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Abstract

Knowledge probing assesses to which degree a
language model (LM) has successfully learned
relational knowledge during pre-training. Prob-
ing is an inexpensive way to compare LMs
of different sizes and training configurations.
However, previous approaches rely on the ob-
jective function used in pre-training LMs and
are thus applicable only to masked or causal
LMs. As a result, comparing different types
of LMs becomes impossible. To address this,
we propose an approach that uses an LM’s in-
herent ability to estimate the log-likelihood of
any given textual statement. We carefully de-
sign an evaluation dataset of 7,731 instances
(40,916 in a larger variant) from which we pro-
duce alternative statements for each relational
fact, one of which is correct. We then evaluate
whether an LM correctly assigns the highest
log-likelihood to the correct statement. Our
experimental evaluation of 22 common LMs
shows that our proposed framework, BEAR,
can effectively probe for knowledge across dif-
ferent LM types. We release the BEAR datasets
and an open-source framework that implements
the probing approach to the research commu-
nity to facilitate the evaluation and develop-
ment of LMs.

1 Introduction

Pre-trained language models (LMs) are the back-
bone of current state-of-the-art NLP approaches. A
key property is the syntactic and semantic knowl-
edge stored in their internal parameters, allowing
them to generalize beyond given training data when
fine-tuning for a specific downstream NLP task.
Due to their importance and the large number of
proposed LMs, prior work has sought to improve
the ability to measure the amount of factual knowl-
edge encoded in LMs, thereby facilitating the com-
parison of different LMs (Petroni et al., 2019; Po-
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The capital of France is [MASK].

(a) LAMA probe: Single-subtoken mask prediction

The capital of Uganda is Thimphu.
... Kampala.
... Buenos Aires.
... Bandar Seri Begawan.

(b) BEAR probe: Rank answer options of arbitrary length

Figure 1: Comparison of the LAMA and BEAR probes.
Both probes query LMs given a template (here in black),
the subject of the relation (blue), and the object (orange).
LAMA masks the object and predicts a single token
as the answer. In BEAR, we create separate textual
statements for a set of potential answers and select the
statement with the highest (pseudo) log-likelihood as
assigned by the LM. This method allows us to include
multi-token answers and evaluate causal and masked
LMs.

erner et al., 2020; Cao et al., 2021; Kalo and Fichtel,
2022).

The LAMA probe (Petroni et al., 2019) is the
seminal work in studying commonsense and re-
lational knowledge in LMs and is widely used
for inexpensive evaluation and model comparison
(see Youssef et al. (2023) and Cao et al. (2023) for
an overview). The idea is to use relational knowl-
edge from an existing knowledge base (KB) and
create cloze-style statements for an LM to fill in.

>

For instance, the entities “France” and ‘“Paris’
may be connected through the HAS-CAPITAL re-
lation in a given KB, indicating that Paris is the
capital of France. From this, LAMA constructs
the sentence “The capital of France is [MASK]”
and evaluates whether an LM predicts the correct
token to complete this factual sentence. LAMA,
therefore, effectively reuses the masked language
modeling objective of the bidirectional family of
LMs (Devlin et al., 2019) to probe for knowledge.
This example is shown in Figure 1a.
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Limitations of LAMA. While LAMA offers a
straightforward approach to probing, it also has
significant limitations.

First, LAMA requires the correct answer to be
part of the evaluated LM’s subtoken vocabulary, re-
stricting the relational knowledge that can be tested
to single-subtoken answers (such as “Paris” in Fig-
ure 1a). Thus, it cannot test for relational facts with
long or rare answers (as shown in Figure 1b).

Second, and most importantly, LAMA relies on
the masked language modeling objective. This
makes LAMA inapplicable for LMs trained with
other objectives. Therefore, it excludes causal LMs
such as the GPT-family of models (Radford et al.,
2019). To the best of our knowledge, no factual
knowledge probe currently exists that applies to
both masked and causal LMs.

Third, various prior works have noted limitations
of the relational data used in the LAMA probe, such
as (1) a heavily skewed answer space, favoring
some answers over all others (Jiang et al., 2020b;
Zhong et al., 2021; Cao et al., 2021), (2) overly re-
vealing entity names (Poerner et al., 2020), (3) and
issues involving knowledge with multiple correct
answers, causing correct answers to be counted as
errors (Kalo and Fichtel, 2022).

These limitations of both the probing approach
and the data impair LAMA’s ability to measure and
compare the relational knowledge of different LMs
accurately.

Contributions. To address these issues, we pro-
pose BEAR, a unified knowledge probe for both
causal and masked LMs. Instead of casting the eval-
uation as a token prediction problem over the entire
vocabulary of an LM, we present a set of answer
options for each relation instance, create a textual
statement for each option, and leverage the inherent
ability of each LM to assign a log-likelihood score
to statements, thereby ranking these options. See
Figure 1b for an illustration.

We argue that this approach has numerous bene-
fits in that it (1) allows us to evaluate both masked
and causal LMs, (2) imposes no restrictions on the
answer space, (3) allows us to design a new evalua-
tion dataset that addresses a range of issues such as
answer skews and multiple correct answers noted
in prior work. In more detail, our contributions are:

1. We present an analysis of the weaknesses of
the LAMA probe and follow-up works to de-
rive desiderata for the BEAR probe (see Sec-
tion 2).

2. We propose to query knowledge as a multiple-
choice selection problem in which an LM es-
timates the (pseudo) log-likelihood of a given
answer template with each choice filled in (see
Section 3).

3. We construct a novel evaluation dataset that re-
flects the desiderata identified in our analysis
(see Section 4).

4. We use BEAR to evaluate a range of common
masked and causal LMs (see Section 5).

To enable the community to employ the pro-
posed probing method and dataset, we publicly
release! the evaluation framework Im-pub-quiz
(based on the minicons, Misra, 2022) as well as
the dataset BEAR?.

2 LAMA and Follow-Up Work

We discuss the technical details of the LAMA
probe first, followed by an analysis of its weak-
nesses.

LAMA evaluation data. The LAMA benchmark
was originally composed of four separate datasets
named after their respective sources: SQuAD (Ra-
jpurkar et al., 2016), GoogleRE>, ConceptNET
(Speer and Havasi, 2012), and T-REx (Elsahar et al.,
2018). However, subsequent research mainly fo-
cused exclusively on the T-REx subset. Its knowl-
edge base comprises 41 relations derived from
Wikidata. Each relation contains at most 1,000
relation instances in the form of subject-relation-
object triples (s, 7, 0) where s is the subject (e.g.,
“France”), r the relation (e.g., HAS-CAPITAL), and
o0 an object (e.g. “Paris”).

There are three types of relations in LAMA: 1-1
(one-to-one, e.g., HAS-CAPITAL), N-1 (many-to-
one, e.g., HAS-LANGUAGE), and N-M (many-to-
many, e.g., SHARES-BORDER-WITH). Relations
of the N-1 type allow multiple subjects to relate to
one object, while the latter permits many subjects
to be associated with numerous objects.

Relation identifiers. All relations are linked to a
corresponding relation in Wikidata and thus have

IThe library, the probing dataset, as well experimental
artifacts can be retrieved via the following URL:
https://1lm-pub-quiz.github.io/

*Benchmark for Evaluating Associative Reasoning), CC
BY-SA license.

3https: //code.google.com/archive/p/
relation-extraction-corpus/
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unique IDs. For instance, the CAPITAL-OF rela-
tion in LAMA corresponds to Wikidata relation
P1376 (see Table 1 for more examples). It facil-
itates comparison across different datasets since
all follow-up works to LAMA, including BEAR,
derive their relations from Wikidata.

Templates. Each relation in LAMA has a textual
template with placeholders for subject and object.
For CAPITAL-OF, the template is “[X] is the capital
of [Y].”, where [X] is a placeholder for the subject,
while [Y] is the placeholder for the object. At test
time, the subject of a given relation is filled in the
template, while the object is replaced by a [MASK]-
token. This procedure results in a masked sentence
(e.g., “Paris is the capital of [MASK].”) for which
the LM is tasked to predict the masked token.

2.1 Issue 1: Single Subtoken Answers

As noted by Petroni et al. (2019), LAMA is re-
stricted to single-subtoken answers for factual
knowledge queries. This limitation causes issues
as LMs split most words into multiple subtokens,
and most LMs differ in how they perform the
splits. To illustrate, consider how the country
name ‘“Togo” is tokenized by different versions
of BERT: the bert-base-cased model splits the
word into two subtokens ([To, ##go]), whereas the
bert-base-uncased variant preserves it as a sin-
gle subtoken ([togo]).

An analysis of 194 UN member country names
is an excellent example of how such a restrictive
condition affects the size of a hypothetical dataset.
When restricting answer space to single tokens,
32% and 27% of available country names would
have to be discarded for cased and uncased ver-
sions of BERT, respectively. Worse, the RoOBERTa
models (Liu et al., 2019) that uses a BPE-based
tokenizer would split 88% of all country names.
Refer to Table 1 for a list of how many LAMA
instances need to be discarded when evaluating
x1lm-roberta-base (Conneau et al., 2020) and
roberta-base models.

Comparison of different LMs. Because the tok-
enizer bundled with each model differs, comparing
various LMs becomes only possible if the models
tokenize the answers in the same way. To address
this, practitioners are currently reverting to using
the intersection of single-token vocabularies de-
rived from all LMs being compared. However, in
practice, this further limits the scope of relational
knowledge that can be included in the evaluation.

1D Relation xlm-roberta-base roberta-base
P30 ON-CONTINENT 74.46 % 80.21%
P31 INSTANCE-OF 28.85% 67.35%
P36 HAS-CAPITAL 45.80% 89.76%
P37 HAS-LANGUAGE 30.85% 45.13%
PI303  INSTRUMENT 58.69% 100.00%
P1376 CAPITAL-OF 32.05% 81.62%
Mean 31.73% 62.86%

Table 1: Ratio of discarded instances due to multi-token
answers in x1m-roberta-base and roberta-base.

Prior work. Various prior works address the is-
sue of predicting multi-subtoken words for single
[MASK] tokens (Ghazvininejad et al., 2019; Jiang
et al., 2020a; Kalinsky et al., 2023; Shen et al.,
2020; Robinson et al., 2023). Jiang et al. (2020a)
provided a selection of algorithms to tackle pre-
dicting multi-token entities. However, they require
a specification of further parameters, such as the
number of subtokens to generate. Kalinsky et al.
(2023) proposed generation approaches that either
require additional training or the use of an external
network, making them inapplicable to the purpose
of evaluating knowledge contained in pre-trained
weights through a zero-shot approach.

2.2 Issue 2: Multiple Correct Answers

LAMA expects exactly one correct answer to each
knowledge query and rates other factually correct
answers as errors. To illustrate this, consider the
query “Germany shares a border with [MASK]”,
to which LAMA expects the answer “Poland”.
All other correct answers, such as “Denmark” are
marked as incorrect. This issue affects all N-M
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Figure 2: The normalized answer frequency of selected
relations in the LAMA probe. The outliers are marked
with dots. In some relations, a majority class accounts
for more than 50% of all instances.

2395



Template: The capital of [X]is [Y].
Subject: Uganda

Answer Options: [ Thimphu, Kampala, Buenos Aires, Bandar Seri Begawan ]

The capital of Uganda is Thimphu.
The capital of Uganda is Kampala.
The capital of Uganda is Buenos Aires.

—
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The capital of Uganda is Bandar Seri Begawan.
— - J
Subject

Answer Options

LM

1. Kampala

Vst -8.4
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3. Thimphu
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2. Bandar Seri Begawan
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Figure 3: For each answer option, a sentence is passed to the LM (here using the template: “The capital of [X] is
[Y].” and the subject “Uganda’). The log-likelihood scores assigned by the LM are then used to rank the answer

options.

relations in LAMA.

Prior work. KAMEL (Kalo and Fichtel, 2022)
address this by allowing the LM to generate an arbi-
trary number of answers using a template instructed
via few-shot prompting, experimenting with ranges
of 1-10 answers per instance. Subsequently, they
evaluate the predictions using standard measures
of precision and recall. However, their approach
relies on the text generation ability of causal LMs
and thus cannot be applied to masked LMs.

2.3 Issue 3: Imbalanced Answer Distribution

The relations in T-REx have a highly unbalanced
answer distribution (except the 1-1 relations), and
in certain relationships, over half of the instances
belong to the predominant class (see Figure 2).
Zhong et al. (2021) noted that a model that always
chooses the majority class outperforms some state-
of-the-art LMs on selected relations.

To illustrate, consider the T-REx’s ON-
CONTINENT relation, which connects a location
to the continent in which it is situated. Counter-
intuitively, the majority class in this relation is
“Antarctica”, accounting for 72% of all instances.

Prior work. To account for this imbalance, Cao
et al. (2021) created a balanced version of the
LAMA probe called WikiUNI. It contains the same
relations as T-REx but has a uniform answer distri-
bution and was constructed to have the same num-
ber of subjects for every object. However, their
dataset samples a highly skewed number of in-
stances per relation, with 7 relations (out of 41)
accounting for over 50% of all instances.

2.4 Issue 4: Rare Wikidata Entries

The above-mentioned example of “Antarctica” be-
ing an answer to over 72% of all instances in the
ON-CONTINENT relation also points to another
problem: An artifact of randomly sampling Wiki-

data for relation instances is that rare Wikidata
entries are overrepresented. For example, ON-
CONTINENT has a large number of small islands as
subjects (e.g., “Umber Island” and “Brooklyn Is-
land”, both close to the Antarctic continent), many
of which are unlikely to occur in a corpus outside of
an encyclopedia like Wikipedia. We believe that the
LAMA dataset unfairly favors LMs trained using
Wikipedia. However, to the best of our knowledge,
no prior work has addressed this issue.

2.5 [Issue 5: Evaluation of Causal LMs

LAMA relies on the capability of masked language
models to fill in masked tokens, making it unsuit-
able for causal LMs.

Prior work. To address this, Kalo and Fich-
tel (2022) proposed the KAMEL probe. Factual
knowledge is probed by virtue of question state-
ments for which the response is auto-regressively
generated using the causal LM. To guide the gener-
ation approach, they prepend & few-shot examples
into the prompt that present how the correctly for-
matted answer should look. However, since this
approach relies on the language modeling objective
of causal LMs, KAMEL does not apply to masked
LMs.

Further Related Work

Further related work has attempted to mitigate
the sensitivity of the evaluation on the timing of
pre-training (and hence the corpus used) (Dhingra
et al., 2022; Mallen et al., 2023; Onoe et al., 2022).
Nonetheless, as these studies do not directly ad-
dress the concerns outlined in the previous subsec-
tions, we will not discuss them in detail. Interested
readers are referred to the cited papers for more
information.
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3 BEAR Probe

We base our evaluation on using an LM’s inherent
ability to estimate the log-likelihood of a given
sentence. Our main idea is to restrict the space
of possible answers for each relation instance and
create a set of options that are then ranked by their
log-likelihood values.

3.1 Ranking Options using Log-Likelihood

Our approach requires a dataset of (s, r, o) relation
instances, where for each relation r there exists (at
least) one template ¢ and a set of answer options a;
with i € {1, ..., k} that includes the correct answer.

Creating options to rank. For each relation in-
stance, we create k natural language statements
using the template, instance’s subject s, and each
of the possible relation’s objects a; as parts of a
textual statement.

Figure 3 illustrates this process for the exam-
ple relation instance (“Uganda”, HAS-CAPITAL,
“Kampala”) and the template “The capital of [X]
is [Y]”. This example’s set of potential answers is
[“Kampala”, “Thimphu”, “Buenos Aires”, “Ban-
dar Seri Begawan”]. For each potential answer, we
create a separate statement.

Predicting log-likelihood. For each generated
statement, we predict the log-likelihood score
log p(alt). As the template is the same for each
of the answer options (i.e., p(t) is constant) and
we are only interested in ranking them, it is suffi-
cient to compute the log-likelihood for the entire
sentence:

log p(as|t) = log p(as,t) — log p(t)

Since causal LMs are trained to predict a log-
likelihood of each token given the previous context,
the log-likelihood of a sentence is simply the sum
of the log-likelihoods of each token.

Log-likelihood in masked LMs. A sentence-
level log-likelihood is not clearly defined for an
LM trained using the masked language modeling
objective. However, Salazar et al. (2020) and Kauf
and Ivanova (2023) offer two variants of how to
retrieve a pseudo log-likelihood score for a given
text. Both approaches use multiple forward passes.
Salazar et al. (2020) simply mask each token once
while keeping the remaining context unmasked.
Kauf and Ivanova (2023) improve on this by ad-
ditionally masking all tokens right to the current

token belonging to the same word. This approach
fixes the issue of assigning disproportionate likeli-
hoods to multi-token words. We use the latter in
our approach.

Ranking the results. Finally, the statements are
ranked by their log-likelihood scores. This is illus-
trated in Figure 3 (right-hand side).

3.2 Evaluation Metric

To evaluate the amount of knowledge encoded in
each model, we score whether the top-ranked state-
ment is the correct answer for each relation in-
stance. Previous work (such as Petroni et al., 2019)
additionally considered answers with higher ranks.
The mean precision PQF (for a given rank k) is
commonly reported.

However, given that we evaluate on a constrained
answers space, we believe the first rank to be suf-
ficient. In the case of k = 1, this is identical to
the accuracy metric. We report the average over
all relation instances in our evaluation data as the
BEAR score.

4 BEAR Dataset

Our proposed probing approach requires a dataset
with a restricted answer space. Following the anal-
ysis in Section 2 we additionally desire (1) the
answer space to be balanced, (2) a single correct
answer per relation instance, (3) a balanced number
of instances per relation, and (4) a focus on knowl-
edge that could reasonably be found in corpora
other than Wikipedia.

4.1 Selecting Relations

We use the 234 relations of KAMEL as a start-
ing point and manually remove two-thirds of these.
This curation process was conducted independently
by two researchers (authors of this paper), and
disagreeing judgments were discussed in detail to
reach a final decision. The most common reasons
for excluding a relation were:

* A relation (after filtering) had too few objects
with a desired number of instances (i.e., given
the relation’s statistics, it was impossible to
build a balanced answer space within our con-
straints).

* We expect the relational information to un-
dergo significant changes (hence, it is not time-
invariant). For example, we assume the RESI-
DENCE relation, linking an individual to their
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place of residence, to be highly susceptible
to change over time. Including such relations
without accounting for their temporal context
would unfairly benefit LMs trained on datasets
from the same time period as the evaluation
data.

* A relation with many instances that have in-
complete object listings in Wikidata since
this may cause correct answers to be counted
as errors. For example, the MADE-FROM-
MATERIAL relation, which connects an object
and the material it is made of, often contains
only a few primary components as objects.

* Overly diverse subject or object space, mak-
ing the semantics of the relation overly broad
and impairing our ability to design meaningful
templates. For instance, the relation COUN-
TRY connects various entity types, such as
events, ships, roles, websites, TLDs, codes
of standards, and many more categories, to a
country.

As a result of this process, we selected 78 rela-
tions for inclusion in the larger variant of BEAR.

4.2 Selecting Relation Instances

For the selected relations, we retrieve relation in-
stances from Wikidata* and employ a number of
filtering steps to ensure that only instances meeting
our desiderata remain.

Filtering subjects and objects. We first filter
down the space of eligible subjects and objects.
We remove all Wikidata entities (i.e., subjects and
objects) that do not have an English label. Fol-
lowing prior work (Poerner et al., 2020), we addi-
tionally remove all subjects with overly revealing
entity names. For example, predicting the name of
the company that produced the “Apple Watch” is
straightforward since the correct answer (i.e., “Ap-
ple”) is part of the subject (i.e., “Apple Watch”).
The similarity is computed via the token overlap
and fuzzy string matching (Bachmann, 2023).

Ensuring a coherent answer space. Even in our
curated set of relations, some relation instances are
connected to outlier object types. For instance, the
HEAD-OF-GOVERNMENT relation, which typically
connects a country to a specific named person (e.g.,

*We use the JSON dump of Wikidata of January 3rd, 2022

(Wikidata contributors, 2022) which is available as a torrent
under a CC BY-SA license.

“Joe Biden”), would in some cases connect to a job
title instead (e.g., “president”).

To increase coherence and ensure that our tem-
plates are meaningful, we utilized GPT4 (OpenAl,
2023) to flag answers which stand out (see Fig-
ure 11 in Appendix F for the template that was
used) and decided on a case-by-case basis whether
to accept these changes. This process also helped
us check the relations for potential issues.

Sampling a balanced dataset. For this initial set
of entities, we sampled the remaining relation in-
stances such that (1) each relation has a uniform
distribution of objects in the answer space, (2) each
relation has approximately the same number of in-
stances overall, and (3) there is no overlap between
various entity names within a relation. During sam-
pling, we gave preference to Wikidata entities with
Wikipedia pages in multiple languages to focus on
well-known entities that might reasonably be found
in corpora outside of Wikipedia.

This process yields a total of 40,916 instances
for our 78 relations.

4.3 Further Refinement

The large variant of the dataset consists of a
broad range of subjects and captures a considerable
amount of relational knowledge found in Wikidata.
However, considering the extensive scope of the
probe and the evaluation scheme employed, the
time required for a complete assessment is consid-
erable. Hence, we further developed a subset of the
full probe designed to be more time-efficient.

We imposed a constraint on the answer space,
setting an upper limit of 25 answers for 1:N rela-
tions. This upper limit was set to keep the task chal-
lenging while making the evaluation more efficient.
To further refine this subset, we applied a filtering
criterion based on entity popularity, excluding en-
tities (objects and subjects) linking to Wikipedia
pages with fewer than 10,000 page views (between
2016 and 2023). This step ensures the relevance
and recognition of the included entities. Subse-
quently, through an iterative process, we identified
optimal configurations that achieve a balanced an-
swer space with a target of approximately 150 in-
stances. Configurations deemed infeasible were
systematically removed (in total, 18 relations, leav-
ing 46 relations). The remaining possible answers
were then sorted based on their subjects’ median
page view count and checked in a manual review.
During this review, we examined the answers and

2398



their respective subject samples, leading to the
exclusion of problematic subject instances. We
then included subjects with the highest page view
counts.

In the case of 1-1 relations, the process was simi-
lar but using a limit of 60 answers/instances per re-
lation. Additionally, we selected a random sample
of instances rather than ranking them by popularity
for these relations.

In the following sections of the paper, we will
use “BEAR?” to refer to this subset and “BEARp;g”
to denote the full probe.

4.4 Templates

We create three templates for each relation to
better safeguard against template-specific biases.
We source the initial templates from the existing
LAMA dataset, utilize GPT4 to create additional
ones (the used prompt can be found in Figure 12 in
Appendix F), and manually select those that best
match our subjects and answer spaces. Finally, we
query GPT4 with each of the templates applied to
5 random subject-object pairs from each relation to
check for linguistic correctness (the used prompt
can be found in Figure 13 in Appendix F).

4.5 Resulting Dataset

The final dataset consists of 60 relations and 7,731
items. Most of these relations are 1:N, each fea-
turing a restricted answer space ranging from 5 to
25 possible answers, with an average of roughly
23 answers. The answer space is also balanced so
that each answer appears the same number of times
across all instances. Each answer has between 6
and 30 instances, with an average of approximately
6.5 instances per answer. The dataset also contains
14 1:1 relations that contain only one instance per
answer.

For a detailed comparison of these statistics with
LAMA and KAMEL, see Table 2.

5 Experiments

We present an experimental evaluation using the
BEAR probe on a selection of LMs, compare our
results to earlier probes, and discuss the results.

Compared LMs. We compare a total of 22 LMs,
as listed in Table 3: This includes 6 masked LMs
from the BERT, RoBERTa, XLM-RoBERTa fami-
lies, each in their base and large variants. Addi-
tionally, we include 16 causal LMs from the GPT

31,000 train samples, and 200 each for dev & test

Dataset LAMA KAMEL BEARy; BEAR
# Instances 31,479 46,800 40916 7,731
# Relations 41 234 78 60
Literals no yes no no
1:1 Relations 0 14 14
N:1 Relations 7 64 46
N:M Relations 34 0 0
N:M Instances 1,035 4,296 0 0
Avg.Instances o35 4005 5969 1498

per Relation

Table 2: Descriptive dataset statistics: BEAR compared
to LAMA (T-REx subset) and KAMEL (figures for
KAMEL and LAMA from Kalo and Fichtel, 2022). Avg.
Instances per Relation only includes relations with more
than one instance per answer.

and OPT families, along with newer models such
as Llama2, Gemini, and Mistral. We assess 5 dif-
ferent sizes for the OPT models to examine the
relationship between the BEAR score and increas-
ing model sizes.

BEAR score. We compute the BEAR score for
each of the three template options per relation indi-
vidually and report the average across templates as
well as the standard deviation.

5.1 Main Results

Table 3 lists the results for all LMs in consideration.
We present the overall BEAR score and the scores
for the subsets of 1:1 and N:1 relations only. We
find that scores are generally low for all models,
highlighting the challenging nature of our bench-
mark, as it queries factual information with strong
detractors. In addition, we make a number of ob-
servations:

BEAR scores are higher for larger LMs. Inline
with our expectations, we find that larger models
consistently outperform their smaller counterparts.
For a better illustration, we present a plot of ac-
curacy against model size in Figure 4. This trend
of steady accuracy improvement with increasing
model size is evident across all tested model fami-
lies. Interestingly, the smallest change is observed
among BERT models, where the performance of
bert-base-cased and bert-large-cased across
all of the relations is roughly on par. We further ob-
serve that recent models generally achieve higher
performance, with Mistral-7B-v@.1 (2023) and
gemma-7b (2024) surpassing the L1ama2-7b (2023)
model (when compared at identical parameter
counts), which itself significantly outperforms the
opt-6.7b model from 2022.
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Model ‘ Type  #params BEAR BEAR; BEAR|.N
Llama-2-13b-hf CLM 13b  66.9% +1.0% 66.5% +1.6% 67.0% +1.1%
Mistral-7B-vO0.1 CLM 7.0b  654% +1.1% 64.5% £12% 65.5% +1.1%
gemma-7b CLM 706 63.7% +13% 63.5% +0.7% 63.8% +1.4%
Llama-2-7b-hf CLM 7.0b  624% +13% 622% +11% 62.4% +1.3%
gemma-2b CLM 2.0b  51.5% +1.0% 53.1% +13% 51.3% +1.0%
opt-30b CLM 30b 47.9% +05% 45.8% £1.0% 48.2% +0.6%
opt-13b CLM 13b  45.4% +08% 43.5% +21% 45.7% +0.6%
opt-6.7b CLM 6.7b  43.8% +1.1% 42.5% +1.0% 43.9% +1.2%
opt-2.7b CLM 2776 373% +09% 35.6% +0.7%  37.5% +1.0%
opt-1.3b CLM 1.3b 31.5% +08% 31.3%+06% 31.5% +0.9%
gpt2-x1 CLM 1.6b 262% +0.7% 24.1% +1.6% 26.5% +0.6%
gpt2-large CLM 812M  222% +0.6% 20.1% +18% 22.5% +0.5%
roberta-large MLM 355M  21.5% +08% 22.0% +1.1% 21.5% +0.8%
bert-large-cased MLM 335M 199% +05% 16.6% £1.0%  20.3% +0.5%
opt-350m CLM 350M  19.6% +0.6% 18.6% +12% 19.7% +0.6%
gpt2-medium CLM 355M  19.0% +0.8% 16.0% +2.6% 19.4% +0.6%
bert-base-cased MLM 109M  184% +04% 15.0% +1.1% 18.8% +0.4%
roberta-base MLM 125M  16.4% +0.7% 158% +1.8% 16.5% +0.8%
opt-125m CLM 125M  164% +05% 14.0% +13% 16.7% +0.4%
xlm-roberta-large | MLM 56IM  143% +03% 14.9% +1.7% 14.3% +0.5%
gpt2 CLM 137M 13.5% +0.8% 9.4% £2.1% 14.0% +0.7%
xlm-roberta-base MLM 2TOM 114% +02% 11.4% +1.1% 11.4% +02%
Random Baseline - - 4.7% 1.7% 5.1%

Table 3: Models investigated in this work (Devlin et al., 2019; Jiang et al., 2023; Gemini-Team, 2023; Liu et al.,
2019; Radford et al., 2019; Touvron et al., 2023; Zhang et al., 2022) sorted by their BEAR score (weighted average
over all relations) and as the mean over all templates (with the standard error).
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Figure 4: Probing scores of different models on BEAR.
Model size is represented on a log scale.

Better BEAR scores for masked LMs. When
comparing models by their parameter count, we
note a slight advantage of masked over causal LMs.
This may indicate that the masked language model-
ing objective, encouraging deep bidirectionality, is
more effective in capturing factual knowledge.
Impact of multilingual training data. We note
that the two XLM-RoBERTa models are among
the lowest-scoring models in the benchmark. We
hypothesize that this diminished performance of
the XLLM models may stem from its pre-training
on multilingual corpora and a focus of BEAR on
English-language entities.

Impact of templates. We further evaluate the im-

pact of template choice on the BEAR score. A full
analysis of all relations is provided in Figure A in
the Appendix.

In line with the observation of Elazar et al.
(2021), we find that LMs are sensitive to how they
are queried. For instance, in the CAPITAL-OF re-
lation, the accuracy of bert-base-cased drops
approximately by 80% when using “[Y] has its
governmental seat in [X]” instead of “The capi-
tal of [X] is [Y].”. While some states have their
government seat in a different location than their of-
ficial capital city, this fact alone cannot account for
the significant disparity in observed performance.
Interestingly, we don’t observe any drop in perfor-
mance between these templates in the case of other
models (e.g., Llama2 models). We hypothesize that
this might be due to BERT’s primary training on
Wikipedia, which has limited exposure to diverse
writing styles.

5.2 Comparison to LAMA

To compare BEAR and LAMA, we consider their
common subset of relations and utilize our pro-
posed log-likelihood based evaluation technique.
See Figure 5 for an illustration. We find BEAR to
be a more challenging probe compared to T-REXx,
the dataset used in LAMA. We attribute this to sev-
eral design choices, namely the balanced answer
space and the absence of overly informative entity
names, forcing LMs to rely solely on the knowl-
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Figure 5: Comparative analysis of model performance
on identical subsets of relations and templates in the
T-REx (LAMA) and BEAR datasets using the log-
likelihood based evaluation.
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Figure 6: Aggregated accuracy (measured on BEAR)
when using the sum over all tokens in the complete
statement vs. answer-tokens only.

edge encoded within its parameters.

We also find that the performance disparity eval-
uated on BEAR’s relations is less pronounced than
across the same subset of T-REx’s relations. Such
difference may indicate that models pre-trained
on Wikipedia (like BERT) have an advantage on
LAMA over those not trained on Wikipedia (such
as GPT2) due to a potential train/test data overlap.
For a detailed performance comparison on a per-
relation basis, refer to Figure 8 in the Appendix.
For example, bert-base-cased achieves a very
high performance on T-REx’s MANUFACTURER
relation (ID: P176) but a significantly lower score
on the corresponding BEAR subset.

5.2.1 Ablations

Conditional scores. To compute the pseudo log-
likelihood of a statement in masked language mod-
els, one forward pass per token is required. How-
ever, masking only the tokens that are part of the an-

swer would significantly reduce the required com-
putation. One may expect that the representation of
the answer tokens may be sufficient to predict the
likelihood of each answer. Still, our experiments
(see Figure 6) indicate there is a significant® drop
in performance when using the conditional score
(i.e., the score of the answer tokens conditioned on
the context instead of the pseudo log-likelihood of
the complete sentence). Coincidentally, for entities
represented by a single token, the conditional score
matches the score predicted for the [MASK] token,
similar to the approach first used in the LAMA
probe.

Sum vs. mean of the log-likelihood. We investi-
gate how performance varies by scoring the sen-
tences using both sum and mean reduction methods.
We observe that scoring the sentence by comput-
ing the mean over the token log-likelihoods tends
to yield inferior performance for the probe. Fig-
ure 7 (in Appendix A) illustrates the results of this
ablation study.

To understand why this might be the case, con-
sider how the word ’souvenir’ can be broken down
into subword tokens: ‘so’, ‘##uven’, and ‘##ir’.
The first token ‘so’ may have a relatively small
log-likelihood, ‘##uven’ a bit higher (since it’s
conditioned on the first token), and finally ‘##ir’
a log-likelihood of almost O since there are few
other ways to continue the statement. In contrast,
the single-token word ‘gift’ may have a medium
log-likelihood, which may still be lower than the
average of the three-token word ‘souvenir’. This
example illustrates that the mean can inflate the pre-
dicted probabilities of longer answers or sentences.

We suggest summating the tokens’ log-
likelihoods for both masked and casual language
models in future experiments.

6 Conclusion

We presented BEAR, a relational knowledge probe
applicable to both causal and masked LMs. Since
our proposed approach imposes no restrictions on
the evaluation data, we created a large evaluation
dataset that addresses issues of answer skews, do-
main and template bias, and the correctness of facts
identified by ourselves and prior work. We publicly
release BEAR for use by the research community.

P-value of 1.1 x 107'"; using a Student’s t-test for paired
samples

"The example was introduced by Kauf and Ivanova (2023)
to make a different point but is also relevant here.
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Limitations and Risks

The knowledge probe we present in this paper fol-
lows the approach of earlier probes and, as such,
tests only for factual, relational knowledge. This
kind of knowledge includes classic relationship
types such as the place of birth of persons, their
time of birth, the genre of works of art, etc. How-
ever, one might be interested in testing a model for
other types of more general commonsense knowl-
edge, such as physical reasoning or general proper-
ties of concepts. Our probe does not test for such
kinds of knowledge.

Furthermore, even though we devised heuris-
tics to ensure that entities in BEAR are common
enough to appear on Wikipedia pages of many dif-
ferent languages and record a certain number of
page views, there remains a likely bias towards
entities overrepresented on Wikipedia, giving an
advantage to LMs trained on Wikipedia rather than
more general corpora.

We see few risks in the BEAR probe itself but
caution that knowledge probing is often used to
assist in the research and development of LMs. As
such, BEAR may contribute to developing LMs
that malevolent actors might misuse.

Acknowledgements

We thank all reviewers for their valuable comments.
Jacek Wiland, Max Ploner, and Alan Akbik are sup-
ported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Ger-
many’s Excellence Strategy — EXC 2002/1 “Sci-
ence of Intelligence” — project number 390523135.
Alan Akbik is further supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) under the Emmy Noether grant “Eide-
tic Representations of Natural Language” (project
number 448414230)

References

Max Bachmann. 2023. RapidFuzz.
2020-02-29T14:41:447Z.

Original-date:

Boxi Cao, Hongyu Lin, Xianpei Han, and Le Sun. 2023.
The Life Cycle of Knowledge in Big Language Mod-
els: A Survey. ArXiv:2303.07616 [cs].

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.
Knowledgeable or Educated Guess? Revisiting Lan-
guage Models as Knowledge Bases. In Proceedings
of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1860—1874, Online.
Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-Aware Language
Models as Temporal Knowledge Bases. Transac-
tions of the Association for Computational Linguis-
tics, 10:257-273.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. 2021. Measuring and Improving
Consistency in Pretrained Language Models. Trans-
actions of the Association for Computational Linguis-
tics, 9:1012-1031.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique Lafor-
est, and Elena Simperl. 2018. T-REx: A Large Scale
Alignment of Natural Language with Knowledge
Base Triples. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Gemini-Team. 2023. Gemini: A Family of Highly Ca-
pable Multimodal Models.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-Predict: Parallel De-
coding of Conditional Masked Language Models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112—
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,

2402


https://github.com/maxbachmann/RapidFuzz
http://arxiv.org/abs/2303.07616
http://arxiv.org/abs/2303.07616
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki,
Haibo Ding, and Graham Neubig. 2020a. X-FACTR:
Multilingual Factual Knowledge Retrieval from Pre-
trained Language Models. arXiv:2010.06189 [cs].
ArXiv: 2010.06189.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020b. How Can We Know What Language
Models Know? Transactions of the Association for
Computational Linguistics, 8:423—-438.

Oren Kalinsky, Guy Kushilevitz, Alexander Libov, and
Yoav Goldberg. 2023. Simple and Effective Multi-
Token Completion from Masked Language Models.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 2356-2369, Dubrovnik,
Croatia. Association for Computational Linguistics.

Jan-Christoph Kalo and Leandra Fichtel. 2022.
KAMEL : Knowledge Analysis with Multitoken En-
tities in Language Models. In Automated Knowledge
Base Construction.

Carina Kauf and Anna Ivanova. 2023. A Better Way to
Do Masked Language Model Scoring. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 925-935, Toronto, Canada. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv:1907.11692 [cs].

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
BioGPT: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in Bioinformatics, 23(6):bbac409.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When Not to Trust Language Models: Investigat-
ing Effectiveness of Parametric and Non-Parametric
Memories. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9802-9822, Toronto,
Canada. Association for Computational Linguistics.

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. arXiv preprint arXiv:2203.13112.

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg
Durrett. 2022. Entity Cloze By Date: What LMs
Know About Unseen Entities. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 693-702, Seattle, United States. Associ-
ation for Computational Linguistics.

OpenAl. 2023. GPT-4 Technical
ArXiv:2303.08774 [cs].

Report.

Fabio Petroni, Tim Rocktidschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language Models as Knowl-
edge Bases? 1In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze. 2020.
E-BERT: Efficient-Yet-Effective Entity Embeddings
for BERT. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 803-818,
Online. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Joshua Robinson, Christopher Michael Rytting, and
David Wingate. 2023. Leveraging Large Language
Models for Multiple Choice Question Answering.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked Language Model Scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699-2712, Online. Association for Computational
Linguistics.

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi Jaakkola. 2020. Blank Language Models.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5186-5198, Online. Association for Computa-
tional Linguistics.

Robyn Speer and Catherine Havasi. 2012. Representing
General Relational Knowledge in ConceptNet 5. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 3679-3686, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

2403


http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2010.06189
http://arxiv.org/abs/2010.06189
http://arxiv.org/abs/2010.06189
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://aclanthology.org/2023.findings-eacl.179
https://aclanthology.org/2023.findings-eacl.179
https://www.akbc.ws/2022/assets/pdfs/15_kamel_knowledge_analysis_with_.pdf
https://www.akbc.ws/2022/assets/pdfs/15_kamel_knowledge_analysis_with_.pdf
https://doi.org/10.18653/v1/2023.acl-short.80
https://doi.org/10.18653/v1/2023.acl-short.80
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.48550/arXiv.2210.12353
https://doi.org/10.48550/arXiv.2210.12353
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.emnlp-main.420
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models.

Wikidata contributors. 2022. Dump of Wikidata of
January 3rd 2022.

Paul Youssef, Osman Alperen Koras, Meijie Li, Jorg
Schlotterer, and Christin Seifert. 2023. Give Me the
Facts! A Survey on Factual Knowledge Probing in
Pre-trained Language Models. ArXiv:2310.16570

[cs].

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar,
Tianlu Wang, and Luke Zettlemoyer. 2022. OPT:
Open Pre-trained Transformer Language Models.
ArXiv:2205.01068 [cs].

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual Probing Is [MASK]: Learning vs. Learning
to Recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017-5033, Online. Association
for Computational Linguistics.

2404


http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
http://arxiv.org/abs/2310.16570
http://arxiv.org/abs/2310.16570
http://arxiv.org/abs/2310.16570
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398

A Further Results

gpt2

opt-125m

opt-350m

xIm-roberta-base

gpt2-medium
gpt2-large - B mean

xIlm-roberta-large sum
roberta-base -------- Random baseline

gpt2-xI
opt-1.3b
bert-base-cased
bert-large-cased
roberta-large
opt-2.7b
opt-6.7b
opt-13b
opt-30b
gemma-2b
Llama-2-7b-hf
Mistral-7B-v0.1
gemma-7b
Llama-2-13b-hf o
Oro 0r2 0r4 0r6

Accuracy

Figure 7: Aggregated accuracy of different retrieval vari-
ants on BEAR. The error bars indicate the standard error
over three evaluations using the different templates.

A.1 Results on BEARy;,

In addition to the accuracy on the further refined
BEAR dataset, we report the scores on BEARp;g
(see Table 4). The ranking is very similar and dif-
fers only in a few positions.

A.2 Ablation: Pseudo log-likelihood metric

While in preliminary experiments on LAMA,
we observed a higher benefit from using the
within_word_12r variant, it has only a slightly
higher mean score than original (see Figure 10).
This difference is not significant when using the
sum variant (p-value of 0.52 on a Student’s t-test for
paired samples). However, the difference is large
when using the mean variant (and significant with
p-value of 0.025)

A.3 Impact of Pre-Training Data on the
BEAR Score

In order to verify the actual ability of the BEAR
probe to measure knowledge contained in mod-
els’ pre-trained weights, we set up an ablation
study. We hypothesize that models trained solely
on domain-specific datasets, without exposure to
the general knowledge tested by BEAR, will show

significantly reduced performance compared to
those trained on more general datasets, given that
the models have similar architectures and sizes. A
family of BioGPT models (Luo et al., 2022) was
based on the GPT-2 architecture with the sole dif-
ferences arising from the pre-training data: specifi-
cally, they were trained on PubMed abstracts and
titles rather than on data from web crawls as it
was the case for the GPT models. The evaluation
results confirm our hypothesis, with the BioGPT
model achieving an average score of 10.84% and its
large variant reaching 13.6% on BEAR, both trail-
ing behind the gpt2-medium (19.0%) and gpt2-x1
(26.2%) models.

B Noise Levels

Crowdsourced knowledge bases like Wikidata of-
ten contain noisy and inaccurate data. To reduce
this issue, we developed heuristics to select better-
known entities that are more likely to be verified
and corrected. Nonetheless, the potential for noise
leakage exists. To evaluate the extent of such noise,
we performed a noise levels analysis, in which we
manually reviewed 100 randomly chosen exam-
ples from various relations for both BEARy,; and
LAMA (T-REx) probes. We cross-validated the
accuracy of the information from Wikidata with
alternative sources, confirming 96% and 97% of
examples for BEARy,;; and T-REX, respectively®.

Additionally, we evaluated whether the object
of the relation truly represents the only correct an-
swer as our benchmark (expecting a single correct
answer) would mark those answers as incorrect.
About 11% of BEAR’s answers included multi-
ple correct responses within its answer range, sig-
nificantly lower than T-REx’s 35%°, which uses
BERT’s vocabulary as its answer space.

Thus, while BEAR};, and LAMA exhibit similar
noise levels, BEARy,;; demonstrates higher reliabil-
ity by effectively reducing the incidence of multiple
correct answers. Moreover, the refined subset of
BEAR, due to additional filtering steps, is expected
to decrease these values even further.

C GPU Compute Time

Due to the diversity of GPU hardware utilized in
our experiments, we have chosen not to present
cumulative GPU hours. Instead, to provide in-
sights into the computational requirements of our

8A two-sided z-test yields a p-value of 0.6698
°A two-sided z-test yields a p-value of 0.0001
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Model ‘ Type  #params BEAR BEAR; BEAR|.N
Llama-2-13b-hf CLM 13b  42.0% +0.6% 54.3% +13% 41.2% +0.6%
Mistral-7B-vO0.1 CLM 7.0b  41.0% +0.6% 52.6% +£12% 40.2% +0.6%
gemma-7b CLM 7.0b  395% +08% 52.0% +1.1% 38.6% +0.8%
Llama-2-7b-hf CLM 7.0b  375% +08% 50.3% +11% 36.6% +0.7%
gemma-2b CLM 2.0b  29.1% +0.6% 41.4% +£1.1% 28.2% +0.6%
opt-30b CLM 30b  25.6% +03% 35.7% +09% 24.9% +0.3%
opt-13b CLM 13b  242% +05% 33.6% +1.6% 23.5% +0.5%
opt-6.7b CLM 6.7b  232% +0.7% 33.1% +05% 22.5% +0.7%
opt-2.7b CLM 2776 193% +04% 27.6% +08% 18.7% +0.3%
opt-1.3b CLM 1.3b  16.0% +04% 233% +1.0% 15.5% +0.4%
gpt2-x1 CLM 1.6b 129% +02% 17.8% +1.2% 12.6% +0.2%
roberta-large MLM 355M 11.1% +04% 17.1% +0.8% 10.7% +0.4%
gpt2-large CLM 812M  10.7% +02% 14.0% £1.5% 10.5% +0.2%
bert-large-cased MLM 335M 10.1% +03% 11.8% +07% 10.0% +0.3%
bert-base-cased MLM 109M  9.6% +0.3% 11.5% +12%  9.4% +0.3%
opt-350m CLM 350M  9.5% +0.2% 13.4% +08% 9.2% +0.2%
gpt2-medium CLM 355M  9.1% +0.3% 11.3% £1.9% 8.9% +0.2%
roberta-base MLM 125M  8.4% +0.3% 11.8% +18%  8.1% +0.4%
opt-125m CLM 125M  8.0% £0.2% 9.5% +0.8% 7.9% +0.2%
xlm-roberta-large | MLM 56IM  7.4% +0.2% 11.2% +1.6%  7.1% +0.1%
gpt2 CLM 137M  6.4% +0.3% 5.8% +1.6% 6.5% +0.2%
xlm-roberta-base MLM 279M  5.8% +0.1% 8.7% +0.9% 5.6% +0.0%
Random Baseline - - 25% 0.5% 2.7%

Table 4: Models investigated in this work evaluated on BEARy,, (weighted average over all relations) and as the

mean over all templates (with the standard error).

research, we offer a selection of representative ex-
amples highlighting individual experiments. The
duration for the BEAR probe evaluations notably
differed across models. For instance, evaluating the
opt-6.7b model on the larger variant of the probe
using the Nvidia A100 (80GB) machine required
approximately 14 hours, whereas gpt2 averaged
about 1 hour. Additionally, causal language mod-
els were evaluated faster due to their method for
calculating sentence log-likelihoods. For instance,
evaluating the bert-base-cased model, roughly
the same size as gpt2, on the entire BEAR probe
took four times as long.

Moreover, as stated in the main text, assessing
the large variant of BEAR requires a significant
amount of time. For example, bert-base-cased
requires almost 4.5 hours when evaluating the
BEARy;; probe with Nvidia RTX 3090. Yet, this
duration drops to around 16 minutes when using
the smaller BEAR probe on the same hardware.

D Predictions’ Confidence

Log-likelihoods assigned to textual statements by
language models over a closed set of answers can
be converted into values that can be interpreted as
probabilities. Here, the idea involves transforming
these negative values with the softmax function to
obtain a normalized set of values that together re-
semble a probability distribution. These scores
reflect the model’s confidence in each possible

answer within the set. Furthermore, by compar-
ing the calculated probability distribution with a
uniform distribution, we can derive a uncertainty
score, which reflects the model’s confusion for a
given instance. This score is based on the Kullback-
Leibler Divergence between the predicted probabil-
ities and the uniform distribution. Specifically, we
derive divergence between a predicted probability
distribution P and a uniform distribution U over N
possible answers (outcomes). We then normalize
this score to make it scale-free and bounded be-
tween 0 and 1 (entropy is maximal for the uniform
distribution). Finally, we take a complement of the
obtained value (by subtracting it from 1) effectively
reversing its interpretation, shifting the focus from
divergence to similarity to the uniform distribution.
The mathematical formulation of this metric can
be found in Equations 1, 2, 3.

N
Di
KL(P|U) == pilog Uy
=0

N N
= ;pi Ingi + ;pi IOgN (1)

=log N — H(P)
=H(U)—- H(P)
€ [0, H(U)]
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Figure 8: Performance of bert-base-cased on a per-
relation basis for both BEAR and T-REx probes. The re-
sults were obtained by summing pseudo log-likelihood
scores (within_word_12r)
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(a) First Template: “[X] is the capital of [Y].”; Accuracy of
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(b) Second Template: “[Y] has its governmental seat in [X].”;
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(c) Third Template: “[X] serves as the capital of [Y].”; Accu-
racy of 65%

Figure 9: bert-base-cased on P1376 (BEAR)
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Figure 10: Aggregated accuracy of different retrieval
variants on BEAR. The error bars indicate the stan-
dard error over three evaluations using the different
templates.
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The interpretation of such a score is as follows:
we observe the largest uncertainty when the pre-
dicted distribution approximates a uniform distri-
bution, and the lowest when the entropy of the
predicted distribution is null. The latter situation
occurs with a point mass distribution, which allo-
cates all the probability mass to one outcome.

E Error Analysis

We further conducted an error analysis on the
mispredictions generated by the L1ama-2-13b-hf
model. The investigation did not reveal the pres-
ence of any systematic categories or clusters of
errors. Some errors appeared to be similar to ed-
ucated guesses. For instance, Llama-2-13b-hf
outputs the highest log-likelihood for the factually
incorrect statement such as “Kazim Ayvaz passed
away in Turkey”. However, this is not an unrea-
sonable assumption, given that Kazim Ayvaz was
a Turkish Olympic medalist born in Turkey. Even
though the correct answer is Sweden, this illustrates
that some of the model’s errors may stem from log-
ical assumptions instead of arbitrary mistakes.

On the other hand, certain errors appear to be
random, with the predicted answer having no ap-
parent connection to the subject. For example,

Llama-2-13b-hf assigned the highest score to the
incorrect answer of Massif Central (highlands in
France) when queried about the location of the
Welsh mountain Elidir Fawr.

Furthermore, on rare occasions, the accuracy
of the model’s predictions is compromised by is-
sues such as noise leakage or the imperfect quality
of data sourced from Wikidata (for the analysis
of such noise, see Section B in the Appendix).
For instance, a Wikidata entry mentioning Ronaldo
refers to Ronaldo Luis Nazério de Lima, commonly
known simply as Ronaldo, a well-known player for
the Brazilian national football team. However, the
model erroneously identifies Ronaldo as Cristiano
Ronaldo, a renowned Portuguese footballer. Ta-
ble 5 presents a selection of errors made by the
Llama-2-13b-hf model and provides further infor-
mation on prediction’s confidence as described in
Section D. Specifically, it gives the ranks of the cor-
rect and predicted statements as assessed by their
log-likelihoods as well as their probability scores
obtained by applying the softmax function over all
log-likelihoods in the rankings.

F Prompts Used

All prompts were passed as ‘system messages‘ to
Chat-GPT4 API and are presented in Figures 11,
12, and 13.
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You are a researcher assistant tasked to design an evaluation dataset to test relational
knowledge contained in language models. Specifically, you are given a label for a relation,
its description, and a list of possible answers. Your assignment is to identify words that
do not align with the majority category in a given list of answers given the relation label
and its description. Return your response as a Python tuple. The first element should be
a list containing the words that don’t fit the majority category, and the second element
should be a string representing the category of the majority of answers. If all words fit
the category, return an empty list. Example format: ([’Berlin’, ’Warsaw’], ’countries’).

Figure 11: Prompt used to flag words in the answer space of each relation. In addition to some relation metadata
(label and description) the (intermediate) answer space was passed on the model.

As a research assistant, your task is to create an evaluation dataset to assess the
relational knowledge of language models. You are provided with a specific relation label,
its definition, and examples of subjects and objects related to it. Your objective is to
craft three semantically similar cloze sentence templates that embody this relation. Use
"[X]’ as a placeholder for the subject and ’[Y]’ for the object (answer). Ensure that these
sentence templates are straightforward and devoid of superfluous elements. For instance,
given ’label’: ’educated at’, ’description’: ’educational institution attended by subject’,
’subjects’: [’Einstein’, ’Feynman’], ’objects’: [’Princeton University’, ’University of
Zurich’], your templates might be: [’[X] was educated at [Y].’, ’[X] studied at [Y].’, ’[X]
was a student at [Y].’]. Present your response as a Python list.

Figure 12: Prompt used to generate new template variants. Alongside the relation metadata, including label and
description, 6 subject-object pairs were provided as examples for each relation.

Evaluate the linguistic correctness of the following sentence. If it is correct, return
"Correct’. If incorrect, identify the error and suggest a revised sentence. For instance,
’I used to live in USA.’ -> ’I used to live in the USA.’, ’My name is John.’ -> ’Correct’.

Figure 13: System message for GPT-4 API call used to identify potential problems with the templates for each
relation. We assessed all three templates by populating them with 5 random subject-object pairs. Although the
prompt was intended to detect linguistic issues in the templates, it also facilitated the discovery of further issues
with the relation instances.
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Relation Index Correct Instance Rank Probability Uncertainty

P20 O e Kum Ao, passed way i 1, 5 oo 0.3963
pe 6 e Gury Tren It v edueated tthe Duke nerstsn 2> Oosua 02573
P9 28 O P died fom e S AR S
P19 6 Tmc  Didir Marosantwasbom in onico. i o089 0.563
PIOS 34 R ind Pik s a el player > o 02
P206 198 Trbe Bincoe Inands i iuntd on he shere o he S i 2 oosss 03375
PITS 1T R 08 developed by e e s o 036
P19 O e Zabir Khan was bomin Alshinian, s om0
PITS 152 1Yo Live was performed by The Rollne Soncs s oae 0O
PRI 2T e cceupant o Fl Sacar Sudium is (b e O S oo 03132
P7937 365 I":F?‘lusee ?}:Z ;332 SI "]fllll:;;;}: iz : igiﬁ gg \\)t\l::]/)iuvnlc poem. ; (;)3348955 0452
pow e Qi ol Lo e
P M Gt N
S N
pomn M A ke T —
po oz hbe SwelAT e vl el hooE e
P e e LowE o
P o e e e s e
P177 162 False The Alfred H. Sm?lh Mcmorial Bridgc crosses the ("mnnccllcm River. 1 0.2193 0.7419
True The Alfred H. Smith Memorial Bridge crosses the Hudson River. 3 0.1514
PTG ememwentin o Do o
P o b Tecmmmseninh Do o
Py a7 e Toemowmicwm oiiaarn il o oo o
Lone o
P69 69 False W@ll@am Thomas Bl‘dl‘lf:()l‘d was educated at the Univ ersity of Oxford. 1 0.6478 0.2856
True William Thomas Blanford was educated at the Imperial College London. 12 0.0003
PU9 262 I Con was oiginally broadeaed by ANIC. 3 om0
P00 200l Siuated o th shore o he T S 2 oams 0392
PO 363 e i form of o 2 i 03061

Table 5: A random selection of errors originating from Llama 2 13B model spanning a diverse sample of relations.
Each instance is constructed with a subject (highlighted in blue), a template (in plain text) and an object (highlighted
in orange). Probability values are obtained by applying the softmax function to the log-likelihood scores of all
potential answers. Uncertainty is measured by the similarity to a uniform distribution (see Section D). The lower the
uncertainty value, the higher the model’s confidence in its prediction.
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Figure 14: Accuracy of two models on each of the BEAR relations.
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