.0 61.9
XLLaVA(-P) 56.4 32.0 62.1
+0 | 56.6 323 62.5
XLLaVA 57.6 335 63.3
+0 | 579 343 64.0

Table 2: Intrinsic evaluation. Where (-V) represents
without vocabulary expansion, and (-P) denotes without
multilingual pretraining step. Metric is Accuracy(%).

(4.2) as well as the VIT (4.3) proposed in Section 4.
X-LLaVA(-P) is a model created to compare the
effects of pretraining methods on Koreans and
English data proposed in Section 4.2. This model
is a version of X-LLaVA that does not utilize
Wiki for pretraining during its training phase.
X-LLaVA(-V,-P) represents a model that neither
underwent vocabulary expansion nor used Wiki
for pretraining, essentially using pure LLaMA2.
Finally, to assess the impact of the mvif data
proposed in Section 3, we compared the results of
each model with and without the addition of mvif.

The influence of Enriching Vocabulary. Compar-
ing the X-LLaVA and X-LLaVA(-V,-P) models in
Table 2, we observe an average of 6.1 points for
Korean and 0.8 points for English. Therefore, the
vocabulary expansion and pretraining proposed
in Section 4.2 not only significantly improves the
Korean performance of the model with expanded
vocabulary but also enhances the performance of
the existing English model.

The influence of Pretraining. A comparison
between the X-LLaVA and X-LLaVA(-P) models
showed that additional pretraining using Wikipedia
uniformly enhanced the performance in both
Korean and English, with a particularly notable
improvement in Korean. Therefore, the effective-
ness of pretraining in Korean and English using
Wikipedia was evident.

The influence of VIT using mvif. When mod-
els were tuned with the proposed dataset (+O), a
performance improvement ranging from 0.2 to 3
was observed across almost models for the target
language. Although the extent of improvement is
modest, it is noteworthy that despite the grammati-
cal differences between Korean and English, where
knowledge loss might be anticipated, there was
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LMM LLM #PT  #VIT | BVQA* KoViz KoLiv | BVQA°® VQA GQA LV  POPE
BLIP-2 Vicunal3B  129M - - - - - 41 41 - 85.3
InstructBLIP Vicuna7B 129M 1.2M - - - - - 49.2 - -

InstructBLIP Vicunal3B 129M 1.2M - - - - - 49.5 - 78.9
LLaVAL.5 Vicuna7B 558K 665K 16.2 339 449 25.1 785 620 647 859
LLaVAL.5 Vicunal3B 558K 665K | 27.9 24.4 33.4 26.1 800 633 657 859
LLaVAI.5(0) Vicunal3B 558K 756K | 32.6 246 232 29.1 78.1 453 704 85.8
LLaVAI.5(B) Vicunal3B 558K 857K | 54.5 50.3 52.1 335 764 630 228 858
KoLLaVA Synatra7ZB 595K 612k 45.3 55.9 54.2 5.5 - - - -

X-LLaVA Ours 12M 407K | 579 51.3 617 | 343 755 640 575 855

Table 3: Extrinsic evaluation results. Where (O), (B) represents training with mvif and BVQA dataset,#PT is the
number of pretraining data, #VIT is the number of VIT data. POPE is a benchmark for evaluation of hallucination.

an observable enhancement in the English perfor-
mance. This indicates that multilingual VIF can be
expected to improve performance in both less- and
high-resource languages.

5.3 Extrinsic Evaluation of X-LLaVA

We conducted a comparative evaluation of the
performance of our X-LLaVA model in Korean
and English against other LMMs. The models
compared were BLIP-2, InstructBLIP, LLaVA1.5,
and KoLLaVA, and the distinctive features of each
model are presented in Table 3.

Overall. In the Korean evaluation (BVQAk,KOViZ,
and KoLiv) presented in Table 3, X-LLaVA
demonstrated significantly higher performance,
scoring on average 57.0 points. Interestingly, in the
case of English (VQA, GQA, BVQAS®, LV, POPE),
X-LLaVA also showed the highest performance in
BVQA® and GQA.

The effect of multilingual training. Typically,
when training languages with different character
systems, the performance of a relatively highly
resourced language may deteriorate (Pires et al.,
2019). However, when the multilingual training
methods and data (mvif) we proposed, no decrease
in performance was observed. When comparing
the English BVQA® and GQA scores of LLaVA1.5
and X-LLaVA, they showed 8.2 and 0.7 points
higher performance, respectively. However, for
VQA2.0, LLaVA1.5’s performance was 4.5
points higher. During analysis, we observed that
X-LLaVA generally performed better on GQA
and BVQA, which asked about relationships and
knowledge.

Comparison of X-LLaVA with KoLLaVA.

KoLLaVA?® is the Korean version of LLaVA1.5,
a model trained after automatically translating
CC3M, VQA2.0, GQA, and Visual Genome
data used in LLaVALl.5. Additionally, it was
trained using the Korean version of the BVQA.
However, as only the 7B model is currently
publicly available, it may be challenging were
used to evaluate the same levels. However, the
published LLaVA1.5 13B model shows an average
of 0.96 points higher in english than that of the 7B
model, X-LLaVA demonstrates a 5.2 point higher
result in korean than KoLLaVA.

Comparison X-LLaVA with LLaVA1.5(O or B).
LLaVA1.5 was trained on about 1.5 times more
data (665K VIFs) then X-LLaVA. Nevertheless,
BVQA data has never been utilized for training,
which may be disadvantageous for the BVQA eval-
uation. We trained LLaVA1.5 on Korean and En-
glish data for three 3 epochs to tune the BVQA for
a fair evaluation. LLaVA1.5(B) in Table 3 shows
the results of the model tuned using the BVQA
data. The results show a significant improvement
in Korean performance on the BVQA. On the other
hand, this model, being biased towards VQA data,
showed lower performance in the writing evalua-
tion (LV). Conversely, LLaVA1.5(0) in Table 3,
a model trained on the LLaVA1.5 with mvif data,
exhibited the highest performance on LV.

6 Qualitative Evaluation

In this section, we describe the qualitative eval-
uation methods and the results for X-LLaVA. In
contrast to quantitative evaluations, which are sim-
ilar to classification assessments, qualitative eval-
uations, such as writing evaluations, differ signif-
icantly. Although human evaluation may be the

3github.com/tabtoyou/KoLLaVA
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fairest approach to qualitative assessments, it is
practically challenging. Therefore, in LIMA (Zhou
et al., 2023), a GPT preference evaluation method
that closely resembles human evaluation results
was proposed.

In our study, we directly employed the GPT pref-
erence evaluation method. The process is as fol-
lows: First, we input an image and a question into
two models being compared to obtain answers A
and B. Then, we provided GPT4 with the image,
question, and both answers to receive feedback
such as ‘Answer A is better’, ‘Answer B is better’,
or ‘Both answers are similar’, and measured the
proportions. To compare the standing and genera-
tion abilities of recent LMMs in vision language,
we used the GPT evaluation dataset proposed by
LLaVA*. However, because this dataset is in En-
glish, we translated it into Korean, followed by a
review from five annotators to ensure data quality.
Afterward, we proceeded with the evaluations.

6.1 Preference Evaluation using GPT4-V

mm XLLaVA Wins

mm Tie XLLaVA Loses

LLaVA-vl1l.5

KoLLaVA

GPT4-VISION

100% 80% 60% 40% 20% 0%

Figure 4: Korean Preference evaluation results by GPT4-V

mmm XLLaVA Wins mm Tie XLLaVA Loses

0% 20% 40% 60% 80% 100%
° BLIP2

8% rInstructBLIP

KoLLaVA

GPT4-VISION

100% 80% 60% 40% 20% 0%

Figure 5: English Preference evaluation results by GPT4-V

Comparing X-LLaVA with others in Korean.
Figure 4 presents the results of the GPT preference

*qa90_gpt4_answer’ at github.com/haotian-liu/LLaVA

m XLLaVA Wins = Tie XLLaVA Loses
0% 20% 40% 60% 80% 100%

BLIP2

dnstructBLIP

8%LLaVA-v1.5

tKoLLaVA

GPT4-VISION

100% 80% 60% 40% 20% 0%
Figure 6: Korean Preference evaluation results by GPT4-V
when limited to 30 Words.

EE XLLaVA Wins Bl Tie XLLaVA Loses
0% 20% 40% 60% 80% 100%

44.44% GPT 4V-VISION

100% 80% 60% 40% 20% 0%

Figure 7: Preference evaluation results by human

evaluation for each model. The X-LLaVA model
outperformed all other models, except for the
GPT4-V model. Notably, it obtained a 19% higher
preference rate than the KoLLLaVA, indicating the
exceptional effectiveness of the proposed methods
and datasets in enhancing Korean writing skills.

Comparing X-LLaVA with Others in English.
Figure 5 shows the results of English GPT
preference evaluations. Interestingly, similar to
Korean, the X-LLaVA received approximately
25% higher preference scores for English than
LLaVAL1.5. This indicates that pretraining of our
proposed LLM and mvif datasets can also enhance
English writing abilities.

X-LLaVA vs GPT4-V. Therefore, does evaluator
GPT4-V generate better answers than X-LLaVA?
We conducted the evaluations by comparing the
GPT4-V and X-LLaVA models. Experimental re-
sults show that for both languages, GPT4-V’s an-
swers are preferred over those of X-LLaVA, with a
significant performance difference. However, these
results stem from GPT4-V generating answers that
are more than 30% longer and more verbose com-
pared to LLaVA-based models. This may also be
because the GPT rates its own generated content
more favorably as it becomes more familiar with it.
To mitigate this, in experiments where the answers
were limited to 30 words, the results changed sig-
nificantly, with GPT scoring 42 compared to 17 for
X-LLaVA, as shown in Figure 6.
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Evaluator \ XLLaVA Wins Tie XLLaVA Loses
GPT4-V(G) 15 37 38
Human(H) 37 14 39
GNH \ 12 10 32

Table 4: It displays the number of samples chosen by
GPT4-V and Human Evaluators for ‘XLLaVA Wins’,
‘Tie’, and ‘XLLaVA Loses’, respectively in Figure 6
and 7. ‘G N H’ signifies instances where both evaluators
(Human, GPT4-V) indicate the same outcome for each
of the 90 samples.

6.2 Human-assisted Preference Evaluation

As previously described, the performance of GPT
preference evaluation may vary according to the
number of words. Consequently, a question arises:
Can LIMA’s assertion that GPT evaluations are
akin to human assessments be extended to the
vision-language model proposed in this study? We
conducted a human preference evaluation using
three human annotators. The Human Preference
Evaluation was carried out with three evaluators
using the following criteria: For a result to be classi-
fied as ‘XLLaVA Wins,” either all three evaluators
needed to select it or at least two did. A ‘Tie’ was
determined either when all evaluators agreed on it
or when their selections were evenly split across
‘XLLaVA Wins,” ‘Tie,” and ‘XLLaVA Loses.” Sim-
ilarly, ‘XLLaVA Loses’ was classified when all
three agreed on it or at least two of the three chose
it. Figure 7 presents the results of the human eval-
uation for GPT4-V and X-LLaVA in the compara-
tive assessment, with the response length restricted
to 30 words. Although GPT maintained a slight
advantage, the preference scores were almost iden-
tical, as shown in Table 4. However, we observed
that GPT evaluations resulted in ties 2.9 times
more frequently than human evaluations. This ob-
servation can be interpreted to suggest that GPT
tends to avoid ambiguous decisions compared to
humans, who possess relatively clear criteria. Thus,
the vision-language model can be considered as
augmenting rather than substituting human evalua-
tions.

7 Conclusion

In this study, we propose a framework for con-
structing data and training models for the efficient
multilingual expansion of LMM. For data construc-
tion, we suggested a method to easily build multi-
lingual VIF dataset based on the relational meta-

data between images and objects using GPT4-V.
We also demonstrated a framework for efficient
multilingual learning, which includes vocabulary
enhancement, knowledge reinforcement based on
pretraining, and a multilingual VIT framework. The
experimental results confirmed that the proposed
X-LLaVA model exhibited similar or superior per-
formance compared to existing models that pri-
marily focused on Korean and English as single
languages. Finally, our proposed multilingual ex-
pansion framework can be trained in 7.5 days with
a single A6000 GPU, and the 91K training data
can be managed with relatively minimal resources,
costing around $3,200.

Limitations

The ultimate goal of this research is to create a mul-
tilingual Large Multimodal Model (LMM). How-
ever, in this study, we first conducted pretraining
in Korean-English and then proceeded with mul-
tilingual visual instruction following in Korean-
English-Chinese. Consequently, as the Chinese
component of the model did not undergo word
expansion, it more closely resembles a Korean-
English bilingual enhanced model. Therefore, there
is a need for further investigation and research
into models that have undergone vocabulary en-
hancement and knowledge connection for more
than three languages. An additional factor was
the difficulty in finding publicly available Chinese
VQA evaluation data, which hindered diverse as-
sessments.
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