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Abstract

Dealing with language heterogeneity has al-
ways been one of the challenges in neural
machine translation (NMT). The idea of us-
ing mixture-of-experts (MoE) naturally excels
in addressing this issue by employing differ-
ent experts to take responsibility for different
problems. However, the parameter-inefficiency
problem in MoE results in less performance
improvement when boosting the number of pa-
rameters. Moreover, most of the MoE mod-
els are suffering from the training instability
problem. This paper proposes MoA (Mixture-
of-Adapters), a lightweight MoE-based NMT
model that is trained via an elaborately de-
signed stage-wise training strategy. With the
standard Transformer as the backbone model,
we introduce lightweight adapters as experts
for easy expansion. To improve the parameter
efficiency, we explicitly model and distill the
language heterogeneity into the gating network
with clustering. After freezing the gating net-
work, we adopt the Gumbel-Max sampling as
the routing scheme when training experts to bal-
ance the knowledge of generalization and spe-
cialization while preventing expert over-fitting.
Empirical results show that MoA achieves sta-
ble improvements in different translation tasks
by introducing much fewer extra parameters
compared to other MoE baselines. Addition-
ally, the performance evaluations on a multi-
domain translation task illustrate the effective-
ness of our training strategy.

1 Introduction

In recent years, neural machine translation (NMT),
a key component of natural language processing
(NLP), has been studied extensively with signifi-
cant progress (Vaswani et al., 2017; Dabre et al.,
2020). Texts from various domains often exhibit
unique expression styles. Domain diversity leads
to heterogeneous data distribution of a large multi-
source dataset. When training an NMT model with
the global optimization strategy, data from diverse

domains tend to adjust model parameters to fitting
their respective distributions, which harms the con-
vergence of the model. In literature, some works
(Kobus et al., 2017; Britz et al., 2017; Zeng et al.,
2018; Bapna and Firat, 2019; Pham et al., 2020)
regarded this problem as domain shift and tried to
address it by transfer learning. However, domain
knowledge is required in these works, which intro-
duces a new data collection problem. How to deal
with the heterogeneity of language in NMT tasks
remains challenging.

The core concept of MoE is using multiple ex-
perts to divide a problem space into homogeneous
regions (Baldacchino et al., 2016), which has a nat-
ural advantage in solving the problem of language
heterogeneity. Recently, previous works (Shazeer
et al., 2017; Fedus et al., 2021; Dai et al., 2022)
explored the mixture-of-experts (MoE) structure
in NMT tasks. These studies demonstrate the im-
pressive capacity of MoE in handling various data
distributions. They boost the number of parameters
from million to billion while maintaining low com-
putational requirements. However, MoE is reported
to be parameter-inefficient (Hoffmann et al., 2022;
Jawahar et al., 2023; Xu et al., 2023a,b) i.e., a huge
number of parameters only brings a small perfor-
mance improvement. As an illustration, compared
with a dense model, an MoE model only offers an
average improvement of 0.3 BLEU with 20 times
more parameters(Costa-jussà et al., 2022).

Meanwhile, training the gating network implic-
itly by an overall optimization makes most of the
MoE models suffer from the training instability
problem. It is crucial to meticulously design a
training strategy to prevent instability. For instance,
expert load imbalance may occur during training
of an MoE model: the gating network may route
most data to a small number of experts, meanwhile
many other experts do not get sufficiently trained
at all (Lepikhin et al., 2020). Moreover, the routing
fluctuation (Dai et al., 2022) issue, i.e. the gating
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Figure 1: The stage-wise training strategy. MoA is composed of three components: an encoder-decoder based
backbone model, a gating network and a set of adapters. The language heterogeneity is modeled explicitly using
clustering and distilled into the gating network through a multi-classification task in stage 2 to improve parameter
efficiency and ensure training stability, while the Gumbel-Max sampling routing scheme is adopted in stage 3 to
balance the knowledge of generalization and specialization and avoid over-fitting. With this training strategy, MoA
achieves stable improvements in different translation tasks by introducing very few extra parameters.

network may route the same data to different ex-
perts along with training, is also one of the factors
leading to training instability.

In this paper, we propose MoA (Mixture-of-
Adapters), a lightweight MoE-based NMT model
that is trained using a stage-wise training strategy.
Our model is composed of three components: (i)
an encoder-decoder based backbone model; (ii) a
gating network responsible for routing data to suit-
able experts by their encoded features; (iii) a set
of lightweight adapters (Bapna and Firat, 2019) as
the experts transplanted in every decoder layer of
the backbone model. With the stage-wise train-
ing strategy, these three components are trained
sequentially. Specifically, the backbone model is
trained using a standard machine translation task.
Meanwhile, we pre-inject an adapter in every de-
coder layer in this training stage, and use these
adapters for parameter initialization of the other
adapters in the adapter training stage. In the train-
ing stage of the gating network, the language het-
erogeneity is modeled explicitly using clustering
and distilled into the gating network through a
multi-classification task. Such an explicit learning
strategy improves the parameter efficiency and en-
sures the training stability of our model. Moreover,
to balance the knowledge of generalization and spe-
cialization and prevent the over-fitting problem, we
employ the Gumbel-Max sampling as the routing
scheme when training the adapters. Empirical re-
sults show that MoA achieves stable improvement
in different translation tasks by introducing much
fewer extra parameters compared to the other MoE
baselines. Additionally, the performance evalua-
tions and the ablation studies on the multi-domain

translation task illustrate the effectiveness of our
training strategy.

2 Related Works

The MoE structure (Jacobs et al., 1991) has been
widely studied in the machine translation area
(Shazeer et al., 2017; Lepikhin et al., 2020; Dai
et al., 2022; Xu et al., 2023b). With the same core
concept, different MoE models draw attention to
different design strategies.

One difference lies in what to use as experts.
Most of the MoE models (Shazeer et al., 2017;
Lepikhin et al., 2020; Fedus et al., 2021) adopt
feed-forward networks (FFN) as experts. Based on
Transformer (Vaswani et al., 2017), many works
(Lepikhin et al., 2020; Fedus et al., 2021; Jawahar
et al., 2023) inject extra MoE layers or substitute
the FFN layers with MoE layers. Instead of using
FFN layers, Zhang et al. (2022) use the attention
heads as experts to achieve stronger performance
than the standard multi-head attention layer.

Another difference is the training strategy.
Shazeer et al. (2017) activate two or more experts to
obtain nonzero derivatives for the gating networks
in back-propagation. Fedus et al. (2021) only ac-
tivate one expert per time, they train the gating
network by auxiliary losses. Dai et al. (2022) use
a two-stage training strategy to address the rout-
ing fluctuation problem. Different from the above
works that use load balancing loss to prevent ex-
pert load imbalance, Lewis et al. (2021) formulate
token-to-expert allocation as a linear assignment
problem that requires no auxiliary load balancing
loss. Liu et al. (2022) propose gating dropout to
reduce cross-machine communication and speed
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up the training process.
Moreover, according to the granularity of differ-

ent routing schemes, MoE models can be divided
into three levels: token-level, sentence-level, and
task-level. Most of the above works adopt token-
level schemes, where different experts will be ac-
tivated for different tokens. The sentence-level
routing scheme refers to tokens from a sentence
that share the same gating result. When selecting
experts by task boundaries as opposed to making
input-level decisions, e.g., for multilingual machine
translation tasks, the routing scheme is regarded as
task-level (Kudugunta et al., 2021).

3 Model Architecture

MoA consists of three components: (i) an encoder-
decoder based backbone model; (ii) a gating net-
work that responsibility is to route data to suitable
experts by their encoded features; and (iii) a set of
lightweight adapters as experts transplanted in the
end of every decoder layer of the backbone model.

The backbone model is based on the encoder-
decoder structure, where the encoder/decoder block
is composed of a stack of several identical layers.
It theoretically can be any encoder-decoder based
model, we use the powerful Transformer (Vaswani
et al., 2017) in our experiment. Given a source
sentence x = (x1, ..., xn), the encoder block maps
it to a sequence of hidden states h = (h1, ..., hn).
Then, h is fed to the decoder block to generate
an output sequence y = (y1, ..., ym) with an auto-
regressive process.

The gating network makes use of the hidden
states h to discriminate different data distributions.
First, h ∈ Rn×d is condensed to ĥ ∈ Rd by mean
pooling on the sequence length dimension n,

ĥ = Pooling(h) (1)

Then two linear transformations are introduced
with a tanh activation in between to compute
adapter scores s,

s = tanh(ĥW1 + b1)W2 + b2 (2)

where W1 ∈ Rd×d, W2 ∈ Rd×K , b1 ∈ Rd and
b2 ∈ RK are the parameter matrices of the linear
transformations and K is the predefined adapter
number.

The adapters transfer the decoded hidden states
from generic to specific. Different from previous
MoE models using original feed-forward network

(FFN) (Vaswani et al., 2017) with large inner di-
mensions as experts, introducing extra lightweight
adapters makes the size of experts can be more flex-
ibly controlled. In each adapter, the output zi of
the i-th decoder layer is first normalized with layer
normalization,

z̃i = LN(zi) (3)

Then z̃i is fed to an FFN with a small inner dimen-
sion, followed by a residual connection, to obtain
the adapter output,

oi = FFN(z̃i) + zi (4)

In inference, only the adapter with the biggest score
in each decoder layer is activated. Unlike inference,
the Gumbel-Max sampling is adopted as the routing
scheme in the adapter training stage, which will be
discussed in the next section.

4 Stage-wise Training

Most of the MoE models train their gating network
along with an overall optimization of the final task.
Although some auxiliary losses are introduced to
avoid potential risks such as expert load imbal-
ance, this implicit learning approach introduces
another discrete latent variable learning problem
and increases the training difficulty of the gating
networks on how to distinguish different data distri-
butions, which leads to the parameter-inefficiency
problem in MoE. In this paper, we train MoA with
a stage-wise training strategy. Each training stage
is elaborately designed to improve model perfor-
mance with as few extra parameters as possible.
Next, we will discuss our training process in detail.

4.1 Backbone model
The backbone model is trained through a standard
machine translation task. Specifically, in this train-
ing stage, we inject an adapter in every decoder
layer in advance and train them with the backbone
model. These pre-injected adapters are used for
parameter initialization of the other adapters in the
adapter training stage.

Given a dataset of parallel text Dmt =
{(x, y∗)}Nt

i=1, the training objective is varying
the trainable parameters θ to minimize the cross-
entropy loss:

Lmt(θ) = −
Nt∑

i=1

m∑

t=1

logP (y∗t |y∗1:t−1, x; θ) (5)

At this training stage, θ refers to the parameters of
the backbone model and the pre-injected adapters.
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Figure 2: Activation probability controlled by candidate
number k and temperature τ > 0. k controls the bound-
ary width while τ controls the probability distribution.

4.2 Gating network

To guide the gating network to explicitly learn the
language heterogeneity, it is necessary to model
the language heterogeneity first and distill it into
the gating network in a supervised manner. Fea-
tures from the same data distribution are usually
closer than those from different distributions (Aha-
roni and Goldberg, 2020), so the data distribution
differences can be modeled by unsupervised clus-
tering. Meanwhile, the encoder in the backbone
model can be adopted as the data feature extrac-
tor after the previous training stage. Following
the clues above, in practice, we first sample a set
of source sentences from Dmt at random. Then
we use the encoder to convert these sentences into
the condensed hidden states ĥ (Eq. 1) as the sen-
tence features and then cluster them into K groups,
where K is the adapter number we pre-defined ac-
cording to the training data scale. In the end, we
distill the clustering results into the gating network
through a multi-classification task.

Let Dd = {(x, c)}Nd
i=1 be the training set we

construct above where c is the one-hot vector of the
data category label, the goal in this training stage
is minimizing the multi-classification loss:

Ld(θ) = −
Nd∑

i=1

K∑

j=1

cjlog(pj) (6)

where
pj =

esj
∑K

k=1 e
sk

(7)

and θ refers to the parameters in Eq. 2.

4.3 Adapters

To train the adapters, a straightforward scheme is
routing data to the adapters with the top-1 highest

scores. Since there is a balance between the knowl-
edge of generalization and specialization, this rout-
ing scheme is reckless. After freezing the gating
network, only choosing the highest-scored adapters
makes them trained on a restricted subset of the
whole training data, which may result in the over-
fitting problem. In the adapter training stage, we
first use the pre-injected adapters to initialize all
other adapters in the same layer. Then we propose
routing sentences with the Gumbel-Max sampling
scheme (Gumbel, 1954; Maddison et al., 2014).
While ensuring the specialization of knowledge,
this routing scheme further improves the knowl-
edge generalization of the adapters.

Formally, given the adapter scores s, we focus
on k (k ≤ K) candidates with the highest scores
and compute their relative probabilities,

p = softmax(topk(s)/τ) (8)

Then the activated adapter is chosen as:

e = arg max(G(p)) (9)

where
G(p) = log(p) + g (10)

and g is a set of i.i.d samples that are drawn from
Gumbel(0,1) distribution (Gumbel, 1954). In Eq.
8, the temperature τ > 0 is introduced to control
the probability distribution. The higher the τ , the
closer the probability distribution to the discrete
uniform distribution, which means candidates will
be activated with more similar probabilities. On
the contrary, it is closer to the one-hot distribution,
which means candidates with the highest scores
will be activated with very high probabilities.

The training objective in this stage is the same
as the backbone model (Eq. 5), except that θ refers
to the parameters of the decoder and the adapters.

5 Experimental Settings

To evaluate the effectiveness of our method, we
conduct a set of experiments on both several stan-
dard machine translation tasks and a multi-domain
machine translation task. The translation quality
is measured by the BLEU-4 (Papineni et al., 2002)
score. Next, we will provide a comprehensive de-
scription of our experimental settings.

5.1 Datasets
For the standard machine translation, we test our
method on the German-to-English, the English-to-
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K = 24 K = 12
avg.S

Param. en-de de-en zh-en Param. en-th
Backbone 85M 28.24 34.31 26.40 86M 17.10 26.51
SGMoE [+289]M 28.67 34.49 26.77 [+138]M 18.00 26.98
SGMoE-SL [+289]M 29.17 34.65 27.60 [+138]M 18.00 27.36
Switch [+289]M 28.66 33.92 26.76 [+138]M 17.30 26.66
Switch-SL [+289]M 28.83 34.54 27.47 [+138]M 18.10 27.24
BASE [+302]M 29.10 34.77 27.53 [+151]M 18.65 27.51
MoA (Ours) [+19]M 29.13 34.82 27.66 [+10]M 18.50 27.53
Backbone-big [+165]M 29.64 35.38 27.29 [+165]M 24.00 29.08
MoA-big (Ours) [+203]M 29.85 35.41 27.75 [+184]M 24.10 29.28

Table 1: Performance evaluation over standard machine translation tasks. The average BLEU scores of the four
translation tasks are listed in avg.S column. The best values of the same backbone model are shown in bold.

German, the Chinese-to-English, and the English-
to-Thai translation tasks. We collect the sen-
tence pairs of the full WMT-2014 German-English
(about 36.0 million), the WMT-2019 Chinese-
English (about 25.2 million) and the OPUS English-
Thai (about 3.3 million, provided by Lowphan-
sirikul et al. (2020)) for corresponding translation
tasks, and test the translation tasks of the German-
English, the Chinese-to-English and the English-to-
Thai by WMT-14, WMT-19 and IWSLT-14 testsets,
respectively.

For the multi-domain machine translation, we
test our method on the German-to-English multi-
domain translation task. We collect two datasets
and mix them up as the training set. One is the stan-
dard WMT-2014 German-English sentence pairs
(about 4.6 million), which can be seen as a large
generic domain (WMT). Another one is the multi-
domain sentence pairs (about 1.5 million) from
Aharoni and Goldberg (2020) which is originally
provided by Koehn and Knowles (2017), including
textual data in five diverse domains: IT-related text
(IT, manuals and localization files of open-source
software), translations of the Koran (KOR), legal
text (LAW, legislative text of the European Union),
medical text (MED, PDF documents from the Eu-
ropean Medicines Agency), and subtitles (SUB).

In the data processing phase, the English and
the German sentences are first tokenized by Moses
tokenizer (Koehn et al., 2007) and then split into
subwords by Byte-Pair Encoding (BPE) (Sennrich
et al., 2016), where the BPE is learned jointly on
the English and German sentences and the merge
operation is set to 30,000 during learning. Mean-
while, the Chinese and the Thai sentences are split
by SentencePiece (Kudo and Richardson, 2018)

with a vocabulary size of 30,000.

5.2 Implementations

We use the Transformer (Vaswani et al., 2017)
implemented in Fairseq (Ott et al., 2019) as the
backbone model structure. All baseline models
are implemented with the backbone model struc-
ture, and the experts are only introduced in each
decoder layer. According to the data scale of the
training set, the expert number K of the German-to-
English, the English-to-German, and the Chinese-
to-English translation task is set to 24, while that of
the English-to-Thai and the multi-domain transla-
tion task is set to 12. Next, we will introduce these
models briefly.

SGMoE: The Sparsely-gated mixture-of-experts
(SGMoE) (Shazeer et al., 2017) is originally based
on the LSTM structure (Hochreiter and Schmidhu-
ber, 1997). It introduces sparsely gated MoE layers
with the noisy top-k token-level gating scheme,
which activates k > 1 experts per time to obtain
nonzero derivatives in back-propagation. It intro-
duces auxiliary losses to deal with the expert load
imbalance. In practice, k is set to 2, and FFN layers
are adopted as the experts.

SGMoE-SL: The SGMoE with Sentence-Level
routing scheme. The sentence-level routing scheme
means we use the condensed hidden states of the
encoder (w.r.t. Eq. 1) to compute the overall gating
scores and route data in all layers with these scores.

Switch: Switch Transformer (Fedus et al., 2021)
is another MoE method with a token-level routing
scheme that activates only one expert per time to
keep efficiency. It introduces both a capacity factor
and an auxiliary load balancing loss to avoid the
expert load imbalance.
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Param. WMT KOR IT MED LAW SUB avg.M

Backbone 84M 32.08 19.65 44.79 51.47 54.34 30.60 38.82
ADPT [+9]M 32.22 22.48 45.88 53.58 56.36 31.97 40.42
SGMoE [+138]M 32.23 21.54 46.45 53.48 56.85 31.40 40.33
SGMoE-SL [+138]M 32.29 21.76 46.44 53.47 57.09 31.85 40.48
Switch [+138]M 32.05 20.54 46.53 51.51 55.34 30.67 39.44
Switch-SL [+138]M 32.26 20.68 46.43 52.87 56.72 30.94 39.98
BASE [+151]M 32.59 22.24 46.36 53.67 57.58 31.55 40.67
MoA (Ours) [+10]M 32.58 22.08 46.88 54.48 57.68 31.50 40.87
Backbone-big [+165]M 32.29 22.31 48.11 56.35 59.13 32.08 41.71
MoA-big (Ours) [+184]M 32.66 22.70 48.60 56.89 59.83 32.31 42.17

Table 2: Multi-domain translation performance. The average BLEU scores of the six domains are listed in the
avg.M column. The best values of the same backbone model are shown in bold. The expert number K is set to 6
for ADPT and 12 for the other MoE models.

Switch-SL: The Switch Transformer with
Sentence-Level routing scheme that is the same
as SGMoE-SL.

BASE: The Balanced Assignment of Sparse Ex-
perts (BASE) layer (Lewis et al., 2021) formulates
token-to-expert allocation as a linear assignment
problem, which requires no auxiliary load balanc-
ing loss. Instead of replacing the original FFN
layers, it introduces extra FFN layers after each
decoder layer as the experts.

ADPT: Since the domain labels are accessible in
multi-domain machine translation tasks, we train
a set of adapters (Bapna and Firat, 2019) for every
domain by injecting an adapter in every encoder
and decoder layer using the same backbone model.
All parameters of the backbone model are frozen
when training these adapters.

MoA: Our proposed method. In the training
stage of the gating network, we sample 200,000
sentences from the NMT training set at random.
We choose the Gaussian Mixture Model (GMM)
as our clustering approach. The inner dimension of
the adapters is set to 128 for both ADPT and MoA
in the standard backbone settings, and that is set to
256 for MoA in the big backbone settings. In the
training stage of the adapters, the adapter candidate
number k and the temperature τ are set to 4 and 1.0,
respectively. The Gumbel-Max routing scheme is
shut down in inference with k = 1.

6 Results and Discussion

6.1 Standard machine translation

We evaluate the performance of the MoE models
over the four standard machine translation tasks
and report their BLEU scores in Table 1. For the

baseline MoE models, we use Transformer under
standard settings as the backbone model. For our
method, we evaluate it on the Transformer settings
of both standard and big. To show the differences
in model size, we present the number of parameters
(Param.) in Table 1. The Param. number in the
setting of k = 24 is the average parameter number
of the three models.

As shown in Table 1, compared to other MoE
models, MoA achieves the highest performance
improvement while introducing much fewer param-
eters. When applying MoA on the big backbone
model, it also achieves stable performance improve-
ments. Although other MoE models introduce a
huge amount of parameters, even much higher than
the backbone model, their performance improve-
ments are limited. Meanwhile, compared to the big
backbone model, the parameter-inefficiency prob-
lem results in worse model performance for these
MoE models with even more parameters. More-
over, methods based on the sentence-level routing
scheme (methods with -SL flag) show better model
performance than token-level in our experimen-
tal settings. It demonstrates that the more gating
networks that require implicit training, the more
challenging the discrete latent variable learning
problem becomes. The discrimination ability of
language heterogeneity of these gating networks
will be discussed in the next sections.

6.2 Multi-domain machine translation
We further evaluate these MoE models on a multi-
domain machine translation task, which has do-
main labels so that we can analyze the ability of the
gating networks to distinguish different data dis-
tributions. With the multi-domain machine trans-
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(a) SGMoE-SL (b) Switch-SL (c) MoA

Figure 3: Routing statistics of sentence-level MoEs on the test sets of the six domains.

lation task, we test the translation performance of
these MoE models in this section and analyze the
sentence-level gating networks in the next section.
The BLEU scores are reported in Table 2.

As shown in Table 2, the conclusion on average
translation performance is consistent with Table 1.
Different from the other MoE models, since ADPT
is trained with in-domain data per domain, it also re-
quires domain labels in inference to manually route
data to the corresponding adapter. Given domain la-
bels, ADPT can be regarded as an MoE model with
a label-guided routing scheme. Although ADPT is
parameter-efficient, such a routing scheme requires
extra data information and introduces the data col-
lection problem. Furthermore, the expert number
of ADPT is limited by the known domain number
(i.e., ADPT can only introduce k = 6 experts to
be consistent with the domain number), and the
small domains will not take benefits from the big
generic dataset (i.e. the WMT training set in our
experiments), which makes its model performance
on some small domains is poorer than MoA.

6.3 Routing results

To analyze the discrimination ability of language
heterogeneity of these gating networks through the
accessible domain labels, we count the routing re-
sults of these sentence-level MoE models on the
test sets. Since SGMoE-SL uses top-2 experts for
each sentence, we only count the expert with the
highest gating score.

Based on the statistics, we roughly measure the
discrimination ability by two metrics. One is the

PUR NMI

SGMoE-SL 0.2855 0.0395
Switch-SL 0.2706 0.0321

MoA 0.8498 0.6480

Table 3: Measurements of the domain discrimination
ability on the test sets of the six domains.

category purity score PUR,

PUR =
1

U

K∑

i=1

umax
i (11)

where U is the total number of the test cases, K
is the number of the categories (NOT the number
of the test domains), and umax

i is the maximum
number of i-th category. The other one is the nor-
malized mutual information NMI (Danon et al.,
2005) score between true domain labels and the
predicted category labels, as implemented in scikit-
learn (Pedregosa et al., 2011). The two metrics
measure the mixing degree of different domains in
a category. The higher the PUR and the NMI ,
the better the domain discrimination ability.

Results in Table 3 show that the domain dis-
crimination ability of our gating network is signifi-
cantly higher than the other two MoE models. In
SGMoE-SL and Switch-SL, the auxiliary load bal-
ancing loss makes their routing results relatively
balanced. However, the challenging discrete la-
tent variable learning problem is not just a load
balancing problem, the domain discrimination re-
sults of the two MoE models illustrate that their
performance in modeling language heterogeneity
is very weak. Their routing decisions result in a
very high overlap of their expert knowledge, thus
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avg.S avg.M

Backbone 26.51 38.82
Naive MoA 26.92 40.32
+Pre-A 27.35 40.72
++Unf-D 27.53 40.87

Table 4: Ablation study on different translation tasks.
avg.S and avg.M indicate the average BLEU scores
of the standard machine translation tasks on different
directions and the multi-domain machine translation
task on different domains, respectively.

leading to the parameter-inefficiency problem. In
contrast, MoA models the language heterogeneity
well, different experts are in charge of different
domains, which allows it to achieve better trans-
lation performance with much fewer parameters.
Because the expert (adapter) number is bigger than
the known domain number (12 vs. 6), some experts
(e.g. expert 8 and 9) are activated very few times
by the test sets, they are responsible for the other
data distributions beyond the six known domains.

6.4 Ablation study

To further analyze the impact of our training strat-
egy on the model performance, we further conduct
a set of ablation experiments on these machine
translation tasks.

We conduct experiments of training with/without
the pre-injected adapter in stage 1 and
freeze/unfreeze decoder parameters in stage
3. We first train a naive MoA without the
pre-injected adapter in stage 1 and freeze decoder
parameters in stage 3. Then we pre-inject the
adapter (+Pre-A) and unfreeze decoder parameters
(++Unf-D) step by step. The experimental results
are presented in Table 4. After pre-injecting an
adapter in every decoder layer and using it for
parameter initialization of the other adapters in
the same layer, the information gap between
newly injected adapters and the backbone model
is eliminated. It brings significant performance
improvements. After unfreezing the decoder
parameters and training them with adapters, MoA
achieves a higher average BLEU score. These
ablation studies demonstrate the effectiveness of
the two training tricks.

In the adapter training stage, we also adopt
the Gumbel-Max routing scheme to balance the
knowledge of generalization and specialization and
avoid the over-fitting problem. The two hyper-
parameters, the adapter candidate number k and

avg.M

Backbone 38.82
τ → 0.0 40.40
τ = 0.1 40.58
τ = 1.0 40.87
τ = 10.0 40.42

Table 5: Hyper-parameter τ analysis on the multi-
domain translation task. τ → 0.0 is equivalent to shut-
ting down the Gumbel-Max routing scheme.

avg.M

Backbone 38.82
k = 1 40.40
k = 2 40.64
k = 4 40.87
k = 8 40.67
k = 12 40.46

Table 6: Hyper-parameter k analysis on the multi-
domain translation task. k = 1 is equivalent to shutting
down the Gumbel-Max routing scheme.

the temperature τ , control the activation probability
between different adapters (w.r.t. Eq. 8). We ex-
periment with adjusting them in the expert training
stage. Experimental results are reported in Table 5
and Table 6, respectively.

In Table 5, we fix k to 4 and vary τ to analyze
the difference. Meanwhile, the experimental set-
tings in Table 6 are that τ is fixed to 1.0 and k
is varied. Both τ → 0.0 and k = 1 are equiv-
alent to shutting down the Gumbel-Max routing
scheme, i.e., the routing scheme of only choosing
the top-1 highest-scored adapters. It means every
adapter is trained with a restricted subset of the
whole training set, leading to the over-fitting prob-
lem, the model performance is not as good as those
with the Gumbel-Max routing scheme. Meanwhile,
the moderate values τ = 1.0 and k = 4 perform
better than the other settings. It demonstrates that
there is a balance in the domain knowledge of each
expert in specialization and generalization.

7 Conclusion

This paper proposes MoA, a lightweight MoE-
based NMT model that is trained via an elabo-
rately designed stage-wise training strategy. The
lightweight adapters are introduced as experts for
easy expansion. By modeling the language hetero-
geneity with clustering and distilling the knowledge
into the gating network explicitly, MoA improves
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the parameter efficiency and avoids training insta-
bility. The Gumbel-Max sampling is adopted as
the routing scheme when training the adapters to
balance the knowledge of generalization and spe-
cialization and avoid over-fitting. Empirical results
show the effectiveness of the proposed method.

Limitations

The proposed MoA method shows stable improve-
ments in different translation tasks by introducing
only a few parameters. However, due to the com-
putational complexity limitation, modeling the lan-
guage heterogeneity through clustering approaches
limits the data scale used for training the gating net-
work. When the data distribution of the sampling
sentences deviates from that of the whole dataset,
the language heterogeneity may not be modeled
very well. Exploring alternative methods to cluster-
ing for modeling language heterogeneity should be
an interesting direction. Additionally, the Gumbel-
Max sampling scheme has been shown to enhance
model performance, but its two hyper-parameters
are fixed empirically in the current version. In fu-
ture work, adjusting these two hyper-parameters
automatically according to the number of experts
and the characteristics of the training set may be
better.
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8 Appendices

8.1 Training details
In any training phase, we use the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98
and ϵ = 10−9. For translation optimization, we use
the Noam decay as the learning rate scheduler with
4000 warmup steps and a learning rate of 0.0007.
With a batch size of 32k in the token level and
the update frequency of 5 on 2 A100 GPUs, the
maximum update number of training is set to 300k,
while that of fine-tuning is set to 30k with the early
stopping strategy. The maximum update number of
the gating network training stage is set to 10k with
a batch size of 8k in the token level. In inference,
the beam size is set to 5 for all models.

8.2 Clustering details
We choose the Gaussian Mixture Model (GMM)
in scikit-learn (Pedregosa et al., 2011) as the clus-
tering approach. The convariance type of GMM
is set to ‘full’, while all other settings are set by
default. Before clustering, we perform dimension-
ality reduction with Principal Components Anal-
ysis (PCA) to reduce the vector dimension of the
sentence representations from 512 to 64.

8.3 Gumbel-Max sampling
We implement the Gumbel-Max sampling strat-
egy with PyTorch (Paszke et al., 2019) of version
1.10.1+cu102. Implementation details are shown
in Algorithm 1. It is worth noting that the adapter
scores S and the activated adapter indices E are at
batch-level compared with that at element-level in
subsection 4.3.

8.4 Detailed BLEU scores
We report the detailed BLEU scores of the ablation
studies in Table 7, Table 8 and Table 9, respectively.
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Algorithm 1: Gumbel-Max sampling of PyTorch version
params :Adapter scores S; Adapter candidate number k; Temperature τ ; Activated adapter indices

E.

import torch;
import torch.nn.functional as F ;
if k <= 1 then

E = torch.argmax(S);
return E;

end
topk_val, topk_idx = torch.topk(S, k = k, dim = 1);
topk_val / = τ ;
log_probs = torch.log(F.softmax(topk_val, dim = 1));
g = F.gumbel_softmax(log_probs, dim = 1);
sampled = torch.argmax(g, dim = 1, keepdim = True);
E = torch.gather(topk_idx, 1, sampled).squeeze();
return E;

en-de de-en zh-en en-th avg.S

Backbone 28.24 34.31 26.40 17.10 26.51
Naieve MoA 28.78 34.45 26.95 17.50 26.92
+Pre-A 29.04 34.62 27.33 18.40 27.35
++Unf-D 29.13 34.82 27.66 18.50 27.53

Table 7: Ablation study of the two training tricks on the standard translation tasks.

WMT KOR IT MED LAW SUB avg.M

Backbone 32.08 19.65 44.79 51.47 54.34 30.60 38.82
Naieve MoA 32.45 20.97 46.20 53.96 56.91 31.40 40.32
+Pre-A 32.36 21.87 46.82 54.32 57.39 31.53 40.72
++Unf-D 32.58 22.08 46.88 54.48 57.68 31.50 40.87

Table 8: Ablation study of the two training tricks on the multi-domain machine translation task.

WMT KOR IT MED LAW SUB AV G

Backbone 32.08 19.65 44.79 51.47 54.34 30.60 38.82

k = 4

τ → 0.0 32.16 22.05 46.25 53.78 56.84 31.32 40.40
τ = 0.1 32.43 22.21 46.30 54.01 57.11 31.43 40.58
τ = 1.0 32.58 22.08 46.88 54.48 57.68 31.50 40.87
τ = 10.0 32.56 21.47 46.41 53.96 56.64 31.46 40.42

τ = 1.0

k = 1 32.16 22.05 46.25 53.78 56.84 31.32 40.40
k = 2 32.43 22.45 46.46 54.37 56.93 31.22 40.64
k = 4 32.58 22.08 46.88 54.48 57.68 31.50 40.87
k = 8 32.58 22.22 46.55 54.12 57.01 31.55 40.67
k = 12 32.64 21.96 46.34 53.67 56.71 31.42 40.46

Table 9: Ablation study of the Gumbel-Max sampling routing scheme on the multi-domain machine translation task.
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