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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various NLP
tasks. However, previous works have shown
these models are sensitive towards prompt
wording, and few-shot demonstrations and
their order, posing challenges to fair assess-
ment of these models. As these models be-
come more powerful, it becomes imperative
to understand and address these limitations.
In this paper, we focus on LLMs robust-
ness on the task of multiple-choice questions—
commonly adopted task to study reasoning and
fact-retrieving capability of LLMs. Investigat-
ing the sensitivity of LLMs towards the order
of options in multiple-choice questions, we
demonstrate a considerable performance gap
of approximately 13% to 85% in LLMs on dif-
ferent benchmarks, when answer options are
reordered, even when using demonstrations in
a few-shot setting. Through a detailed analysis,
we conjecture that this sensitivity arises when
LLMs are uncertain about the prediction be-
tween the top-2/3 choices, and specific options
placements may favor certain prediction be-
tween those top choices depending on the ques-
tion caused by positional bias. We also iden-
tify patterns in top-2 choices that amplify or
mitigate the model’s bias toward option place-
ment. We found that for amplifying bias, the
optimal strategy involves positioning the top
two choices as the first and last options. Con-
versely, to mitigate bias, we recommend plac-
ing these choices among the adjacent options.
To validate our conjecture, we conduct vari-
ous experiments and adopt two approaches to
calibrate LLMs’ predictions, leading to up to 8
percentage points improvement across different
models and benchmarks.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive performance on various tasks,
surpassing that of supervised models and, in some
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Original Order
Where would | not want a fox?
A) hen house
B) english hunt —— ——
C) mountains
D) outside bedroom window

E) england LLM

Correct Response
hen house

After Reordering
Where would | not want a fox?
A) mountains
B) english hunt
C) england
D) outside bedroom window
E) hen house

Wrong Response

outside bedroom
winaow

—_—— ——

Figure 1: GPT-4 sensitivity to reordering options:
upon changing the order of choices, GPT-4 changes its
prediction from “hen house” to “outside of bedroom
window” (the example is from CSQA dataset).

cases, even outperforming humans (Chowdhery
et al., 2022; Touvron et al., 2023a; OpenAl, 2023).
However, despite their impressive capabilities, pre-
vious research has highlighted certain limitations.
For instance, LLMs have shown significant sensi-
tivity to small changes in the prompt (Zhao et al.,
2021; Wang et al., 2023a; Zhu et al., 2023). There-
fore, a more comprehensive and conclusive analy-
sis of different aspects that can affect/limit LLMs’
performance is crucial for a fair assessment and
their successful real-world adoption.

One significant limitation lies in the robustness
of LLMs concerning the arrangement of various
components in a prompt, as it directly impacts
the assessment of their capability in understand-
ing and reasoning for specific tasks. Prior re-
search has demonstrated that LL.Ms exhibit sen-
sitivity to the arrangement of few-shot demonstra-
tions (Zhao et al., 2021) and the order of appear-
ance for responses generated by candidate models
when LLMs are used as referees to evaluate quality
(Wang et al., 2023b). Given these findings, it be-
comes pertinent to inquire whether LLMs are also
sensitive to the order of elements of the prompts in
different tasks. For example, how much does the or-
der of options in multiple-choice question (MCQ)
answering tasks impact the LLMs performance.
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In this paper, we investigate the sensitivity of
LLMs to the order of options in MCQs; using it
as a proxy to understand LLMs sensitivity to the
order of prompt elements in in-context learning
paradigm. We demonstrate an example of GPT-
4’s sensitivity to options order in Figure 1, using a
sample from the CSQA benchmark (Talmor et al.,
2018). Notably, by merely rearranging the place-
ment of options among choices A, C, and E, GPT-4
incorrectly predicts the answer to be “outside bed-
room window”. Within this context, we aim to
address the following research questions: (1) To
what extent do LLMs exhibit sensitivity to the or-
der of options in multiple-choice questions? (2)
What factors contribute to LLMs’ sensitivity to the
order of options? (3) How can we improve LLMs’
robustness to the order of options sensitivity?

To answer the first question, we conducted ex-
periments using GPT-4 (OpenAl, 2023), Instruct-
GPT (text-davinci-003) (Ouyang et al., 2022), and
Llama-2-13b (chat version) (Touvron et al., 2023b)
on five different multiple-choice question bench-
marks. Surprisingly, we discovered a substantial
sensitivity gap of up to 85% in the zero-shot setting.
Additionally, in the few-shot setting, we observed
that introducing demonstrations to the prompt only
led to marginal improvements in LLMs’ robust-
ness if their performance increased. Moving on
to the second question, we put forth a conjecture
that the sensitivity of LLMs stems from their posi-
tional bias, wherein they tend to favor certain place-
ments when uncertain about the answer among
the top choices. To validate our conjecture, we
analyzed instances where the models’ predictions
changed upon reordering the options. Furthermore,
we showed that the complexity of the number of
choices, while retaining the top possible answers,
had only a gradual impact on the performance.

Additionally, we discerned patterns in the occur-
rence of top-2 possible choices that influence the
model’s probability of selecting a particular option
or somewhat mitigate LLMs’ positional bias. For
amplifying bias, we found that the optimal strat-
egy involves positioning the top two choices as
the first and last options. Conversely, to mitigate
bias, we recommend placing these choices among
the adjacent options. To validate our findings, we
conducted qualitative evaluations. Addressing the
last question, we demonstrated that employing two
different calibrating approaches led to a notable
improvement in LLMs’ performance, up to 8 per-
centage points. Through these investigations, we

contribute to a deeper understanding of how the
order of options affects LLMs’ decision-making
in MCQs and offer practical solutions to increase
their robustness and accuracy in such scenarios.

2 Background and Experimental Details

This paper focuses on the task of multiple-choice
question answering. In MCQs, the objective is
to identify the correct answer to a given question
from a set of possible options (see Figure 1). To
address this task using LLMs, we present a prompt
in the following format: “Choose the answer to
the question only from A, B, C, D, and E
choices. Question: {question}. Choices: {op-
tions}. Answer:” to the models. This in-context
framing of multiple-choice questions is consistent
with prior research (OpenAl, 2023; Savelka et al.,
2023). Additionally, an illustrative example of our
prompting approach and more experimental details
are presented in Appendix.

Models: We considered three widely-used large
language models, Llama-2-13b (chat version) (Tou-
vron et al., 2023b), InstructGPT (text-davinci-003)
(Ouyang et al., 2022) and GPT-4 (OpenAl, 2023).
This selection aimed to represent a diverse range
of LLMs, encompassing varying sizes and both
open-source and commercial models. We primarily
focus on these models due to their notable supe-
rior performance in the context of multiple-choice
question answering tasks that require reasoning.

Data: To investigate the sensitivity of LLMs to
the order of options and the reasons behind this
phenomenon, we conducted experiments on five
distinct MCQ benchmarks. These benchmarks
are as follows: CSQA (Talmor et al., 2018): A
commonsense multiple-choice question answering
dataset, where each question is accompanied by
5 options. Abstract Algebra, High School Chem-
istry, and Professional Law from the MMLU bench-
mark (Hendrycks et al., 2020): These benchmarks
consist of multiple-choice questions with 4 op-
tions provided for each question. And, Logical
deduction from the Big-Bench dataset (Srivastava
et al., 2022): This benchmark offers multiple-
choice questions with 3 options for each question.
Our selection of these benchmarks was guided by
three specific criteria: (1) Domain diversity: We
aimed to investigate the sensitivity to options or-
der across different domains. (2) Varying option
numbers: In order to explore the impact of the num-
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Tasks GPT-4 InstructGPT Llama-2-13b
Vanila Min Max  Vanila Min Max  Vanila Min Max
CSQA 843 -12.6 +10.3 723  -240 +19.1 62.2 -289 +25.5
Logical Deduction 92.3 -8.1 +5.0 64.0 -394 +34.7 53.0 -30.7 +34.7
Abstract Algebra 57.0 -30.0 +23.0 33.0 -31.0 +39.0 320 -32.0 +53.0
High School Chemistry 719 -23.6 +18.2 448 -28.5 +38.0 40.6 -3277 +45.6
Professional Law 66.1 -12.7 +12.1 48.6 -249 +25.7 43.8 -32.8 +329

Table 1: Zero-shot order sensitivity; all three LLMs display a notable level of sensitivity to the order of options

across various benchmarks.

ber of provided options, we selected benchmarks
with different option counts, namely 3, 4, and 5
options per question. And (3) performance levels:
By incorporating benchmarks with varying levels
of LLMs’ demonstrated performance, we sought to
better understand how model proficiency influences
sensitivity to the options order. Although exploring
a broader range of multiple-choice question tasks
could enhance our comprehension of LLMs’ sensi-
tivity to options’ order, due to constraints related
to OpenAl API costs, we are compelled to narrow
our focus to these five benchmarks.

3 Sensitivity to Order

In this section, we first investigate the sensitivity
of LLMs to the order of options in the zero-shot
setting. Then, we set out to determine whether in-
troducing demonstrations to the prompt in the few-
shot setting can enhance the models’ robustness.
To quantify sensitivity, we calculate the sensitivity
gap, which is the difference between the maximum
and minimum LLMs’ performance when using an
oracle ordering. In other words, we examine how
specific reordering of options affects the models’
predictions when the ground truth is known.

3.1 Zero-shot Sensitivity

The result of LLMs sensitivity to the order of op-
tions is presented in Table 1. Several noteworthy
observations emerge from these results: (1) GPT-
4 demonstrates significantly lower sensitivity gap
compared to other LLMs. This suggests that GPT-4
is less affected by the rearrangement of options in
the prompt, making it more robust in handling such
variations. (2) Even in tasks where GPT-4 achieves
high accuracy levels exceeding 90%, we still ob-
serve a considerable sensitivity gap of 13.1%. This
indicates that even high-performing models are sus-
ceptible to changes in options order, which can im-
pact their fair assessment. (3) Although the sensi-
tivity gap shows some correlation with the models’

performance, tasks where LLMs perform poorly do
not necessarily exhibit higher sensitivity gaps. This
suggests that factors beyond overall accuracy may
also influence LLLMs’ sensitivity to options order.
(4) The domain and the number of options in the
MCAQ tasks seem to affect the model’s performance.
However, we do not observe a clear correlation be-
tween these factors and the sensitivity gap. Given
the poor performance of Llama-2-13b in compari-
son to InstructGPT and GPT-4 on the benchmarks,
in the remainder of paper, we only focus on In-
structGPT and GPT-4.

3.2 Can Demonstrations in Few-shot Setting
Resolve the Sensitivity?

Having demonstrated the high level of sensitivity
when zero-shot prompting LL.Ms, a crucial ques-
tion that arises is whether adding demonstrations
in the few-shot setting to the prompt can enhance
the models’ robustness. To address this, we select
demonstrations in the few-shot setting by sampling
the most similar instances. We achieve this by
computing the Euclidean distance over vector rep-
resentations of questions obtained from Sentence-
RoBERTa (Reimers and Gurevych, 2019). The
result of order sensitivity in the few-shot setting
are visualized in Figure 2 (more detailed results are
provided in Appendix). Each bar in the figure is
accompanied by error bars, representing the range
of maximum and minimum model performance
achievable by reordering the options, with knowl-
edge of the ground truth. From the results, we make
the following observations: Firstly, the sensitivity
gap consistently remains substantial even with the
inclusion of more demonstrations in the few-shot
setting. Furthermore, as performances improve, the
sensitivity gap tends to shrink. However, adding
more demonstrations does not necessarily lead to a
reduction in the sensitivity gap. This highlights that
while demonstrations may marginally improve ro-
bustness, they do not entirely mitigate the models’
sensitivity to options order.
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CSQA Logical Deduction

Abstract Algebra

1-shot InstructGPT
2-shot InstructGPT

mmm 5-shot InstructGPT
1-shot GPT-4

mmm 2-shot GPT-4

mmm 5-shot GPT-4

High School Chemistry Professional Law

Figure 2: Order sensitivity in the few-shot setting: The error bars represent the range of minimum and maximum
accuracy achievable in each task through oracle reordering. Our observations are as follows: (1) The sensitivity gap
consistently remains substantial in the few-shot setting. (2) As performances improve, the sensitivity gap shrinks.
(3) Adding more demonstrations does not necessarily results in a reduction of the gap.

4 Why Do LLMs Show Sensitivity to the
Order of Options?

After analyzing instances in which reordering the
options resulted in a change in LLMs prediction,
we arrive at the following conjecture:

Conjecture 4.1. The sensitivity of LLMs to the or-
der of options in MCQ arises from the interaction
of two colluding forces: (1) Uncertainty of LLMs
regarding the correct answer among the top possi-
ble choices. And (2) positional bias, leading LLMs
to favor specific options based on the order they
appear in, depending on the question.

In this sections, we begin by empirically vali-
dating the conjecture. Then, we identify specific
patterns in the options that either amplify or miti-
gate the model’s bias towards their placement.

4.1 Uncertainty Meets Positional Bias

To empirically validade our conjecture we devise
qualitative experiments aimed at verifying each
underlying reason behind the order sensitivity.

Uncertainty: We assess the uncertainty of LLMs
concerning instances where reordering affects pre-
dictions through a three-step analytical approach.
Let us note that GPT-4 and InstructGPT lack di-
rect confidence measurements, necessitating our
indirect analyses to validate our hypothesis.

(1) The sensitivity gap, which comprises in-
stances where reordering changes the prediction,

Sensitivity Gap
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Figure 3: Correlation between the sensitivity gap and
error rate for GPT-4 and InstructGPT across various
MCAQ tasks (each point represents the performance of
an LLM on one of the benchmarks).

exhibits a strong correlation with the error rate.
The correlation plot between sensitivity gap and
LLMs error rate on different benchmarks is de-
picted in Figure 3. (2) More than 60% of the
sensitive samples identified in GPT-4 also exhibit
sensitivity in InstructGPT. (3) To further verify
models’ uncertainty towards sensitive instances,
we conduct a self-verification process by posing
the following question to the LLMs: “Can more
than one of the choices be a highly probable an-
swer to the question? Please respond with ‘yes’
or ‘no’. Question: {question}. Choices: {op-
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Tasks Sorted Options # Options
Hits@1 Hits@2 Hits@3 Top-2 Top-3 Al
CSQA 81.3 95.1 98.2 84.2 85.1 843
< Logical Deduction 853 95.7 97.9 94.8 923 923
E Abstract Algebra 55.0 72.0 88.0 57.0 52.0 570
©  High School Chemistry 64.0 74.4 76.8 65.5 68.1 719
Professional Law 51.7 62.9 74.1 65.3 65.1 66.1
E CSQA 63.4 823 90.3 70.6 72.1 723
©» Logical Deduction 65.6 93.0 97.6 66.2 64.0 64.0
S Abstract Algebra 28.0 52.0 730 260 290 330
£  High School Chemistry 30.0 51.7 66.9 37.9 40.1 4438
= Professional Law 40.0 63.3 76.7 47.7 50.6 48.6

Table 2: Assessing the accuracy of sorting options with LLLMs and analyzing the impact of reducing options

complexity on models performance.

tions}. Answer:” (we provide an example prompt
in Appendix). Remarkably, LLMs consistently pre-
dict "yes" for over 94% of the sensitive cases across
various benchmarks, further confirming their un-
certainty in these scenarios. It’s worth noting that
prior research highlights the ability of LLMs to
accurately self-approximate and verify their knowl-
edge and confidence (Lin et al., 2022; Kadavath
et al., 2022; Weng et al., 2023). We leverage these
established findings for the basis of our evaluation.
We provide additional evidence regarding the im-
pact of uncertainty on the sensitivity of LLMs by
employing logprobs in the Appendix.

Positional Bias: We aim to explore the effect
of positional bias in LLMs’ order sensitivity by
reducing sample difficulty, retaining only the top
possible choices while preserving their original or-
der of appearance, and eliminating the rest of the
options. The goal is to isolate the influence of po-
sitional bias, disentangling it from other potential
hidden factors impacting order sensitivity. Specif-
ically, our objective is to examine the correlation
between LLMs’ predictions and the order of ap-
pearance among the top choices. This involves
removing the least probable options and observ-
ing the resulting changes in LLMs’ performance.
Minimal changes in performance would indicate
a correlation between the order of top choices and
LLMs’ performance. To identify the top possible
choices for each question, we ask LL.Ms to sort the
options in descending order of probability for an-
swering the question (we provide a sample prompt
in Appendix). We observe that the Hits@1 met-
ric, which measures the accuracy of the gold truth
being the first item in the sorted options, closely
aligns with LLMs’ overall task accuracy. Moreover,
over 95% and 100% of instances that LLMs pre-

Tasks Amplify Mitigate

Pattern Ord Pattern Ord
< S-option 2 AE 3 BA
£ 4-option 2 BD 1 AB
O  3-option 2 AC 3 CB
. J-option 4 EA 1 BC
& 4-option 4 EA 3 CB
= 3-option 4 CA 3 CB

Table 3: Optimal patterns and their best order instan-
tiation for amplifying and mitigating positional bias in
different LLMs based on available number of options in
multiple-choice questions.

dict correctly are captured in Hits@2 and Hits@3,
respectively. The results of Hits@ metrics for both
GPT-4 and InstructGPT are provided in Table 2.

With the successful identification of the top pos-
sible choices by asking LL.Ms to sort the options,
we proceed to investigate the impact of removing
the least probable choices on the models’ perfor-
mance, aiming to establish the presence of posi-
tional bias. The results of retaining only the top-2
and top-3 choices after sorting the options using
LLMs themselves, while preserving their original
order of appearance, are presented in Table 2. We
observe that despite achieving high Hits@2 and
Hits@3 scores (covering all the samples where
models initially predicted them correctly), LLMs’
performance remains nearly unchanged or exhibits
incremental improvements or declines. This obser-
vation provides further evidence of the impact of
positional bias in order sensitivity.

4.2 'What Patterns Amplify or Mitigate the
Positional Bias?

In here we investigate the impact of certain patterns
in the options on the intensity of positional bias.
We categorize our findings based on number of op-
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GPT-4 InstructGPT

Tasks

Amplifying-Bias  Mitigating-Bias ~ Amplifying-Bias  Mitigating-Bias
CSQA 62.9 227 71.7 383
Logical Deduction 42.0 10.1 61.7 0.9
Abstract Algebra 52.8 15.1 35.7 25.7
High School Chemistry 21.5 229 25.7 25.7
Professional Law 31.5 9.7 20.1 25.9

Table 4: Percentage of initial sensitivity gap covered using the identified patterns to amplify and mitigate positional
bias. A higher percentage in amplifying bias and a lower percentage in mitigating bias indicate better performance

in this context.

tions and the target large language model. We limit
our investigation to the order of the top-2 choices
(extracted from the sorted options list) in the op-
tions and their impact on the models’ prediction
to identify influential patterns. We defer further
analysis of patterns involving options beyond the
top-2 choices to future research.

Our goal is to identify patterns that amplify the
positional bias, increasing the probability of the
LLM to choose one answer over another based on
their position, or mitigate the positional bias, de-
creasing dependency of the LLM to choose one
answer over another based on their position. Upon
investigating the order and placement of top-2
choices in instances where reordering changes the
prediction, we discover four different patterns:
Pattern 1: First choice in top-2 appear earlier than
the second choice in the options, and having less
gap (less number of other choices) between them
helps the goal more, i.e., to amplify or mitigate the
positional bias. Pattern 2: First choice in top-2
appear earlier than the second choice in the options,
and having more gap between them helps the goal
more. Pattern 3: First choice in top-2 appear
later than the second choice in the options, and
having less gap between them helps the goal more.
Pattern 4: First choice in top-2 appear later than
the second choice in the options, and having more
gap between them helps the goal more.

The best pattern, along with its best correspond-
ing order instantiation (placement of top-2 choices),
for amplifying or mitigating positional bias based
on the type of LLMs and the number of options
in the multiple-choice question task is presented
in Table 3. For instance, to amplify the positional
bias between two choices with the objective of in-
creasing the probability of selecting the first choice
as the answer for GPT-4, pattern number 2 proves
to be the most effective. The ideal instantiation of
this pattern is to place the first choice in option A
and the second choice in option E. Investigating the

positional bias in LLMs with different numbers of
options in the MCQ task reveal interesting findings.
In both GPT-4 and InstructGPT, the most influen-
tial pattern to amplify the bias remains the same
while for mitigating bias the best pattern jumps be-
tween first and third patterns. Furthermore, there is
a notable contrast between InstructGPT and GPT-4
in their reactions to patterns regarding the order of
appearance in the top-2. Overall, to mitigate bias,
it appears to be more effective for the top-2 choices
to either appear in the first two options or in the
second and third options. Conversely, for amplify-
ing bias, it is preferable for the top-2 choices to be
positioned in the first and last options.

To assess the impact of discovered patterns on
LLMs’ order sensitivity, we conducted two sets of
experiments. Firstly, to confirm the effectiveness
of patterns amplifying positional bias, we selected
the best instantiation of each pattern and measured
the performance improvement achieved by placing
only the top-2 choice (where the ground truth is
at top-1, and top-2 is obtained by sorting the op-
tions) in that instantiation. Meanwhile, we kept
the order of appearance for other choices. Also,
we measured the decrease in LLMs’ performance
by using the reverse instantiation of the pattern.
Our goal here, is to assess the extent to which the
sensitivity gap identified in Section 3.1 could be
achieved simply by utilizing the most impactful
placement. As a result, a higher percentage of cov-
erage over the original sensitivity gap here means
that the identified pattern did a better job at ampli-
fying bias. let us note, that we do not permute the
options after rearranging them based on the most
effective pattern to calculate the gap. Instead, we
determine the gap by subtracting the LLLM accuracy
for the arrangement with the highest impact from
its reverse.

Secondly, to validate the patterns mitigating the
bias, we performed a similar experiment as in Sec-
tion 3.1, but this time, we fixed the top-2 choices in
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Tasks GPT4 InstructGPT
Majority MEC Majority MEC
CSQA 86.1 (+1.8) 81.2(=3.1) 74.7(+2.4) 67.3(-5.0)
Logical Deduction 94.3 (42.0) 974 (+5.1) 72.0(+8.0) 57.1(—6.9)
Abstract Algebra 57.0(0.0) 59.0 (+2.0) 38.0(+5.0) 31.0(—2.0)
High School Chemistry 71.9(0.0) 77.2(+5.3) 458 (+1.0) 39.4(—5.4)
Professional Law 67.3(+1.2) 663 (4+0.2) 543(+5.7) 472(—1.4)

Table 5: Impact of calibration methods on LLMs’ performance.

the placements provided in Table 3 and reordered
all other options accordingly. The goal here is to
demonstrate how much of the sensitivity gap can be
minimized by following identified mitigating pat-
terns. As a result, a lower percentage of coverage
over the original sensitivity gap here means that the
identified pattern did a better job at mitigating bias.
Since the Logical Deduction benchmark has only 3
choices there well be only one permutation after re-
arranging the options based on the most impactful
pattern. Thus, we calculate the gap as the absolute
difference between the initial performance and the
performance after rearranging the options.

Table 4 presents the percentage of initial sensi-
tivity gap covered (initial sensitivity gaps are from
Table 1) by the optimal pattern for amplifying and
mitigating positional bias, with more detailed re-
sults available in Appendix. A higher percentage
in amplifying bias and a lower percentage in miti-
gating bias indicate better performance of the iden-
tified pattern. The amplifying patterns demonstrate
sensitivity gap coverage ranging from 20% to 72%,
while the mitigating bias pattern ranges from 0.9%
to 38%. These results validate the effectiveness
of the identified pattern for both amplifying and
mitigating bias. Additionally, in most cases, the
amplifying pattern covers a considerably greater
portion of the sensitivity gap comparing to the mit-
igating pattern. While comparing the gap in Table
1 with the gap resulting from applying mitigation
patterns may not be entirely equitable due to the sig-
nificantly lower number of possible permutations,
the considerably lower gap compared to amplify-
ing patterns provides additional evidence for the
impact of mitigation patterns. It is important to
highlight that the patterns we have identified for
amplifying bias can serve as valuable insights for
enhancing model performance or launching adver-
sarial attacks against them. Furthermore, the pat-
terns we have established for mitigating bias can
play a crucial role in shaping benchmark design
and guiding annotating efforts to create less biased

evaluation benchmarks for LLMs.

5 Calibrating LLMs for MCQ Tasks

We conduct an in-depth investigation into how large
language models react to changes in the order of
options, and investigate the reasons behind their
sensitivity to such changes. Through our explo-
ration, we have observed that LLMs are highly
responsive to the sequence in which options are
presented. This has led us to a critical juncture
where we need to focus on methods to improve the
models’ resilience to variations in options order,
ensuring more trustworthy evaluations.

One potential solution we have considered is the
calibration of LLMs predictions. The outcomes
of calibrating LLMs predictions to mitigate order
sensitivity by taking majority vote over models
prediction in 10 random reorders in a simple boot-
strapping approach (Stickland and Murray, 2020;
Hou et al., 2023), are provided in Table 5. Our
analysis has unveiled a significant observation: em-
ploying a majority vote approach for evaluating
LLMs results in a substantial performance improve-
ment of up to 8 percentage points. Furthermore,
while LLMs’ performance on benchmarks featur-
ing four options might be somewhat inferior to
those with three or five options, GPT-4 displays a
greater resilience following prediction calibration.
In contrast, InstructGPT demonstrates minimal per-
formance shift in specific contexts like CSQA and
high school chemistry.

We have also incorporated the approach of Mul-
tiple Evidence Calibration (MEC) introduced by
Wang et al. (2023b). In their work, they propose
to counteract LLMs’ sensitivity by prompting the
model to generate an explanation before providing
its prediction. We adopt their provided prompt for
solving MCQ tasks. The impact of applying MEC
calibration on MCQ tasks are outlined in Table 5.

The results from InstructGPT performance re-
veal that the introduction of MEC calibration re-
sults in a consistent decrease in model performance.
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This behavior contradicts the outcomes achieved
through majority voting and underscores the un-
suitability of MEC calibration for multiple-choice
question tasks. In the case of GPT-4, the integra-
tion of MEC calibration also yields contrasting
outcomes with respect to majority voting, particu-
larly evident in benchmarks such as CSQA, abstract
algebra, and high school chemistry. For logical de-
duction and professional law benchmarks, while
both majority voting and MEC calibration result
in improving the model performance, the amount
of improvement differs considerably, thus casting
doubt on the reliability of the MEC approach in
GPT-4 as well.

6 Related Work

Large language models (LLMs) show remarkable
accomplishments and capabilities on various NLP
tasks, including answering multiple-choice ques-
tions. In order to ascertain the dependability of
LLMs’ proficiency, it becomes imperative to delve
into the robustness of their performance when sub-
jected to subtle changes in the input.

LLMs and multiple-choice questions In recent
years, multiple-choice questions have been intro-
duced as an evaluation method for assessing the
reasoning and fact-retrieval capabilities of models
(Richardson et al., 2013; Talmor et al., 2018; Clark
et al., 2020; Hendrycks et al., 2020). Despite the
intricate nature of these tasks, significant strides
have been made by large language models achiev-
ing human-like performances across various MCQ
benchmarks (Liévin et al., 2022; Robinson et al.,
2022; OpenAl, 2023; Savelka et al., 2023; Anil
et al., 2023). However, the ability of these tasks to
effectively gauge the reasoning and factual knowl-
edge of LLMs, along with the reliability of the
evaluation settings, presents substantial challenges
that warrant deeper investigation.

Sensitivity of LLMs With the growing promi-
nence of LLMs in addressing NLP tasks, significant
attention has been devoted to examining the robust-
ness and vulnerabilities of these models. These
efforts predominantly focus on two distinct levels:
(1) At the instance level, researchers investigate
the robustness of LLMs by studying how modi-
fications or adversarial attacks impact individual
instances. For example, Zhao et al. (2021) reveal
LLMs’ sensitivity to prompt choice and demon-
strations order in in-context learning (ICL). Hou

et al. (2023) show LLMs are sensitive to the or-
der of sequential interaction histories when used as
conditions in ranking candidates for recommender
systems. Wang et al. (2023a) launch adversarial
attacks on LLM predictions through modifications
to ICL demonstrations. Wang et al. (2023b) also
explore LLMs’ susceptibility to the order of re-
sponse appearances from candidate models when
LLMs serve as referees. (2) At the alignment level,
attempts are made to deliberately misalign LLMs
to manipulate their behavior, often referred to as
"jailbreaking." Perez and Ribeiro (2022); Zou et al.
(2023) achieve misalignment by adversarially at-
tacking the prompt. In a similar vein, Wolf et al.
(2023) propose a theoretical framework that ex-
poses limitations in aligning LL.Ms, demonstrating
there exist prompts that can cause models to exhibit
any behavior with finite probability. Furthermore,
Wei et al. (2023) propose that jailbreaking arises
from conflicting objectives and mismatched gen-
eralization, utilizing their hypothesis to develop
effective jailbreak strategies. Simultaneous with
our work, Zheng et al. (2023) noted a similar sen-
sitivity of LLMs to changes in options position
within multiple-choice questions due to an inherent
"selection bias." They argue that this bias manifests
as a preference for specific option IDs. However,
we find that by exclusively focusing on option po-
sition rather than the overall order, the observed
sensitivity gap consistently remains less than 50%
of demonstrated gap in our re-ordering approach
(Table 1) across all benchmarks. This underscores
that, in addition to selection bias, positional bias
plays a crucial role in the sensitivity of LLMs in
regard to MCQ tasks.

7 Conclusion

We investigate the inherent sensitivity of language
models to the arrangement of options in multiple-
choice questions. Upon measuring the intensity
of LLMs sensitivity, our aim was twofold: to pin-
point the underlying source of this sensitivity and
propose potential solutions to enhance the models’
robustness. Our evaluations unequivocally reveal
that LLMs not only exhibit pronounced sensitiv-
ity to options order, but also that this sensitivity
diminishes only slightly when demonstrations are
integrated into the few-shot setting if performance
increases. In seeking to uncover the root cause of
order sensitivity, we conjecture that the issue arises
from LLMs’ positional bias, particularly manifest-
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ing in uncertain instances. We verify our conjecture
by conducting diverse experiments that highlight
impactful patterns that either magnify or mitigate
this positional bias. Finally, to improve the robust-
ness of LLMs’ sensitivity against options order, we
consider two calibration techniques leading to up to
8 percentage points improvement across different
models and benchmarks.

8 Limitations

While our primary focus in this work has been on
multiple-choice questions, we have also detected a
parallel phenomenon—albeit with varying degrees
of sensitivity—in other tasks involving multiple
fragments (e.g. the options in MCQ) within in-
puts. This encompasses tasks like odd word detec-
tion, sorting lists of items, and ranking documents.
While these observations have been noted, further
exploration into these tasks is reserved for future
efforts. Moreover, we provide validation for our
conjecture on the reason behind LLMs’ positional
bias through detailed experimentation. Despite con-
vincing outcomes, a deeper comprehension of the
issue’s origin necessitates a thorough exploration
of the training data which is hindered by the size
and accessibility of LLMs training data.

Although both calibration methods adopted in
this work display promising outcomes, contribut-
ing to the improvement of model performance, they
are not without their respective limitations. Ma-
jority voting is computationally expensive, while
MEC diverges significantly from majority voting,
casting doubts on its applicability to MCQ tasks.
As a result, in order to establish a reliable and
accurate evaluation framework for LLMs in the
context of multiple-choice questions, it is imper-
ative to develop more efficient calibration strate-
gies. Moreover, refining the evaluation metrics
holds the potential to improve LLLMs’ ability to
withstand the challenges posed by options order
sensitivity. These avenues present opportunities
for in-depth exploration in future works. Finally,
we only conduct experiments with GPT-4, Instruct-
GPT, and Llama-2-13b over five different MCQ
benchmarks. Further investigation on other LLMs
and broader set of benchmarks can shed more light
on the reason behind models sensitivity to the order
of options and possible solutions to improve their
robustness.
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A Example Prompts

We provide example prompts for answering
multiple-choice questions, self-assessing the
LLM’s uncertainty in answering the question, and
arranging the choices from the most probable to
the least probable as the answer to the question, as
outlined below:

Prompt A.1: Example prompt for answering MCQ

Choose the answer to the question only from A,
B, C, D, and E choices.

Question: Where would I not want a fox?
Choices: A) hen house B) english hunt C)
mountains D) outside bedroom window E) england
Answer:

Prompt A.2: Example prompt for self-assessment
of uncertainty

Can more than one of the choices be a highly
probable answer to the question? Please respond
with ‘yes’ or ‘no’.

Question: Where would I not want a fox?
Choices: A) hen house B) english hunt C)
mountains D) outside bedroom window E) england
Answer:

2015



Prompt A.3:
options

Example prompt for sorting the

Sort the choices from the most probable to
the least probable for answering the question
without providing extra explanation.

Question: Where would I not want a fox?
Choices: A) hen house B) english hunt C)
mountains D) outside bedroom window E) england
Answer:

J

We employed identical prompts for all LLMs,
except for Llama-2-13b, where we also wrap the
prompt within the necessary tags.

B Experimental Details

To measure the sensitivity gap across all bench-
marks and LLMs, we exclusively consider 10 ran-
domly chosen ordering of options. In the instance
of the Logical Deduction benchmark, where only
6 ordering of options were available, we calculate
the sensitivity gap over all 6 possible orders. Addi-
tionally, for the few-shot demonstrations, we ran-
domly select 100 samples and extract the most sim-
ilar demonstrations from this set using Sentence-
RoBERTa (Reimers and Gurevych, 2019).

C Detailed Results

Detailed results of order sensitivity in few-shot set-
ting are provided in Tables 7 and 8 for InstructGPT
and GPT-4, respectively. Moreover, we present
the impact of the identified patterns aimed at am-
plifying and mitigating positional bias on order
sensitivity in Table 9.

D Assessing the Impact of Uncertainty on
the Sensitivity of LLMs Using
Logprobs

In this section, we conduct three pivotal experi-
ments using GPT-4’s logprobs to investigate the
connection between model sensitivity and uncer-
tainty. In our first experiment, we performed a
t-test to compare the probabilities of the predicted
choices in sensitive samples (where reordering
changes the prediction) against non-sensitive sam-
ples (where reordering does not affect the predic-
tion). We provide the resulted p-values in Ta-
ble 6. The results further demonstrate the mod-
els uncertainty in sensitive samples by showing a
statistically significant higher probability for non-
sensitive samples.

In our second experiment, we examined the cor-
relation between the degree of sensitivity in each
sample and the probability of the predicted answer.

Tasks P-values p
CSQA 8.6e-10 -0.63
Logical Deduction 1.9e-10 -0.45
Abstract Algebra 6.8¢-5 -0.59
High School Chemistry 2.9e-13 -0.7
Professional Law 4.0e-10 -0.62

Table 6: We investigate the impact of the uncertainty on
the LLMSs’ sensitivity by utilising GPT-4’s logprobs. We
measure the p-value between the probabilities of the pre-
dicted choices in sensitive samples against non-sensitive
ones. Moreover, we measure Spearman’s correlation p
between reordering entropy and the probability of the
original answer.

We measure the entropy of predictions over 10
random reorders, where we calculate the probabil-
ity of each prediction by dividing the number of
times that answer being predicted by 10, and cor-
relating this with the probability of the answer in
the original question. The Spearman’s correlation
coefficients between reordering entropy and the
probability of the original answer further validated
this relationship across our benchmarks is provided
in Table 6. We observe a significant negative cor-
relation. This finding further suggests a profound
link between sensitivity and model uncertainty.

In the third experiment, we focus on the average
probability of the predicted answer based on the
position of the choices using GPT-4 logprobs. Our
initial observations revealed an almost uniform dis-
tribution of predicted choice positions. However,
when we delved deeper and calculated the Stan-
dard Deviation for the average probability based on
choice position, the results were quite interesting.
For benchmarks such as CSQA, Logical Deduction,
and Professional Law, we noticed an almost negli-
gible positional bias, with the Standard Deviation
hovering around 0.5%. Conversely, for Abstract
Algebra and High School Chemistry, a slight pref-
erence emerged: GPT-4 marginally favored choice
"C" while showing a slight disinclination towards
choice "A", with a Standard Deviation of around
3%.
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1-shot 2-shot S-shot

Tasks
Vanila Min Max Vanila Min Max Vanila Min Max
CSQA 742 534 921 747 60.7 91.6 763 593 91.1
Logical Deduction 61.0 16.0 970 720 177 973 647 173 96.0
Abstract Algebra 36.0 3.0 720 38.0 9.0 730 34.0 7.0 730
High School Chemistry 50.7 19.7 89.7 522 216 842 5277 246 832
Professional Law 52.1 223 747 533 293 753 537 255 752
Table 7: Few-shot order sensitivity in InstructGPT.
Tasks 1-shot 2-shot 5-shot
Vanila Min Max Vanila Min Max Vanila Min Max
CSQA 872 79.1 943 86.3 78.2 947 86.7 772 933
Logical Deduction 923 843 973 943 883 97.7 963 89.0 993
Abstract Algebra 58.0 31.0 820 60.0 32.0 79.0 58.0 34.0 780
High School Chemistry 729 492 91.1 67.1 537 90.6 685 477 91.6
Professional Law 712  57.7 80.7 71.7 59.7 81.3 70.6 584 83.6
Table 8: Few-shot order sensitivity in GPT-4.
Tasks GPT-4 InstructGPT
Amplifying-Bias Mitigating-Bias Amplifying-Bias Mitigating-Bias
Min Max Min Max Min Max  Min Max
CSQA -8.0 +6.4 -4.8 +0.4 -16.0 +149 -7.7 +8.8
Logical Deduction -3.1 +24  +13 +1.3  -284 +17.3  +0.7 +0.7
Abstract Algebra -19.0 +9.0 -7.0 +1.0 -17.0 +8.0 -9.0 +9.0
High School Chemistry -7.0 +2.0 -11.6 20 -11.6 +55 93 +7.8
Professional Law -3.8 +4.0 +32 +5.6 -6.4 +3.7  -7.6 +5.5

Table 9: Sensitivity gap after applying the identified patterns to amplify and mitigate positional bias.
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