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Abstract

We present Conformal Intent Classification and
Clarification (CICC), a framework for fast and
accurate intent classification for task-oriented
dialogue systems. The framework turns heuris-
tic uncertainty scores of any intent classifier
into a clarification question that is guaranteed
to contain the true intent at a pre-defined con-
fidence level. By disambiguating between a
small number of likely intents, the user query
can be resolved quickly and accurately. Ad-
ditionally, we propose to augment the frame-
work for out-of-scope detection. In a compara-
tive evaluation using seven intent recognition
datasets we find that CICC generates small
clarification questions and is capable of out-of-
scope detection. CICC can help practitioners
and researchers substantially in improving the
user experience of dialogue agents with specific
clarification questions.

1 Introduction

Intent classification (IC) is a crucial step in the se-
lection of actions and responses in task-oriented
dialogue systems. To offer the best possible ex-
perience with such systems, IC should accurately
map user inputs to a predefined set of intents. A
widely known challenge of language in general,
and IC specifically, is that user utterances may be
incomplete, erroneous, and contain linguistic ambi-
guities.

Although IC is inherently challenging, a key
strength of the conversational setting is that dis-
ambiguation or clarification questions (CQs) can
be posed (Purver et al., 2003; Alfieri et al., 2022).
Posing the right CQ at the right time results in a
faster resolution of the user query, a more natu-
ral conversation, and higher user satisfaction (van
Zeelt et al., 2020; Keyvan and Huang, 2022; Siro
et al., 2022). CQs have been considered in the con-
text of information retrieval (Zamani et al., 2020)
but have received little attention in the context of
task-oriented dialogue.
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Deciding when to ask a CQ and how to pose it
are challenging tasks (DeVault and Stone, 2007;
Keyvan and Huang, 2022). First, it is not clear
when the system can safely proceed under the as-
sumption that the true intent was correctly identi-
fied. Second, it is not clear when the model is too
uncertain to formulate a CQ (Cavalin et al., 2020).
Finally, it is unclear what the exact information
content of the clarification question should be.

We present Conformal Intent Classification and
Clarification (CICC), a framework for deciding
when to ask a CQ, what its information content
should be, and how to formulate it. The framework
uses conformal prediction to turn a models’ predic-
tive uncertainty into prediction sets that contain the
true intent at a predefined confidence level (Shafer
and Vovk, 2008; Angelopoulos et al., 2023). The
approach is agnostic to the intent classifier, does
not require re-training of this model, guarantees
that the true intent is in the CQ, allows for reject-
ing the input as too ambiguous if the model is too
uncertain, has interpretable hyperparameters, gen-
erates clarification questions that are small and is
amenable to the problem of detecting out-of-scope
inputs.

In a comparative evaluations with seven data
sets and three IC models, we find that CICC out-
performs heuristic approaches to predictive uncer-
tainty quantification in all cases. The benefits of
CICC are most prominent for ambiguous inputs,
which arise naturally in real-world dialogue set-
tings (Zamani et al., 2020; Larson et al., 2019).

2 Related Work

We discuss related work on ambiguity and uncer-
tainty detection within IC and CP with language
models.

Clarification Questions Various works acknowl-
edge the problem of handling uncertainty in intent
classification and to address it with CQs. Dhole

2412

Findings of the Association for Computational Linguistics: NAACL 2024, pages 2412-2432
June 16-21, 2024 ©2024 Association for Computational Linguistics



(2020) proposes a rule-based approach for asking
discriminative CQs. The approach is limited to
CQs with two intents, lacks a theoretical founda-
tion, and provides no intuitive way of balancing
coverage with CQ size. Keyvan and Huang (2022)
survey ambiguous queries in the context of con-
versational search and list sources of ambiguity.
They mention that clarification questions should
be short, specific, and based on system uncertainty.
We propose a principled approach to asking short
and specific questions based on uncertainty of any
underlying intent classifier for the purposes of task-
oriented dialogue.

Alfieri et al. (2022) propose an approach for
asking a CQ containing a fixed top-k most likely
intents with intent-specific uncertainty thresholds.
This approach does not come with any theoreti-
cal guarantees and its hyperparameters need to be
tuned on an additional data set whereas our ap-
proach comes with guarantees on coverage of the
true intent and with intuitively interpretable hyper-
parameters that can be tuned on the same calibra-
tion set. We do not compare directly to this method
but include top-k selection in our benchmark.

CQs have been studied in other domains, in-
cluding information retrieval (Zamani et al., 2020),
product description improvement (Zhang and Zhu,
2021), and open question-answering (Kuhn et al.,
2023). In contrast to the task-specific domain in-
vestigated in this work, these domains leave more
room for asking generic questions for clarification
and do not easily allow for incorporating model
uncertainty. Furthermore, the proposed methods
require ad hoc tuning of scores based on heuristic
metrics of model uncertainty, and do not provide
ways to directly balance model uncertainty with
CQ size.

Uncertainty and out-of-scope detection The
out-of-scope detection task introduced by Larson
et al. (2019) is a different task from the task of
handling model uncertainty and ambiguous in-
puts (Cavalin et al., 2020; Yilmaz and Toraman,
2020; Zhan et al., 2021; Zhou et al., 2021). How-
ever, predictive uncertainty is often used in address-
ing the out-of-scope detection task. Although the
tasks of handling ambiguous input and detecting
out-of-scope input are different, we briefly discuss
approaches that leverage model uncertainty for out-
of-scope detection here.

Various out-of-scope detection approaches train
an intent classifier and tune a decision bound-

ary based on a measure of the classifier’s confi-
dence (Shu et al., 2017; Lin and Xu, 2019; Yan
et al., 2020; Hendrycks et al., 2020). Samples for
which the predictive uncertainty of the model lies
on one side of the boundary are classified as out-of-
scope. These approaches use the models’ heuristic
uncertainty to decide whether an input is out-of-
sample whereas we first turn the models’ heuristic
uncertainty into a prediction with statistical guar-
antees and then use this prediction to decide when
and how to formulate a clarification question. We
additionally propose an adaptation of the CICC
framework for out-of-scope detection.

Conformal Prediction on NLP tasks Confor-
mal Prediction has been used in several NLP tasks,
including sentiment classification by Maltoudoglou
et al. (2020), named-entity recognition by Fisch
et al. (2022) and paraphrase detection by Giovan-
notti and Gammerman (2021). However, the ap-
plication to intent classification, task-oriented di-
alogue and the combination with CQs presented
here is novel to our knowledge.

3 Methodology

We address the problem of asking CQs in task ori-
ented dialogue systems in the following way. We
take a user utterance and a pre-trained intent classi-
fier, and then return an appropriate response based
on the predictive uncertainty of the model. Algo-
rithm 1 lists these steps, and an example input is
presented in Figure 1. In this section we describe
and detail the components of CICC. We start by
providing a background on conformal prediction.

3.1 Conformal Prediction

Conformal Prediction is a framework for creating
statistically rigorous prediction sets from a heuris-
tic measure of predictive uncertainty of a classifier
(Shafer and Vovk, 2008; Angelopoulos et al., 2023).
We here focus on split conformal prediction as it
does not require any retraining of the underlying
model, and refer to it simply as conformal predic-
tion from here on out.

For a classification task with classes Y
{1,..., K}, atestinput X; € X withlabel Y; € ),
and a user-defined error level a € [0,1), CP re-
turns a set C(X;) C )Y for which the following
holds (Vovk et al., 1999) even when using a finite
amount of samples:

P(Y; €C(X:)>1-a (1)
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Figure 1: The conformal intent classification and clarification interaction loop.

If e.g. a = 0.01 the set C(X}) is therefore guaran-
teed to contain the true Y; in 99% of test inputs.

Conformal prediction uses a heuristic measure
of uncertainty of a pretrained model and a mod-
estly sized calibration set to generate prediction
sets. Formally, we assume a held-out calibration
set D : {(X;,Y:)} of size n, a pre-trained classi-
fier f : X — R¥, and a nonconformity function
s : X X Y — R that returns heuristic uncertainty
scores where larger values express higher uncer-
tainty. An example of a nonconformity function for
a neural network classifier is one minus the softmax
outputs of the true class:

A~

This score is high when the softmax score of the
true class is low, i.e., when the model is badly
wrong.

The nonconformity function s is evaluated on
D to generate a set of nonconformity scores S =
{s(X;,Y:)}. Next, the quantile ¢ of the empirical
distribution of § is determined so that the desired
coverage ratio (1 — «) is achieved. This can be
done by choosing § = [(n+1)(1 —a)]/n' where
[-] denotes the ceiling function. Then, for a given
test input Xy, all classes y € ) with high enough
confidence are included in a prediction set C(X}) :

C(Xt) == {y:s(Xt,y) < ¢} 3)

This simple procedure guarantees that (1) holds
i.e. that the true Y; is in the set at the specified
confidence 1 — .. Note the lack of retraining or en-
sembling of classifiers, that the procedure requires

'this is essentially the ¢ quantile with a minor adjustment

little compute and that D can be relatively small
as long as it contains a fair number of examples
for all classes and is exchangeable” with the test
data (Papadopoulos et al., 2002).

There are various implementations of conformal
prediction with different nonconformity functions
and performance characteristics. The most sim-
ple approach is known as marginal conformal pre-
diction and it uses the nonconformity function in
(2). Marginal conformal prediction owes its names
from adhering to the guarantee (1) marginalized
over X and ), i.e. it satisfies the coverage require-
ment (1) on average, rather than e.g. for a particular
input X;. Marginal CP can be implemented follow-
ing the steps described previously: (i) compute
nonconformity scores S using (2), (ii) obtain § as
described previously, and (iii) construct a predic-
tion set using (3) at test time. A benefit of this
approach is that it generates prediction sets with
the smallest possible prediction set size on average.
A limitation is that its prediction set sizes may not
reflect hardness of the input (Sadinle et al., 2019).

Alternatively, one can ensure conditional adher-
ence to (1) with so-called conditional or adaptive
conformal predictors. A benefit of conditional ap-
proaches is that higher model uncertainty results in
larger prediction sets. However, a downside is that
these sets are expected to be larger on average than
those obtained with a marginal approach.Romano
et al. (2020) introduce a conditional CP approach
that consists of broadly the same steps as marginal
CP but with a different nonconformity function s
and a different prediction set construction. First we
define a permutation 7w(X ) of {1... K} that sorts

2distributed identically but not necessarily independently
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f(X) in descending order. Conditional CP can de-
fined as: (i) sum all predictor outputs f (X;)y for
all {k € K|f(X:)r > f(Xi)y,}. (ii) obtain § as
before, and (iii) include all for a test input X;:

C(Xy) :=={m(Xy),...,m(x)}, “4)
where

k/

k=sup{ K 0> f(X)myxy <dp+1. (5)
j=1

Angelopoulos et al. (2021) introduce an ap-
proach with a term to regularize the prediction set
size: their approach is therefore known as Reg-
ularized Adaptive Prediction Sets (RAPS). It ef-
fectively adds an increasing penalty to the ranked
model outputs in the first step of conditional CP in
order to promote smaller prediction sets where pos-
sible. Since the second and third step are similar
to conditional CP, its prediction sets still adhere to
the coverage guarantee (1).

In general, a suitable conformal prediction tech-
nique strikes the right balance between three
desiderata: (i) adhering to the coverage require-
ment in (1), (ii) producing small prediction sets
and (iii) adaptivity. Whereas the former two can
be measured easily, metrics for adaptivity require
some more care. Angelopoulos et al. (2021) intro-
duce a general-purpose metric for adaptivity. It is
based on the coverage and referred to as the size-
stratified classification (SSC) score:

. 1
min —_
be{l,...K} | Zp|

Y 1{viec(X)} ©)

i€y

SSC =

for a classification task defined as above and Z; C
{1,...,n} the set of inputs with prediction set size
b,ie. I, := {X;,|C(X;)| = b}.

Within CICC, conformal prediction is applied
to a pre-trained intent classifier to create a set of
intents that contains the true user intent at a prede-
fined confidence for any user utterance. The sets
are then used in making a decision on when to ask
a clarification question and how to formulate it. We
continue to discuss when and how such questions
are asked based on Algorithm 1 in the following
section.

3.2 When to Ask a Clarification Question

For a user utterance X, a pre-trained intent classi-
fier f and a nonconformity function s, we generate
a prediction set that covers the true user intent with

Algorithm 1 CICC algorithm

Input: utterance X, classifier f , chat/voice-bot ¢,
calibration set D, generative LM g

Parameters: error rate «, threshold th, ambiguity
response a

Output: response R

1: set «— conformal prediction ( f(X), D, a)
if [set| == 1 then

R + c(set.get()).
else if |set| > th then

{bot response}

® DR R

R+ a. {input too ambiguous }
else

R+ g(set, X) {clarification question}
end if

confidence 1 — « (Algorithm 1, In 1). If the set
contains a single intent, the model is confident that
the true intent has been detected and the dialogue
can be handled as usual (In 2-3).

If the set contains many intents, that is, more
than a user-specified threshold th € Ny, then
there is no reasonable ground for formulating a
clarification question. Instead, a generic request
to rephrase the question can be asked (In 4-5), or
a hand-over to a human operator could be imple-
mented here. In the remaining case, i.e. if the
prediction set is of reasonable size, a CQ is asked
(In 6-7).

CICC comes with two parameters to control
when a CQ should be asked. Both have clear se-
mantics and can be interpreted intuitively. The first
is the threshold th that controls when the input is
too ambiguous to ask a CQ (Algorithm 1 In 4-5).
This parameter is set by the chatbot owner on the
basis of best practices in, and knowledge of chat-
and voicebot interaction patterns. In general, this
number should remain small to reduce the cogni-
tive load on users. We advise to set this value no
higher than seven (Miller, 1956; Plass et al., 2010).

The second parameter is the error rate a. It
controls the trade-off between the prediction set
size and how certain we want to be that the pre-
diction set covers the true intent. As o — 0, our
confidence that the true intent is included in the
set grows, but so does the size of the prediction
set. Because conformal prediction is not compute
intensive, o can be set empirically. Thus, CICC
provides a means of selecting between achievable
trade-offs between prediction set sizes and error
rates. We continue to discuss how specific CQs are
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formulated in CICC.

3.3 Generating a Clarification Question

When a CQ is in order (In 6-7 in Alg. 1), it needs
to be formulated. We propose to generate a CQ
based on the original input X and the prediction
set, as it is guaranteed to contain the true intent at
a typically high level of confidence. Because the
alternatives in the CQ are the most likely intents
according to the model, and because the number of
alternatives in the CQ corresponds to the models’
uncertainty, asking a CQ provides a natural way
of communicating model uncertainty to the user
while quickly determining the true user intent.

CICC makes no assumptions about the approach
for generating a CQ. Anything from hardcoded
questions, templating, or a generative LM can be
used. However, we recognize that the number of
possible questions is large: it consists of the pow-
erset of all n intents up to size th excluding sets
of size one and zero. Therefore, we opt to use a
generative LM in our solution.

We prompt the LM to formulate a clarification
question by giving it some examples of clarifica-
tion questions for a set of example intents to disam-
biguate between. We additionally provide the orig-
inal utterance X to enable the formulation of CQ
relative to the original utterance. See Appendix A
for details.

3.4 Out-of-scope Detection

Ambiguity is a part of natural language which could
lead to model uncertainty. Specific reasons for
uncertainty in intent recognition are inputs that
are very short and long, imprecise and incomplete
inputs, etc. However, a particularly interesting
type of uncertainty stems from inputs that repre-
sent intent classes that are not known at training
time (Zhan et al., 2021). These inputs are referred
to as out-of-scope (OOS) and detecting these in-
puts can be seen as a binary classification task for
which data sets with known OOS samples have
been developed.

CICC rejects inputs about which the model is
too uncertain (Algorithm 1, In 5) and this naturally
fits with the OOS detection task as follows: we can
view a rejection of an input as a classification of
that input as OOS. Therefore, although handling
ambiguity in the model gracefully and detection
OOS inputs are separate challenges, vanilla CICC
implements a form of OOS detection.

|samples intents

ACID (Acharya and Fung, 2020) 22172 175
ATIS (Hemphill et al., 1990) 5871 26
B77 (Casanueva et al., 2020) 13083 77
B77-00S 16337 78
C150-IS (Larson et al., 2019) 18025 150
C150-O0S (Larson et al., 2019) 19025 151
HWU64 (Liu et al., 2021) 25716 64
IND ~20k 61
MTOD (eng) (Schuster et al., 2019) | 43323 12

Table 1: Characteristics of datasets used

Additionally, the CICC framework can be lever-
aged for OOS detection if OOS samples are known
at calibration time. Specifically, we can optimize
parameters « and th to maximize predictive perfor-
mance expressed by some suitable metric such as
the F1-score on the calibration set. OOS samples
can be obtained from other intent recognition data
sets in other domains. This practice is described in
detail by e.g. (Zhan et al., 2021) under the name
of open-domain outliers. We refer to versions of
CICC which have been optimized for F1-score in
this way as CICC-OOS.

4 Experimental Setup

This section lists the experiments performed to
comparatively evaluate CICC across seven data
sets and on three IC models>.

Data We evaluate CICC on six public intent
recognition data sets in English and an additional
real-life industry data set (IND) from the banking
domain in the Dutch language. Table 1 shows the
data sets and their main characteristics. All data
sets were split into train-calibration-test splits of
proportions 0.6-0.2-0.2 with stratified sampling,
except for the ATIS data set in which stratified sam-
pling is impossible due to the presence of intents
with a single sample. Random sampling was used
for this data set instead. We use an in-scope version
(C150-1IS) of the ‘unbalanced’ data set by Larson
et al. (2019) in which all out-of-scope samples have
been removed.

For evaluation on out-of-scope (OOS) detection,
we use two datasets: a version of C150 with all
OOS samples divided over the calibration and test
splits, and no OOS samples in the train split (C150-
00S), and a version of B77 with so-called open-
domain outliers in which samples from the ATIS
dataset make up half of the samples in the calibra-

Shttps://github.com/florisdenhengst/cice
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tion and test splits to represent OOS inputs (B77-
OO0OS) (Zhan et al., 2021).

Models We employ fine-tuned BERT by Devlin
et al. (2019) for all public data sets and a custom
model similar to BERT for the IND data set (Alfieri
et al., 2022). We base the nonconformity scores
on the softmax output in these settings. In order
to test performance on a commercial offering, we
additionally evaluate using DialogflowCX (DFCX)
on the B77 data set.* This commercial offering out-
puts heuristic certainty scores in the range [0, 100]
for the top five most certain recognized intents.
These outputs were normalized to sum to 1, all
other scores were set to 0 to determine the noncon-
formity scores.

Baselines In practice CQs can be formulated us-
ing heuristics (Alfieri et al., 2022). We compare
CICC to the following baselines using the models’
heuristic uncertainty scores:

B1 select all intents with score > 1 — «, select
the top k = 5 if this selection is empty.

B2 select all intents with a score > 1 — «.

B3 select the top £ = 5 intents.

Metrics We evaluate the approaches on a set of
metrics that together accurately convey the added
benefit of asking a confirmation question. We use
the size of the prediction set C(X;) and how often
the input is rejected as too ambiguous for the model
(Algorithm 1, In 5). For a test set of size n:

1<~ [1 if|C(X;)| > th
Amb:= - if (X)) 2
n= 0 otherwise.

(7

First, we report how often the true intent is de-
tected for the m < n inputs that are not rejected
(Algorithm 1, Ins 3 and 5). This metric is known as
coverage (cov) and can be seen as a generalisation
of accuracy for set-valued predictions:

1 m
Covi=— 3 Texy (V). @®)

=0
Second, we report the average size of the clarifi-
cation questions for accepted inputs (Algorithm 1,

In 7). This metric can be seen as an analogue to
precision for set-valued predictions:

1 m
cQl = >l ©)
i=0

*https://cloud. google.com/dialogflow/cx/docs

Finally, we report the relative number of times the
prediction set is of size one

, 1 &1 ifie(x;)) =1,
Single := — g
ingle {

. (10)
— | 0 otherwise,
=0
in which case the dialogue can continue as usual
(Algorithm 1, In 3). We additionally report the SSC
as defined above in (6).
For out-of-scope detection we report the stan-
dard metrics F1-score and AUROC.

Parameters We varied o and found the best set-
tings empirically on the calibration set. We report
our key results for the best o and additionally in-
vestigate the effect of varying o.

We set the threshold th at seven to avoid exces-
sive cognitive load for users for all experiments,
except when using DFCX in which case we set
th to four (Miller, 1956; Plass et al., 2010). The
reason for this is that DFCX currently only outputs
non-zero scores for the top five intents. Hence, the
set contains all intents that have a non-zero confi-
dence score with this setting.

We include the following conformal prediction
approaches and select an approach that produces
the best empirical results in terms of coverage and
CQ size: marginal, conditional (also known as
adaptive) (Romano et al., 2020) and RAPS (An-
gelopoulos et al., 2021). Marginal conformal pre-
diction was selected in all experiments, details can
be found in Figure 2.

5 Results

Table 2 lists the main results. The first column
shows the coverage, i.e. the percentage of test
samples in which the ground truth is captured in
the prediction set. We see that only CICC and B3
adhere to the requirement of coverage > 1 — « in
all settings. The second column shows the fraction
of test samples for which a single intent is detected.
We see that CICC outperforms the baselines that
meet the coverage requirement in five out of seven
data sets.

The third column lists the average size of the CQ.
We see that CICC yields the smallest CQs and that
the number of inputs that is deemed too ambiguous
is relatively small for CICC. The last column de-
notes the relative number of inputs that is rejected
as too ambiguous. CICC rejects a relatively low
number of inputs. Upon inspection, many of these
inputs could be classified as different intents based
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Setting 1—ath |Covt Singlet |CQ| | Amb
ACID 98 7 CICC| .98 .87 3.01 .03
BI| 98 88 5
B2| .95 1 —
B3 99 0 5
ATIS 99 7 CICC| .99 98 2.54
B1| .99 73 5
B2| .98 1.00 -
B3| 1.00 0 5

B77/BERT .97 7 CICC| .98 73

B1| .97 84 5

4

%

=

oo =)
—oRNg|ococoR|oococo|ocoo

B2| 93 1 -
B3 98 0 5
B77/DFCX 90 4 CICC| 91 .66  2.63
BI| .95 .71 5
B2| 90 98 226
B3| 97 0 5
CI50ID .99 7 CICC| .99 .97 266 O
Bl| .99 .82 5 0
B2| 98 1 -0
B3| 1 0 5 0
HWU64 95 7 CICC| .95 .82 281 .01
BI| 97 .70 5 0
B2l 90 1 -0
B3| .98 0 5 0
IND 90 7 CICC| 91 .25 346 .11
Bl| 88 .42 5 0
B2| .70 1 -0
B3| 91 0 5 0
MTOD 99 7 cCIcCc| 99 1 -0
BI| 1 .98 5 0
B2[ .99 1 -0
B3| 1 0 5 0

Table 2: Test set results where underline indicates meet-
ing coverage requirement. Bold denotes best when
meeting this requirement, omitted for last column due
to missing ground truth for ambiguous.

Dataset Algorithm 1-« th‘FlT AUROCtT

C150-00S CICC 990 7 |.07 .88

CICC-0O0S 995 6 | .91 97
B77-00S CICC 970 7 |.76 92
CICC-0O0S .994 6 |.90 97

Table 3: Results for the OOS detection task.

on the textual information alone (see Appendix B).
For the B77/DFCX setting, we see that B1 predicts
a single output frequently, at the cost of rejecting
inputs as too ambiguous. This contrasts with CICC,
which rejects inputs much less frequently and in-
stead asks a small CQ.

We continue by looking at the results for OOS
detection in Table 3. We find that vanilla CICC
does not perform well on the OOS detection in
comparison to the specialized CICC-OOS variant.
The specialized CICC-OOS favours a relatively
low « as this simultaneously forces the approach
toward large prediction sets for OOS samples and
small prediction sets for in-sample inputs. At the
same time, using the CICC-OOS settings for pa-
rameters « and th in the regular CICC interaction
loop would result in relatively many CQs of a rela-
tively large size.

Next, we investigate how different conformal
prediction approaches perform for varying levels
of a in Figure 2. The top figures show that all con-
formal prediction approaches enable trading off set
size with coverage, a desirable property in practice
of intent classification. Looking at the adaptivity
(center figures), we see mixed results. A possi-
ble explanation for this is in the general-purpose
evaluation of adaptivity, which relies on the mini-
mum coverage across classes (see Eq. 6). The data
sets used in our experiments contain a relatively
low number of examples for some classes and these
rare classes may have an outsized effect on the SSC
metric. Looking at the bottom figure for each data
set, we see that all conformal prediction approaches
lie at or above the x=y diagonal: conformal predic-
tion always adheres to the coverage requirement
with the marginal approach yielding the smallest
average set sizes.

6 Conclusion

We have proposed a framework for detecting and
addressing uncertainty in intent classification with
conformal prediction. The framework empirically

2418



ACID
° 6
N
5
A4 A
g’ e ALy )
2 .
1.0 7
@ 0.5 ;
n M&}
00 AV W Y Q
1.0 A
(0]
[@)]
o
o 0.8 A
3 M RAPS
© Marg. A
© Cond.
0.6 = T T
0.75 1.00
1 - alpha
C150-IS
(0]
N
tg 3 T%%. ¥
by W“"’W{,V‘v X% YZ%
S ot
>
L2 L |
1.0
A R
O oy
n 0.5 9 T Q
[7p]
00 - = . TR TR .
1.0 A
(0]
()]
o
o 0.8 A
>
S © Marg. A RAPS
~ Cond.
0.6 & .
0.75 1.00
1 - alpha

O
5]
0
1.0 A
(]
(®)]
@©
o 0.8 1
>
8 © Marg. A RAPS
0.6 4 Cond. |
0.75 1.00
1 - alpha
HWU64
o A
N
54
[} N/
|~
<2 M,
1.0
®
O v o
) 0.5 A AW 7y
(OO
1.0 4
()
[®)]
()
o 0.8 1
>
S © Marg. A RAPS
~ Cond.
0.6 A& T T
0.75 1.00
1 - alpha

SSC

Coverage

SSC Avg. Set Size

Coverage

B77/BERT

1.00

1.0 A
0.8 A
© Marg. A RAPS
PR Cond.
06 . T T
0.75 1.00
1 - alpha
MTOD
2.2 A
2.0 - —— |
1.0
0.8 A
0.6 - T T
1.0
0.8 A1
© Marg. A RAPS
~ Cond.
0.6 1= ;
0.75
1 - alpha

Figure 2: Test set results for varying error rate c.
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determines when to ask a clarification question and
how that question should be formulated. The frame-
work uses a moderately sized calibration set and
comes with intuitively interpretable parameters.

We have evaluated the framework in eight set-
tings, and have found that the framework strictly
outperforms baselines across all metrics in six out
of eight cases and performs competitively in the
other. The framework additionally handles inputs
that are too ambiguous for intent classification natu-
rally. We have additionally proposed and evaluated
the usage of CICC for out-of-scope detection and
found that it is suitable for this.

We finally believe that the framework opens
promising avenues for future work, including the
usage of intent groups for better adaptivity, an ex-
tension to Bayesian models to address data drift and
unsupervised OOS with CICC (Fong and Holmes,
2021), to determine conversation stopping rules
based on subsequent questions to rephrase or clar-
ify and to combine it with reinforcement learning
for, e.g., personalization (Den Hengst et al., 2019,
2020). We believe that CICC and/or conformal
prediction may also prove useful in various other
tasks, including entity recognition, detecting label
errors (Ying and Thomas, 2022) and to empirically
identify similar intents.

Limitations

A limitation of the framework is that it relies on
a user determining values for the hyperparameters
«a and th. The former balances model certainty
with CQ size. Arguably, this trade-off has to be
made in any approach and CICC makes this an ex-
plicit choice between achievable trade-offs. The
threshold ¢/ must be set not to reject too many in-
puts as too ambiguous while avoiding information
overload in the user. We advise setting it to no
more than seven based on established insights from
cognitive science (Miller, 1956). However, more re-
search on the impact of CQ size on user satisfaction
in various context is in order. Another limitation is
that the approach does not include a mechanism for
stopping the dialogue. We leave the investigation of
stopping criteria based on e.g. the number and size
of CQs asked during the dialogue for future work.
Furthermore, this work did not thoroughly investi-
gate the quality of the CQs produced by the LLM.
However, we view the CQ production component
as a pluggable component and therefore believe a
full-scale evaluation on this to be out-of-scope for

this work. Additionally, using CICC for OOS de-
tection requires the presence of OOS labels. While
these can be obtained from other data sets using
the practice of open-domain outliers (Zhan et al.,
2021), fully unsupervised approaches based on e.g.
hierarchical Bayesian modeling or with parame-
ters that yield good performance across data sets as
hinted at by Table 3. A final limitation is that we
applied conformal prediction to the softmax of out-
puts of uncalibrated neural network outputs. This
makes results consistent across settings (including
DFCX), but smaller CQs may be achievable by ap-
plying Platt scaling prior to conformal prediction
calibration (Platt et al., 1999).
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A Appendix: Implementation Details

We used python v3.10.9 with packages numpy and pandas for data manipulation and basic calcu-
lations, matplotlib to generate illustrations, mapie for conformal prediction and reproduced these
results in Julia and the package conformalprediction.jl . We used the huggingface API for fine
tuning a version of bert-base-uncased using the hyperparameters below. For an anonymized version
of the code and data see https://anonymous.4open.science/r/cicc-205A.

learning_rate = 4.00e-05

warmup_proportion = 0.1
train_batch_size = 32
eval_batch_size = 32
num_train_epochs = 5

A.1 Generative Language Model

We use the eachadea/vicuna-7b-1.1 variant of the LLAMA model using the HuggingFace API for
the experiments presented here. We here provide an example prompt:

Customers asked an ambiguous question. Complete each set with a disambiguation question.

Set 1: Customer Asked: 'The terminal I paid at wouldn't take my card. Is something wrong?'

Option 1: 'card not working'

Option 2: 'card swallowed'

Disambiguation Question: 'I understand this was about you card. Was is swallowed or not working?'
**END**

Set 2:

Customer Asked: 'I have a problem with a transfer. It didn't work. Can you tell me why?'

Option 1: 'declined transfer'

Option 2: 'failed transfer'

Disambiguation Question: 'I see you are having issues with your transfer. Was your transfer failed or
**END**

Set 3: Customer Asked: 'I transferred some money but it is not here yet'
Option 1: 'balance not updated after bank transfer'

Option 2: 'transfer not received by recipient’

Disambiguation Question:

More efforts can be spent on prompt engineering and more advanced generative LMs can be used, which
we expect to improve the user satisfaction of CICC. Alternatively, simple text templates can be used. We
consider the following alternatives and list some of their expected benefits and downsides:

Templates a simple template-based can be used in which the user is asked to differentiate between the
identified intents. Benefits of templates include full control over the chatbot output but a downside is
that the CQs will be less varied, possibly sounding less natural and will not refer back to the users’
original utterance,

LM without user input when using a LM, it is possible to not incorporate the user input X in the prompt.
This has the benefit of blocking any prompt injection but the downside of possibly unnatural CQs
due to the inability to refer to the user query,

LM with user input by incorporating the user utterance into the LM prompt for CQ generation, the
CQ can refer back to the user’s phrasing and particular question, and therefore be formulated in a
possibly more natural way.
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We believe that more research is warranted to identify which of these approaches is most applicable in
which cases, and how possible downsides of these alternatives can be mitigated in practice.

B Appendix: Sample ambiguous inputs

Tables 4- 5 list inputs that are considered ambiguous by CICC in the B77 and HWU64 data sets respectively.
Some inputs could refer to multiple intents whereas some other inputs could be considered out-of-scope.

#  Utterance Label Prediction Set
1 what is the matter? direct debit pay- activate my card, age limit, balance not updated after bank transfer, bal-
ment not recog- ance not updated after cheque or cash deposit, beneficiary not allowed,
nised cancel transfer, card arrival, card delivery estimate, card not working, card
swallowed, cash withdrawal not recognised, change pin, compromised
card, contactless not working, country support, declined card payment, de-
clined transfer, direct debit payment not recognised, exchange rate, failed
transfer, get physical card, lost or stolen card, lost or stolen phone, pending
card payment, pending cash withdrawal, pending transfer, pin blocked,
Refund not showing up, reverted card payment?, terminate account, top
up failed, top up reverted, transaction charged twice, transfer not received
by recipient, transfer timing, unable to verify identity, why verify identity,
wrong amount of cash received,
2 Can I choose when my card delivery es- activate my card, card about to expire, card acceptance, card arrival,
card is delivered? timate card delivery estimate, change pin, contactless not working, country sup-
port, get physical card, getting spare card, getting virtual card, lost or
stolen card, order physical card, supported cards and currencies, top up
by bank transfer charge, top up by card charge, visa or mastercard
3 My contanctless has contactless not activate my card, apple pay or google pay, automatic top up, beneficiary
stopped working working not allowed, cancel transfer, card not working, card payment wrong ex-
change rate, contactless not working, declined card payment, disposable
card limits, failed transfer, get disposable virtual card, get physical card,
pending top up, pin blocked, top up failed, top up reverted, topping up by
card, virtual card not working, visa or mastercard, wrong exchange rate
for cash withdrawal
4  Imisplaced my cardandI lost or stolen activate my card, atm support, card acceptance, card linking,
dont know where the last  card card swallowed, cash withdrawal not recognised, compromised card,
place is where I used the lost or stolen card, lost or stolen phone, order physical card, pin blocked
card last. Can you look
at my account and tell me
the last place I used the
card?
5 Is my card denied any- card acceptance atm support, card acceptance, card not working, card payment fee charged,

where?

card swallowed, compromised card, contactless not working, declined
card payment, lost or stolen card, lost or stolen phone, order physical card,
unable to verify identity, visa or mastercard

Table 4: A sample of prediction sets on B77 of size > th of seven with marginal conformal prediction on BERT
outputs. Plausible labels have been highlighted with underscore.

C Appendix: LLM results

We here present a random sample of CQs on B77 and C150.
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# Utterance Label Prediction Set
1 olly recommendation calendar set, general quirky, lists createoradd, music likeness, music query,
events play game, play music, play radio,
2 this song is too good music likeness audio volume mute, general affirm, general commandstop, general joke,
general negate, lists remove, music dislikeness, music likeness
3 doihave to go to the gym  general quirky calendar query, general quirky, lists query, recommendation events, rec-
ommendation locations, transport traffic, weather query
4 silently adjust audio volume audio volume down, audio volume other, audio volume up,
mute iot hue lightchange, iot hue lightdim, iot hue lightup, music settings
5 how many times does it  general quirky datetime query, general quirky, lists query, qa factoid, ga maths,
go transport query, transport traffic
6 sports head lines please news query calendar set, general quirky, iot hue lightchange, music likeness, news
query, qa factoid, social post, weather query
7 read that back play audiobook  email addcontact, email query, email querycontact, email sendemail, gen-
eral quirky, lists createoradd, music likeness, play audiobook, play music,
social post,
8 i don’t want to hear any music dislikeness audio volume mute, calendar remove, general commandstop, iot wemo
more songs of that type off, lists remove, music dislikeness, music likeness
9 check celebrity wiki general quirky email query, general quirky, lists query, news query, qa factoid, social
post, social query
10 Get all availables lists query email addcontact, email query, email querycontact, email sendemail, social
post, social query, takeaway order,
11 rating music likeness cooking recipe, general quirky, lists createoradd, lists query, music like-
ness, music query, qa definition, qa factoid,
12 take me to mc donalds transport query  play game, play podcasts, recommendation events, recommendation loca-
tions, recommendation movies, takeaway order, takeaway query
13 search qa factoid email querycontact, general quirky, lists createoradd, lists query, music
query, qa definition, qa factoid,
14 unmute audio volume audio volume down, audio volume mute, audio volume up, iot wemo off,
up music settings, play radio, transport query, transport traffic
15  please unmute yourself audio volume alarm remove, audio volume down, audio volume mute, audio volume up,
mute iot cleaning, iot wemo on, music settings, play game
16  what’s the best day next datetime query  calendar query, cooking recipe, general quirky, qa factoid,
week to go out for pizza recommendation events, recommendation locations, takeaway query
17  ineed a manger general quirky calendar set, cooking recipe, general quirky, lists createoradd, music
likeness, play game, qa definition, qa factoid, social post,
18  assistant shuffle entire li- play music iot cleaning, iot hue lightchange, lists createoradd, music settings,
brary play audiobook, play game, play music
19  put the disco lights on iot hue lighton alarm remove, iot cleaning, iot hue lightchange, iot hue lightoff,
iot hue lighton, iot hue lightup, iot wemo on
20 hello how are you today general greet general greet, general praise, general quirky, play radio, recommendation
events, recommendation locations, recommendation movies
21  where does tar work cur- email querycon- cooking recipe, email querycontact, general quirky, lists query, qa defini-
rently tact tion, recommendation locations, takeaway query
22 can you pull up jeff email querycon-  general quirky, iot cleaning, news query, play game, play music, play
tact radio, social post
23 show me theatre where pi- recommendation general quirky, play game, play music, play podcasts, recommendation
rates of caribbean is play- movies events, recommendation locations, recommendation movies
ing
24 spot play podcasts calendar set, music likeness, music query, play music, play radio, qa
factoid, weather query,
25 anything i need to know general quirky calendar query, calendar set, email query, email querycontact,
general quirky, lists query, news query, social query
26 give me some good play music audio volume down, audio volume up, music likeness, music query, music
sounds settings, play music, play radio
27 idon’tlike it music dislike- calendar remove, general commandstop, general dontcare, general joke,
ness general negate, lists remove, music dislikeness, music likeness, social post
28  what are you general quirky audio volume down, audio volume mute, audio volume up, music query,
music settings, qa definition, recommendation locations, recommendation
movies
29  idon’t like this one general quirky audio volume mute, calendar remove, general joke, general negate,

iot wemo off, lists remove, music dislikeness, social post

Table 5: Prediction sets on ACID of size > th of seven with marginal conformal prediction on BERT outputs.
Plausible labels have been highlighted with underscore.
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Utterance

Prediction Set

LLM output

I hope you can help me. My
account has been compromised
from a different town that I
haven’t been to. Can you please
place a hold on my account un-
til I can make it to the bank?

Is my card denied anywhere?

Money that I have transferred
hasn’t arrived yet

How long will the transfer take?

What should I do with my stuck
ATM?

cash withdrawal not
recognised, compro-
mised card

card not working, de-
clined card payment
balance not updated
after bank transfer,
transfer not received
by recipient

balance not updated
after bank trans-
fer,pending transfer,
transfer timing

card swallowed,
declined cash with-
drawal

[ understand you are having issues with your account.
Was your account compromised or your card not
recognised for cash withdrawal?

I understand you are asking about your card. Was it
declined or not working?

I understand you are waiting for a transfer to be up-
dated in your balance. Was the transfer not received
by you or the recipient?

I understand you are asking about transfer timing.
Was your transfer pending, not updated or not re-
ceived?

I understand you have a stuck ATM. Was it your card
that got stuck or was your cash withdrawal declined?

Table 6: Sample of LLM outputs on the B77 dataset where the user input has been made part of the prompt.
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Utterance

Prediction Set

LLM output

how many more miles can i
drive on my current tank

can i redeem my points for
flights

are there any meetings between
2 and 5 pm

is the marathon on friday added
to my calendar

why didn’t my card work

gas, mpg

redeem rewards, re-
wards balance

schedule  meeting,
meeting schedule
calendar, calendar
update

expiration date, card
declined

I understand you are asking about your car’s fuel.
Are you asking about the number of miles you can
drive on your current tank or the miles per gallon?

I understand you would like to redeem your points
for flights. Are you looking to check your rewards
balance or redeem your rewards?

I understand you are looking for a schedule of meet-
ings. Are you looking for a specific time range or a
general schedule?

I understand you are referring to your calendar. Is it
the marathon on friday that you are referring to or do
you need an update on your calendar?

I understand you are having issues with your card. Is
it because of the expiration date or was it declined?

Table 7: Sample of LLM outputs on the C150 dataset.
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D Appendix: Intent distributions
We here present the intent distributions for all public datasets across train, calibration and test splits.
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Figure 3: Intent distribution in ACID data set.
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Figure 6: Intent distribution in C150-IS data set.
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Figure 7: Intent distribution in HWU64 data set.
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E Appendix: Unoptimized o

This appendix contains results for an unoptimized o hyperparameter, arbitrarily set at .10 and .01. We
see that for most data sets, there is no need to ask a clarification question as the model already achieves
the desired coverage. Much higher coverages (as in Table 2) are achievable for these data sets. For some
more challenging data sets such as C150, HWU64 and IND, CICC yields small clarification questions
while retaining a reasonably large number of clarification questions of size 1.

Setting 1—ath |Covt Singlet |CQ| | Amb
ACID 90 7 CICC| 90 .92 - 0
B1| 97 93 5 0
B2| .95 1 — 0
B3| .99 0 5 0
ATIS 90 7 CICC| .88 .89 - 0
B1| 99 93 5 0
B2| .98 1 - 0
B3| 1 0 5 0
B77/BERT 90 7 CICC| 98 .79 290 .04
B1| 97 .90 5 0
B2| .93 1 - 0
B3| .99 0 5 0
B77/DFCX 90 4 CICC| 91 .66 263 .02
B1| 95 .71 479 27
B2 90 98 226 O
B3| .97 0 5 1
C150 90 7 CICC| 9 97 266 O
B1| 99 .82 5 0
B2| .98 1 - 0
B3| 1 0 5 0
HwWU64 90 7 CICC| 90 97 200 O
Bl| 96 .79 5 0
B2| .90 1 — 0
B3| .98 0 5 0
IND 90 7 CICC| 91 .25 346 .11
B1| 88 42 5 0
B2| .70 1 - 0
B3| 91 0 5 0
MTOD 90 7 CICC| 90 .90 - 0
B1| 99 .99 5 0
B2| .99 1 - 0
B3| 1 0 5 0

Table 8: Test set results for 1 — o = .90 where underline indicates meeting coverage requirement. Bold denotes
best when meeting this requirement, omitted for last column due to missing ground truth for ambiguous.
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Setting 1—ath |Covt Singlet |CQ| | Amb

ACID 99 7 CICC| 1 77 300 .10
Bl| 98 85 5 0
B2| 95 1 - 0
B3| .99 0 5 0
ATIS 99 7 CICC| 99 .98 254 0
Bl| 99 .73 5 0
B2| 98 1 - 0
B3| 1 0 5 0
B77/BERT .99 7 CICC| .98 .79 290 .04
Bl| 97 .90 5 0
B2| 93 1 -0
B3 99 0 5 0
B77/DFCX .99 4 CICC| 97 0 5 1
Bl| 97 .05 5 .95
B2| 90 1 -0
B3| 97 0 5 1
C150 99 7 CICC| 99 .97 266 0
Bl| .99 .82 5 0
B2| 98 1 -0
B3| 1 0 5 0
HWU64 99 7 CICC| .99 .25 339 .28
Bl| 98 .05 5 0
B2| 90 1 -0
B3| 98 0 5 0
MTOD 99 7 cIccl 99 1 - 0
BI|] 1 .98 5 0
B2| 99 1 - 0
B3| 1 0 5 0

Table 9: Test set results for 1 — a = .99 where underline indicates meeting coverage requirement. Bold denotes
best when meeting this requirement, omitted for last column due to missing ground truth for ambiguous.
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F Appendix: Comparison results QOS detection

We here compare the results of OOS detection as reported by baselines. Note that these results were
generated on different splits of the data and (where applicable), possibly using different open-domain
samples, and that a direct comparison between results is invalid.

Dataset Algorithm ‘FIT Accuracyt

C150 CICC-00S 91 .68
Zhan et al. (2021) 25%| .81 .88
Zhan et al. (2021) 50%| .87 .88
Zhan et al. (2021) 75%| .89 .88
Cavalin et al. (2020) |.76 73

B77  CICC-O0S 90 .89
Zhan et al. (2021) 25%| .74 70
Zhan et al. (2021) 50%| .80 73
Zhan et al. (2021) 75%| .87 81

Table 10: Results for the OOS detection task.
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