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Abstract

Fact-checking is an essential task in NLP that
is commonly utilized to validate the factual
accuracy of a piece of text. Previous ap-
proaches mainly involve the resource-intensive
process of fine-tuning pre-trained language
models on specific datasets. In addition, there
is a notable gap in datasets that focus on fact-
checking texts generated by large language
models (LLMs). In this paper, we introduce
SELF-CHECKER, a plug-and-play framework
that harnesses LLMs for efficient and rapid
fact-checking in a few-shot manner. We also
present the BINGCHECK dataset, specifically
designed for fact-checking texts generated by
LLMs. Empirical results demonstrate the po-
tential of SELF-CHECKER in the use of LLMs
for fact-checking. Compared to state-of-the-
art fine-tuned models, there is still significant
room for improvement, indicating that adopt-
ing LLMs could be a promising direction for
future fact-checking research.

1 Introduction

Fact-checking is an essential task in natural lan-
guage processing, focusing on evaluating the accu-
racy of text. The advent of large language models
(LLMs), such as ChatGPT, GPT-4 (OpenAI, 2023),
and GPT-3 (Brown et al., 2020), has intensified the
importance of this task. As LLMs gain widespread
use, the risk of generating false information and
hallucinating facts becomes a prominent concern.
Despite the extensive implicit knowledge in LLMs
and their superior ability to generate realistic re-
sponses, ensuring the accuracy and truthfulness of
their outputs remains a significant challenge.

Researchers have developed methods for fact-
checking and subtasks, including claim detection
and fact verification (Guo et al., 2022). Traditional

† This work was done during an internship at Microsoft
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Research.

Figure 1: SELF-CHECKER assesses the veracity of LLM
generated text by (1) extracting simple claims for verifi-
cation from the input text, (2) generating search queries
for retrieval, (3) selecting evidence sentences, and (4)
predicting the final conclusion.

fact-checking approaches typically involve fine-
tuning LLMs on specific datasets, which can be
computationally expensive and time-consuming.
The accelerated progress of LLMs has sparked
recent exploration into their potential for fact-
checking. Pan et al. (2023) proposed ProgramFC
which prompts CodeX for reasoning program gen-
eration to guide the verification process.

Existing fact-verification datasets (Thorne et al.,
2018; Schuster et al., 2021; Petroni et al., 2022;
Kamoi et al., 2023) mainly center on verifying
claims from Wikipedia, which do not capture the
complexity of lengthy and informative texts gener-
ated by LLMs. The lack of a suitable fact-checking
dataset tailored for LLM generation poses a chal-
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lenge in designing and evaluating frameworks in
the evolving landscape of LLMs.

In this paper, we introduce SELF-CHECKER

(depicted in Figure 1), a framework compris-
ing plug-and-play LLM modules for automated
fact-checking. The primary objective of SELF-
CHECKER is to assess the veracity of complex
texts (e.g., the response generated by ChatGPT).
To achieve this goal, SELF-CHECKER first extracts
several simple claims for verification from the input
and then predicts search queries for these claims to
retrieve documents from a knowledge source (e.g.,
Wikipedia in this example). After obtaining rele-
vant documents, SELF-CHECKER selects evidence
sentences for each claim from the documents and
finally returns a veracity prediction (e.g., whether
the original claim is supported by evidence). We
also construct BINGCHECK dataset, which focuses
on verifying the factual accuracy of texts generated
by LLMs. We collect interactions between a simu-
lated user and an LLM and hire human annotators
to determine the factualness of LLM’s responses.

This paper makes the following contributions:
(i) We introduce SELF-CHECKER to utilize LLMs
for automatic fact-checking. (ii) We construct
BINGCHECK dataset, which facilitates future re-
search on fact-checking in a more realistic set-
ting. (iii) We evaluate the effectiveness of SELF-
CHECKER on the BINGCHECK dataset and two
fact verification datasets. Our experiments show
that SELF-CHECKER is capable of generating rea-
sonable results and exhibits considerable poten-
tial in the field of fact-checking. While SELF-
CHECKER’s performance remains below that of
state-of-the-art (SOTA) models for fact verification,
our approach does not require any fine-tuning and
can be applied to any off-the-shelf LLM.

2 SELF-CHECKER Framework

SELF-CHECKER is a framework for fact-checking
that is training-free and contains a set of plug-and-
play modules—claim processor, query generator,
evidence seeker, and verdict counselor. The il-
lustration of SELF-CHECKER is depicted in Fig-
ure 2. A comparison of SELF-CHECKER against
other related frameworks is provided in Table 1.
SELF-CHECKER is designed to assess the factual-
ity of textual inputs and employs a policy agent that
strategically plans future actions based on a prede-
fined set of choices. Each module is implemented
by prompting an LLM through carefully crafted

Figure 2: Overview of SELF-CHECKER. The frame-
work consists of four plug-and-play modules: (1) claim
processor, (2) query generator, (3) evidence seeker, and
(4) verdict counselor.

prompts. Detailed example prompts are provided
in Appendix A. This modular approach allows for
seamless integration to specific fact-checking re-
quirements but also promotes adaptability in di-
verse application scenarios.

Policy Agent This module determines the sub-
sequent action of the system from a set of prede-
fined actions. These actions include: (1) calling
the claim processor to process the complex input,
(2) requesting search queries from the query gener-
ator, (3) retrieving relevant passages from a knowl-
edge source based on the generated search queries,
(4) utilizing the evidence seeker to extract evidence
sentences for a claim from the retrieved passages,
(5) requesting the verdict counselor to provide a
verdict prediction based on the gathered evidence,
and (6) sending the final conclusion to the users.

The policy agent follows the task instruction and
learns from in-context examples to select the most
appropriate action based on the current state and
observations of the framework. The task descrip-
tion includes a comprehensive list of all available
modules, along with brief descriptions of their re-
spective functions. In-context examples provide
complete processes of fact-checking for sample in-
put text. This decision-making process ensures the
efficient execution of the fact-checking process.

Claim Processor The first step in fact-checking
is to identify claims for verification from the in-
put text. Traditionally, this task involves clas-
sifying whether a sentence constitutes a claim
or ranking sentences according to their check-
worthiness (Atanasova et al., 2018; Barrón-Cedeño
et al., 2020; Zeng et al., 2021). Leveraging the
advanced text generation capabilities of LLMs, we
redefine the task of obtaining a set of claims to
verify as a generation task. Given a text t as in-
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Method Goal Input
Planning

in the process
Knowledge

source
Output

Verify-and-Edit
(Zhao et al., 2023)

Improve reasoning CoT reasoning No
DrQA, Wikipedia,

Google search
Revised reasoning

FactTool
(Chern et al., 2023)

Evaluate factuality LLM response No
Wikipedia, Python,

Calculator, Google scholar
Factuality labels

FActScore
(Min et al., 2023)

Evaluate factuality LLM response No Wikipedia Factuality score

FactCheck-GPT
(Wang et al., 2023)

Correct factual errors LLM response No Google search Revised response

Chain-of-Verification
(Dhuliawala et al., 2023)

Correct factual errors LLM response Generate entire plan Parametric knowledge Revised response

SELF-CHECKER (Ours) Evaluate factuality LLM response
Generate plan
step by step

Bing search Factuality labels

Table 1: Comparison of related frameworks. SELF-CHECKER aims to provide a factual evaluation of input text,
in contrast to FactCheck-GPT and Chain-of-Verification (CoVe), which focus on amending factual inaccuracies
in the input text. CoVe revises the input by answering a set of generated verification questions and does not
explicitly assess the factuality of the input. While FacTool and FActScore also deliver factual assessment results and
FactCheck-GPT can provide intermediate detection results, SELF-CHECKER is distinct in that it utilizes a policy
agent to dynamically plan future actions from an array of predetermined options.

put, the claim processor generates a set of claims
{c1, c2, ..., cm} that are included in t and need to
be verified. If a specific claim for verification has
been provided, the claim processor can also break
it down into a set of simpler claims. Each claim
within the set contains a single piece of information,
which eases the burden of the subsequent verifica-
tion process. All generated claims should convey
the same information that needs to be verified, as
conveyed by the original input. To achieve this
generation process, an LLM is prompted with a
combination of task instructions, in-context exam-
ples, and a piece of text to be examined.

Query Generator In order to verify a claim, it
is essential to retrieve pertinent information from
an external knowledge source. Given a claim c,
the query generator predicts search queries q =
{q1, q2, ..., qk} for the purpose of information re-
trieval. These generated queries are then used
to obtain relevant passages {p1, p2, ..., pk} from a
knowledge source. The query generation process is
accomplished by prompting an LLM. The prompt
for the query generator includes task instructions,
in-context examples, and the claim to be verified.

Evidence Seeker The evidence seeker aims to
identify evidence sentences for a given claim from
the retrieved passages. Given a claim c and the
set of retrieved passages {p1, p2, ..., pk}, the evi-
dence seeker returns a set of selected sentences
{s1, s2, ..., sn} that indicate the veracity of the
claim. To accomplish this process, an LLM is
prompted through a specific prompt comprised of
task instruction, in-context examples, the claim to

be verified, and the retrieved passages.

Verdict Counselor The primary objective of the
verdict counselor is to analyze the set of claims that
require verification, together with the correspond-
ing evidence sentences for each claim. This module
is responsible for predicting the veracity r of the
entire set of claims. By examining the provided
evidence, the verdict counselor determines the fac-
tuality of each claim and assigns an appropriate ve-
racity label, such as supported, partially supported,
or refuted. The labels are then aggregated to ob-
tain the final result of the entire set. The veracity
labels used by the verdict counselor are predefined,
encompassing the degrees of entailment (e.g., sup-
ported/partially supported/not supported/refuted).
To accomplish this process, an LLM is prompted
with specific instructions.

3 The BINGCHECK Dataset

Recent work (Liu et al., 2023) shows that while
existing generative search engines powered by
LLMs can provide fluent and appear informative
responses, they often suffer from hallucination. To
alleviate the problem of hallucinations in LLM gen-
eration and facilitate fact-checking research in a
more realistic setting, we develop the BINGCHECK

dataset by human annotation with the assistance
of the SELF-CHECKER framework. We aim to
annotate texts generated by an LLM that are nat-
urally occurring and fine-grained. We collect re-
sponses from LLM to user queries related to vari-
ous topics, which are relatively long and informa-
tive. We process complex response into multiple
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Figure 3: Illustration of BINGCHECK dataset construction. The initial claim detection results are obtained using
SELF-CHECKER, and human annotators verify and refine these automatic results. Processed claims are entered into
SELF-CHECKER for fact verification data generation, and the outputs are further validated by human workers.

simple claims that are worth-checking and the pro-
vide fact-checking information for both response
level and claim level.

3.1 Dataset Construction

3.1.1 Base Data Collection
To collect responses to various user queries gener-
ated by an LLM, we adopt ChatGPT to simulate
a curious user and gather responses generated by
Bing Chat1. We prompt ChatGPT with a user per-
sona characterized by curiosity and an inclination
to ask questions on various topics and collect 396
interaction instances between the simulated user
and Bing Chat. The responses generated by Bing
Chat serve as the input text to be verified.

3.1.2 Data Annotation
After collecting the base data on the interaction be-
tween the simulated user and Bing Chat, we hired
human workers on Amazon Mechanical Turk to
annotate the data. We aim to autogressively collect
annotated data for three subtasks: (1) claim detec-
tion, (2) evidence retrieval, and (3) veracity predic-
tion. To ensure the quality of data annotation, we
have launched onboarding tasks to select proficient
workers. Onboarding tasks mirror main tasks but
are less demanding. Only qualified workers who

1It is named as Bing Chat when we collected the data. It
has been updated to Microsoft Copilot now. The implementa-
tion is based on https://github.com/acheong08/EdgeGPT

pass the onboarding task access the primary task
with higher rewards. Each record in BINGCHECK

is then labeled by a qualified worker.

Considering the potential challenges and time
constraints associated with human annotation, we
adopt the SELF-CHECKER framework to assist in
the following annotation process. The main idea
is that for each subtask, we first utilize the SELF-
CHECKER framework to generate candidate solu-
tions to a subtask and then require human annota-
tors to validate and correct the candidate solutions.
The processed solutions are used to generated can-
didate solutions to the next subtask. The human-
processed data are collected in BINGCHECK. The
data collection process is depicted in Figure 3. The
instruction for human annotation and an example
of annotated data are shown in Appendix B.

Claim Detection Using the SELF-CHECKER

framework, particularly the claim processor mod-
ule, we generate a set of claims for verification for
each input. Human workers then assess and correct
the automatically labeled data. Workers receive a
Bing Chat response and a set of claims extracted by
SELF-CHECKER. Their task involves selecting all
claims in the response that necessitate verification
from the provided set and filling in any missing
claims requiring verification but not included in the
given set.
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Statistic Response Extracted Claim

Total number 396 3840
Average length 391.5 26.3

Number of evidence sentences 55.0 6.2
Number of claims per response 9.7 -

Table 2: Statistics of the BINGCHECK dataset. The “Re-
sponse” column stands for raw response generated by
BingChat, and “Extracted Claim” represents a claim
extracted from a response that needs to be verified.
The number of evidence sentences is computed only on
responses/claims with SUPPORTED, PARTIALLY SUP-
PORTED, REFUTED labels.

Evidence Retrieval and Veracity Prediction
Claims processed by workers are inputted into the
SELF-CHECKER framework, integrating the query
generator, evidence seeker, and verdict counselor
modules. For each claim, SELF-CHECKER predicts
a search query, retrieves relevant passages from a
certain knowledge source,2, selects evidence sen-
tences, and predicts the candidate veracity label.

We consider four veracity labels: SUPPORTED,
PARTIALLY SUPPORTED, REFUTED, NOT SUP-
PORTED. A claim is refuted if any evidence sen-
tence contradicts it. A claim is supported if there
are no refuting sentences and at least one sentence
supporting it. A claim is partially supported when
there are sentences that contribute to the credibility
of a portion of the claim but do not fully estab-
lish its truth or validity. A claim is not supported
if there are no sentences that refute, support, or
partially support the claim.

The automatic results of evidence retrieval and
claim verification are provided to workers. Their
task involves reviewing the claim along with each
automatically selected evidence sentence, selecting
all sentences relevant to verifying the claim’s fac-
tuality. Finally, the workers determine the verdict
results based on their selection.

3.2 Statistics
Table 2 presents the overall statistics for the
BINGCHECK dataset. The original responses gener-
ated by Bing Chat have an average length of 391.5
tokens and can be decomposed into an average of
9.7 claims for verification. The dataset contains
more than 3800 claims. For claims that are refuted,
supported, or partially supported, there are approx-
imately 6 evidence sentences on average.

Table 3 presents a comparative analysis of
2In our implementation, we utilized the Bing search engine

and retrieved three passages for each claim.

BingCheck against established datasets in the fact-
checking field. Our dataset is characterized by
its considerably longer responses compared to
those found in the existing datasets. This sig-
nificant increase in response length suggests that
BingCheck can provide a more complex and ex-
tensive framework for assessing factuality. Fur-
thermore, this increased length underscores the
alignment of our dataset with real-world scenarios,
wherein responses to complex or broad inquiries
posed to LLMs are typically extensive and detailed,
thereby making the factuality evaluation more chal-
lenging.

3.3 Dataset Quality Evaluation
To evaluate the quality of the annotated data, we
have hired Amazon Mechanical Turk workers to
perform annotation review tasks. For each anno-
tated record, we have employed three workers to
evaluate it. Each worker answers a series of single-
choice questions to assess the quality of the anno-
tation. To evaluate the quality of claim detection, a
worker is presented with an original response and
an annotated list of claims. The workers need to
determine whether all listed claims need verifica-
tion and whether all claims in the response that
require verification are included in the given set
of claims. To assess the quality of annotations for
evidence retrieval and veracity prediction, a worker
is presented with a claim and a list of evidence
sentences. A worker first determines whether all
evidence sentences are relevant for verifying the
claim’s factualness. Then the worker determines
whether the assigned label is correct. We use a
majority vote to aggregate the evaluation results.

In terms of claim detection, among all 396
records, the extracted claims in 381 records are
deemed comprehensive and verifiable. However,
there are 15 records where the claim detection is ei-
ther missing or contains claims that do not require
verification. Regarding evidence retrieval and ve-
racity prediction, we have a total of 3840 extracted
claims. Evaluators have found that 94% of these
claims have appropriate evidence sentences. In the
case of the remaining claims, there may be redun-
dant and irrelevant sentences within the selected
evidence. For verdict prediction, 96% claims have
been considered to be accurately assigned with ap-
propriate labels based on the annotated evidence.
There may be some level of noise in the human
evaluation results. Nevertheless, this evaluation
process provides an estimation of dataset quality
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Dataset
Input Claim

granularity
Knowledge Source

Evidence
provided

Task Scenario
Length Generated by

Fever
(Thorne et al., 2018)

7.3 Human fact Wikipedia Yes Fact verification Wikipedia claim

WiCE
(Kamoi et al., 2023)

24.2 Human Fact Wikipedia Yes Entailment classification Wikipedia claim

FactTool
(Chern et al., 2023)

76.3 ChatGPT Fact

Wikipedia,
Python,

Calculator,
Google scholar

Yes Fact checking
QA, Code, Math,
Literature review

HaluEval
(Li et al., 2023)

82.0 ChatGPT Response Parametric knowledge No Fact checking
QA, Dialog,

Summary

FELM
(Chen et al., 2023)

89.1 ChatGPT Segment Google search Yes Fact checking
World knowledge,

Science, Math,
Recommendation

FActScore
(Min et al., 2023)

154.5
InstructGPT,

ChatGPT,
PerplexityAI

Response Wikipedia No Fact checking
Biography generation,
Long-form response

FactCheck-GPT
(Wang et al., 2023)

95.8
ChatGPT,

GPT4
Response Google search Yes

Fact checking and
error correction

QA

Chain-of-Verification
(Dhuliawala et al., 2023)

- Llama-65B - Search engine - Factual error correction QA

BINGCHECK (Ours) 391.5 Bing Chat Response Bing search Yes Fact checking
Long-form response,

QA

Table 3: Comparison of factuality evaluation datasets. The “Scenario” column describes the tasks used to gather the
initial responses. The critical point of differentiation for our dataset is the significantly greater average response
length, which is considerably longer than those in the datasets we have compared it with.

and offers valuable insights for further checks and
improvements in data annotation.

4 Experiments

4.1 Datasets
We evaluate the performance of the SELF-
CHECKER framework for the fact-checking task
on the BINGCHECK dataset. Additionally, we as-
sess its efficiency in performing fact verification
using the FEVER dataset (Thorne et al., 2018) and
text entailment using the WiCE dataset (Kamoi
et al., 2023).

BINGCHECK Dataset The fact-checking pro-
cess of LLM response in the BINGCHECK dataset
involves four subtasks: (1) Claim detection: Given
a long paragraph t, models are required to gen-
erate a set of claims {c1, c2, ..., cm} that require
evidence or proof to support their accuracy or truth-
fulness. (2) Document retrieval: Given a claim
c, models are expected to predict search queries
{q1, q2, ..., qk} to retrieve relevant articles from a
knowledge source. (3) Sentence retrieval: Given
a claim c and relevant passages {p1, p2, ..., pk},
models are required to select evidence sentences
{s1, ..., sn} from the articles. These evidence
sentences can either (partially) support or refute
the claim, depending on the veracity label design.
(4) Verdict prediction: Given a claim c and the evi-
dence sentences {e1, ..., en}, models are required
to predict the veracity label. The fact-checking pro-

cess requires the claim processor, query generator,
evidence seeker, and verdict counselor modules.

FEVER Dataset In the FEVER (Thorne et al.,
2018) dataset, claims consist of a single piece of
information and do not require further decompo-
sition. The verification of a claim in FEVER in-
volves document retrieval, sentence retrieval and
verdict prediction. The FEVER dataset uses three
identification labels: SUPPORTED, REFUTED, and
NOTENOUGHINFO. A claim is verified as NOTE-
NOUGHINFO if there is insufficient information in
Wikipedia to support or refute the claim, either be-
cause the claim is too general or too detailed. The
dataset provides the names of evidence Wikipedia
passages and the indices of evidence sentences. In
the verification process, the names of evidence arti-
cles serve as search queries. To verify a claim in the
FEVER dataset, the SELF-CHECKER framework
adopts query generator, evidence seeker, and ver-
dict counselor. We follow the experiment setting in
the previous research (Zhao et al., 2023) and use
the same subset of Fever.

WiCE Dataset The WiCE dataset is specifically
designed for verifying Wikipedia citations and con-
sists of claims grounded in cited articles from
Wikipedia. Unlike the FEVER dataset, the claims
in WiCE contain multiple pieces of information.
The verification process in WiCE involves claim
detection, sentence retrieval, and verdict prediction.
Complex claims in WiCE are decomposed into sim-
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pler subclaims. Verifying claims in WiCE primarily
entails sentence retrieval for the cited articles and
subsequent verdict prediction. The veracity labels
in WiCE include SUPPORTED, PARTIALLYSUP-
PORTED, and NOTSUPPORTED. A claim is clas-
sified as PARTIALLYSUPPORTED if some tokens
within the claim are not supported by any evidence
sentence. The prediction results are collected at
subclaim levels. The veracity label of the original
claim is set to SUPPORTED or NOTSUPPORTED,
depending on whether all subclaims are supported
or not supported. Otherwise, the original claim is
considered PARTIALLYSUPPORTED. To verify a
claim in the WiCE dataset, the SELF-CHECKER

framework adopts claim processor, evidence seeker,
and verdict counselor modules.

4.2 Experimental Setup
Implementation All modules in the SELF-
CHECKER are implemented using OpenAI GPT-3.5
(text-davinci-003) API with temperature 0.2. The
prompt for policy agent consists of three examples
due to the length constraint. The prompts for claim
processor, query generator, evidence seeker, and
verdict counselor contain fifteen examples. As for
the knowledge source, we employ Bing search en-
gine for BingCheck and Wikipedia for FEVER. Up
to three retrieved passages are considered for fur-
ther evidence selection. In the implementation, we
stored FEVER preprocessed Wikipedia passages
in a database. The retrieval mechanism automati-
cally incorporates passages whose titles precisely
match the generated search query or exhibit partial
alignment with the predicted search query.

Evaluation Metrics We report label accuracy
and F1 score for evidence retrieval, which is com-
puted between all predicted sentences and the
golden evidence sentences for claims requiring ev-
idence. Consistent with baseline studies (Kamoi
et al., 2023; Thorne et al., 2018), we present the F1
score for verdict prediction on the WiCE dataset
and the FEVER score for results on the FEVER
dataset. The FEVER score is the strict accuracy
with the requirement of providing correct evidence
for the SUPPORTED/REFUTED predictions.

Baselines We evaluate SELF-CHECKER against
various methods. Standard prompting directly pre-
dicts verdict labels based on input claims, while
Chain-of-thought prompting (Wei et al., 2022) gen-
erates explanations before making predictions. Re-
Act (Yao et al., 2023) follows a reason-and-act

framework with an external knowledge source3.
The setup of the knowledge source is similar to
that in SELF-CHECKER. We also compare with a
related method Verify-and-Edit (Zhao et al., 2023)
on Fever dataset. These prompt-based methods are
implemented using the OpenAI GPT-3.5 API.

In addition, we compare our approach to the
initial baseline model (Thorne et al., 2018) and
the state-of-the-art (SOTA) model BEVERS (De-
Haven and Scott, 2023) on the FEVER dataset. The
baseline model consists of a DrQA (Chen et al.,
2017) document retrieval module, a DrQA-based
sentence retrieval module, and an entailment mod-
ule based on decomposable attention (Parikh et al.,
2016). The SOTA model adopts BERT for evidence
retrieval and claim verification, along with meticu-
lous hyperparameter tuning. For the WiCE dataset,
we include the initial baseline model (Kamoi et al.,
2023), implemented by fine-tuning T5-3B (Raffel
et al., 2020) on WiCE.

4.3 Main Results

Evaluation Results on BINGCHECK Dataset
The evaluation results on BINGCHECK are pre-
sented in Table 4. We observe the inherent chal-
lenge LLMs face when determining the factu-
alness of complex paragraphs based solely on
pre-trained parametric knowledge. It is notable
that LLMs prompted with standard and chain-of-
thought prompts tend to align with the input, tend-
ing to recognize it as supported information. The
integration of external knowledge contributes to
the improvements in fact-checking. However, a
performance gap persists between baseline mod-
els and the proposed framework, which under-
scores the importance of incorporating modules
capable of decomposing complex paragraphs into
simpler claims, conducting explicit analysis of
retrieved passages, and predicting verdicts. Fur-
thermore, the availability of intermediate results
from the fact-checking process enhances our ability
to identify performance bottlenecks within SELF-
CHECKER, making it possible to guide further im-
provements. Despite the introduction of SELF-
CHECKER, there are limitations in achieving opti-
mal results on BINGCHECK, highlighting the in-
herent difficulty in fact-checking LLM-generated
content and prompting further exploration.

3ReAct is not evaluated on the WiCE dataset as the knowl-
edge retrieval is not included in the verification process for
claims in WiCE.

169



Model Accuracy
Evidence Retrieval

F1 Precision Recall

Standard Prompt 19.4 - - -
Chain-of-Thought 15.7 - - -

ReAct (Yao et al., 2023) 21.0 - - -

SELF-CHECKER 63.4 45.0 30.5 86.1

Table 4: Evaluation results on BINGCHECK. The accu-
racy is computed on the response level.

Evaluation Results on FEVER Dataset The
evaluation results on the FEVER dataset are pre-
sented in Table 5. Compared to prompt-based base-
lines, SELF-CHECKER improves verification accu-
racy with explicit evidence retrieval results. Com-
paring the performance of the baselines and SELF-
CHECKER, we observe that LLMs possess a robust
capacity to learn from few examples and perform
various tasks, including query generation, retrieval
and verdict prediction. However, the significant
performance gap between the SOTA model and the
SELF-CHECKER highlights the need to improve
the efficiency of the SELF-CHECKER.

Evaluation Results on WiCE Dataset The eval-
uation results for the WiCE dataset are in Table 6.
The F1 score for label prediction is quite low for the
LLM with standard prompting, as it tends to predict
the supported claim as partially or not supported. In
line with earlier findings, SELF-CHECKER demon-
strates superior efficiency compared to the prompt-
based baselines. A noticeable performance gap
emerges when comparing SELF-CHECKER with
the model fine-tuned on the WiCE dataset. Specifi-
cally, in evidence retrieval, evidence seeker tends
to overlook evidence in the passages, highlighting
a potential bottleneck in overall performance.

4.4 Ablation Study

To assess the impact of each module on overall per-
formance, we conduct an ablation study on three
datasets. The evaluation results on BINGCHECK

are shown in Table 7. The first row reflects end-
to-end fact-checking performance, encompassing
claim detection, document retrieval, sentence re-
trieval, and verdict prediction. When comparing
the first and second rows, we note that providing
golden claims results in improvements across all
metrics. The marginal difference between results
with and without golden documents suggests the
low-temperature setting of the API in the query
generator module ensures stable search query gen-
eration, with retrieval results for a fixed query ex-

hibiting consistency. Even with golden evidence
sentences, the label accuracy at the response level
does not exceed 70, indicating potential for further
enhancements in the verdict counselor module to
improve the accuracy of veracity prediction. In
terms of evidence retrieval performance, it is un-
surprising to observe an inclination to over-select
more evidence sentences. This behavior stems
from the dataset construction process, where hu-
man workers filter evidence sentences selected by
SELF-CHECKER, removing less relevant ones.

Analyzing the incorrect predictions with golden
evidence sentences, we observe a tendency in
SELF-CHECKER to be overly optimistic, classify-
ing claims that are only partially supported as fully
supported. For instance, the claim “Brain virus was
released on 19 January 1986 by two brothers from
Pakistan, Basit and Amjad Farooq Alvi.” is par-
tially supported by the evidence sentence “In 1986,
Brain was developed by the Pakistani brothers Ba-
sit and Amjad Farooq Alvi, who were annoyed at
having their heart monitoring software copied for
free.” However, SELF-CHECKER overlooks the
lack of mention of the exact release date of the
Brain virus and predicts the claim as supported
based on the evidence.

5 Related Work

The framework for automated fact-checking
involves claim detection and factual verifica-
tion (Zeng et al., 2021; Guo et al., 2022). Claim
detection identifies statements needing verifica-
tion, while factual verification includes evidence
retrieval and assessment of claim validity.

Claim detection has been approached as a bi-
nary classification task, determining if a sentence
represents a claim (Hassan et al., 2017), or as a
ranking task, ordering sentences based on their
check-worthiness (Jaradat et al., 2018).

Fact verification requires models to assess the
veracity of a given claim by examining evidence
information. FEVER dataset (Thorne et al., 2018)
is one of the most popular datasets in this area, and
fueled the development of fact verification mod-
els (Soleimani et al., 2020; Jiang et al., 2021; Kr-
ishna et al., 2022). The fact verification in FEVER
dataset consists of document retrieval, sentence
selection, and verdict prediction.

The Vitamin C dataset (Schuster et al., 2021)
is proposed for a contrastive fact verification
paradigm which requires models to be sensi-
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Model Fine-tuning FEVER Score Accuracy
Evidence Retrieval

F1 Precision Recall

Standard Prompt ✗ - 49.9 - - -
Chain-of-Thought ✗ - 51.8 - - -

ReAct ✗ - 51.4 - - -
Verify-and-Edit ✗ - 53.9 - - -

SELF-CHECKER ✗ 47.9 56.7 47.5 75.3 34.7

DrQA (Thorne et al., 2018) ✓ 31.9 50.9 17.5 10.8 45.9
BEVERS (DeHaven and Scott, 2023) ✓ 77.7 80.2 - - -

Table 5: Evaluation results on FEVER dataset. “Fine-tuning” stands for whether the training procedure is required.
Verify-an-Edit is experimented with three different knowledge sources (Zhao et al., 2023). We compare with the
highest accuracy obtained by using the Google search engine as a knowledge source.

Model Fine-tuning F1 Accuracy
Evidence Retrieval

F1 Precision Recall

Standard Prompt ✗ 9.0 65.9 - - -
Chain-of-Thought ✗ 36.7 50.0 - - -

SELF-CHECKER ✗ 47.7 71.5 60.5 71.4 52.5

T5-3B (Kamoi et al., 2023) ✓ 65.3 77.1 67.4 65.0 81.7

Table 6: Evaluation results on WiCE test set. “Fine-tuning” stands for whether the training procedure is required.
Note that we compare with T5-3B model finetuned on WiCE dataset (Kamoi et al., 2023).

Golden Golden Evidence
Accuracy

Evidence Retrieval
Claims Document Sentence F1 Precision Recall

✗ ✗ ✗ 63.4 45.0 30.5 86.1
✓ ✗ ✗ 64.3 48.8 32.7 96.5
✓ ✓ ✗ 64.3 49.0 32.8 97.0
✓ ✓ ✓ 67.2 - - -

Table 7: Ablation results on BINGCHECK. “Golden
Claims” indicates whether the golden claims are given.
“Golden Evidence” indicates whether the golden docu-
ments and sentences are provided.

tive to changes in evidence and claims. The
WAFER dataset (Petroni et al., 2022) contains
instances from Wikipedia inline citations. The
WiCE dataset (Kamoi et al., 2023) provided fine-
grained annotation of supporting evidence and non-
supported tokens in claims.

While many work focused on verifying claims
against raw text evidence, other recent datasets
cover verification against various evidence, such as
table (Chen et al., 2019; Gupta et al., 2020; Akhtar
et al., 2022), knowledge graph (Zhu et al., 2021;
Vedula and Parthasarathy, 2021; Kim et al., 2023)
and other multimodal evidence (Alam et al., 2022).

Factual error correction is a task closely related
to fact-checking. After assessing the factualness
of claims within the input text, a subsequent step
is addressing any inaccuracies to improve factual
integrity. Recent studies have explored methods for

refining the factualness of text outputs by leverag-
ing retrieved evidence (Thorne and Vlachos, 2021;
Iv et al., 2022; Huang et al., 2023). In addition to
approaches specialized in correcting factual errors,
some recent frameworks first assess the factualness
of its initial generation and then amend any de-
tected inaccuracies to enhance the overall veracity
of the generation (Wang et al., 2023; Dhuliawala
et al., 2023; Fatahi Bayat et al., 2023).

6 Conclusion and Future Work

We present SELF-CHECKER, a framework for au-
tomated fact-checking with plug-and-play modules
implemented through prompting LLMs. Addition-
ally, we introduce the BINGCHECK dataset, which
serves as a valuable resource for future research in
fact-checking of LLM-generated responses. Exper-
imental results demonstrate the significant potential
of SELF-CHECKER in the fact-checking task.

In future work, a key direction to explore is to
enhance the efficiency of SELF-CHECKER. One
potential avenue is the incorporation of additional
working memory to accelerate the verification pro-
cess by using past information. Furthermore, inves-
tigating more efficient strategies for utilizing LLMs
in each subtask of fact-checking holds promise for
optimizing performance.
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Limitations

One limitation of SELF-CHECKER is its inability
to account for information updates. If there is out-
of-date information that contradicts a claim, SELF-
CHECKER may classify the claim as refuted even
if it is actually supported by the most up-to-date
information. This limitation arises due to the mixed
and unrefined sources of information used by SELF-
CHECKER during the fact-checking process. SELF-
CHECKER does not contain a module to postpro-
cess and filter the retrieved articles. Another limita-
tion of SELF-CHECKER is its high computational
cost due to the involvement of multiple chained
LLM calls in the process of fact-checking. To en-
sure the reliability of predictions, we adopt the ma-
jority voting approach by running evidence seeker
and verdict counselor multiple times. Although
this approach can improve accuracy and stability,
it may result in slower response times. However,
we anticipate that this limitation can be mitigated
in the future with the advancement of more effi-
cient and accessible LLMs. In addition, we will
explore providing options to achieve a balance be-
tween accuracy and waiting time, allowing users
to make informed trade-offs based on their specific
requirements. Another limitation is the sensitivity
of SELF-CHECKER to prompts. In our preliminary
experiments, we have observed variations in perfor-
mance when using different prompts. Enhancing
the robustness of LLMs to prompts is an avenue for
future exploration, aiming to improve the reliability
and consistency of SELF-CHECKER. Furthermore,
the current prompts are manually designed, which
may be heuristic in nature. We consider investi-
gating automated methods for selecting in-context
learning examples and generating strong prompts
in the future work. Additionally, the selection of
hyperparameters in SELF-CHECKER currently re-
lies on heuristics. Exploring more efficient auto-
mated approaches for hyperparameter tuning could
improve the overall efficiency of the framework.

A potential limitation of the BINGCHECK

dataset is the potential bias during annotation. The
classification of the veracity of a claim can be sub-
jective. It is important to consider this factor when
interpreting and utilizing the BINGCHECK dataset
for research purposes.

Ethics Statement

In this work, we focus on utilizing SELF-CHECKER

to tackle the problem of hallucinations in the gen-

eration results of LLMs. However, it is important
to acknowledge that LLMs’ generation can also
exhibit other potential issues, including the produc-
tion of offensive and harmful content. Currently,
SELF-CHECKER does not address these problems.
To mitigate these concerns, future work on SELF-
CHECKER could incorporate a dedicated module
specifically designed to detect and remove offen-
sive and harmful content.
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A Example Prompts for SELF-CHECKER

The example prompts for modules in SELF-
CHECKER are shown in Figure 4, 5, 6, 7, 8.

B BINGCHECK Dataset

B.1 Human Annotation Instruction
We collected human annotated data for
BINGCHECK in two steps. The design of
annotation for claim decomposition is shown in
Figure 9. The design of annotation for evidence
retrieval and veracity prediction is shown in
Figure 10.

B.2 Data Format in BINGCHECK

A record in BINGCHECK contains user query, orig-
inal LLM response, and fact-checking annotation.
The fact-checking annotation involves claims to
verify, search queries, search results, selected ev-
idence, and verdict labels. Figure 11 shows an
annotated record example.

Try your best to determine if the given input response is factually accurate.

<tool introduction>

Use the following format:

Response: the response of language model to the user query. you must verify the factual accuracy of the
response. If the input is to long, summarize it without changing factualness.
Thought: you should always realize what you have known and think about what to do and which tool to
use.
Action: the action to take, should be one of [actions]
Action Input: the input to the action, must follow instructions of tools
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I can give an answer based on the evidence
Final Answer: should be in the form: supported, partially supported, not supported, refuted

<in-context examples>

Begin!

<text to verify>

Figure 4: Example prompt for the policy agent.
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You and your partners are on a mission to fact-check a claim that may contain multiple subclaims that
need to be verified. A sentence that needs to be verified is any statement or assertion that requires
evidence or proof to support its accuracy or truthfulness. For example, “Titanic was first released in 1997”
necessitates verification of the accuracy of its release date, whereas a claim like "Water is wet" does
not warrant verification. Each subclaim is a simple, complete sentence with single point to be verified.
Imagine yourself as an expert in processing complex paragraphs and extracting subclaims. Your task is to
extract clear, unambiguous subclaims to check from the input paragraph, avoiding vague references like
’he,’ ’she,’ ’it,’ or ’this,’ and using complete names.

To illustrate the task, here are some examples:
<in-context examples>

Now, let’s return to your task. You are given the following input paragraph, please extract all subclaims
that need to be checked.

Input: <input>
Subclaims: <extracted claims>

Figure 5: Example prompt for the claim processor module. <Extracted claims> is the expected output of the LLM
for claim processor.

You and your partners are on a mission to fact-check a paragraph. Subclaims requiring verification have
been extracted from the paragraph. Imagine yourself as an internet research expert. Your task is to
generate a search query for each subclaim to find relevant information for fact-checking. You will be
provided with the context of a claim and the specific claim for which you should create a search query.

To illustrate the task, here are some examples:
<in-context examples>

Now, let’s return to your task. You are given the following claim and its context, please predict the most
appropriate search query for it.

Context: <original input text>
Claim: <claim to verify>
Query: <predicted search queries>

Figure 6: Example prompt for the query generator module. <Predicted search queries> is the expected output of the
LLM for query generator.

176



You and your partners are on a mission to fact-check a claim. Your mission is to verify a claim’s factual
accuracy. As experts in reading comprehension, you’ll receive a claim and a passage. You should first
read the claim and the passage carefully. Make sure you understand what information you are looking for.
Then select sentences that either support, partially support, or refute the claim. A sentence supports the
claim if it provides evidence for all statements in the claim. A sentence partially supports the claim if it
confirms some details but not all. A sentence refutes the claim if it contradicts any statement in the claim.
Exercise caution in your selection and judgment, avoiding overstatement. Choose the most relevant
evidence and refrain from including noisy information. Base decisions solely on provided information
without implying additional details.

To illustrate the task, here are some examples:
<in-context examples>

Now, let’s focus on your task. You are given a claim and a passage. Please read the passage carefully and
copy sentences that contain information supporting or refuting the claim.

Claim: <claim to verify>
Passage: <passage>
Evidence: <selected evidence>

Figure 7: Example prompt for the evidence seeker. <Selected evidence> is the expected output of the LLM for
evidence seeker.

You and your partners are on a mission to fact-check a claim. Your mission is to verify the factual
accuracy of a claim using provided evidence. Your partners have collected evidence, and your expertise
lies in assessing the claim’s factualness based on this evidence. You are required to determine whether the
claim is supported, refuted, or lacks sufficient information based on the provided evidence. The evidence
supports the claim if it confirms all statements and details in the claim. The evidence refutes the claim
if it contradicts or disproves any statement in the claim. ’Not enough info’ applies when the evidence
lacks sufficient data, details, or reasoning to support or refute the claim. Even if the evidence supports
part of the claim, it should be considered "not enough info" if there is any detail or statement in the
claim that cannot be confirmed by the evidence. Please exercise caution in making judgments and avoid
overstatement. Base decisions solely on the provided information without implying additional details.

Here are examples to illustrate the task:
<in-context examples>

Claim: <claim to verify>
Evidence: <selected evidence>
Analysis: <verdict prediction>

Figure 8: Example prompt for the verdict counselor. <Verdict prediction> is the expected output of the LLM for
verdict counselor.
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Figure 9: Design of human annotation for claim detection

Figure 10: Design of human annotation for evidence retrieval and veracity prediction
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User Query: What inspired the invention of the first artificial heart?

LLM Response: The invention of the first artificial heart was inspired by the need to save lives of people
with heart failure and to overcome the shortage of donor hearts for transplantation. According to, the first
artificial heart was a machine that was used to temporarily replace the function of the heart during surgery
in 1952. The first artificial heart that was implanted in a human was the Jarvik-7 in 1982, designed by a
team including Willem Johan Kolff, William DeVries and Robert Jarvik. The first patient to receive the
Jarvik-7 was Barney Clark, a dentist from Seattle, who survived for 112 days after the implantation.

Fact-checking Annotation:

Claim 1: The invention of the first artificial heart was inspired by the need to save lives of people with
heart failure and to overcome the shortage of donor hearts for transplantation.
Search Query: Artificial heart invention inspiration and purpose
Evidence:
The purpose is to develop a temporary machine or pump for a person who has a disease of the heart and
their survival without transplant is impossible.
These temporary devices can provide enough time for the patient until a donor heart is available.
......
Label: Supported

Claim 2: The first artificial heart was a machine that was used to temporarily replace the function of
the heart during surgery in 1952.
Search Query: first artificial heart function replacement machine surgery 1952
Evidence:
In 1952, the Model II heart-lung device was released to be used on humans.
Label: Not Supported

Claim 3: The first artificial heart that was implanted in a human was the Jarvik-7 in 1982.
Search Query: first artificial heart implanted in human Jarvik-7 1982
Evidence:
The 61-year-old retired dentist was in an advanced stage of cardiomyopathy, a progressive weakening
of the heart muscle, when he became the first recipient of a permanent artificial heart on this day, Dec.
2, in 1982.
......
Label: Supported

Claim 4: The Jarvik-7 was designed by a team including Willem Johan Kolff, William DeVries, and
Robert Jarvik.
Search Query: Jarvik-7 artificial heart design team members
Evidence:
Jarvik completed two years of study, and in 1971 was hired by Willem Johan Kolff, a Dutch-born
physician-inventor at the University of Utah,who produced the first dialysis machine, and who was
working on other artificial organs, including a heart.
......
Label: Partially Supported

(next page)

179



(Continued)

Claim 5: The first patient to receive the Jarvik-7 was Barney Clark, a dentist from Seattle.
Search Query: Jarvik-7 first patient Barney Clark Seattle
Evidence:
On December 2, 1982, Clark became the world2̆019s first recipient of an artificial heart.
The 61-year-old retired dentist was in an advanced stage of cardiomyopathy, a progressive weakening
of the heart muscle, when he became the first recipient of a permanent artificial heart on this day, Dec.
2, in 1982.
......
Label: Supported

Claim 6: Barney Clark survived for 112 days after the implantation of the Jarvik-7.
Search Query: Barney Clark Jarvik-7 implantation survival duration
Evidence:
Barney Clark survived for 112 days after the implantation of the Jarvik-7.
On 1 December 1982, William DeVries implanted the artificial heart into retired dentist Barney Bailey
Clark (born 21 January 1921), who survived 112 days with the device, dying on 23 March 1983.
Label: Supported

Figure 11: An example in BINGCHECK. A record contains a user query, original LLM response, and fact-checking
annotation. The fact-checking annotation involves claims to verify, search queries, search results, selected evidence,
and verdict labels. The search results and the part of selected evidence are omitted due to space limit.
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Model
Golden Evidence

FEVER Score Accuracy
Evidence Retrieval

Document Sentence F1 Precision Recall

SELF-CHECKER

✗ ✗ 51.3 62.7 55.9 64.1 49.5
✓ ✗ 64.1 72.8 75.8 90.3 65.4

✓ - 81.20 - - -

Table 8: Ablation results on entire FEVER test set. “Golden Evidence” indicates whether the golden docu-
ments/sentences are provided.

Model Golden Evidence Claim Split F1 Accuracy
Evidence Retrieval

F1 Precision Recall

T5-3B (Kamoi et al., 2023)
✗ ✓ 65.3 77.1 67.4 65.0 81.7
✓ ✓ 78.0 84.4 - - -

SELF-CHECKER

✗ ✓ 64.4 68.4 42.1 70.2 30.1
✗ ✗ 35.6 35.8 23.5 91.1 13.5
✓ ✓ 78.7 78.8 - - -
✓ ✗ 71.5 47.7 - - -

Table 9: Ablation results on WiCE. “Golden Evidence” indicates whether golden sentences are provided. “Claim
Split” indicates whether claim decomposition is performed. Note that we compare with the model finetuned on
WiCE dataset (Kamoi et al., 2023).

C Ablation Study

Ablation Study Results on FEVER dataset
Comparing the first and second rows of Table 8, we
observe substantial improvements across all met-
rics when predicted documents are replaced with
golden evidence documents. This improvement
suggests the importance of exploring more effec-
tive strategies for generating appropriate search
queries and improving document retrieval accuracy.
Furthermore, the inclusion of golden evidence sen-
tences can further improve the accuracy of verac-
ity prediction by more than 8 points. However,
even with golden evidence sentences, the SELF-
CHECKER lags behind the SOTA model in label
accuracy, indicating the need for further enhance-
ments in the verdict counselor’s performance.

Ablation Study Results on Wice Dataset The
evaluation results on WiCE dataset is shown in
Table 9. The slight improvement in verdict predic-
tion between the first and third rows of the SELF-
CHECKER results suggests that the evidence seeker
module’s efficiency is unlikely to be the primary
bottleneck in the SELF-CHECKER’s performance.
However, comparing the second row of the base-
line with the third row of the SELF-CHECKER re-
sults highlights that the verdict counselor module’s
performance is the primary bottleneck in the over-
all performance of SELF-CHECKER. This find-

ing aligns with the results obtained on the FEVER
dataset, indicating the significant potential for en-
hancing verdict prediction despite LLMs’ superior
capabilities in various NLP tasks. Consistent with
prior findings (Kamoi et al., 2023), we find that de-
composing complex claims into simpler sub-claims
improves both evidence retrieval and verdict pre-
diction.
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