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Abstract

Warning: this paper contains data that may be
offensive or upsetting.

Recent advancements in open-domain
dialogue systems have been propelled by the
emergence of high-quality large language
models (LLMs) and various effective training
methodologies. Nevertheless, the presence of
toxicity within these models presents a signifi-
cant challenge that can potentially diminish the
user experience. In this study, we introduce an
innovative training algorithm, an improvement
upon direct preference optimization (DPO),
called adversarial DPO (ADPO). The ADPO
algorithm is designed to train models to assign
higher probability distributions to preferred
responses and lower distributions to unsafe
responses, which are self-generated using
the toxic control token. We demonstrate that
ADPO enhances the model’s resilience against
harmful conversations while minimizing
performance degradation. Furthermore, we
illustrate that ADPO offers a more stable
training procedure compared to the traditional
DPO. To the best of our knowledge, this is
the first adaptation of the DPO algorithm that
directly incorporates harmful data into the
generative model, thereby reducing the need to
artificially create safe dialogue data.

1 Introduction

The enhancement of large language models (LLMs)
has significantly improved the overall performance
of major NLP systems (Ousidhoum et al., 2021).
Furthermore, increasing the size of these models
not only enhances performance but also enables
new capabilities previously unattainable, such as
code generation (Gao et al., 2023b) and applica-
tions in medical science (Moor et al., 2023). Open-
domain dialogue systems have particularly bene-
fited from advancements in LLMs, with several re-
searchers demonstrating substantial improvements

in human preference gained through reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022; Stiennon et al., 2020).

To further enhance the performance of LLMs,
scaling up the model and pre-training dataset size
is essential. However, this creates a trade-off be-
tween performance and the potential increase in
harmful content due to the growth in the size of
toxic data within the collected datasets (Touvron
et al., 2023). Numerous studies have demonstrated
that many LLMs possess a non-trivial propensity
to generate toxic responses (Bender et al., 2021;
Gehman et al., 2020; Bommasani et al., 2021; Wei-
dinger et al., 2021), posing significant risks in
downstream tasks, especially in dialogue systems.
A direct solution to mitigate this issue is using fil-
tered datasets (Gehman et al., 2020). However, this
approach incurs considerable computational costs
and becomes increasingly challenging with larger
pre-training datasets. An alternative solution is em-
ploying RLHF, which aligns the model with human
preferences. Nonetheless, Ouyang et al. (2022)
found that RLHF alone does not effectively reduce
toxicity.

In this research, we introduce an advanced train-
ing methodology Adversarial DPO (ADPO), which
builds upon the principles of Direct Preference Op-
timization (DPO) as proposed by Rafailov et al.
(2023). The primary aim of ADPO is to mitigate
the generation of harmful responses by the model,
while preserving overall performance. This ap-
proach is a progression from the conventional DPO,
an algorithm offering stability and competitive per-
formance as an alternative to RLHF.

The novelty of ADPO lies in its targeted op-
timization to reduce the generation of toxic re-
sponses. We hypothesize that training the model
with potential toxic responses within its capability
range is more effective than using out-of-scope re-
sponses. To achieve this, we fine-tune the model
using a dataset of toxic dialogues derived from the
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Figure 1: ADPO pipeline with control token and RLAIF method. (Top) Supervised Fine-Tuning process,
additionally using toxic dialogue with "[TOXIC]" appended. This enables model to generate harmful response
which will be used in ADPO. (Bottom) Labeling generated responses by LLM. By appending "[TOXIC]" right after
human utterance, model generates toxic response and if not generate ordinary responses (Response1, Response2).

BAD dataset (Xu et al., 2021), augmented with
a toxic control token "[TOXIC]". This process
empowers the model to autonomously generate
toxic responses when prompted by the "[TOXIC]"
token. Furthermore, we employ an inner toxic
model configuration to demonstrate the efficacy of
ADPO. Our results, benchmarked against the base-
line model Llama2 (Touvron et al., 2023), highlight
the comparative performance of ADPO against
standard DPO. These findings underscore the po-
tential of ADPO in reducing undesirable outputs in
language models while maintaining robust perfor-
mance metrics.

2 Related Work

Mitigating toxicity remains a significant challenge
in deploying AI for safe and effective human in-
teraction. One prevalent strategy involves filtering
inappropriate data, which can be achieved through
heuristic rule-based methods or safety detectors
such as offensive detection model (Dinan et al.,
2019). However, as emphasized by Touvron et al.
(2023), this filtration process comes with a perfor-
mance trade-off, highlighting the need to balance
filtration levels. Achieving this balance can be chal-
lenging and often relies on empirical determination.

An alternative approach is to append instructions to
pre-training data to signal the presence of toxicity
(Prabhumoye et al., 2023). While these methods
can be effective, they entail substantial data pro-
cessing costs and depend on classifier performance,
potentially limiting optimal outcomes.

Another promising approach involves optimiz-
ing the training process, such as RLHF. RLHF
has been successfully implemented in models like
InstructGPT (Ouyang et al., 2022) and Sparrow
(Glaese et al., 2022), aiming to optimize human
preferences. This is achieved by replacing actual
human rewards with a reward model and aligning
AI with human values, a goal that traditional cross-
entropy loss cannot fully accomplish. However,
this approach has limitations, including the exten-
sive human effort required for labeling model re-
sponses and the instability and sensitivity to initial-
ization inherent in the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017; Casper
et al., 2023). As an advancement or alternative,
reinforcement learning from AI feedback (RLAIF)
has reduced costs by replacing human annotators
with LLMs while maintaining competitive perfor-
mance compared to RLHF (Bai et al., 2022b; Lee
et al., 2023). DPO has recently emerged (Rafailov
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Figure 2: Dialogue examples from reference model,
inter toxic model, DPO model and ADPO model.

et al., 2023), transforming RL optimization into
supervised training, significantly enhancing stabil-
ity and reducing computational demands. Several
LLMs using DPO have demonstrated impressive re-
sults, surpassing some models trained with RLHF.
In this paper, we combine these advancements to
address the vulnerabilities of RLHF and introduce
an additional loss function specifically designed to
mitigate inherent toxicity in AI models.

3 Methodology

3.1 Training Pipeline

Our methodology follows an intuitive approach, pri-
marily focusing on penalizing the generation of un-
desirable responses. Figure 1 provides an overview
of the training process using ADPO. Before com-
mencing ADPO training, the model undergoes fine-
tuning in a supervised manner. This phase, known
as supervised fine-tuning (SFT), incorporates both
normal and toxic dialogues. Normal dialogues are
processed in a standard supervised manner, while
toxic dialogues are postfixed with a toxic control
token, following the method applied by Keskar

et al. (2019). This token instructs the model to
intentionally generate harmful responses. We re-
fer to this appending toxic control token proce-
dure as the inner toxic model, characterized by its
ability to produce toxic responses while maintain-
ing the same parameter set as the original model.
This configuration ensures that toxic responses are
generated within the same distribution as normal
responses. In the subsequent step of creating pref-
erence data, we adopt a methodology similar to that
described by (Lee et al., 2023), utilizing a power-
ful LLM to label the model’s responses as either
"chosen" or "rejected". Additionally, within the
same contextual framework, we generate toxic re-
sponses using the inner toxic model. These chosen,
rejected, and toxic responses are then employed
in the ADPO phase. The training is designed to
guide the model towards generating responses that
closely align with the chosen label while distancing
from those labeled as rejected or toxic.

3.2 ADPO

Dθ =βDKL[πθ(yθ|x)||πref (yθ|x)]
Dt =γDKL[πθ(yt|x)||πtox(yt|x)]

J(θ) =max
πθ

E(x∼D,yθ∼πθ)[r(x, yθ)−Dθ]

− E(x∼D,yt∼πtox)[p(x, yt)−Dt]

(1)

In our approach, ADPO utilizes an inner toxic
model in combination with unsafe dialogue data.
This is accomplished by introducing an additional
term into the traditional RLHF objective function
(Rafailov et al., 2023; Ouyang et al., 2022), as il-
lustrated in Eq. 1. Here, x represents the dialogue
history, and y denotes the response generated by the
model π. The responses yθ and yt are produced by
πθ and πtox respectively. Furthermore, ADPO em-
ploys three distinct models: πθ, the dialogue agent
we train; πref , a reference model identical to πθ but
with fixed parameters; and πtox, the toxic model,
which is also equivalent to πθ but non-trainable
and uses the toxic control token "[TOXIC]" at the
beginning. The reward model r is designed to as-
sign high rewards to preferred responses, while p
imposes significant penalties for unsafe responses.
The additional term in the objective function en-
courages the model to simultaneously minimize
the penalty from p(x, y) and maximize Dt, where
Dt evaluates the likelihood of our model πθ gen-
erating a response initially produced by the inner
toxic model πtox. We found that incorporating an
extra penalty p, interpreted as providing detailed
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criteria in conjunction with r, enhances training sta-
bility. This is because pt serves as a supplementary
element to r, as detailed in Section 5.4.

R = r(x, yθ)− p(x, yt)

= β log
πθ(yθ|x)
πref (yθ|x)

+ γ log
πtox(yt|x)
πθ(yt|x)

(2)

Drawing from the objective function as outlined
in Eq. 2, we combine the reward component r and
the penalty term p to formulate the cumulative met-
ric R. This approach aligns with the methodologies
used in Rafailov et al. (2023). Detailed equations
are provided in Appendix A.

Rβ = β(log
πθ(yw|x)
πref (yw|x)

− log
πθ(yl|x)
πref (yl|x)

) (3)

Rγ = γ(log
πtox(yt|x)
πθ(yt|x)

− log
πtox(yw|x)
πθ(yw|x)

) (4)

LADPO = −E(x,yw,yl,yt)∼D[log σ(Rβ +Rγ)]

(5)

Eq. 5 illustrates our final objective function,
where yw, yl, and yt represent the chosen, rejected,
and toxic responses, respectively. Note that in Eq.
4 yw works as a "non-toxic" response. The primary
goal, as encapsulated in Eq. 5, is to maximize
the sum of Rβ and Rγ . To amplify Rβ in Eq. 3,
considering that πref and πtox are non-trainable, it
is inevitable for πθ to learn to generate yw with a
higher probability compared to πref , while simulta-
neously generating yl with a lower probability than
πref . Similarly in Rγ , model is encouraged to gen-
erate yt with a lower probability than πtox, while
generating yw with a higher probability. Although
Eq. 3 aligns with Rafailov et al. (2023), our find-
ings suggest that relying solely on Rβ can lead to
instability due to the potential ambiguity in the cri-
teria for chosen and rejected labels. By incorporat-
ing an additional penalty term, we aim to enhance
both stability and performance. This is achieved
by explicitly introducing a criterion inherent in the
existing preference data. The distinctions between
employing a penalty term are demonstrated in Fig-
ure 2. This is illustrated through examples wherein
the πDPO model occasionally generates dull re-
sponses, whereas the πADPO model adeptly iden-
tifies potential hazards in the user’s utterance and
responds safely. The effectiveness of this approach
is validated by the results discussed in Section 5.

4 Experimental Details

4.1 Datasets

In this section, we present the datasets employed
in our experimental setup:

• Helpful and Harmless Human Preference
Dataset from Anthropic (Bai et al., 2022a):
This dataset consists of dialogues between
humans and an AI assistant. The data col-
lection process involved interactions between
annotators and an AI model, wherein anno-
tators were presented with two AI-generated
responses at each turn and were tasked with
selecting the preferable one. This procedure
enabled the labeling of data as either preferred
or non-preferred, with a specific emphasis on
choosing responses that were both helpful and
harmless.

• Bot Adversarial Dialogue (BAD) (Xu et al.,
2021): The BAD dataset comprises conversa-
tional exchanges between a user and an AI
model. Crowd workers were instructed to
engage in natural conversations with the AI
while attempting to elicit harmful responses.
The AI’s responses at each turn were subse-
quently labeled by the crowd workers as either
safe or unsafe.

• Blended Skill Talk (BST) (Smith et al.,
2020): This dataset contains dialogues be-
tween two participants. The participants were
instructed to demonstrate knowledge, empa-
thy, or their assigned persona during the con-
versation when appropriate. Notably, one of
the participants, termed the "guided" speaker,
had the option to utilize responses generated
by a dialogue model, thereby diversifying the
conversational context.

Overall all data had no risk of information that
can identify specific person. It is worth noting that
our experiments utilized only 10% of the Anthropic
dataset, which contains over 160k dialogues, yet
still yielded significant results, demonstrating the
data efficiency of ADPO. From the BAD dataset,
we extracted 8k dialogues that met the following
criteria: (1) the last response was generated by
the AI model, and (2) the response was labeled
as unsafe. The incorporation of a harmful dataset
for fine-tuning, although different from the stan-
dard practices in DPO, is a distinguishing feature
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of ADPO. This strategy allows the model to ac-
quire and integrate additional contextual informa-
tion, thereby enhancing its learning process. How-
ever, it is important to acknowledge that this aspect
is unique to ADPO, and a direct comparison be-
tween ADPO and DPO methodologies may not be
entirely equitable if based on differently fine-tuned
models. To address this, we have conducted an ad-
ditional experiment, detailed in Section 5.3, where
DPO is also trained on an SFT model that has been
fine-tuned with the toxic control token. This exper-
iment aims to facilitate a more balanced and fair
comparison of the two methodologies.

4.2 Preference Data Generation

For better convergence, instead of using labeled
data in Anthropic dataset, we use model’s gener-
ated response from chosen and rejected data, re-
moving each response and using overlapped dia-
logue history. In this generation phase, two vari-
ants of responses are created with temperatures
set at 1.0 and 1.5, respectively, along with a toxic
response generated at a temperature of 1.5. Adher-
ing to the procedure outlined in RLAIF (Bai et al.,
2022b; Lee et al., 2023), we employ the Llama2-
chat model (Touvron et al., 2023) for the task of
labeling these model-generated responses. While
Bai et al. (2022b) emphasizes the significance of
parameter size in such applications, we observed
that a model with 13 billion parameters was suf-
ficiently capable of yielding meaningful progress
in our context. Excluding toxic response, response
pairs are given to Llama2-chat and labeled either
chosen or rejected. Note that if both responses are
considered preferred or not preferred, we dropped
out corresponding data. This decision was made to
maintain the integrity and relevance of the data in
our study.

4.3 Model Training

In our experiments, the base model used was
Llama2 with 7 billion parameters, which is open-
source and permitted for research purpose, attached
with LoRA (Hu et al., 2021) adaptor at a rank of
16, and the alpha parameter was set to 32. Dur-
ing the SFT phase, we utilized 40% of the An-
thropic dataset, reserving the remaining 60% for
generating preference data in both the DPO and
ADPO training. Notably, the SFT models for DPO
and ADPO were trained independently, referred
to as SFT with non-toxic dataset and SFT with
toxic dataset, respectively. Every SFT models are

trained for 2 epochs. For ADPO training, we in-
corporated an additional dataset BAD for the SFT
phase appending a toxic control token to each dia-
logue. In generating preference data, we used the
unused portion of the Anthropic dataset, exclud-
ing the model’s final response in each dialogue.
The details of this phase are explained in Section
4.2. Subsequently, both DPO and ADPO were
trained for five epochs. The optimal models were
found when using β = 0.9 for 2 epochs in DPO
and β = 0.3 and γ = 0.2 for 4 epochs in ADPO.
Model was trained with only single run as it takes
plenty of resources to train, with seed value of 42.
With 4 x NVIDIA A100 GPUs, the SFT and DPO
or ADPO training processes collectively required
about 17 hours, and an additional 12 hours were
needed for the response annotation phase using the
Llama2-13B-chat model. During each training it-
eration, the train set was divided into an 8:2 ratio
for the validation set. We used a learning rate of
3e-5 and a lambda learning rate scheduler for all
training purposes.

5 Results and Analysis

5.1 Evaluation

Evaluating natural language generation (NLG) sys-
tems remains challenging, as traditional automatic
metrics primarily focus on token-level similar-
ity, potentially missing semantically equivalent re-
sponses. To address this issue, recent research has
suggested using LLMs for NLG evaluation (Fu
et al., 2023; Wang et al., 2023), with significant
advancements by Liu et al. (2023) in improving the
correlation between human judgments and LLM
evaluations. Following the methodology estab-
lished by Liu et al. (2023), which incorporates the
chain-of-thought approach (Wei et al., 2022), we
conducted our evaluation using GPT-4. To validate
this approach, we also conducted human evalua-
tions on 300 randomly selected responses from a
total of 772 entries in the BAD test dataset, achiev-
ing an F1 score of 0.776 using scikit-learn package
(Pedregosa et al., 2011).

In our evaluation process, each model generated
responses on the BAD test dataset with a temper-
ature setting of 1.2. Other than Toxicity, we also
evaluated coherence and evasiveness, recognizing
these as essential yet potentially vulnerable aspects
of generative systems that can lead to incoherent
or uninspiring responses (Ni et al., 2023). Instead
of using a numeric scoring system for evaluation,
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Bot Adversarial Dialogue (BAD) Blended Skill Talk (BST)
Method Dataset Coherence Evasiveness Toxicity Coherence Evasiveness Toxicity
SFT original 80.6% 47.5% 3.2% - - -
SFT non-toxic 86.0% 35.1% 4.7% 91.3% 9.4% 0.2%
SFT toxic 73.8% 31.7% 13.3% 98.5% 2.2% 0.1%
DPO non-toxic 91.5% 56.0% 0.1% 81.5% 23.7% 0.0%
DPO toxic 89.8% 41.5% 0.2% 87.7% 10.9% 0.0%
ADPO toxic 92.6% 33.9% 1.2% 98.0% 2.7% 0.1%

Table 1: Comparison of response frequency in BAD dataset and BST dataset. Toxic and non-toxic datasets denote
the dataset with self-generated responses, which contain toxic responses or not, respectively. Note that each DPO
and ADPO are originated from the resulted model by SFT which shares same dataset (e.g. DPO with non-toxic
dataset is trained additionally on the SFT with non-toxic dataset. DPO with toxic dataset is trained on the SFT with
toxic dataset.). Original dataset denotes the usage of Anthropic dataset without response sampling. A higher value
indicates better coherence, whereas lower values are preferred for evasiveness and toxicity.

which can introduce variability, we opted for a clas-
sification approach. This involved categorizing the
presence of specified metrics within each response
and calculating the frequency ratio of these occur-
rences relative to the total dataset. This method-
ology provides a more consistent way to assess
model performance.

5.2 Evasiveness-Toxicity Trade-off

Our results are presented in Table 1, compar-
ing models trained by three methods (SFT, DPO,
ADPO) across two datasets (BAD, BST). Models
trained by SFT with toxic and non-toxic datasets
serve as "ADPO base model" and "DPO base
model", respectively, as these methods implies ad-
ditional training on the model initially trained by
SFT (except for model trained by DPO with toxic
dataset since it is trained on ADPO base model).
The result of the BAD dataset is consistent with
previous studies utilizing RLHF (Ouyang et al.,
2022; Rafailov et al., 2023; Glaese et al., 2022;
Lee et al., 2023), as both DPO and ADPO meth-
ods demonstrate superior performance compared
to SFT. Comparing ADPO and DPO, ADPO sig-
nificantly reduces its toxicity, achieving a nearly
tenfold decrease from ADPO base model. This
reduction results in all toxic metrics falling below
1%. However, it is important to acknowledge that
these toxicities in ADPO are still marginally higher
than those observed in DPO, which demonstrates
near-zero toxicity. Nonetheless, it is noteworthy
that the evasiveness metric increased by more than
20% in DPO relative to DPO base model, while it
only increased by 0.02 in ADPO from ADPO base
model. This suggests that in scenarios involving
potentially unsafe user prompts, the DPO model

avoids answering, frequently resorting to expres-
sions like "I don’t know" or "I don’t understand."
This behavior highlights an emerging challenge in
the form of "Evasiveness", where the model opts
for avoidance rather than directly addressing or
refuting unsafe prompts.

This issue becomes more apparent in the results
obtained from the BST dataset. Due to the nature
of the BST dataset, which does not encompass di-
alogues designed to elicit harmful responses, all
models exhibited near-zero toxicity. However, con-
cerning coherence and evasiveness, ADPO signifi-
cantly outperformed DPO, demonstrating superior
effectiveness. This difference highlights that DPO
tends to train models towards increased evasive-
ness and reduced coherence, even in general con-
versational contexts. This phenomenon aligns with
findings from other studies Casper et al. (2023);
Go et al. (2023); Glaese et al. (2022), suggesting
RLHF often leads to mode collapse, which model
loses variety in generation, thereby diminishing the
diversity of the model’s response generation. De-
spite being trained in a supervised manner, DPO
retains characteristics of reinforcement learning as
it not only trains the model to replicate singularly
chosen data but also generates responses simultane-
ously, likely in chosen data and unlikely in rejected
data compared to its reference model. The model’s
requirement to seek an optimal answer is analogous
to the exploratory behavior of reinforcement learn-
ing agents. Consequently, DPO tends to guide the
model towards generating evasive responses. This
strategy aims to secure moderate rewards (or mini-
mize loss) from both selected and non-selected data
rather than generating responses that are distinctly
aligned or opposed to one particular category. This
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challenge becomes more pronounced when the pre-
sented preference data spans a broad spectrum of
human values, resulting in ambiguous criteria for
distinguishing between preferred and non-preferred
responses. In addressing this issue, it is imperative
to introduce supplementary criteria to preserve re-
sponse diversity. ADPO relies on generating un-
safe responses, employing these as an additional
criterion for penalization. By explicitly defining
clear and undesirable values, ADPO not only facil-
itates the reduction of unwanted responses, specifi-
cally unsafe responses in this study, but also aids
in maintaining response diversity. This approach
effectively circumvents the tendency towards uni-
form, evasive responses often observed in models
trained solely on preference data.

5.3 Unsafe Data Utilization

While ADPO’s effectiveness in reducing toxicity
with minimal compromise in evasiveness is no-
table, it may gain contextual information from un-
safe data, which is not typically employed in super-
vised training models like DPO base model. This
section compares the outcomes of both DPO and
ADPO when trained on same ADPO base model,
presumed to contain richer contextual insights.

In Table 1, the model trained via DPO from
ADPO base model is labeled as DPO with toxic
dataset. All models exhibit nearly zero toxicity
due to the absence of toxic dialogue in the BST
dataset. However, DPO with toxic dataset demon-
strates enhanced contextual understanding, outper-
forming DPO with non-toxic dataset in coherence
and evasiveness. Despite sharing the same SFT
model, DPO with toxic dataset lags behind in di-
alogue quality, with ADPO showing over a 10%
higher coherence and a fourfold reduction in eva-
siveness. This underscores ADPO’s proficient use
of unsafe data to accurately discern harmful con-
tent, establishing clearer and more detailed criteria.
The comparison of DPO with toxic dataset and
ADPO, both originating from ADPO base model,
further reveals that ADPO effectively reduces tox-
icity while barely affecting performance metrics
(coherence: -0.5%, evasiveness: +0.5%), unlike
DPO with toxic dataset which significantly com-
promises conversational capabilities (coherence: -
10.8%, evasiveness: +8.7%). These findings affirm
that ADPO efficiently utilizes unsafe data to reduce
toxicity, enhancing its contextual understanding
and maintaining diverse response generation.

Figure 3: (Top) KL divergence on chosen data between
DPO and ADPO training. (Bottom) KL divergence on
toxic data and chosen data. Note that the top and bottom
have the same ADPO-Chosen KL but in different y-axis
scales.

5.4 Training Assessment

Optimizing models using RLHF presents chal-
lenges due to its sensitivity to hyperparameters
(Christiano et al., 2017; McKinney et al., 2022)
and the difficulty in detecting over-optimization
(Casper et al., 2023). To evaluate our training pro-
cedure, we employed KL divergence between πθ
and πref , as well as between πθ and πtox, inspired
by Gao et al. (2023a).

As illustrated in Figure 3, we analyze
two types of KL divergence: chosen KL
(DKL(πθ(yw|x)||πref (yw|x))) on the chosen data,
and toxic KL (DKL(πθ(yt|x)||πtox(yt|x))) on the
toxic data. A higher chosen KL is desirable, indi-
cating a greater likelihood of πθ generating chosen
data. However, extremely high values should be
avoided due to potential errors in human-labeled
preference data (Pandey et al., 2022; Saunders et al.,
2022) and over-optimization. Optimal chosen KL
values for the best-performing models in our exper-
iment ranged from [−2, 1], with DPO and ADPO
achieving −2.0 and 0.06 respectively. Notably,
ADPO maintained chosen KL within the optimal
range and showed a steady decrease, while DPO
experienced a rapid drop, demonstrating sensitivity
to the β.

For toxic KL, lower values are preferable, in-
dicating a reduced likelihood of generating toxic
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responses. However, extremely low values may
lead to "reward hacking" (Skalse et al., 2022),
where the model produces nonsensical but non-
toxic responses. Interestingly, both chosen KL and
toxic KL exhibited similar trends, suggesting that
as training progresses, the model optimizes a bal-
anced response that aligns with chosen-rejected-
toxic data, maximizing rewards from equations 3
and 4.

6 Conclusion

In this paper we have concentrated on training open-
domain dialogue models while mitigating inherent
toxicity. Our study introduces ADPO, an advanced
algorithm of the DPO method, which effectively
reduces toxicity levels without compromising di-
alogue performance. ADPO utilizes an internal
toxic model, using harmful datasets to enhance
safety. This approach enables the model to assimi-
late both contextual information and safety criteria
derived from toxic data. Moreover, compared to
models trained using DPO, ADPO exhibits higher
stability during training across a range of hyperpa-
rameters, enhancing optimization based on human
preferences while penalizing the generation of un-
safe responses.

To the best of our knowledge, this research rep-
resents the first adaptation of the DPO algorithm,
uniquely employing unsafe data in generative mod-
els to incorporate criteria for harmlessness. In the
future, we believe exploring various methodolo-
gies for effectively utilizing unsafe data presents a
promising avenue for research. Although toxic, it
contains rich contextual information and can be in-
strumental in instructing dialogue agents on behav-
iors to avoid. Further advancements in improving
both helpfulness and harmfulness is also encour-
aging. Helpfulness and harmfulness sometimes
conflict each other (Bai et al., 2022a,a) where aid-
ing user may inadvertently result in harmful out-
comes. This suggests that models should be trained
to discern when to appropriately decline a request
based on the context, rather than being constantly
positive.

7 Human Annotation

For the validation of GPT-4 evaluation through
human annotation, three English-fluent speakers
participated, all of whom are graduate students spe-
cializing in the NLP research field. Annotators
are all from Asia, with using English as their sec-

ond language. Since the minimum hourly wage is
approximately $7.5, we compensated each annota-
tor with $23, considering the task does not exceed
three hours.

8 Ethical Considerations

Our main concern related to ethical considerations
lies within the deployment of the SFT model, par-
ticularly when it is trained with a toxic control
token. While users have the capacity to avoid the
generation of unsafe responses by refraining from
employing the toxic control token, it is still possi-
ble to inadvertently activate the model’s inherent
toxicity. Moreover, the potential for the model’s
exploitation for malicious purposes cannot be over-
looked. Therefore it is highly advised to conduct
thorough monitoring of the model’s possible out-
puts prior to its deployment and to implement strict
measures for regulating its use.

9 Limitations

There are few limitations in our work that needs
to be mentioned. First is LLM utilization. As it
is still ongoing research about how LLM works,
using LLM for annotating model responses can be
variant and sometimes labels reflect the harmful-
ness and bias transferred from LLM (Lee et al.,
2023). Additionally, for evaluation even though
we followed Liu et al. (2023) and showed mod-
erate F1 score with human evaluation, it is still
unstable because human annotators are from same
demographic group, which can result in biased an-
notation.

Another limitation is the amount of data used.
16k of Anthropic preference data (Bai et al., 2022a)
was enough to show ADPO’s improvement from
DPO, but using full 160k data would lead to better
result. Same in inner toxic model, using more and
various toxic data can provide model more con-
textual and desirable criterion information, which
would lead to better model. We hope future work
uses as many data as possible for optimal result and
conduct strict observation about LLM utilization.
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A ADPO Algorithm

A.1 Objective Transformation
In this appendix we show how ADPO algorithm of
Eq. is derived from objective function in RLHF.

Dθ =βDKL[πθ(yθ|x)||πref (yθ|x)]
Dt =γDKL[πθ(yt|x)||πtox(yt|x)]

J(θ) =max
πθ

E(x∼D,yθ∼πθ)[rθ(x, yθ)−Dθ]

− E(x∼D,yt∼πtox)[pt(x, yt)−Dt]

(6)

From Eq. 6 we can incorporate two expectation
terms and transform maximization problem to min-
imization problem.

J(θ) =max
πθ

E(x∼D,yθ∼πθ)[rθ(x, yθ)−Dθ]

− E(x∼D,yt∼πtox)[pt(x, yt)−Dt] (7)

Here, we define τ and R for comprehensibility.

τ =(x ∼ D, yθ ∼ πθ, yt ∼ πtox)

R =r(x, yθ)− p(x, yt)
(8)

With using τ and , objective function J(θ) can
be described as follows.

J(θ) =min
πθ

Eτ [Dθ −Dt

− (r(x, yθ)− p(x, yt))]

=min
πθ

Eτ

[
log

πθ(yθ|x)
πref (yθ|x)

− log
πθ(yt|x)

γ
β

πtox(yt|x)
γ
β

− 1

β
R

]
(9)

Finally, with defining Re we can transform previ-
ous objective function for ADPO.

Re =exp(
1

β
R)

J(θ) =min
πθ

Eτ

[
log

πθ(yθ|x)
πθ(yt|x)

γ
β

πref (yθ|x)
πtox(yt|x)

γ
β
Re

] (10)

To optimize J(θ) it is required to make numera-
tor equal to denominator, which is achieved when
we have optimal model π∗

θ .

π∗
θ(yθ|x)

π∗
θ(yt|x)

γ
β

=
πref (yθ|x)
πtox(yt|x)

γ
β

Re (11)

Following work in Rafailov et al. (2023), since
π∗(y|x) ≥ 0 for all y and

∑
y π

∗(y|x) = 1 we can
derive following objective from Eq. 10

J(θ) =min
πθ

Eτ

[
log

πθ(yθ|x)
πθ(yt|x)

γ
β

π∗
θ (yθ|x)

π∗
θ (yt|x)

γ
β

]
(12)

Eq. 12 can be minimized by

πθ(yθ|x)
πθ(yt|x)

γ
β

=
π∗
θ(yθ|x)

π∗
θ(yt|x)

γ
β

=
πref (yθ|x)
πtox(yt|x)

γ
β

Re

(13)

A.2 ADPO Objective
To apply Bradley-Terry model (Bradley and Terry,
1952) to our objective, we can define R from Eq.
13 by following equation.

Re =
πθ(yθ|x)
πθ(yt|x)

γ
β

πtox(yt|x)
γ
β

πref (yθ|x)

R =β log

[
πθ(yθ|x)
πθ(yt|x)

γ
β

πtox(yt|x)
γ
β

πref (yθ|x)

]

=β log
πθ(yθ|x)
πref (yθ|x)

+ γ log
πθ(yt|x)
πtox(yt|x)

=r(x, yθ)− p(x, yt)

(14)

Applying Eq. 14 to Bradley-Terry model, we
can get final ADPO objective.

Rw =r(x, yw)− p(x, yt)

=β log
πθ(yw|x)
πref (yw|x)

+ γ log
πθ(yt|x)
πtox(yt|x)

Rl =r(x, yl)− p(x, yw)

=β log
πθ(yl|x)
πref (yl|x)

+ γ log
πθ(yw|x)
πtox(yw|x)

LADPO =− E(x,yw,yl,yt)∼D[log σ(Rw −Rl)]

(15)

Note that Eq. 15 is equivalent to Eq. 5 if we use
Rβ , Rγ in Eq. 3 and Eq. 4, which we can get
re-arranging Rw and Rl in terms of β and γ.
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B LLM Annotation

To guide the selection or rejection of responses,
we follow the prompt format outlined in Bai et al.
(2022b), which provides a Human-Assistant dia-
logue alongside instructions to choose between two
potential responses, accompanied by a rationale for
the selection. As described in Figure 5, we give 2-
shots of examples initially, followed by instructions
to identify the more favorable response as either
"(A)" or "(B)". Should neither response be deemed
suitable, model may answer as "PASS". Figure
4 shows a sample dataset after the annotation by
Llama2-chat, which is used for ADPO training.

C GPT-4 evaluation

Figure 6 illustrates the example prompt utilized
for evaluating responses via GPT-4. As we men-
tioned in Section 5.1, the prompt is adapted from
the work proposed by Liu et al. (2023) with certain
modifications. Initially we give task introduction
and evaluation criteria, which are devised by hu-
man. Providing task and criteria, we ask GPT-4 to
generate evaluation steps required to accomplish
the task, which are then consistently applied across
all dialogue assessments. Upon integrating these
self-devised evaluation steps into the prompt, the
current dialogue and its corresponding evaluation
form are presented.

D Human Annotation Instruction

In this section we present the guidelines provided
to human annotators, as explicated in Figure 7. An-
notators were instructed to assign labels of 0 or
1 according to the presence of specific character-
istics within the text. To mitigate the potential
ambiguity inherent in the subjective nature of these
characteristics, additional clarifications were in-
cluded. Furthermore, we integrated "Gender bias"
and "Social bias" into a single "Toxicity" metric
because of significant correlation between these
variables. Table 2 presents the correlation between
human assessments and GPT-4 evaluations, featur-
ing the average F1 scores of GPT-4 alongside those
of three independent annotators. The data indicate
a pronounced correlation in terms of coherence,
which can be attributed to the objective clarity in
determining coherence levels. In contrast, the eva-
siveness presents a more nuanced challenge with
the lowest score. This complexity arises from the

Figure 4: Dataset example after LLM annotation.

Metric Coherence Evasiveness Toxicity
F1-Score 0.843 0.704 0.781

Table 2: Average F1 score between human evaluation
and GPT-4 assessment.

subjective interpretation of responses, as certain
evasive replies may be perceived as appropriate or
non-malicious, thus complicating the assessment
process. As mentioned in Section 5.1, we observed
an overall average F1 score of 0.776 in the com-
parison between human annotators and GPT-4 as-
sessments. We believe that this decent correlation
is attributed to the binary classification evaluation
("YES" or "NO"), which inherently reduces vari-
ability compared to numeric scoring systems.
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Figure 5: Prompt example of LLM annotation.
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Figure 6: Prompt example of GPT-4 evaluation.
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Figure 7: Instruction for human annotators.
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