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Abstract

Generating medical reports for X-ray images
presents a significant challenge, particularly
in unpaired scenarios where access to paired
image-report data for training is unavailable.
Previous works have typically learned a joint
embedding space for images and reports, ne-
cessitating a specific labeling schema for both.
We introduce an innovative approach that elim-
inates the need for consistent labeling schemas,
thereby enhancing data accessibility and en-
abling the use of incompatible datasets. This
approach is based on cycle-consistent mapping
functions that transform image embeddings
into report embeddings, coupled with report
auto-encoding for medical report generation.
Our model and objectives consider intricate lo-
cal details and the overarching semantic context
within images and reports. This approach fa-
cilitates the learning of effective mapping func-
tions, resulting in the generation of coherent re-
ports. It outperforms state-of-the-art results in
unpaired chest X-ray report generation, demon-
strating improvements in both language and
clinical metrics. Our code is publicly avail-
able !.

1 Introduction

Automating the generation of medical reports has
the potential to improve the efficiency of patient
information analysis and documentation, leading to
better care and cost savings. Consequently, many
research efforts have been directed towards this
aim (Chen et al., 2021, 2020; Jing et al., 2017; Li
et al., 2019; Wang et al., 2022a). These works rely
on labeled image-report paired datasets (Demner-
Fushman et al., 2016; Johnson et al., 2019), which
are relatively small and less accessible in compari-
son to datasets for natural images (Lin et al., 2014;
Sharma et al., 2018; Thomee et al., 2016). Privacy
concerns, restricted access to high-quality data, and

"https://github.com/eladhi/MedCycle

o
Images g
g AN

Generation “inference ‘ R2| 12R

""" |
- = \J
s

Q. ynoaired | |
:x:Unpaired | \
0) p

Reports
(a) Data (b) Generation via Cycle-Consistent Mapping
Figure 1: Unpaired medical report generation.

(a) Two unpaired datasets are available: chest X-ray
images and chest X-ray reports. (b) Our model learns
cycle-consistent mappings between image and report
embedding spaces (I2R & R2I), facilitated by cross-
modality alignment through the use of pseudo-reports,
as well as report auto-encoding. Report generation is ex-
ecuted by decoding transformed image representations
into reports during inference.

the complex nature of medical data analysis and la-
beling, demanding specialized expertise, contribute
to this problem and limit the availability of such
paired data. Even when paired datasets exist, they
may not be fully accessible to the public, leading
to partially-available datasets, such as the one pre-
sented in (Irvin et al., 2019), which consists solely
of images. These limitations in obtaining paired
data pose a significant challenge in this domain.

Utilizing unpaired data, i.e., images and reports
originating from different sources, may help allevi-
ating some of these limitations. Specifically, it may
resolve privacy or regulatory concerns and increase
the available amount of training data. Nonetheless,
when attempting to learn report generation from im-
ages, the absence of image-report pairs introduces a
significant challenge. The only previous work that
addressed this task involved constructing a knowl-
edge graph of the domain and utilizing a classifi-
cation module for pathologies (Liu et al., 2021c).
This process requires expertise in constructing the
knowledge graph and, most importantly, ensuring

1929

Findings of the Association for Computational Linguistics: NAACL 2024, pages 1929-1944
June 16-21, 2024 ©2024 Association for Computational Linguistics



that the images and reports are labeled according
to a consistent and shared schema. These labels
typically pertain to various thoracic pathologies.
Our motivation is to eliminate these constraints.

We propose to address the challenge by consid-
ering four perspectives, each contributing to a cohe-
sive solution: embedding spaces, mapping between
these spaces, initial cross-modality alignment, and
report generation (Figure 1). Specifically, we con-
struct two separate embedding spaces—one for the
visual modality (images) and the other for the tex-
tual modality (reports)—utilizing joint global and
local representations. Subsequently, mapping func-
tions learn the transformation from an image repre-
sentation to a report representation and vice versa.
As mapping functions should preserve the semantic
meaning of the data, and image-report pairs are un-
available, training a mapping function to transform
image representation to its corresponding report
representation becomes challenging. To overcome
this issue, we train the mapping between the two
embedding spaces to preserve cycle consistency.
Additionally, to establish initial cross-modality rela-
tionships, we introduce a novel concept of pseudo-
reports, leveraging available domain information
accompanying the image dataset (e.g., pathologies).
We encourage the representation of an input image,
after mapping to the report space, to closely align
with the representation of its corresponding pseudo-
report. Lastly, a decoder is exclusively trained with
reports, utilizing auto-encoding, to generate medi-
cal reports.

Overall, at inference time, given an image, we
use both the learned mapping to the report domain
and the knowledge learned through auto-encoding
to generate a report that suits the image.

Our model adeptly handles a fundamental re-
quirement of report generation—the need for de-
tails. Recall that the available data is solely global,
indicating the presence of pathologies and encom-
passing the entire image or report. Alignment at
this global level often results in overly generalized
representations, which may be suitable for classifi-
cation but fall short in capturing fine details in in-
dividual examples—details crucial for effective re-
port generation. Conversely, local representations—
those depicting image patches or individual report
words—capture numerous details, providing essen-
tial information for the report generation process.
However, they lack alignment.

The effectiveness of our method is evident from
improvements in both language and clinical met-

rics. For instance, when compared to previous
SoTA methods, our approach demonstrates a 9%
enhancement in the BLEU-1 score (language effi-
cacy) and a 3% increase in F1 (clinical efficacy) on
the dataset from (Johnson et al., 2019), all while
eliminating the need for specific training dataset
requirements. Furthermore, we illustrate how the
absence of these requirements allows the utiliza-
tion of other training datasets, resulting in further
performance improvements.

Hence, our paper makes the following contribu-
tions:

1. We introduce a novel approach to generate
medical reports from images in an unpaired
setting. This approach is based on learn-
ing cycle-consistent mapping functions be-
tween domains, establishing cross-modality
relations through a novel concept of pseudo-
reports, and utilizing an auto-encoding model
to generate reports from images.

2. Our method eliminates the need for image and
report datasets to be labeled with a consistent
schema, thereby increasing data accessibility.
This enables the utilization of datasets that
were previously incompatible due to differ-
ences in pathology labels or languages.

3. Our method outperforms the SoTA results in
unpaired chest X-ray report generation.

2 Related Work

Paired medical report generation. Methods that
rely on paired data have access to both images and
their corresponding reports. These models typically
employ an encoder-decoder architecture, where the
encoder extracts visual features, commonly using a
CNN, and the decoder generates text. Some models
utilize a hierarchical decoder comprising topic and
word decoders (Jing et al., 2017; Liu et al., 2019;
Zhang et al., 2020), while others employ Trans-
formers (Chen et al., 2021, 2020; Huang et al.,
2023; Li et al., 2023; Hou et al., 2023). Knowledge
graphs (Li et al., 2019; Liu et al., 2021b; Zhang
et al., 2020) and memory blocks (Chen et al., 2021,
2020; Wang et al., 2022a,b) are commonly used to
learn and encode priori domain information.

Unpaired medical report generation. The only
work that addresses the task of unpaired medical
report generation is KGAE (Liu et al., 2021c). This
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Figure 2: Method. For each image i from a dataset Dy, a preprocessing step generates a corresponding pseudo-
report denoted as ¢(4) (a), which conveys essential image information in textual form. An image encoder encodes
each image 7 into z; (bl). Simultaneously, a report encoder encodes reports from a report dataset Dy (b2), as
well as pseudo-reports. These encoded representations comprise both local and aggregated global features, by
employing self-attention S A. Two mapping functions are trained to transform image representations into report
representations (/2R), and vice versa (R2[I) (c) . Subsequently, a decoder (d) utilizes the encoded reports (excluding
pseudo-reports) to output a report, aiming to reconstruct the initial report. For improved generalization, dropout
masks a portion of the local representations. During inference, an input image is encoded (b1), followed by mapping
to the report space (c). The transformed representation is then decoded to generate a report (d).

work uses a pre-constructed knowledge graph, to-
gether with image labels and report labels (regard-
ing several thoractic pathologies), to map images
and reports to a shared embedding space. Notably,
the image and report datasets must follow the same
labeling schema.

Unpaired image captioning. In the domain of
natural images, there is an abundance of auxiliary
data and pre-trained models available to establish
connections between vision and language. Com-
mon approaches include object-centric methods
that rely on external annotated sources (Hendricks
et al., 2016; Venugopalan et al., 2017) and the use
of pre-trained models such as object detectors and
classifiers (Feng et al., 2019; Gu et al., 2019; Laina
et al., 2019; Liu et al., 2021a; Meng et al., 2022).
Conversely, in the medical domain, object-based
approaches are unsuitable due to the primary focus
on diagnosis. Locating abnormalities is challeng-
ing due to their size, distribution, relation to other
organs, and the limited availability of data.

Unsupervised machine translation. The task of
translating text between languages without relying
on parallel corpora or human supervision, has also
gained attention in recent years. Advancements
occurred thanks to initialization schemes and the
back-translation approach, which rely on generat-
ing pseudo-language pairs (Artetxe et al., 2018;
Lample et al., 2018a,b) or extracting them from a
real corpus (Wu et al., 2019). Similar approaches

have also been employed in unsupervised speech-
to-speech translation (Nachmani et al., 2023).
Cycle consistency. The concept of cycle consis-
tency has been explored across various domains,
including image-to-image translation (Zhu et al.,
2017; Hoffman et al., 2018; Huang et al., 2018)
and machine translation (He et al., 2016a), where it
is employed to address absence of paired data. Re-
cently, CycleNet (Xu et al., 2024) has also demon-
strated the efficacy of this approach in regularizing
image manipulation by diffusion models.

3 Method

Our goal is to create a model capable of generat-
ing medical reports for X-ray images, using two
separate datasets—one for reports and the other for
images. The grand challenge lies in the absence of
paired image-report data during training; in other
words, there is no direct correlation between a re-
port from one dataset and an image from the other.
We propose to tackle the problem from four per-
spectives, each addressing a different aspect of the
challenge, which collectively provides a coherent
solution. First, we establish cross-modality rela-
tionships through a new concept: pseudo-reports.
Second, encoding images and reports using similar
procedures and relying on joint global and local rep-
resentations will enable mapping between the em-
bedding spaces. Third, cycle-consistent mapping
functions will learn how to transform an image rep-
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resentation into a report representation. Finally, by
using only reports, a decoder is trained to generate
medical reports.

Our method, illustrated in Figure 2, incorporates
these four ideas. Its preprocessing procedure gener-
ates pseudo-reports. Additionally, the model com-
prises two encoders: one dedicated to image encod-
ing and the other to report encoding. Furthermore,
it integrates two mapping networks: one responsi-
ble for converting image representations into report
representations (/2 R), and another for the reverse
transformation (R2I), thereby implementing the
third idea. Finally, the model incorporates a report
decoder, encapsulating the fourth idea.

During inference, an input image is encoded
by the image encoder. The encoded image repre-
sentation is then mapped to the report space by a
mapping function (/2R). Given this transformed
representation, the decoder outputs a report that
correlates to the input image.

Below, we use the following notations: Dy is
the image datasets, ¢ € Dy is an image and z; is
1’s representation. The pseudo-report of image ¢
is ¢(i) and its representation is z4(;. D is the
report datasets, 7 € Dp is a report and z, is 7’s
representation.

3.1 Preprocessing: Pseudo-report generation

Given an image, the basic challenge lies in estab-
lishing a relationship between its representation
and a relevant report representation, despite the
lack of paired data. We propose a simple approach
to solve this problem: generate a pseudo-report by
employing available domain information. While
this report may not be a detailed report, it provides
an image-report relationship that shares semantic
similarities. We will demonstrate our ability to uti-
lize such pairs for guiding the mapping functions.
The pseudo-reports are pieces of text generated
by leveraging domain-specific information avail-
able for images. For example, if labels indicating
the presence or absence of specific pathologies are
accessible, we incorporate this information into
the pseudo-reports by describing them with related
phrases commonly found within the reports. If
reports are available in languages other than En-
glish, we rely on an automatic translator, although
it may not be optimized for the medical domain, to
produce these pseudo-reports. In both cases, inac-
curacies in terms of deviations from human-written
reports and the level of detail may be introduced.
However, these pseudo-reports suffice for our goal

of simply maintaining similarity in high-level se-
mantic content, thus highlighting the essence of the
data. Additionally, significant errors should not be
present, as our pseudo-reports rely on existing data
within available datasets.

To understand the differences between a re-
port and a pseudo-report, a report from a study
concerning atelectasis and cardiomegaly could be
"Low lung volumes and distended bowel as de-
scribed on concurrent CT abdomenpelvis. There
are patchy opacities suggesting minor dependent
bibasilar atelectasis. There is persistent car-
diomegaly. There is no pneumothorax or pleural ef-
fusion.”" Our related pseudo-report could be "There
is cardiomegaly. There is atelectasis. No pleural
effusion. No pneumothorax." Notably, the latter
provides partial information and differs in style.
Cross-modality constraint. During model train-
ing, these pseudo-reports serve as a cross-modality
constraint, to encourage similarity between match-
ing global representations. Given an image and its
corresponding pseudo-report, our objective is to
ensure that the transformed (i.e. mapped by I2R)
global representation of an image closely aligns
with that of its pseudo-report, and similarly that the
transformed (i.e. mapped by R21) global represen-
tation of a pseudo-report closely resembles that of
the original image. This constraint is implemented
by the following loss:

Drs = Aent (12R(2:), 240y { 20(j)li#i})
D[S = Acnt (ZZ‘, RQI(ZQS(Z-)), {R2I(Z¢(j)) |j;£i})

1
— (DRS +D15),
2|Dy| 4~

i€Dy,j#0

Lcm =

ey
where Ay, (a, b, C') measures the dissimilarity be-
tween the global representations by employing a
contrastive loss, considering a and b a positive pair
and C the set of negatives.

3.2 Report & image encoding

Our aim when processing a report or an image is
to extract valuable representations that encapsulate
the subtleties of the data and can later be decoded
into a coherent and informative report. In the train-
ing phase, the report representation will serve to
reconstruct the input report through auto-encoding.
However, during inference, the image representa-
tions will be utilized to generate a report.

A key observation in chest X-ray images and
reports is that indicators of abnormalities are often
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subtle, occupying only a small portion of the image
or a few words in the report (Dawidowicz et al.,
2023). However, detecting these abnormalities is
the core goal in this domain. Hence, we propose
to employ two levels of representation: the local
level, which focuses on image patches and report
words, and the global level, encompassing the en-
tirety of the image and report. While the global
representation should capture the essence, such as
the presence of pathologies, the local representa-
tion delves into a multitude of details that appear
in the image or the report.

Typically, encoders extract local features. We
propose to generate the global representation by a
weighted sum of the local representations, utilizing
self-attention (Lin et al., 2017). Hence, the influ-
ence of distinct local representations on the global
representation varies based on their content and
significance. In addition, the connection between
global and local representations ensures that any
loss imposed on the global representation propa-
gates to the local representations.

3.3 Cycle-consistent mapping

The mapping, I2R, is the key component during in-
ference, as it transforms image representations into
report representations. Since image-report pair cor-
respondence is unavailable, we propose to train this
module using a cycle-consistency constraint. This
is done as follows: First, we employ an additional
transformation that converts report representations
into image representations, R2/. Hence, we create
a cycle where an image representation is mapped to
a report representation by the /2 R module and then
back by the R2I] module. Second, to ensure that
I2R outputs valid report representations, we apply
these modules in the reversed order as well, starting
from a report representation, demanding cycle con-
sistency for that modality too. Finally, to further
promote the similarity of distributions of the spaces
before and after the transformations, we employ
adversarial training. We elaborate hereafter.

Cycle objective. Our approach requires consis-
tency in two cycles: from image to image through
report and vice versa. For both cycles, we demand
that the reconstructed representation 2; (/Z.) re-
sembles the original representation z; (/z,). For
instance, given an image representation z;, its re-
construction Z; is attained by applying both map-
ping functions, 2R and R2I, sequentially, i.e.

zi = R2I(I12R(z;)). Hence, the loss is:

1 N ~
Leye :@ Z Acnt(zi, Zi, {Zj}) *
i€Dy,j#i (2)
1 . .
B 2 Aelr g 5D,
R rEDR,s#T

where A.p¢(a, b, C') quantifies the dissimilarity be-
tween the global representations employing con-
trastive loss, as in Eq. 1.
Adversarial regularization. To ensure the in-
tended performance of our decoder during infer-
ence, its input should resemble the training data. In
our case, this implies that the transformed image
representations I2R(z;) should appear as though
they were sampled from the report space. Toward
this end, we propose to employ adversarial training,
which aims to align embedding spaces, making two
spaces indistinguishable. For that purpose, we uti-
lize an auxiliary neural network that functions as a
discriminator during training (Ganin et al., 2016).
Throughout training, the discriminator’s objec-
tive is to distinguish between the embedding vec-
tors from the source space (prior to mapping) and
the target space (after mapping). Given the rep-
resentations z; and z,, along with their respective
mappings [2R(z;) and R21(z,), the discrimina-
tor attempts to classify z; & z, into one class (a
pre-mapping class) and I2R(z;) & R2I(z,) into
another class (a post-mapping class). The en-
coders and the mapping modules (/2R and R27)
are trained to fool the discriminator, promoting in-
distinguishable representations. The discriminator
produces four predicted probabilities, denoted as
pdisc(0]zr) and pgise(0|2;), representing the proba-
bility of the original representation to belong to the
pre-mapping space, where pg;sc(1|R21(z,)) and
pdisc(1/I2R(z;)) represent the probability of the
transformed representations to belong to the post-
mapping space. The discriminator is trained to
minimize the following loss function:

o __ 1
Ldz’sc - _m Z log (pdisc(o‘zr)) +

reD
L 3)
D Z log (paisc(1/12R(2;)) .
I i€Dy

Here, we maximize the likelihood that the discrimi-
nator classifies the report representations as belong-
ing to the pre-mapping space (the 0 class) and that
the transformed image representation belongs to
the post-mapping space (the 1 class). We similarly
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compute Lé%c for discriminating z; and R21(z;).

Then, Lgise = L) + L

disc disc®
Recall that our model aims to deceive the dis-
criminator. Hence, it has a loss L, that has the
same structure as L g;., but with the labels 0 and 1
swapped. In other words, it aims to make the dis-
criminator classify the representations incorrectly.

3.4 Report decoding

The decoder shall translate latent representations,
either of a report or an image, into a coherent report.
Due to the lack of image-report pairs, we only train
it to generate text from representations of textual
reports. The generation process is learned through
the auto-encoding of an input report, a task that
requires only a dataset of reports.

Nevertheless, the auto-encoding task is prone to
overfitting, and such models often learn to copy the
input word by word. To increase the generalization
capabilities of our decoder, we apply distortions to
its input during training by masking out vector rep-
resentations (input dropout). We apply dropout to
the decoder’s input for local representations, which
express the many details appearing in every report,
but not to the global ones which aim to capture
high-level semantics.

Auto-encoding objective. The auto-encoding pro-
cedure aims to reconstruct input reports. Given a
report r, its reconstruction 7 should be as identical
as possible to r. For that purpose, we formulate the

following loss function:

1 .
Lge = @ Z Ace(rv 7’) s (4)

reDgr

where A.(-, -) measures the dissimilarity between
the two reports, calculated as the summation of
token-level cross-entropy. In our experiments, we
found that a dropout value of probability p = 0.9
yielded good results.

Overall loss. The final training objective is the
sum of all the previously mentioned objectives (Fig-
ure 3). For the report generation model it is:

L=m 'Lcm+’72'Lcyc+’Y3'Ladv+'y4 “ Lge.

5)
The parameters ~i,...,74 are hyper-parameter
weights. We set themto v = 3,72 = 1,73 =
0.25,v4 = 1.5. In practice, the loss is computed
for a single batch every training iteration.

4 Experimental Results

Datasets. We trained our model using chest X-
ray images from the CheXpert dataset (Irvin et al.,
2019) or from the PadChest dataset (Bustos et al.,
2020), while the training reports were obtained
from the MIMIC-CXR dataset (Johnson et al.,
2019). For performance evaluation, we utilized test
sets from MIMIC-CXR and IU X-ray (Demner-
Fushman et al., 2016). Our experimental configura-
tion closely aligns with that of (Liu et al., 2021c¢),
with the distinction that they additionally trained
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MIMIC-CXR

Method B-1 B2 B3 B4

M R-L | B-1

IU X-ray

B2 B3 B4 M R-L

KGAE CheXpert
MedCycle CheXpert

0.221 0.144 0.096 0.062 0.097 0.208| 0.417 0.263 0.181 0.126 0.149 0.318
0.309 0.167 0.098 0.061 0.115 0.216| 0.461 0.290 0.201 0.143 0.182 0.332

MedCycle PadChest
MedCycle  Xlate

0.349 0.195 0.115 0.072 0.128 0.239| 0.479 0.291 0.198 0.140 0.197 0.360
0.352 0.194 0.114 0.070 0.132 0.241| 0.432 0.277 0.186 0.128 0.188 0.325

Table 1: Quantitative evaluation, NLG metrics. Our MedCycle results outperform those of KGAE (Liu et al.,
2021c) across all datasets & most of natural language generation metrics: BLEU (B), METEOR (M) & ROUGE-L
(R-L), when trained on images from CheXpert dataset. Our results improve when the model is trained on images
from PadChest, a dataset that cannot be supported by KGAE. For the IU X-ray dataset, our model was not exposed
to any data from the dataset during training, whereas KGAE uses its reports.

on reports from the IU X-ray dataset. We fol-
lowed the same report preprocessing steps as (Chen
et al., 2021; Liu et al., 2021¢), which involved fil-
tering out reports lacking a findings section. Impor-
tantly, no paired samples were available between
the CheXpert (/PadChest) dataset and either the
MIMIC-CXR or IU X-ray datasets.

The above datasets are elaborated upon in Ap-
pendix C. Generally speaking, each image is CheX-
pert is assigned with multi-labels for 14 potential
diagnosis classes and the corresponding medical
reports are not publically available. PadChest is
a substantial Spanish dataset of chest X-ray im-
ages, associated with medical reports. Each image
is labeled according to 174 possible radiographic
findings. MIMIC-CXR and IU X-ray are English
dataset of chest radiographs, containing images and
corresponding reports.

Evaluation metrics. We evaluate our model on
two aspects: the quality of the generated language
(NLG) and its clinical efficacy (CE). For NLG
evaluation, we employ the BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004) metrics to measure the simi-
larity between the generated reports and the ground-
truth. For CE assessment, we utilize the CheX-
pert (Irvin et al., 2019) model to attribute 14 diag-
nosis classes related to thoracic diseases and sup-
port devices. We then calculate precision, recall &
F1 score in comparison to the ground-truth labels.

Quantitative evaluation. Table 1 provides a NLG
comparative analysis between our method and
KGAE (Liu et al., 2021c), which is the only work
addressing the same task. When trained on images
from CheXpert, our model outperforms KGAE’s
across all metrics, except for BLEU-4 on a single
dataset where it remains competitive. When trained
on images from PadChest, instead of CheXpert, our

Method Precision Recall F1

KGAE CheXpert 0.214  0.158 0.156
MedCycle CheXpert| 0.230  0.171  0.183
MedCycle PadChest | 0.237  0.197  0.183
MedCycle  Xlate | 0.218  0.209  0.198

Table 2: Quantitative evaluation, CE metrics. Our
MedCycle results outperform those of KGAE in terms
of clinical efficacy metrics, on MIMIC-CXR, when
trained on images from CheXpert or from PadChest.

results improve on the same test datasets (MIMIC-
CXR & IU X-ray). This can be explained by the
more detailed data on additional pathologies and
the availability of Spanish reports. Notably, (Liu
et al., 2021c¢) is unable to utilize PadChest for train-
ing, due to its distinct labeling schema compared to
the report dataset MIMIC-CXR (174 vs. 14 labels).
We explore two approaches for generating pseudo-
reports for PadChest: extracting the provided labels
(PadChest) or translating the accompanying Span-
ish reports into English using a general translator
(Google Translate; PadChest-Xlate).

The improved results demonstrate the potential
of leveraging varying datasets, extending beyond
those sharing similar labeling schemas. More-
over, our method achieves results for the IU X-ray
dataset in a zero-shot manner, implying no expo-
sure to any data from this dataset during training —
neither images nor reports. In contrast, (Liu et al.,
2021c) utilizes its reports for training.

Our reports not only resemble the ground-truth
but also demonstrate higher accuracy and informa-
tiveness in extracting clinical information. These
findings are depicted in Table 2. As discussed
in (Chen et al., 2021), these metrics cannot be
employed on IU X-ray dataset, due to its label-
ing schema, hence Table 2 focuses on MIMIC-
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(a) Input image

(b) Ground-truth report

There are low lung volumes. The lungs are

clear. There is no pleural effusion or pneu-

Compared to prior exam from. The lungs

mothorax. The cardiomediastinal silhouette

are clear. There is no pleural effusion or

is unremarkable. Left central line terminates

pneumothorax. The cardiomediastinal sil-

in the right atrium. Median sternotomy

houette is normal. Median sternotomy wires

wires and mediastinal clips are noted. A

are intact.

calcified lymph node is noted in the AP win-

(c) Our report

Figure 4: Qualitative evaluation. Our model-generated report (c) contains similar information to the ground-truth
report (b). It indicates the lung clarity, the cardiomediastinal silhouette’s state, the appearance of median sternotomy

wires, and rules out pleural effusion & pneumothorax.

CXR. Remarkably, training on PadChest leads to
improved results for these clinical metrics as well.
In Appendix B, we compare the unpaired meth-
ods to several paired ones. Naturally, SoTA paired
methods perform better, but our approach shows
promising improvements towards closing the gap.
Qualitative evaluation. The comparison between
our generated report and the ground truth is illus-
trated in Figure 4. Notably, our generated reports
contain similar information to what appears in the
ground truth, such as the lung clarity, the appear-
ance of sternotomy wires, and absence of pleural ef-
fusion or pneumothorax. Additional examples can
be found Appendix A. (Making qualitative com-
parisons to (Liu et al., 2021c¢) is unfeasible as their
code has not been released.)
Pseudo-reports vs. real-reports. To measure
the similarity between the pseudo-reports and real-
reports, we compared the embeddings of ground-
truth reports (from the test set of (Johnson et al.,
2019)) against those of pseudo-reports using two
metrics recently utilized in (Yu et al., 2023). Ac-
cording to BERTScore (Zhang et al., 2019), the
similarity is 0.296, and with CheXbert (Smit et al.,
2020), the similarity is 0.407. According to the
experiments conducted by (Yu et al., 2023), these
scores indicate a good level of similarity.
Implementation details. The encoder E'z is a se-
quence of an encoding layer (Bengio et al., 2000)
and three Transformer encoder layers (Vaswani
et al., 2017), while the encoder E7 is a sequence of
a ResNet-101 (He et al., 2016b) and three Trans-
former encoder layers. The decoder Dy is a se-
quence of three Transformer decoder layers. Both
I2R and R21I are implemented as a simple multi-
head attention layer with 8 heads. For A.,; we set
the temperature value to 7 = 0.1. We train with a
batch size of 128 on a single NVIDIA A100 GPU.

Lcm ‘ Lcyc ‘ Ladv ae B-1 B—4 M Fl
v v v v 0.309 0.061 0.115 0.183
v v v’ 10.255 0.055 0.103 0.084
v v v 10.294 0.060 0.113 0.145
v v v’ 10.286 0.055 0.105 0.151
v v v 0.000 0.000 0.003 0.023

Table 3: Ablation study, losses. Every loss contributes
to the overall improvement in performance across all
metrics, including both language and clinical aspects.

Additional details appear in Appendix D.

S Ablation Study

Losses. Table 3 demonstrates that optimal per-
formance is achieved when combining all our ob-
jectives. Applying L, is crucial for training the
generation of reports; otherwise, the decoder fails
to learn to produce samples from the report domain.
L, plays a significant role in generating reports
closely associated with the input image. The ab-
sence of L, results in relatively poor performance,
particularly in the F'1 metric, suggesting potential
inaccuracies in capturing the essential information
of the data — the pathologies. Lastly, both L. and
L4, contribute to further enhancing the results, as
they are applied on representations of actual reports
and images, rather than the pseudo-reports.

Global & local representations. Table 4 illustrates
the impact of employing both global and local rep-
resentations as inputs for the decoder. Across most
metrics, utilizing both representations yields better
results. Notably, the F1 score highlights that using
only one representation leads to an inadequate ex-
pression of essential data elements. Solely relying
on the global representation produces favorable re-
sults in terms of NLG metrics but at the expense
of a significantly poor F1 score. Employing only
the local representation enhances the F1 score but
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decode decode
w/global | w/local B-1 B-4 M Fl1
v ‘ v ‘ 0.309 0.061 0.115 0.183
v 0.307 0.067 0.111 0.123
v 0.288 0.061 0.109 0.152

Table 4: Ablation study, global & local representa-
tions. Both representations contribute to the decoding
process, especially in terms of the F1 metric.

results in a decline in NLG metrics.

6 Conclusions

This paper presents a novel approach to generate
X-ray reports in an unpaired manner, eliminating
the need for paired images and reports during train-
ing. Our method integrates four key components:
(1) Learning a mapping function between the im-
age and report spaces through cycle-consistency.
(2) Creating representations based on both local
and global information that suit the problem and
the domain. (3) Learning report auto-encoding.
(4) Generating pseudo-reports utilizing domain
knowledge associated with the image dataset.

We show the effectiveness of our method on two
different datasets, surpassing the performance of
existing unpaired techniques for generating chest
X-ray reports. For instance, when trained on the
same image dataset as previous methods, our ap-
proach improves the BLEU-1 score (language met-
ric) by 4%-9%, depending on the dataset and the
F1 score (clinical metric) by 3%. When trained
on different datasets, which could not be utilized
by other unpaired methods due to distinct labeling
schemas, the results are further improved.

While our method exhibits generality, future
availability of sufficiently comprehensive datasets
in other medical domains may broaden the scope
of this work to encompass other types of medical
data.

Limitations. Our model requires the image
dataset to be accompanied by relevant domain-
specific information, such as pathologies or reports
in some language. There are datasets that lack
such information and, as a result, cannot be uti-
lized. Furthermore, our model generates a report
based on a single input image. However, medical
examinations often reference previous findings or
compare changes in severity over time, informa-
tion that might be available from another image or
a summary report. Our model is unable to utilize
this contextual information despite its significance.

Ethical considerations. In the medical domain
data privacy is a core concern. The datasets we
employed (Demner-Fushman et al., 2016; Johnson
et al., 2019; Bustos et al., 2020) were de-identified
and anonymized to ensure privacy protection, in
compliance with the Health Insurance Portability
and Accountability Act (HIPAA). However, deploy-
ing such models on private datasets (e.g., hospital
archives) without robust privacy measures may risk
the exposure of personal and sensitive information
through generated reports. Notably, compared to
paired approaches, our unpaired methodology en-
hances privacy by not relying on paired patient data,
mitigating potential privacy breaches. We hope that
when unpaired models, such as ours, demonstrate
their performance potential, the opportunities that
arise with fewer restrictions would encourage data
owners (e.g., hospitals) to release such unpaired
data, which involves fewer ethical concerns.

In terms of application, automatic report gen-
eration aims to enhance patient care and alleviate
the burden on healthcare providers. Nevertheless,
the automated system remains susceptible to errors,
which could result in inaccurate diagnoses. Con-
sidering the profound consequences of erroneous
diagnoses, we advocate that such automated sys-
tems should complement radiologists rather than
replace them in real-world applications.
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A Additional Examples

Matching phrases in each ground-truth and generated report pair are marked with the same color.

(a) Input image

(a) Input image

(a) Input image

(a) Input image

As compared to the previous radiograph
there is no relevant change. No evidence
of pneumonia. Borderline size of the car-
diac silhouette without pulmonary edema.
No pleural effusions. No inhomogeneous
bone structure. Mild tortuosity of the tho-
racic aorta.

(b) Ground-truth report

Frontal and lateral views of the chest were
obtained. The lungs are clear without focal
consolidation. No pleural effusion or pneu-
mothorax is seen. Cardiac and mediastinal
silhouettes are unremarkable.

(b) Ground-truth report

Single frontal view of the chest was ob-
tained. A left pleural effusion with over-
lying atelectasis remains present. Left base
retrocardiac opacity likely represents com-
bination of atelectasis and effusion although
underlying consolidation is difficult to ex-
clude. Patient is status post median ster-
notomy and CABG. No definite focal con-
solidation is seen in the right lung. The pa-
tient is status post median sternotomy and
cardiac valve replacement. Cardiac and me-
diastinal silhouettes are stable.

(b) Ground-truth report

As compared to the previous radiograph the
right picc line is in unchanged position. Un-
changed evidence of mild fluid overload
and retrocardiac atelectasis. No overt pul-
monary edema. No pneumonia. Moderate

cardiomegaly.
(b) Ground-truth report
1941

As compared to the previous radiograph no
relevant change is seen. Borderline size of
the cardiac silhouette with tortuosity of the

descending aorta. No pulmonary edema.

(c) Our report

PA and lateral views of the chest. The lungs
are clear without focal consolidation effu-
sion or pneumothorax. The cardiomediasti-
nal silhouette is normal.

(c) Our report

The patient is status post median sternotomy
and CABG. Left chest tube has been re-
moved. There is a small left pleural effusion
with adjacent atelectasis. The heart size is
normal. The mediastinal and hilar contours
are unremarkable. Left basilar atelectasis is

noted. No pneumothorax.

(c) Our report

As compared to the previous radiograph
there is no relevant change. Moderate car-
diomegaly is stable. There is a small left
pleural effusion with compressive atelecta-
sis at the left base. No evidence of pneu-
mothorax or pulmonary edema.

(c) Our report



(a) Input image

(a) Input image

(a) Input image

(a) Input image

PA and lateral views of the chest provided.
There is no focal consolidation effusion or
pneumothorax. The cardiomediastinal sil-
houette is normal. Imaged osseous struc-
tures are intact. No free air below the right

hemidiaphragm is seen.

(b) Ground-truth report

In comparison with the study of there is con-
tinued enlargement of the cardiac silhouette
with congestive failure. Poor definition of
the hemidiaphragms is consistent with bilat-
eral pleural effusion and compressive atelec-
tasis. There is an area of more coalescent
opacification in the right upper zone that is
asymmetric with the opposite side. In the
appropriate clinical setting this could well
represent a developing focus of pneumonia.
(b) Ground-truth report

Patient is status post median sternotomy.
Left-sided pacer device is grossly stable in
position. There is a moderate left pleural
etfusion with overlying atelectasis left base
consolidation is not excluded. Similar pul-
monary edema persists possibly asymmetric
on the left. No right pleural effusion is seen.
There is no pneumothorax. Cardiac and me-
diastinal silhouettes are stable.
(b) Ground-truth report

The lung fields are clear without focal con-
solidation pleural effusion or pneumotho-
rax. Heart and mediastinal contours are
within normal limits. Sternal wires and mi-
tral valve replacement hardware are again

seen.

(b) Ground-truth report

1942

PA and lateral views of the chest were ob-
tained. The lungs are clear without fo-
cal consolidation effusion or pneumothorax.
The cardiomediastinal silhouette is within
normal limits. No acute osseous abnormal-

ity is seen.

(c) Our report

In comparison with the study of there has
been interval improvement in the right pleu-
ral effusion with compressive atelectasis.
Bibasilar opacities have improved. The
heart size remains mildly enlarged. Medi-
astinal contours are stable. There is small
bilateral pleural effusion. No pneumotho-

rax.

(c) Our report

The patient is status post median sternotomy
and CABG. There is a small left pleural ef-
fusion with adjacent atelectasis in the left
lower lobe. The lungs are clear. The heart
size is normal. No pneumothorax. A left
picc line ends in the mid SVC. No acute
osseous abnormalities.

(c) Our report

The heart is normal in size. The mediastinal
and hilar contours are unremarkable. There
is no pneumothorax or pleural effusion. The

lungs are clear.

(c) Our report



B Comparison to Paired Methods

Method Unpaired | B-1 B-4 M R-L P R F1
R2Gen-CMN (Chen et al., 2021) 0353 0.106 0.142 0.278 | 0.334 0.275 0.278
KGAE-Sup (Liu et al., 2021c¢) 0369 0.118 0.153 0.295 | 0.389 0.362 0.355
MSAT (Wang et al., 2022b) 0373 0120 0.143 0.282 - - -
KiUT (Huang et al., 2023) 0393 0.113 0.160 0.285 | 0.371 0.318 0.321
UAR (Li et al., 2023) 0363 0.107 0.157 0.289 - - -

KGAE cCheXpert (Liu et al., 2021c) 0.221 0.062 0.097 0.208 | 0.214 0.158 0.156
MedCycle CheXpert (Ours) 0.309 0.061 0.115 0216 | 0.230 0.171 0.183
MedCycle PadChest (Ours) 0.349 0.072 0.128 0.239 | 0.237 0.197 0.183
MedCycle PadChest-Xlate (Ours) 0.352 0.070 0.132 0.241 | 0.218 0.209 0.198

ENRNRNNTRR R

Table 5: Comparison to paired methods. The difference in performance between several paired and unpaired
methods is reduced with our MedCycle, compared to KGAE, while also removing additional requirements regarding
the training datasets. As expected, SOTA paired methods perform better (on the MIMIC-CXR dataset). All the paired
methods were trained and evaluated using images from the MIMIC-CXR datasets, alongside their corresponding
reports. Our method and KGAE were not exposed to images from this dataset, but rather images from CheXpert or
PadChest and reports from MIMIC-CXR. Solely the evaluation was performed using images from the MIMIC-CXR
dataset.

C Datasets

CheXpert (Irvin et al., 2019) is a dataset of chest X-ray images, containing 224, 316 radiographs from
65, 240 patients, collected at Stanford Hospital. Each image is assigned with multi-labels for 14 potential
diagnosis classes. The corresponding medical reports are not publically available.

PadChest (Bustos et al., 2020) is a substantial Spanish dataset of chest X-ray images, comprising
160, 868 radiographs from 69, 882 patients, along with their associated medical reports. The data was
collected at San Juan Hospital. Each image is labeled according to 174 possible radiographic findings, 19
diagnoses, and 104 anatomic locations. Each image is associated with a report in Spanish.

MIMIC-CXR (Johnson et al., 2019) is a large English dataset of chest radiographs, containing 377,110
images, corresponding to 227, 835 reports performed at the Beth Israel Deaconess Medical Center. The
dataset is split into 368, 960 images (222, 758 reports) for training, 2,991 images (1, 808 reports) for
validation, and 5, 159 images (3, 269 reports) for testing.

1U X-ray (Demner-Fushman et al., 2016) comprises 7,470 chest X-ray images, each associated with
one of 3,955 reports. We employ the same train-validation-test split of 70%-10%-20% as defined by (Li
etal., 2018).

Access to the datasets is granted directly by the dataset owners upon registration and approval, owing
to their sensitivity.

D Implementation Details
1. Encoding:

(a) Visual feature extraction: we use ResNet-101 pretrained on ImageNet, which yields a 7 x 7
grid of patch features. Images are first resized, such that the smaller edge of the image is of size
256 pixels. Then, the image is cropped to 224 x 224 pixels.

(b) After visual feature extraction, we apply a Transformer encoder module, comprises 3 encoding
layers with multi-head attention mechanism of 8 heads.

(c) Textual feature extraction: we use an embedding layer (LUT).

(d) After textual feature extraction, we apply a Transformer encoder module, comprises 3 encoding
layers with multi-head attention mechanism of 8 heads.

(e) embedding dimension is set to d = 512.
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2. Decoding:

(a) Dp is a Transformer decoder, comprises 3 decoding layers with multi-head attention mechanism
of 8 heads.

(b) For augmenting the input of Dy we use a dropout of 0.9.
3. Mapping:
(a) Both I2R and R2I are implemented as a simple multi-head attention layer with 8 heads.

4. Losses:

(a) For the contrastive term A, we set the temperature 7 = 0.1.

5. Optimization parameters:

(a) We set the loss weights to v; = 3,72 = 1,73 = 0.25,74 = 1.5. These parameters were
empirically derived through experimentation with several combinations.

(b) We use Adam optimizer, with betas of (0.9,0.98) and weight decay of 5 - 1075,

(c) The learning rate is set at 10~ for most components, except for the discriminator, which is set
at2- 1074,
(d) The batch size is set at 128.

6. Inference parameters:

(a) The reports are samples using beam search, with a beam of size 3.

7. Resources:

(a) We train the model on a single Nvidia A100 GPU for 6 hours.
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