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Abstract

In Open-domain Question Answering (ODQA),
it is essential to discern relevant contexts as
evidence and avoid spurious ones among re-
trieved results. The model architecture that uses
concatenated multiple contexts in the decoding
phase, i.e., Fusion-in-Decoder, demonstrates
promising performance but generates incorrect
outputs from seemingly plausible contexts. To
address this problem, we propose the Multi-
Granularity guided Fusion-in-Decoder (MG-
FiD), discerning evidence across multiple lev-
els of granularity. Based on multi-task learning,
MGFiD harmonizes passage re-ranking with
sentence classification. It aggregates evident
sentences into an anchor vector that instructs
the decoder. Additionally, it improves decoding
efficiency by reusing the results of passage re-
ranking for passage pruning. Through our ex-
periments, MGFiD outperforms existing mod-
els on the Natural Questions (NQ) and Trivi-
aQA (TQA) datasets, highlighting the benefits
of its multi-granularity solution.

1 Introduction

Open-domain question answering (ODQA) (Chen
et al., 2017) is a challenging task that requires de-
riving factual responses from a vast knowledge cor-
pus without relying on explicit evidence, i.e., the
evidence context is not given. Recently, retrieval-
augmented generation (RAG) (Lewis et al., 2020)
has emerged to combine the retrieval of relevant
information with response generation.

Exemplified by the retriever-reader architec-
ture (Chen et al., 2017; Lee et al., 2019; Guu et al.,
2020), RAG effectively addresses ODQA. The re-
triever first pinpoints the most relevant passages
using the question as a query. Subsequently, the
reader extracts or generates a response using the
question and the relevant passages. It generally al-
lows us to perform a decoupled optimization for
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Figure 1: Examples that may harm the QA systems.
Black Bold terms in the passages are overlapped with
the question. (a) The passage is not supportive while
containing a correct answer span. (b) Confusing sen-
tences within the passage mislead model prediction.

the retriever or the reader. In this paper, we mainly
focus on optimizing the reader.

To improve the reader, existing studies (Izacard
and Grave, 2021b; Asai et al., 2022; Wang et al.,
2023) focus on addressing two questions: (i) how
to effectively use the evidence in multiple passages,
and (ii) how to improve the discrimination in deal-
ing with spurious passages.

Multi-passage reader. As the representative
model, Fusion-in-Decoder (FiD) (Izacard and
Grave, 2021b) using a generative text-to-text
model (Raffel et al., 2020) is an effective multi-
passage reader to aggregate evidence across mul-
tiple passages. It first encodes multiple pairs of
a question and a relevant passage at the encoder.
Then, it generates an answer using a cross-attention
mechanism over concatenated embeddings at the
decoder. One limitation of the FiD architecture is
inefficiency due to the intensive cross-attention op-
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erations performed on the concatenated matrix. To
mitigate this, some studies have proposed either
shortening the input length (Hofstätter et al., 2023;
Yu et al., 2022) or omitting some layers in the de-
coder (de Jong et al., 2023). More importantly, the
standard FiD model often struggles with handling
spurious passages that degrade the accuracy of gen-
erating the answer (Asai et al., 2022).

Multi-task reader. Several studies (Yu et al.,
2022; Ju et al., 2022; Lakhotia et al., 2021;
Hofstätter et al., 2023; Wang et al., 2023) have at-
tempted to address handling spurious passages by
employing multi-task learning. It aims to improve
the reader’s discernment regarding the evidentiality
of the retrieved passages, thereby achieving robust-
ness against spurious ones. Yu et al. (2022) and Ju
et al. (2022) proposed to incorporate information
from factual triplets contained in the knowledge
graph. Another solution is to employ passage labels
to discern spurious passages in the FiD architec-
ture. Lakhotia et al. (2021); Hofstätter et al. (2023);
Wang et al. (2023) determined the rationality of
passages based on whether they contain an answer
span. Although learning signals from answer span
inclusions has been proven effective, it may lead to
false positive passages, producing sub-optimal re-
sults. Furthermore, existing multi-task readers face
challenges in identifying the key sentences within
the passage.

We argue that relying solely on answer spans
or identifying evident passages is insufficient to
determine the evidence. Figure 1 illustrates two
plausible scenarios, highlighting the limitations of
existing methods using either the answer spans
or passage-level evidentiality. In Figure 1(a), the
mere presence of the answer span in the passage
does not guarantee relevance for the question. More
importantly, Figure 1(b) shows that a model trained
primarily on aggregating evidence across passages
generates an incorrect answer, and there is a need
to distinguish complex and confusing sentences.

This paper aims to discern evidence in coarse-
and fine-grained textual information, i.e., passages
and sentences, and utilize the byproduct from multi-
task learning to enhance the model’s performance.
To this end, we propose a novel model called Multi-
Granularity guided Fusion-in-Decoder (MGFiD).
Specifically, the key idea behind MGFiD is two-
fold. (i) We train the FiD to distinguish eviden-
tiality using multi-task learning to minimize the
influence of false contexts during answer genera-
tion. In this process, we employ both passage- and

sentence-level contexts to account for evidentiality
in multi-granularity contexts. Since it is expensive
to label gold passages, we use the ranking abilities
of language models (Sun et al., 2023) to filter out
irrelevant contexts for the question. (ii) We reuse
auxiliary information from multi-task learning to
improve accuracy and efficiency. We generate an
anchor vector derived from sentence-level classi-
fication and infuse it into the [BOS] token used in
the decoder. Since the anchor vector indicates a
significant feature for relevant sentences, it helps
the decoder generate the correct answer. Further-
more, we employ passage-level re-ranking results
to prune less supportive passages, improving the
efficiency in the decoding phase.

To summarize, the key contributions of this pa-
per are as follows. (i) We introduce the eviden-
tiality of the FiD using multi-granularity contexts.
(ii) We utilize LLMs to generate pseudo-labels for
supportive passages in ODQA task. (iii) We reuse
multi-granularity contexts to improve accuracy and
efficiency further using an anchor vector in the
decoder and thresholding-based passage pruning.
(iv) Through our experiments on two benchmark
datasets, we show that MGFiD improves the orig-
inal FiD by more than 3.5% and 1.0% in Exact
Match on Natural Questions, and TriviaQA, outper-
forming the other baselines.

2 Related Work

We briefly review existing studies for improving
the FiD (Izacard and Grave, 2021b) architecture in
two key aspects: accuracy and efficiency.

2.1 Encoding Evident Passages

Several works (Lakhotia et al., 2021; Hofstätter
et al., 2023; Wang et al., 2023) introduce multi-
task learning to endow the model with discrimina-
tive ability, i.e., the capacity to identify spurious
passages. Ju et al. (2022) incorporates informative
contexts in the knowledge graph with the reader. It
extracts entity embeddings from the intermediate
layer and combines them with graph knowledge
fused through GNN. While relational information
from the knowledge graph is helpful, it requires
external sources. Another direction is to use heuris-
tic rationale in multi-task learning. Lakhotia et al.
(2021) proposed a special sentence marker token
to enable the decoder to generate a marker cor-
responding to the grounds along with the answer.
Wang et al. (2023) introduced a binary classifier
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to determine whether each passage is supportive
between the encoder and decoder. Defining rational
passages is based on the answer span. As it does
not guarantee the evidentiality of the passage, Asai
et al. (2022) pointed out this limitation and sug-
gested a classifier for mining pseudo-evidentiality
labels. However, it still requires expensive annota-
tions to train the classifier, and labeling with a par-
tially trained model can be affected by the model’s
memorization.

2.2 Decoding Efficiency
The decoding step, mainly due to the large key-
value matrix, is the most time-consuming phase
in the FiD architecture during inference. Simply
reducing the number of FiD inputs is not as opti-
mal as reducing the decoder input alone (Hofstätter
et al., 2023). Previous work has reduced the burden
on the decoder by giving only necessary informa-
tion. Hofstätter et al. (2023) reduce the length of
each encoded query-passage pair to the first few
vectors. Compressing the amount of information
fed to the decoder can significantly improve infer-
ence efficiency while slightly reducing effective-
ness. de Jong et al. (2023) removes most cross-
attention layers and employs multi-query attention
to reduce the cost of the decoder. Yu et al. (2022)
takes intermediate layer representation for passage
re-ranking and improves efficiency by passing only
the high-ranked passages to the decoder. However,
using a fixed number of passages is problematic
as it assumes that the number of supporting docu-
ments is constant, whereas they vary.

3 Proposed Method

In this section, we first outline our method for
multi-task learning, which integrates generating
answers and determining their evidence at different
levels of granularity, i.e., passages and sentences
(Section 3.1). Second, leveraging sentence-level
predictions, we introduce an anchor vector to pro-
vide a rationale signal to the decoder (Section 3.2).
We then present threshold-based pruning using
passage-level scores to enable efficient decoding
(Section 3.3). Lastly, we describe the process of
generating pseudo-labels for supportive passages
(section 3.4).

3.1 Learning Multi-granularity Contexts
Answer generation. We adopt the standard
FiD (Izacard and Grave, 2021b) architecture as
our base model. The FiD encoder takes as input the

top-K retrieved passages Pq = [p1, p2, ..., pK ] for
the question q. Each pi is prepended with q, and
the FiD encoder outputs the token embeddings Hi,
which are then concatenated to obtain V.

Hi = FiDencoder (q + pi) ∈ RL×d,

V = [H1;H2; . . . ;HK ] ∈ R(K×L)×d.
(1)

Here, L denotes the maximum sequence length,
and d denotes the hidden dimension. The FiD de-
coder utilizes V as the key-value matrix to generate
the answer auto-regressively. When T is the target
sequence, the loss function is as follows:

Lgen = −
T∑

t=1

log p(ŷt | y<t,V). (2)

Passage re-ranking. When the original FiD is
solely trained on answer generation, it tends to
predict incorrect answers from plausible passages,
e.g., passages with word overlap to the question
but not supportive. To mitigate this, we account for
re-ranking the evidentiality of passages. Inspired
by (Nogueira and Cho, 2019), we obtain the evi-
dence embedding ei ∈ R1×d by passing the first to-
ken embedding of each pair to the projection layer.
Specifically, let hj

i ∈ R1×d be j-th token embed-
ding of the Hi, which denotes token embeddings of
the question and i-th passage; we pass h0

i ∈ R1×d

through the projection layer Wp ∈ Rd×d. Then,
a single-layer neural network Wr ∈ R1×d takes
ei to predict the logit for each passage. A softmax
function is applied to K logits to get a probability
pi for the question and i-th passage pair.

pi = softmax(eiW⊤
r ),where ei = h0

iWp. (3)

Using the probability pi, the loss function with
negative log likelihood for passage re-ranking
Lpassage is defined by:

Lpassage = − 1

|P|
∑

pos∈P
log(ppos). (4)

P denotes a set of indices for positive passages
corresponding to the question. Here, Lpassage high-
lights passages containing evidence and guides the
decoder to focus on considering more relevant pas-
sages in generating the answer.

We adopt a listwise loss function rather than
a pointwise because it makes sense to focus on
relative evidentiality between K passages. Further-
more, pi, which represents the relative importance
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Figure 2: The MGFiD framework incorporates multi-task learning for answer generation, leveraging passage
re-ranking to identify coarse-grained evidence and sentence classification for fine-grained evidence. It utilizes the
outcomes of these tasks—threshold-based masking from passage re-ranking and anchor embedding from sentence
classification—to enhance both efficiency and effectiveness in the answer generation process.

of each passage, is subsequently used for threshold-
based masking for efficient decoding (Section 3.3).

Sentence classification. To leverage evidential-
ity in nuanced text, we deal with a fine-grained
sentence-level task. Previous work (Liu et al., 2023)
has combined different granularities to enrich the
global semantics, suggesting that the information
that can be captured at different levels of granular-
ity is different. This implies that the coarse-grained
semantics alone is insufficient to determine which
sentences are support sentences. Therefore, multi-
granularity evidentiality helps improve discrimina-
tion.

We enhance the model by learning local evi-
dence from fine-grained sentences. Specifically, the
sentence classifier takes a sentence embedding as
input to predict whether the answer span is in the
sentence or not. Since we need to distinguish be-
tween sentences, not their relative importance, it is
designed as a simple classification task rather than
a ranking task. The n-th sentence embedding of the
i-th passage sni ∈ R1×d is expressed as the aver-
age of token embeddings projected by Wp ∈ Rd×d.
The loss function is defined after the sentence clas-
sification layer Ws ∈ Rd×2.

sni = mean-pooling
({

hj
iWp

}bn

j=an

)
,

Ln,i
sentence = Focal (yni , s

n
i Ws) .

(5)

Let an and bn be the start and end token indices
for the n-th sentence. Focal(·, ·) is the focal loss
function (Lin et al., 2017) that addresses class im-
balance, with yni as the label indicating the presence

of the answer span in the n-th sentence of the i-th
passage. Lsentence is calculated as the average of all
sentences in the batch.

Since the passage has been validated by LLM,
using the answer span information within the pas-
sage gets more accurate. We label all sentences as
negative if the passage was deemed unsupportive,
regardless of the answer span. Finally, the multi-
task learning loss to train MG-FiD is computed as
a linear combination of the three loss functions.

L = Lgen + λ1 · Lpassage + λ2 · Lsentence, (6)

where λ1 and λ2 are hyperparameters that adjust
the influence of passage re-ranking and sentence
classification, respectively.

Figure 3 illustrates the result when only sentence
classification multi-task learning is performed. It
fails to learn the relationship between the question
and the coarse-grained passage, and may gener-
ate the answer from the plausible passages. That
is, focusing solely on sentences can limit broader
semantic understanding. In detail, since the pas-
sage is prepended with the question, the first token
embedding h0

i used for the passage embedding is
always the "question" token embedding. On the
other hand, a sentence uses the start and end token
indices of each sentence in the passage, so there
is no overlap between the passage and sentence
embeddings.

3.2 Incorporating an Anchor Vector
While our model is trained to discern at multiple
levels of granularity, thereby highlighting eviden-
tial passages and sentences, how the decoder lever-
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Figure 3: Learning solely from sentences may lead to a
lack of understanding of the broader context.

ages this highlighted information remains unex-
plored. To deal with it, we align the multi-task of
identifying supportive contexts with the answer
generation. Specifically, we initiate the decoder
with an anchor vector, aiming for a more focused
and effective processing of relevant contexts. We
leverage a set of sentences positively predicted by
the sentence classifier and deal with them as an
extractive summarization across multiple passages.
The anchor vector, denoted as eanchor ∈ R1×d, is
obtained by performing the max-pooling operation
on these positively predicted sentence embeddings,
which then employed to couple the generation with
the multi-task learning.

We first obtain a set of sentence embeddings
S that are predicted as positives by the sentence
classifier across the K passages as follows:

S =
K⋃

i=1

{
sni | argmax(sni Ws) = 1,

∀n ∈ {1, . . . ,Ni}
}
,

(7)

Here, argmax(·) is applied to a two-dimensional
vector for each of Ni sentences in pi, returning
zero for negative and one for positive. As we col-
lect the sentence embeddings that are predicted to
be positive, we then apply max-pooling over S to
obtain the anchor vector to capture the most salient
evidence.

eanchor = max-pooling (S) . (8)

Lastly, we add the anchor vector to the ex-
isting [BOS] token embedding, allowing the de-
coder to use the evident information in the cross-
attention mechanism. Our approach differs from
the existing learnable guided embedding proposed
by Wang et al. (2023). That is, we directly incor-
porate the fine-grained supportive embedding into
cross-attention by adding it to the query token, as

Figure 4: A prompting example used for LLMs to filter
out contexts that have an answer span but are not evident
to the question.

distinct from expecting guided embeddings to be
reflected within the decoder layer.

3.3 Pruning Passages via a Threshold

To improve the cross-attention cost bottleneck in
the decoder, we employ a threshold-based pruning
method. Specifically, we reuse the probabilities for
the K passages computed in the passage re-ranking
task, discarding passages below a threshold τ . The
resulting pruned key-value matrix V̂ based on the
probability pi in Equation (3) is formed as follows:

V̂ =
n⊕

i=1

Hi if pi > τ. (9)

Let K̂ be the number of passages that exceed the
threshold τ ; we obtain the pruned key-value matrix
V̂ ∈ R(K̂×L)×d. Adjusting the threshold from 0.0
to 0.1, we found it efficient yet effective at τ =
0.05. As a result, MGFiD dynamically uses only
the necessary evidence for each question, instead
of a fixed number of passages as in the previous
methods (Lee et al., 2022; Yu et al., 2022), thereby
improving efficiency more effectively.

3.4 Evidence Labeling

A critical part of the passage re-ranking is the
quality of the labels. However, gold context la-
bels are often provided in a limited way in ODQA.
While prior work (Wang et al., 2023) has shown im-
provement using the signal from the answer span,
we propose to leverage the ranking capabilities of
Large Language Models (LLMs) (Sun et al., 2023).
Specifically, we use large language models to gen-
erate pseudo-labels according to the evidentiality of
passages. The prompt shown in Figure 4 instructs
the LLMs to identify a passage if it is sufficient to
answer the question. While it would be a burden
to generate pseudo-labels for every triplet candi-
date, i.e., a question, answers, and a passage, we
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Dataset train dev test R@20 # pos/q

NQ 79,168 8,757 3,610 0.87 4.5
TQA 78,785 8,837 11,313 0.86 8.9

Table 1: Data statistics. # pos/q indicates the average
number of passages that have the answer span per the
question. R@K is one if there exists a positive among
the K passages and zero. R@20 and # pos/q are for
the training dataset using the retriever (Karpukhin et al.,
2020) trained by Izacard and Grave (2021a).

reduce the cost by focusing only on those that con-
tain the answer span. To assess the effectiveness of
LLMs in the labeling task, we validate them indi-
rectly by observing the filtering rate based on the
retrieval (Izacard and Grave, 2021a) rank. (Refer
to the details in Appendix A.1.)

4 Experiments Setup

4.1 Datasets

We conduct our experiments on two benchmark
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) and TriviaQA (TQA) (Joshi et al.,
2017). NQ comprises actual Google search queries,
while TQA comprises question-answer pairs
sourced from trivia and quiz-league websites. Ta-
ble 1 presents the statistical details of datasets.

4.2 Metrics

We use three metrics in our experiments. Exact
Match (EM) evaluates the accuracy of the QA
task by examining whether normalized predictions
exactly match ground-truth answers. Recall@K
(R@K) assesses passage ranking, with a scoring
one if the passage containing the answer span is
among the top-K passages. For sentence classi-
fication, we use the area under the ROC curve
(AUC) (Bradley, 1997), to account for class im-
balance, i.e., most are negative.

4.3 Baselines

We compare MGFiD with several baselines.
FiD (Izacard and Grave, 2021b) is the first work
that utilizes concatenated passage embedding at
the decoder. FiD-KD (Izacard and Grave, 2021a)
improves the performance of the retriever with the
aggregation capability of FiD. GRAPE (Ju et al.,
2022) exploits the relationships of triplets in a
knowledge graph. RFiD (Wang et al., 2023) per-
forms multi-task learning by using the answer span
and proposes learnable embedding to guide the

decoder. To be concise, the difference between an-
chor vector and guide embedding is twofold: 1)
Anchor vector expects a combination of signifi-
cant evidence, unlike the predicted binary label for
guide embedding. 2) Guide embedding is used in
the same way as other token embeddings, while
an anchor vector is explicitly added in a query to-
ken for the decoder. EvidentialityQA (Asai et al.,
2022) adopts an additional decoder for evidence
classification and proposes a classifier for evidence
labeling to perform multi-task learning.

4.4 Implementation Details

As a backbone model, we initialize the model t5-
base (Raffel et al., 2020). Due to the computing
cost, we mainly use the top-20, i.e., K = 20,
retrieved results provided by FiD-KD 1. We use
Adam (Kingma and Ba, 2015) as the optimizer,
with a learning rate of 1e-4. We set a batch size
of 2 and an accumulation step of 16 to imitate a
large batch. We set λ1 for passage ranking loss to
0.5 and λ2 for sentence classification to 1. The α
for focal loss (Lin et al., 2017), which we omit for
readability in the equation 5, is set to 0.95, and
the τ for threshold-based pruning is set to 0.05.
The total number of steps is set to 160k, and for
every 8k, we perform an evaluation with the vali-
dation set and select the checkpoint with the high-
est validation score. The maximum input sequence
length is set to 192 for NQ and 250 for TQA. We
use NLTK library (Wagner, 2010) to tokenize sen-
tences in the passages. For evidence labeling, we
use ChatGPT 2 and MythoMax 3. While ChatGPT
is a powerful large language model accessible via
API, MythoMax can easily be used in the local
GPUs. We fix the temperature to 0 and do not use
sampling to ensure reproducibility. We use all the
answer candidates in NQ; however, in the TQA
dataset, which has many more answer candidates
than NQ, we only collected answers in the top 20
passages for efficient prompting. The experiments
in Table 2, Table 5 and Figure 6 represent the av-
erages of five seeds, while the other experiments
use a single, fixed seed. We use two NVIDIA A100
GPUs for training and inference.

For a fair comparison, we attempt to reproduce
several baselines. We use the publicly available of-
ficial implementations of each methodology and

1https://github.com/facebookresearch/FiD
2https://chat.openai.com/chat
3https://huggingface.co/TheBloke/

MythoMax-L2-13B-GPTQ
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Model Multi-task
learning Retriever Avg. # psgs

in Decoder
NQ (EM) TQA (EM)

Dev Test Dev Test

FiD (2021b) - DPR 100 46.5 48.2 64.7 65.0
GRAPE (2022) O DPR 100 - 48.7 - 66.2
FiD-KD (2021a) - FiD-KD 100 49.2 50.1 68.7 69.3

RFiD (2023) O FiD-KD 100 50.0 50.7 69.6 69.6

FiD (2021b) - DPR 25 45.3 - 63.2 -
KG-FiD (2022) O DPR + GNN 20 - 49.6 - 66.7

EvidentialityQA (2022) O FiD-KD 20 47.8 49.8 67.7 67.8

Our implementations

FiD (2021b) - DPR 20 45.3 ± 0.31 46.3 ± 0.10 61.5 ± 0.12 62.1 ± 0.34
FiD-KD (2021a) -

FiD-KD

100 49.1 50.1 - -
FiD-KD (2021a) - 20 47.8 ± 0.16 48.4 ± 0.31 67.4 ± 0.12 67.6 ± 0.25

EvidentialityQA (2022) O 20 48.0 ± 0.20 49.0 ± 0.39 n/a n/a
RFiD (2023) O 100 49.2 50.4 - -
RFiD (2023) O 20 48.6 ± 0.29 49.4 ± 0.53 67.8 ± 0.12 68.1 ± 0.20

MGFiD O FiD-KD 20 49.0 ± 0.21 50.1 ± 0.33 68.0 ± 0.09 68.3 ± 0.23
Pruned MGFiD (τ=0.05) O 4.8 / 7.7 48.8 ± 0.20 49.7 ± 0.52 67.8 ± 0.07 68.3 ± 0.16

Table 2: Performance comparison between MGFiD and baseline models. Avg. # psgs in Decoder for Pruned MGFiD
is the average number of passages passed to the decoder in NQ / TQA, respectively. ± indicates the standard
deviation of 5 runs. The best result among the models using K = 20, which is the number of retrieved passages
used in the encoder, is marked bold, and the second best is underlined.

report the average of five runs with the same seed
set with MGFiD. For EvidentialityQA 4 (2022), we
observed a technical issue with the TQA dataset
in the official repository, where all evidence labels
were incorrectly marked as 0. On the NQ test set,
we got results that were lower than the original pa-
per, while we got slightly better results on dev. Con-
sidering the standard deviation, we consider this
to be a valid reproduction. FiD, FiD-KD 1 (2021b;
2021a), and RFiD 5 (2023) originally used K as
100, but for a fair comparison, we trained them
using 20 after validating reproducibility.

5 Results and Analysis

5.1 Main Results

Table 2 shows the effectiveness of our model with
the baseline models on the NQ and TQA datasets.
We report the results of our model and four repli-
cations averaged over five seeds, along with their
standard deviations. All models in this experiment
are initialized with T5-base (Raffel et al., 2020).
Note that MGFiD incorporates components to dis-
criminate evidence, consisting merely of only a
few MLP layers, which marginally increases the
number of parameters by less than 1% from the
backbone model. Avg. # psgs in Decoder, which is
the number of passages passed to the decoder, is

4https://github.com/AkariAsai/evidentiality_qa
5https://github.com/wangcunxiang/RFiD

identical with the number of retrieved passages us-
ing in the encoder, i.e., top-K, except for K = 20
for Pruned MGFiD and K = 100 for KG-FiD (Yu
et al., 2022).

First, MGFiD significantly improves over the
baseline models using the same retriever and the
same number of passages. Compared to the original
model, FiD-KD (Izacard and Grave, 2021a), which
only performs answer generation task, MGFiD im-
proves the EM score on the test set by 3.5% on
the NQ and 1.0% on the TQA, and is comparable
to FiD-KD using 100 passages on the NQ dataset.
This implies that MGFiD identifying evidence in
the multi-granularity approach effectively guides
the model into supportive passages to the question.

Second, EvidentialityQA (Asai et al., 2022) and
RFiD (Wang et al., 2023) show improved per-
formance compared to models without multi-task
learning. This implies that determining evidential-
ity among passages enhances the quality of answer
generation. Additionally, MGFiD further improves
this process by integrating fine-grained, sentence-
level evidence, demonstrating an improvement of
2.2% and 1.4% on the NQ test set over Evidentiali-
tyQA and RFiD, respectively.

Third, MGFiD using passage pruning signifi-
cantly reduces the number of passages used by 76%
on the NQ and 61.5% on the TQA, lowering the
number of passages to 4.8 and 7.7 passages. The
key-value matrix in the decoder, as noted in FiD-
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Model R@1 AUC

DPR 49.9 -

FiD-KD (cross-attention) 58.6 -

MGFiD (Passage ranker) 62.2 0.82
* w/ Cross-entropy Lsentence 60.9 0.70
* w/o Lsentence 61.7 -

Table 3: Effectiveness of the proposed method for rank-
ing and classification tasks on the NQ dev dataset.
We report MGFiD trained with labels generated by
MythoMax. The AUC metric is only reported for MG-
FiD variants that include the sentence classifier.

(a) (b)

Figure 5: (a) The average number of passages provided
to the decoder as a function of τ . (b) The effectiveness
of varying τ . We utilized the NQ dev dataset and the
best checkpoint of MGFiD. When τ = 0.05, MGFiD
significantly outperforms using a constant number of 5
re-ranked passages with fewer passages.

Light (Hofstätter et al., 2023), is the most resource-
intensive part of FiD. Despite passage pruning in
MGFiD, there is only a decrease of less than 1% in
performance, indicating effective pruning of irrel-
evant passages. Furthermore, it maintains or even
improves performance compared to other baseline
models on both the NQ and TQA datasets.

5.2 In-depth Analysis

Ranking & classification performance. In Ta-
ble 3, we measured the outputs of the evidence
ranker and sentence classifier as Recall and AUC
score, to evaluate our model’s ability to identify
evidence paragraphs and supporting sentences. (i)
The passage ranking score can be implicitly mea-
sured by the decoder’s cross-attention score. The
cross-attention score of each document is calcu-
lated by summing the cross-attention scores of the
tokens. In this way, the Recall@1 score improved
by 17.2% compared to the DPR retriever. (ii) The
improvement is even higher for the passage ranker
with explicit ranking capability. When trained with
MythoMax labels, it shows an outstanding 5.1%
improvement over the re-ranking result using the

Lranking Lsent eanchor τ NQ TQA

✓ ✓ ✓ 0.05 49.1 67.7
✓ ✓ ✓ top-5 48.8 -

listwise ✓ ✓ × 49.4 67.9
listwise ✓ × × 48.9 67.9

× ✓ × × 48.1 67.9
listwise × × × 48.8 67.8

pointwise × × × 48.3 67.6
× × × × 47.8 67.5

Table 4: Ablation study on the impact of multi-task
learning and Threshold-based masking. Note that we
are reporting for seed 0 in this result.

cross-attention score in FiD. This suggests that it
is more effective to add a module that specializes
in determining evidence rather than relying on the
cross-attention of the decoder. (iii) When sentence
classification is applied, Recall@1 improves even
more. Using the focal loss for better classification
of imbalanced sentence labels, the AUC score im-
proved to 0.82, and the Recall@1 score reached
62.2. This suggests that emphasizing the embed-
ding of important sentences also helps to distin-
guish supportive passages.
Efficiency via passage pruning. Figure 5 shows
the number of passages used by the decoder and
the effectiveness depending on the pruning thresh-
old τ . It takes all 20 passages when no pruning is
applied, i.e., τ = 0. Increasing τ to 0.05 results in
a small performance drop even if the number of
passages drops drastically below 5. It is worth not-
ing that the performance is much higher than sim-
ply using the top-5 passages among the re-ranked
passages. Since the concatenation of all encoded
tokens causes high computational cost (Hofstätter
et al., 2023), it helps to avoid a significant perfor-
mance drop while reducing the decoding overhead.

Ablation study. Table 4 shows an ablation study on
our different methods. (i) Listwise loss for multi-
task learning achieves 0.5%p higher accuracy than
the point-wise loss on the NQ dataset. This im-
plies that listwise is a more reasonable approach
due to the structure of FiD, which concatenates
multiple passage embeddings and utilizes them at
once. (ii) The anchor vector provides core sentence-
level information by adding up the anchor vector
to the [BOS] token. With this additional informa-
tion, the accuracy improved by 0.2%p on the NQ
dataset. (iii) When Lpassage and Lsentence are used,
the accuracy reaches a peak of 49.4 and 67.9 for
the NQ and TQA, respectively. This suggests that
multi-granularity can help performance by obtain-
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Evidence
label

NQ dev
(EM) # pos. TQA dev

(EM) # pos.

- 47.8 ± 0.16 - 67.4 ± 0.12 -

Ans. span 48.5 ± 0.21 4.5 67.7 ± 0.16 8.9
ChatGPT 48.9 ± 0.13 4.0 67.7 ± 0.20 8.3

MythoMax 48.8 ± 0.23 2.8 67.8 ± 0.18 6.5

Table 5: Model performance with different evidence
labels. # pos. denotes the average number of positive
labels in top-20 passages.

ing more evidentiality. (iv) When τ is 0.05, the
average number of passages used in the decoder is
4.8 in the NQ dataset. Pruned MGFiD gets 0.3%p
higher than using the fixed top-5 re-ranked pas-
sages, suggesting that it is more effective to utilize
only the supportive passages for each question.

5.3 Effectiveness of Evidence Labels
Table 5 shows the experiment results of FiD with
only passage-level evidence learning, i.e., Lpassage.
We use three different labels for passage re-ranking:
Ans. span, which checks if the answer span is
included, and labels filtered by ChatGPT, and
MythoMax. (i) FiD without multi-task learning
significantly underperforms on both datasets com-
pared to the others, trained with the additional pas-
sage re-ranking. These results suggest that it is
insufficient to implicitly let the reader determine
evidence without additional ranking information.
(ii) The models trained with LLM-generated labels
for passage re-ranking outperform those trained
with answer span presence as a label, improving by
up to 0.4 on the NQ dataset. This suggests that mis-
labeled spurious passages act as noisy data when
the answer spans are used as a determinant of la-
beling, thereby leading to sub-optimal results. (iii)
We note that the performance using the MythoMax
label is not significantly different from the perfor-
mance using the ChatGPT label. This suggests that
our framework can effectively determine evidence
regardless of the size of the LLMs.

5.4 Effectiveness by the Number of Passages
Figure 6 illustrates the performance of MGFiD
and two baseline models on the NQ and TQA test
sets with varying numbers of passages used by
the encoder, i.e., K. We trained each model using
the top-K passages. Our findings reveal that per-
formance is enhanced with more passages for all
models, aligning with the aggregating capability of
the FiD architecture noted by Izacard and Grave
(2021b). Second, MGFiD consistently outperforms

Figure 6: Effectiveness of FiD-KD (Izacard and Grave,
2021a), RFiD (Wang et al., 2023), and MGFiD varying
the number of passages used in the encoder, i.e., K.

the baselines across different numbers of passages
(10, 20, and 40), highlighting the significance of the
capability to discern supportive passages. Lastly,
the efficacy of evidence-based multi-task learn-
ing, as utilized by MGFiD and RFiD (Wang et al.,
2023), is most significant with fewer documents,
i.e., K = 10. This observation is counterintuitive
to the expectation that filtering spurious passages
becomes more critical as the number of passages in-
creases. We interpret this to suggest that increasing
the number of passages may have a similar effect as
increasing the batch size (Qu et al., 2021), whereas
the multi-task learning can efficiently achieve high
performance even with smaller batch sizes. We
leave a more detailed analysis to future work.

6 Conclusion

This paper presents the Multi-Granularity Guided
Fusion-in-Decoder (MGFiD), a novel reader for
managing evidence across multiple granularities.
Addressing the prevalent challenges of misleading
passages and sentences, MGFiD synergies coarse-
level passage re-ranking with fine-level sentence
classification. We also incorporate LLMs to en-
hance the quality of heuristic labels. Moreover,
MGFiD capitalizes on its multi-granularity evi-
dence by constructing an anchor vector that guides
the decoder toward significant evidence and em-
ploys passage pruning to enhance decoding effi-
ciency. Our empirical results demonstrate that MG-
FiD using multi-granularity contexts achieves sig-
nificant advancements over baseline models.

Acknowledgments

This work was supported by Institute of In-
formation & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2019-0-00421,
2022-0-00680-003, 2022-0-01045, and RS-2023-
00219919).

2209



Limitations

We briefly describe the limitations of our method.
(i) LLM filtering methods are limited to extrac-
tive QA for the current setting. (ii) There needs
to be validation on more passages. (iii) Marginal
improvement on TQA dataset.
Limitation of LLM labels. Because our label fil-
tering method is based on answer span, it is still
quite limited to the extractive task. However, the
criterion for silver labels is not necessarily answer
span, and we have shown in the paper that the fil-
tering task does not necessarily require expensive
models. This means that for relatively low K, it
is available to perform on all the retrieved results.
The fact that harsh filtering by MythoMax worked
even with fewer labels means that the multi-task
does not necessarily require many labels.
A large number of passages. We do not report
results using a large number of passages, e.g., 100,
and a bigger backbone model, i.e., T5-large, due
to the computational cost. Previous research has
shown that using more passages increases the prob-
ability that the passage set contains evidence and
thus improves performance. We also found in our
experiments that the standard deviation of the NQ
dataset is large, depending on the seed. This was
true for all of the baseline models we reproduced.
Although we compared our model and the baseline
with five seeds, it would be desirable to validate ad-
ditional seeds to further examine generalizability.
Marginal improvement on TQA. The perfor-
mance improvement on TQA is marginal compared
to that of NQ. We can assume that the multi-task
learning to identify supportive context is less ef-
fective for TQA because it has numerous answer
candidates and passages regarding evidence are
present. It is thus relatively easy to get an EM score.
However, we still need to analyze this further.
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A Appendix

Figure 7: Filtering percentage by rank. Both MythoMax
and ChatGPT show more than 10% and 40% filtering
ratios at top-10 ranking results. This suggests that both
systems are doing the task reasonably, as the rankings
in DPR are likely related to how well the content seman-
tically matches.

A.1 Evaluation on label filtering
Assuming that the rank provided by the re-
triever (Izacard and Grave, 2021a) represents the
contextual relevance of a query to a paragraph, it
is reasonable to expect the distribution of desirable
supporting passages in the top 20 documents to
be asymmetric, with dense at the high ranks and
sparse at the low ranks. Figure 7 shows the percent-
age of passages filtered out (labeled as irrelevant)
when passages corresponding to each DPR rank
are given to Mythomax and ChatGPT along with
a question. As we expected, both models are more
likely to label rank20 passages as irrelevant than
rank1 passages. ChatGPT labels very few passages
as irrelevant at rank 1, but this increases to almost
20% as the rank decreases. Mythomax labels over
50% of passages as irrelevant at low rank. This
empirically verifies that LLM’s label filtering ten-
dency is consistent with the contextual relevance
across ranks.

A.2 Importance of Sentence-level Evidence
Existing works only identify which passages are
supporting and focus on aggregating evidence
across multiple passages. Still, there is a lot
of information in the passages that can mislead
the model. Figure 8 shows that a model trained
only on identifying supporting passages, i.e., w/o
multi-granularity learning, generated incorrect an-
swers. On the other hand, MGFiD, which learned
sentence-level evidence, avoided plausible incor-
rect answers and generated correct answers.
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Figure 8: More examples that can harm QA systems
similar to Figure 1. Two examples show the need to
identify which sentence is supportive and which is not.
Black bold terms in the passages are overlapped with
the question.
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