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Abstract

Morphological modeling in neural machine
translation (NMT) is a promising approach to
achieving open-vocabulary machine translation
for morphologically-rich languages. However,
existing methods such as sub-word tokeniza-
tion and character-based models are limited to
the surface forms of the words. In this work,
we propose a framework-solution for model-
ing complex morphology in low-resource set-
tings. A two-tier transformer architecture is
chosen to encode morphological information
at the inputs. At the target-side output, a multi-
task multi-label training scheme coupled with
a beam search-based decoder are found to im-
prove machine translation performance. An
attention augmentation scheme to the trans-
former model is proposed in a generic form to
allow integration of pre-trained language mod-
els and also facilitate modeling of word order
relationships between the source and target lan-
guages. Several data augmentation techniques
are evaluated and shown to increase translation
performance in low-resource settings. We eval-
uate our proposed solution on Kinyarwanda <>
English translation using public-domain paral-
lel text. Our final models achieve competitive
performance in relation to large multi-lingual
models. We hope that our results will motivate
more use of explicit morphological information
and the proposed model and data augmenta-
tions in low-resource NMT.

1 Introduction

Neural Machine Translation (NMT) has become
a predominant approach in developing machine
translation systems. Two important innovations in
recent state-of-the-art NMT systems are the use
of the Transformer architecture (Vaswani et al.,
2017) and sub-word tokenization methods such
as byte-pair encoding (BPE) (Sennrich et al.,
2016). However, for morphologically-rich lan-
guages(MRLs), BPE-based tokenization is only
limited to the surface forms of the words and less

grounded on exact lexical units (i.e. morphemes),
especially in the presence morphographemic al-
ternations (Bundy and Wallen, 1984) and non-
concatenative morphology (Kastner et al., 2019).
In this work, we tackle the challenge of model-
ing complex morphology in low-resource NMT
and evaluate on Kinyarwanda, a low-resource and
morphologically-rich language spoken by more
than 15 million people in Eastern and Central
Africal.

To model the complex morphology of MRLs
in machine translation, one has to consider both
source-side modeling (i.e. morphological encod-
ing) and target-side generation of inflected forms
(i.e. morphological prediction). We explicitly use
the morphological structure of the words and the
associated morphemes, which form the basic lex-
ical units. For source-side encoding, morphemes
are first produced by a morphological analyzer be-
fore being passed to the source encoder through
an embedding mechanism. On the target side, the
morphological structure must be predicted along
with morphemes, which are then consumed by an
inflected form synthesizer to produce surface forms.
Therefore, this approach enables open vocabulary
machine translation since morphemes can be mean-
ingfully combined to form new inflected forms not
seen during training.

Previous research has shown that certain adap-
tations to NMT models, such as the integration
of pre-trained language models (Zhu et al., 2020;
Sun et al., 2021), can improve machine transla-
tion performance. We explore this idea to im-
prove low-resource machine translation between
Kinyarwanda and English. Our model augmenta-
tion focuses on biasing the attention computation
in the transformer model. Beside augmentation
from pre-trained language model integration, we
also devise an augmentation based solely on the

"https://en.wikipedia.org/wiki/Kinyarwanda
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word order relationship between source and target
languages. These model augmentations bring sub-
stantial improvement in translation performance
when parallel text is scarce.

One of the main challenges facing machine trans-
lation for low-resource languages obviously is par-
allel data scarcity. When the training data has
limited lexical coverage, the NMT model may
tend to hallucinate (Raunak et al., 2021; Xu et al.,
2023). Additionally, for a morphology-aware trans-
lation model, there is a problem of misaligned vo-
cabularies between source and target languages.
This makes it harder for the model to learn to
copy unknown words and other tokens that need
to be copied without translation such as proper
names. To address these challenges, we take a
data-centric approach by developing tools to extract
more parallel data from public-domain documents
and websites. We also use various data augmen-
tation techniques to increase lexical coverage and
improve token copying ability where necessary. By
combining these data-centric approaches with our
morphology-aware NMT model, we achieve com-
petitive translation performance in relation to larger
multi-lingual NMT models. To have a comprehen-
sive evaluation, we evaluate our models on three
different benchmarks covering different domains,
namely Wikipedia, News and Covid-19.

In short, our contribution in this work can be
summarized as follow:

* We propose and evaluate methods for
source-side and target-side morphological
modeling in neural machine translation of
morphologically-rich languages.

* We propose a generic method for attention
augmentation in the transformer architecture,
including a new cross-positional encoding
technique to fit word order relationships be-
tween source and target language.

* We evaluate on Kinyarwanda<+English trans-
lation across three benchmarks and achieve
competitive performance in relation to exist-
ing large multi-lingual NMT models.

* We release tools for parallel corpus construc-
tion from public-domain sources and make
our source code publicly available to allow
reproducibility?.

Zhttps://github.com/anzeyimana/KinMT_NAACL2024

2 Methods

Machine translation (MT) can be considered as the
task of accurately mapping a sequence of tokens
(e.g. phrase, sentence, paragraph) in the source lan-
guage S = (s1, S2, ...S,) to a sequence of tokens
in the target language T = (t1, to, ...t;,) with the
same meaning. The learning problem is then to esti-
mate a conditional probability model that produces
the optimal translation 7™, that is:

T* = argmax P(T'|S,T<; 0),
T

where T accounts for the previous output con-
text and © are parameters of the model (that is a
neural network in the case of NMT).

In this section, we describe our model archi-
tecture as an extension of the basic Transformer
architecture (Vaswani et al., 2017) to enable mor-
phological modeling and attention augmentation.
We also describe our data-centric approaches to
dataset development and augmentation in the con-
text of the low-resource Kinyarwanda<«>English
machine translation.

2.1 Model architecture

The transformer architecture (Vaswani et al., 2017)
for machine translation uses a multi-layer bidirec-
tional encoder to process source language input,
and then feeds to an auto-regressive decoder to pro-
duce the target language output. Our adaptation of
the transformer encoder is depicted in Figure 1
while the decoder is shown in Figure 2. They
both use pre-LayerNorm configuration (Nguyen
and Salazar, 2019) of the transformer.

The attention module of the transformer archi-
tecture is designed as querying a dictionary made
of key-value pairs using a softmax function and
then projecting a weighted sum of value vectors to
an output vector, that is:

Attention(Q, K, V) = Softmax(Qj% W,
(1

where K,Q,V are projections of the hidden rep-
resentations of inputs at a given layer. Given a
hidden representation of a token v; attending to
a sequence of tokens with hidden representations
(w1, w3, ...wy, ), the output of the attention module
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corresponding to v; can be formulated as:
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where the logits ;; =

with Wy € R&>4K Wy € R¥4K and Wy €
R¥*4v being learnable projection matrices. d, dg
and dy are the dimensions of the input, key and
value respectively.
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Figure 1: Encoder architecture

2.1.1 Attention augmentations

Ke et al. (2020) proposed to add bias terms to the
logits cv;; in Equation 2 as untied positional encod-
ing, disentangling a mixing of token and position
embeddings. We generalize this structure by al-
lowing more biases to be added to the logits «;; in
Equation 2.

Specifically, we explore augmenting two atten-
tion components in the transformer architecture by
making the following extensions:

1. For Source-to-source self-attention at each
encoder layer: We integrate embeddings from
a pre-trained BERT (Devlin et al., 2019)
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Figure 2: Decoder architecture

model. This adds rich contextual informa-
tion as BERT models are pre-trained on large
monolingual data and perform well on lan-
guage understanding tasks. We also add posi-
tional encodings at this level, similar to (Ke
et al., 2020). Therefore, the logits «;; at en-
coder layer [ become:
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+ @V VT,
where :cl(l) and l’;l) are hidden representations
of source tokens at positions ¢ and j respec-
tively of the encoder layer [; p; and p; are
absolute position embeddings; r;_; is a rela-
tive position embedding; b; is a pre-trained
BERT embedding of token at position j and



Wg), WI((l)v Ug, Uk, chl) and VI((Z) are learn-
able projection matrices. We note that this for-
mulation requires the source encoder to match
the same token vocabulary as the BERT em-

bedding model.

2. For target-to-source cross-attention at each
decoder layer [, we also augment the atten-
tion logits with pre-trained BERT embeddings
of the source sequence. Additionally, we
propose a new type of embedding: cross-
positional embeddings. These are embed-
dings that align target sequence positions to
input sequence positions. Their role can be
thought as of learning word order relation-
ships between source and target languages.
Their formulation is closely similar to the
untied positional encoding proposed by (Ke
et al., 2020), but they cross from target to
source positions, thus, we name them cross-
positional (XPOS) encodings. The attention
logits o, ; at this level thus become:

' 1 Do Oy (L) (0
oy = = [ W) W)
+ iU b;Uk) " + 7y ¥
Dy (1 '«
+ (V) 0V,
where ygl) is the hidden representation of the

target token at position ¢ and xg-L) is the hid-
den representation of source token at posi-
tion j of the final encoder layer L. p; and
p;» are absolute target and source XPOS em-
beddings, 7”;'—1‘ is a target-to-source relative
XPOS embedding, b; is a pre-trained BERT
embedding of source token at position j and

Wl Wi, UG, Uge, V" and V! are the

learnable projection matrices.

2.1.2 Morphological encoding

For most transformer-based encoder-decoder mod-
els, the first layer inputs are usually formed by map-
ping each sub-word token, such as those produced
by BPE, to a learnable embedding vector. How-
ever, BPE-produced tokens do not always carry ex-
plicit lexical meaning. In fact, they cannot model
non-concatenative morphology and other morpho-
graphemic processes as these BPE tokens are solely
based on the surface forms. Inspired by the work
of Nzeyimana and Rubungo (2022), we explore
using a small transformer encoder to form a word-

compositional model based on the morphological
structure and the associated morphemes.

Depicted at the input layers in Figure 1
and Figure 2, the morphological encoder or
Morpho-Encoder is a small transformer encoder
that processes a set of four embedding units at
the word composition level: (1) the stem, (2) a
variable number of affixes, (3) a coarse-grained
part-of-speech (POS) tag and, (4) a fine-grained
affix set index. An affix set represents one of many
frequent affix combinations observed empirically.
Thus, the affix set index is equivalent to a fine-
grained morphological tag.

The Morpho-Encoder processes all word-
compositional units as a set without any ordering
information. This is because none of these units
can be repeated in the same word. In cases of stem
reduplication phenomena (Inkelas and Zoll, 2000),
only one stem is used, while the reduplication struc-
ture is captured by the affix set. At the output of
the Morpho-Encoder, hidden representations corre-
sponding to units other than the affixes are pulled
and concatenated together to form a word hidden
vector to feed to the main sequence model. In ad-
dition to this, a new stem embedding vector at the
sequence level is also concatenated with the pulled
vectors from the Morpho-Encoder to form the final
hidden vector representing the word.

In our experiments, we use 24,000 most frequent
affix combinations as affix sets. Any infrequent
combination of affixes can always be reduced to
a frequent one by removing one or more affixes.
However, all affixes still contribute to the word
composition via the Morpho-Encoder.

We note that the Morpho-Encoder applies to
both the encoder and the auto-regressive decoder’s
input layers for all types of tokens. While the word-
compositional model above relates mostly to in-
flected forms, we are able generalize this to other
typed of tokens such as proper names, numbers
and punctuation marks. For these other tokens, we
process them using BPE and consider the resulting
sub-word tokens as special stems without affixes.

2.1.3 Target-side morphology learning

Considering the morphological model employed
at the input layer, the decoder outputs for a
morphologically-rich target language must be used
to predict the same types of morphological units
used at the input layer, namely, the stem, affixes,
the POS tag and the affix set. This becomes a multi-
task and multi-label (MTML) classification prob-
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lem which requires optimizing multiple objectives,
corresponding to 4 types loss functions:

s = lop(fs(h™),ys)

0D = tpop(fa(h?),y?),vie A
tp = Lop(fr(hY),yp)

Cas = Lop(fas(h"),yas),

&)

where h’ is the decoder output, A is the set of affix
indices, fs, fa, fp, and fag are prediction heads
transforming the decoder output to probabilities
over the sets of stems, affixes, POS tags and affix
sets respectively. ys, ya, yp, and yag respectively
correspond to the stem, affixes, POS tags and affix
set of a target word y. £ is a cross-entropy loss
function and /o is a binary cross-entropy loss
function.

A naive approach to the MTML problem con-
sists of summing up all the losses and optimiz-
ing the sum. However, this can lead to a biased
outcome since individual losses take on different
ranges and have varying levels of optimization diffi-
culty. Complicating the problem further is the fact
that individual objectives can contribute conflicting
gradients, making it harder to train the multi-task
model with standard gradient descent algorithms.
A potential solution to this problem comes form the
multi-lingual NMT literature with a scheme called
Gradient Vaccine (Wang et al., 2020). This method
attempts to mediate conflicting gradient updates
from individual losses by encouraging more geo-
metrically aligned parameter updates. We evaluate
both the naive summation and the Gradient Vaccine
methods in our experiments.

2.1.4 Morphological inference

The decoder architecture presented in subsection
2.1.3 only predicts separate probabilities for stem,
POS tag, affix set and affixes. But the translation
task must produce surface forms to generate the
output text. The challenge of this task is that greed-
ily picking the items with maximum probability
may not produce the best output and may even pro-
duce incompatible stems and affixes, that is, we
must produce a stem and affixes of the same in-
flection group (e.g. verb, noun, pronoun, etc..). It
is also known that beam search algorithm gener-
ally produces better sequence outputs than greedy
decoding. Therefore, we design an adaptation of
the beam search algorithm, where at each step, we
produce a list of scored candidate surface forms
together with their morphological information to

feed back to the decoder’s input. The design cri-
teria is to make sure the top predicted items can
form compatible pairs of stems and affix sets. The
main requirement for the algorithm is the avail-
ability of a morphological synthesizer that can pro-
duce surface forms given an inflection group, the
stem and compatible affixes. The morphological
synthesizer must also respect all existing morpho-
graphemic rules for the language. We we provide
detailed pseudocode for the decoding algorithm in
Appendix C. The algorithm has 4 basic steps:

1. voting on inflection group
2. filtering out less probable stems and affixes
3. selecting target affixes, and finally

4. morphological synthesis for each final stem
and affixes combination.

2.2 Dataset

Dataset development and data-centric approaches
to neural machine translation (NMT) are of
paramount importance for low-resource languages.
This is because the most limiting factor is the
scarcity of parallel data. While describing the data
collection process and pre-processing steps is im-
portant, it is equally important to fully disclose the
data provenance as there are typically a limited
number of sources of parallel data per language.
We conduct our experiments using public-domain
parallel text. In this section, we describe our par-
allel data gathering process as well as the reliable
sources we used to source Kinyarwanda-English
bitext. We also describe simple data augmentation
techniques we used to boost the performance of
our experimental models. Due to copyright and
licensing restrictions, we cannot redistribute our
experimental dataset. Instead, we release the tools
used for their construction from original sources.
The sizes of the parallel datasets we gathered are
provided in Appendix B.

2.3 Official Gazette

Official gazettes are periodical government journals
typically with policy and regulation content. When
a country has multiple official languages, content
may be available as parallel text with each para-
graph of the journal available in each official lan-
guage. We took this opportunity and collected an
experimental parallel text from the Official Gazette
of the Republic of Rwanda®, where Kinyarwanda,

Shttps://www.minijust.gov.rw/official-gazette
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French, English and Swabhili are all official lan-
guages. This is an important source of parallel text
given that it covers multiple sectors and is usually
written with high standards by professionals, part
of a dedicated government agency.

The main content of Rwanda’s official gazette
is provided in a multi-column portable document
format (PDF), mostly 3 columns for Kinyarwanda,
English and French. In our experiments, we pro-
cess page content streams by making low level
modifications to Apache PDFBox Java library*,
where the inputs are unordered set of raw charac-
ters with their X-Y page coordinates and font infor-
mation. We track columns by detecting margins (by
sorting X-coordinates of glyphs) and reconstruct
text across consecutive pages. A key opportunity
for parallel alignment comes from the fact that most
official gazettes paragraphs are grouped by consec-
utive article numbers such as “Ingingo ya 1/Article
17, “Ingingo ya 2/Article 27, and so on. We use
these article enumerations as anchors to finding
parallel paragraphs across the three languages. A
language identification component is also required
to know which column correspond with which lan-
guage as the column ordering has been changing
over time.

2.4 Jw.org website

Jw.org website publishes religious and biblical
teachings by Jehovah’s Witnesses, with cross-
references into multiple languages. While this web-
site data has been used for low-resource machine
translation before (Agi¢ and Vuli¢, 2019), the iso-
lated corpus is no longer available due to license re-
strictions. However, the content of the original web-
site is still available to web browsers and crawlers.
We take this advantage and gather data from the
site to experiment with English<+Kinyarwanda ma-
chine translation.

2.5 Bilingual dictionaries

Bilingual dictionaries are also useful for low-
resource machine translation. While most of their
parallel data are made of single words, they can
still contribute to the translation task, albeit with-
out any sentence-level context. The 2006 version
of the Iriza dictionary (Habumuremyi and Uwama-
horo, 2006) is generally publicly available in PDF
format. Similar to the Official Gazette case, we
use low level modifications to the Apache PDF-

*https://pdfbox.apache.org/

Box library and extract dictionary entries grouped
by a source word and a target synset. Another
bilingual dictionary we used is kinyarwanda.net
website®, which was developed by volunteers to
help people learning Kinyarwanda or English. In
addition to these bilingual dictionaries, we man-
ually translated about 8,000 Kinyarwanda words
whose stems could not be found in any of the ex-
isting parallel data sources. Some of these terms
include recently incorporated but frequently used
Kinyarwanda words such as loanwords and also
alternate common spellings. Examples include
words such as: ‘abazunguzayi’ (hawkers), ‘ak-
abyiniro’ (night club), ‘canke’ (from Kirundi: or),
‘mitiweli’ (from French: “mutuelle santé”). To-
gether with data from bilingual dictionaries, the
above dataset forms a special training subset we
call ‘lexical data’, because it augments the lexi-
cal coverage of our main dataset. We evaluate its
effectiveness in our experiments.

2.6 Monolingual data

Backtranslation (Edunov et al., 2018) is a proven
technique for leveraging monolingual data in ma-
chine translation. We developed a corpus of
Kinyarwanda text by crawling more than 200 web-
sites and extracting text from several books to form
a monolingual dataset to use for back-translation.
The final corpus contains about 400 million words
and tokens or 16 million sentences. We also formed
an English text corpus of similar size by crawling
eight major Rwandan and East African English
newspapers (3.3 million sentences) in addition to
Wikipedia English corpus (7.3 million sentences)®
and global English news data (5.4 million sen-
tences)’.

2.7 Data augmentations

Source to target copying in NMT is a desirable
ability when faced with untranslatable terms such
as proper names. However, when the source and
target vocabularies are not shared, it is harder for
the model to learn this ability. In order to enforce
this copying ability in our NMT model, we take a
data-centric approach by including untranslatable
terms in our dataset with the same source and tar-
get text. This augmentation includes the following

Shttps://kinyarwanda.digital/

6https://www.kaggle.com/datasets/mikeortman/
wikipedia-sentences

7https://data.statmt.org/news—crawl/en/news.
2020.en.shuffled. deduped.gz
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datasets: (1) All numeric tokens and proper names
from our Kinyarwanda monolingual corpus, (2)
Names of locations from the World Cities dataset®,
and (3) Names of people from CMU Names cor-
pus (Kantrowitz and Ross, 2018) and the Names
Dataset (Remy, 2021).

We also add synthetic data for number spellings
by using rule-based synthesizers to spell 200,000
random integers between zero and 999 billions. For
Kinyarwanda side, we developed our own synthe-
sizer, while we used inflect python package® for
English.

Code-switching is one characteristic of some
low-resource languages such as Kinyarwanda. To
cope with this issue, we add foreign language
terms and their English translations to the train-
ing dataset for Kinyarwanda — English models
as if the foreign terms were valid Kinyarwanda
inputs. For this, we include all English phrases
from kinyarwanda.net online dictionary, 100 popu-
lar French terms and 20 popular Swabhili terms.

3 Experiments

3.1 Experimental setup

The model presented in section 2.1 was im-
plemented from scratch using PyTorch frame-
work (Paszke et al., 2019) version 1.13.1. Our
model hyper-parameters along with training and
inference hyper-parameters are provided in ap-
pendix A. Training was done using a hardware
platform with 8 Nvidia RTX 4090 GPUs, with
256 gigabytes of system memory, on a Linux op-
erating system. We used mixed precision training
with lower precision in BFLOAT-16 format. For
Kinyarwanda—English model, one gradient update
step takes 0.5 second and convergence is achieved
after 40 epochs. For English—Kinyarwanda model
with Gradient Vaccine scheme, one gradient up-
date step takes 1.1 seconds while convergence is
achieved after 8 epochs.

In all our experiments on Kinyarwanda <>
English translation, only Kinyarwanda side (as
source or target) is morphologically modelled,
while the English side always uses sub-word to-
kenization. For Kinyarwanda source side with at-
tention augmentation, we use a pre-trained BERT
model similar to KinyaBERT (Nzeyimana and
Rubungo, 2022) whose input units/token ids are

8https://github.com/datasets/world—cities/
blob/master/data/world-cities.csv
*https://pypi.org/project/inflect/

the same as for the NMT encoder. In fact, this
pre-trained KinyaBERT model has the same two-
tier architecture as the NMT encoder. Therefore,
they are aligned to the same words/tokens. We
use a Kinyarwanda morphological analyzer'? to
perform both tokenization, morphological analysis
and disambiguation (Nzeyimana, 2020).

On English sides (either source or target), we
do not perform morphological analysis and only
use a standard single-tier transformer architecture.
On the source side, we use a BPE-based tokeniza-
tion and a corresponding pre-trained RoOBERTA
model provided by fairseq package (Ott et al.,
2019). Similarly, on English target side, we use a
BPE-based tokenization from a Transformer-based
auto-regressive English language model (Ng et al.,
2019) from the same fairseq package.

3.2 Evaluation

We evaluate our models on three different bench-
marks that include Kinyarwanda, namely FLORES-
200 (Costa-jussa et al., 2022), MAFAND-MT (Ade-
lani et al., 2022) and TICO-19 (Anastasopoulos
et al., 2020). This allow us to have a picture on
how the models perform on different domains, re-
spectively Wikipedia, News and Covid-19. Our
main evaluation metric is ChrF++ (Popovi¢, 2017)
which includes both character-level and word-level
n-gram evaluation, does not rely to any sub-word
tokenization and has been shown to correlate better
with human judgements than the more traditional
BLUE score. We use TorchMetrics (Detlefsen et al.,
2022) package’s default implementation of ChrF++.
For Kinyarwanda— English translation, we also
evaluate with BLEURT scores (Sellam et al., 2020),
an embedding-based metric with higher correlation
with human judgement. We use a pre-trained Py-
Torch implementation of BLEURT'!. We did not
use BLEURT scores for English—Kinyarwanda be-
cause there was no available pre-trained BLEURT
model for Kinyarwanda and the pre-training cost is
very high.

The baseline BPE-based models in Table 4
and Table 5 use a SentencePiece (Kudo and
Richardson, 2018) tokenizer, with 32K-token vo-
cabularies for either source or target. The Senten-
cePiece tokenizers are trained/optimized on 16M
sentences of text for each language. Source and tar-
get vocabularies are not shared. The NMT models

10https://github.com/anzeyimana/DeepKIN
Uhttps://github.com/lucadiliello/
bleurt-pytorch
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FLORES-200 MAFAND-MT TICO-19 Average

Use copy data? | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT CHR++
No 55.5 39.2 52.3 37.1 52.2 334 533 36.6
Yes 56.8 40.3 54.8 39.6 529 34.0 54.9 38.0

Table 1: Impact of proper name copying ability: Kinyarwanda — English. Maximum scores are shown in bold.

#Params FLORES-200 MAFAND-MT TICO-19 Average
Setup (x 1IM) | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT CHR++
Morpho 188 57.1 40.9 54.7 39.8 53.1 34.7 55.0 38.5
+ XPOS 190 57.7 41.1 55.6 39.9 54.1 353 55.8 38.8
+ BERT 190 59.4 425 57.1 40.4 56.1 36.3 57.5 39.7
+ BERT + XPOS 192 59.9 43.1 58.0 41.3 56.7 37.0 58.2 40.5

Table 2: Impact of attention augmentation: Kinyarwanda — English

FLORES-200 MAFAND-MT TICO-19 Average
Setup BLEURT ChrF++ | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT CHR++
Morpho + BERT + XPOS without Lexical Data 58.5 41.6 56.3 39.9 55.5 36.0 56.8 39.2
Morpho + BERT + XPOS + Lexical Data 59.9 43.1 58.0 41.3 56.7 37.0 58.2 40.5

Table 3: Impact of lexical data (bilingual dictionaries): Kinyarwanda — English

#Params FLORES-200 MAFAND-MT TICO-19 Average
Setup (x 1IM) | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT ChrF++ | BLEURT CHR++
BPE Seq2Seq + XPOS 187 50.1 35.5 48.5 34.2 474 30.7 48.7 335
Morpho + XPOS 190 57.7 41.1 55.6 39.9 54.1 35.3 55.8 38.8

Table 4: Impact of source side morphological modeling: Kinyarwanda — English

FLORES-200 MAFAND-MT TICO-19 Average
Setup #Params Dev Test Dev Test Dev Test Dev Test
(x IM) | ChrF++ ChrF++ | ChrF++ ChrF++ | ChrF++ ChrF++ | ChrF++ ChrF++
BPE Seq2Seq + XPOS 187 35.0 352 37.0 37.8 30.1 31.1 34.0 34.7
Morpho + XPOS (Loss summation) 196 36.9 37.2 39.2 40.9 32.0 33.0 36.0 37.0
Morpho + XPOS + GradVacc 196 37.6 38.2 41.0 424 32.8 335 371 38.0

Table 5: Impact of target side morphological modeling: English — Kinyarwanda

FLORES-200 | MAFAND-MT TICO-19
Setup #Params | Dev Test Dev Test Dev Test

xIM | chrF2 chrF2 | chrF2 chrF2 | chrF2  chrF2
Morpho + XPOS + BERT + Backtransl. (Ours) 403 | 532 531 | 58.2 61.9 | 48.7% 50.2%
Helsinki-opus-mt (Tiedemann and Thottingal, 2020) 76 | 355 36.7 | 343 37.3 275 272
NLLB-200 600M (distilled) (Costa-jussa et al., 2022) 600 | 458 455 | 504 52.7 448 463
mBART (Liu et al., 2020) fine-tuned on our dataset 610 | 48.7 485 52.4 54.1 4377 452
NLLB-200 3.3B (Costa-jussa et al., 2022) 3,300 | 50.6 509 | 573 58.6 50.0 524
Google Translate N/A| 59.1 60.0 | 76.6 87.5 46.5 49.6

Table 6: English — Kinyarwanda: Comparison of our large model performance after back-translation in relation
to open-source models and Google Translate. chrF2 scores are computed using SacreBLEU (Post, 2018) with 10000
bootstraps for significance testing. Highest scores among open source models (p-value < 0.002) are shown in bold.
Overall best scores are underlined. *On TICO-19, our model outperforms Google Translate (p-value < 0.002).
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Setup

#Params | Dev Test Dev Test Dev Test
x IM

FLORES-200 | MAFAND-MT TICO-19

chrF2 chrF2 | chrF2  chrF2 | chrF2 chrF2

Morpho + XPOS + BERT + Backtransl. (Ours)
Helsinki-opus-mt (Tiedemann and Thottingal, 2020)
NLLB-200 600M (distilled) (Costa-jussa et al., 2022)
mBART (Liu et al., 2020) fine-tuned on our dataset
NLLB-200 3.3B (Costa-jussa et al., 2022)

3,300 | 56.8 56.0 | 554

396 | 54.6 548 | 54.7 59.2 494  50.1

76 | 354 351 | 337 35.1 29.6  29.7
600 | 53.1 523 | 51.1 549 477  48.6
610 | 4377 43.1 | 445 46.0 38.8 388
596 | 534 541

Google Translate

N/A | 60.0

59.1 | 57.3 64.0 51.8 524

Table 7: Kinyarwanda — English: Comparison of our large model performance after back-translation in relation
to open-source models and Google Translate. chrF2 scores are computed using SacreBLEU (Post, 2018) with 10000
bootstraps for significance testing. Highest scores among open source models (p-value < 0.002) are shown in bold.

Overall best scores are underlined.

in this case use the same Transformer backbone as
the morphological models, but without morpholog-
ical modeling or BERT attention augmentation.

3.3 Results

Results in Table 1 through Table 5 show our abla-
tion study results, evaluating the various contribu-
tions. In Table 1, we show the improvement across
all three benchmarks from adding proper names
data to induce token-copying ability. In Table 2,
we evaluate the impact of our attention augmen-
tation scheme. The results show substantial im-
provement by adding BERT and XPOS attention
augmentations. Table 3 confirms the effectiveness
of adding bilingual dictionary data to the training
set. In Table 4 and Table 5, we find a large per-
formance gap between standard transformer with
BPE-based tokenization (BPE Seq2Seq) and our
morphology-based models (Morpho), which con-
firms the effectiveness of our morphological mod-
eling. Finally, in Table 6 and Table 7, we use
back-translation and train 400M-parameter models
that perform better than strong baselines includ-
ing NLLB-200 (3.3B parameters for English—
Kinyarwanda, 600M parameters for both direc-
tions) and fine-tuned mBART (610M parameters).
For English—Kinyarwanda, we achieve perfor-
mance exceeding that of Google Translate on the
out-of-domain TICO-19 benchmark.

4 Related Work

Morphological modeling in NMT is an actively
researched subject often leading to improvements
in translation. However most of this research has
focused on European languages. Ataman and Fed-
erico (2018) shows that an RNN-based word com-
positional model improves NMT on several lan-

guages. Weller-Di Marco and Fraser (2020) evalu-
ates both source-side and target-side morphology
modeling between English and German using a
lemma-+tag representation. Passban et al. (2018)
proposes using multi-task learning of target-side
morphology with a weighted average loss func-
tion. However, Machacek et al. (2018) does not
find improvement when using unsupervised mor-
phological analysers. Our studies differs in that it
uses a different morphological representation, that
is the two-tier architecture, and we also evaluate on
a relatively lower resourced language.

The idea of model augmentation with pre-trained
language models (PLM) have been previously ex-
plored by Sun et al. (2021), and Zhu et al. (2020)
who use a drop-net scheme to integrate BERT em-
beddings. Also, there have been attempts to model
word order relationships between source and target
languages (Li et al., 2017; Murthy et al., 2019).
Our model architecture provides a more generic
approach through the attention augmentation.

5 Conclusion

This work combines three techniques of morpho-
logical modeling, attention augmentation and data
augmentation to improve machine translation per-
formance for a low-resource morphologically-rich
language. Our ablation results indicate improve-
ment from each individual contribution. Baseline
improvements from morphological modeling are
more pronounced at the target side than at the
source side. This work expands the landscape of
modeling complex morphology in NMT and pro-
vides a potential framework-solution for machine
translation of low-resource morphologically rich
languages.
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6 Limitations

Our morphological modeling proposal requires an
effective morphological analyzer and was only eval-
uated on one morphologically-rich language, that
is Kinyarwanda. Morphological analyzers are not
available for all languages and this will limit the
applicability of our technique. The proposed data
augmentation technique for enabling proper name
copying ability works in most cases, but we also
observed some few cases where inexact copies are
produced. Similarly, even with lexical data added
to our training, we still observe some cases of hal-
lucinated output words, mostly when the model
encounters unseen words. Finally, the proposed
morphological decoding algorithm is slower than
standard beam search because of the filtering steps
and morphological synthesis performed before pro-
ducing a candidate output token.

Given the above limitations, our model does not
grant complete reliability and the produced trans-
lations still require post-editing to be used in high-
stake applications. However, there are no major
risks for using the model in normal use cases as a
translation aid tool.

References

David Adelani, Jesujoba Alabi, Angela Fan, Julia
Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter,
Dietrich Klakow, Peter Nabende, Ernie Chang, et al.
2022. A few thousand translations go a long way!
leveraging pre-trained models for african news trans-
lation. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3053-3070.

Zeljko Agié¢ and Ivan Vulié. 2019. Jw300: A wide-
coverage parallel corpus for low-resource languages.
In Proceedings of the 57th Annual Meeting of the As-

sociation for Computational Linguistics, pages 3204—
3210.

Antonios Anastasopoulos, Alessandro Cattelan, Zi-
Yi Dou, Marcello Federico, Christian Federmann,
Dmitriy Genzel, Franscisco Guzman, Junjie Hu, Mac-
duff Hughes, Philipp Koehn, et al. 2020. Tico-19:
the translation initiative for covid-19. In Proceedings
of the 1st Workshop on NLP for COVID-19 (Part 2)
at EMNLP 2020.

Duygu Ataman and Marcello Federico. 2018. Com-
positional representation of morphologically-rich in-
put for neural machine translation. arXiv preprint
arXiv:1805.02036.

191

Alan Bundy and Lincoln Wallen. 1984. Mor-
phographemics: Alias: spelling rules. Catalogue
of Artificial Intelligence Tools, pages 76-77.

Marta R Costa-jussa, James Cross, Onur Celebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling human-
centered machine translation.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock,
Ananya Harsh Jha, Teddy Koker, Luca Di Liello,
Daniel Stancl, Changsheng Quan, Maxim Grechkin,
and William Falcon. 2022. Torchmetrics-measuring
reproducibility in pytorch. Journal of Open Source
Software, 7(70):4101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,
pages 489-500.

Emmanuel Habumuremyi and Claudine Uwamahoro.
2006. IRIZA-STARTER 2006: A Bilingual
Kinyarwanda-English and English-Kinyarwanda
Dictionary. Rwanda Community Net.

Sharon Inkelas and Cheryl Zoll. 2000. Reduplication as
morphological doubling. Manuscript, University of
California, Berkeley and Massachusetts Institute of
Technology.

Mark Kantrowitz and Bill Ross. 2018. Names corpus,
version 1.3.

Itamar Kastner, Matthew A Tucker, Artemis Alexiadou,
Ruth Kramer, Alec Marantz, and Isabel Oltra Mas-
suet. 2019. Non-concatenative morphology. Ms.,
Humboldt-Universitdt zu Berlin and Oakland Univer-

Sity.

Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethinking
positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association for



Computational Linguistics (Volume 1: Long Papers),

pages 688—697.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Dominik Machacek, Jond$ Vidra, and Ondrej Bojar.
2018. Morphological and language-agnostic word
segmentation for nmt. In International Confer-
ence on Text, Speech, and Dialogue, pages 277-284.
Springer.

Rudra Murthy, Anoop Kunchukuttan, and Pushpak Bhat-
tacharyya. 2019. Addressing word-order divergence
in multilingual neural machine translation for ex-
tremely low resource languages. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3868-3873.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
fair’s wmt19 news translation task submission. arXiv
preprint arXiv:1907.06616.

Toan Q Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation.

Antoine Nzeyimana. 2020. Morphological disambigua-
tion from stemming data. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 4649—-4660.

Antoine Nzeyimana and Andre Niyongabo Rubungo.
2022. Kinyabert: a morphology-aware kinyarwanda
language model. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5347-5363.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53.

Peyman Passban, Qun Liu, and Andy Way. 2018. Im-
proving character-based decoding using target-side
morphological information for neural machine trans-
lation. arXiv preprint arXiv:1804.06506.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Maja Popovic. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612-618.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1172—-1183.

Philippe Remy. 2021. Name dataset. https://github.
com/philipperemy/name-dataset.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
Bleurt: Learning robust metrics for text generation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7881—
7892.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725.

Zewei Sun, Mingxuan Wang, and Lei Li. 2021. Multi-
lingual translation via grafting pre-trained language
models. arXiv preprint arXiv:2109.05256.

Jorg Tiedemann and Santhosh Thottingal. 2020. Opus-
mt-building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479—-480.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao.
2020. Gradient vaccine: Investigating and improv-
ing multi-task optimization in massively multilingual
models. In International Conference on Learning
Representations.

Marion Weller-Di Marco and Alexander Fraser. 2020.
Modeling word formation in english—german neural
machine translation. In Proceedings of the 58th An-

nual Meeting of the Association for Computational
Linguistics, pages 4227-4232.

Weijia Xu, Sweta Agrawal, Eleftheria Briakou, Mari-
anna J Martindale, and Marine Carpuat. 2023. Un-
derstanding and detecting hallucinations in neural
machine translation via model introspection. Trans-
actions of the Association for Computational Linguis-
tics, 11:546-564.

192


https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://github.com/philipperemy/name-dataset
https://github.com/philipperemy/name-dataset

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, B Dataset summary
Wengang Zhou, Hougiang Li, and Tie-Yan Liu. 2020.
Incorporating bert into neural machine translation.

arXiv preprint arXiv:2002.06823. Subset Size
Parallel sentences
A MOdel’ training and inference Jw.org website 562,417 sentences
hyper-parameters Rwanda’s official gazette 113,127 sentences
Our model hyper-parameters along with train- Lexical data
ing and inference hyper-parameters are provided Iriza dictionary 2006 108,870 words
in Table 8. Kinyarwanda.net 10,653 words
Manually translated 8,000 words

Hyper-parameter Value Augmented data

Model Spelled numbers 200,000 phrases

Transformer hidden dimensions 768

Transformer feed-forward dimension 3072 Copy data (e.g. Proper names) | 157,668 words

Transformer attention heads 12 Code-switching foreign terms | 10,276 terms

Transformer encoder layers with BERT > Table 9: Summary of our experimental parallel dataset

Transformer encoder layers without BERT 8

Transformer decoder layers with GPT 7

Transformer decoder layers without GPT 8

Morpho-Encoder hidden dimension 128

Morpho-Encoder feed-forward dimension 512

Morpho-Encoder attention heads 4

Morpho-Encoder layers 3

Dropout 0.1

Maximum sequence length 512

Training

Batch size 32K tokens

Peak learning rate 0.0005

Learning rate schedule inverse sqrt

Warm-up steps 8000

Optimizer Adam

Adam’s f1, f2 0.9,0.98

Maximum training epochs 40

Morphological inference

Beam width 4

Top scores M 8

Cut-off gap § 0.3

Minimum affix probability -y 0.3

Global correlation weight o 0.08

Surface form score stop gap log(3) 2.0

Table 8: Hyper-parameter settings
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C Morphological decoding algorithm

Algorithm 1: Inflection generation helper subroutines

1 Subroutine: inflectionGroupProbabilities(Ts, Ty, Ty, Ps, Py, Po, M, G)

L-TN--EEEN B N T e

_- = e
N = o

13
14
15

16

17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

W + M x G array
Wli,g] < —100,Vi = 1,2, .M,¥g = 1,2, .G
for ; < 1to M do
gs < getInflectionGroup(7s]i])
Wi, gs|  max(W{i, gs], Log(Ps[T5s[i]]))
gp < getInflectionGroup(7}[i])
Wi, gp| < max(Wi, gp], Log(Fp[T[i]]))
ga < getInflectionGroup(7,[i])
Wi, ga) < max(Wi, gal, 1og(Py[T4[i]]))
end for
V < G array
Vigl « M, Wli,g],¥g = 1,2,.G
P, < softmax(V)
return P,
ubroutine: filterAndCutOff (7, P, g,4d,)
T ]
pp <0
foreach i € T do
if (getInflectionGroup(i) = g) and (P[i] > ~y) then
T .append(i)
if (pp — P[i]) > & then
‘ break
pp + Pli]
end foreach

return 7"
ubroutine: computeScore(Ts, T}, Ty, Ps, Py, Pa, pl., ], @)
C <« |Ts| x |Tp| x |T,| array
tot + 0
foreach s € T's do
foreach p € T'p do
foreach a € T'a do
¢ < exp(alog(p[s, a]) + logPs[s] + logP,[p] + logPy[al)
Cl[s,p,a] < ¢
tot < tot + c
end foreach
end foreach

end foreach
Cls,p,a] < C|[s,p,a]/tot; Vs € Ts,Vp € T,,,Ya € T, // Normalize

return C'
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Algorithm 2: Inflection generation

1

e L N S R W N

N
R = S

-
w

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Input :Probability distributions returned by the neural network (softmax heads) for stems, POS
tags, affix sets (P, Py, P); probability values returned for each affix (multi-label heads)
Ppg; M: number of top items (stems, POS tags, affix sets) to consider; /N: number of top
affixes to consider; number of inflection groups G; pl., .]: corpus-computed correlation of
stems and affix sets; «: stem-affix set correlation weight; 3: maximum probability gap for
inflection groups; «: minimum affix probability; §: maximum probability gap for stems,
POS tags and affix sets.

Output : Candidate inflected forms and their scores.

Subroutine generateInflections(Ps, Py, Py, Py, pl., ], o, 5,7, 9)

/* All argSort(.) calls are in decreasing order */

Ts < argSort(Ps)[: M]// Up to M items

T, < argSort(DP,)[: M]

T, < argSort(P,)[: M]

Ty < argSort(Ps)[: N|

P, < inflectionGroupProbabilities(Ts, Ty, Ty, Ps, Py, Py, M, G)

G < argSort(Fy)

pp <0

R+ []// List of inflections to return

foreach g € G do

T. + filterAndCutOff (T}, Ps,g, 0,0)

TI/) + filterAndCutOff s 9,0, 0)

(
(T

T filter‘AndCutOFf(Ta,Pa,g,d 0)
(

~®

a
T} — filterAndCutOff(Ty, Py, g,6,7)
Cy computeScore(TS, Tp, Ta, P, Py, Py, p[., ], @)
Ly + argSort(Cy)
foreach (s,p,a) € Ls do
// Formulate affixes by merging affix set’s
// own affixes and extra predicted affixes
f af‘fixMerge(a,T})
// Call morphological synthesizer
sur face < morphoSynthesis(s, f)
if sur face # null then
‘ R.append((sur face, s, p, a, f,Cy[s,p,al))
end foreach
if (pp — Py[g]) > 3 then
‘ break
pp < Pyl
end foreach
return R
// The returned inflections will be added to the beam

// for beam search-based decoding.
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