
Findings of the Association for Computational Linguistics: NAACL 2024, pages 1568–1584
June 16-21, 2024 ©2024 Association for Computational Linguistics

Improving Absent Keyphrase Generation with Diversity Heads

Edwin Thomas∗
University of Ottawa

Canada
ethom123@uottawa.ca

Sowmya Vajjala
National Research Council

Canada
sowmya.vajjala@nrc-cnrc.gc.ca

Abstract

Keyphrase Generation (KPG) is the task of au-
tomatically generating appropriate keyphrases
for a given text, with a wide range of real-world
applications such as document indexing and
tagging, information retrieval, and text summa-
rization. NLP research makes a distinction be-
tween present and absent keyphrases based on
whether a keyphrase is directly present as a se-
quence of words in the document during evalu-
ation. However, present and absent keyphrases
are treated together in a text-to-text generation
framework during training. We treat present
keyphrase extraction as a sequence labeling
problem and propose a new absent keyphrase
generation model that uses a modified cross-
attention layer with additional heads to cap-
ture diverse views for the same context encod-
ing in this paper. Our experiments show im-
provements over the state-of-the-art for four
datasets for present keyphrase extraction and
five datasets for absent keyphrase generation
among the six English datasets we explored,
covering long and short documents.

1 Introduction

Predicting keyphrases in a given text is useful
in many application scenarios related to indexing
and information retrieval. While some of the re-
search on this topic focused on extracting only the
keyphrases that directly appear in the document i.e.,
present keyphrases (See Song et al. (2023a) for a
survey of extractive methods), more recent work on
this topic treated it as an end-to-end text generation
task, covering both present and absent keyphrases
i.e., those that are not directly seen in the text.
Existing approaches can be categorized into three
text representation paradigms: one2one, where the
model learns to generate one keyphrase at a time
per text (Meng et al., 2017); one2seq, where all

∗* Work done during a summer internship at National
Research Council, Canada

Figure 1: Different Types of Architecuture Configura-
tions for the KPE task. Configurations (a), (b) and (c)
represents TransSet, UniKP and the proposed work re-
spectively.

the keyphrases are generated as a single delimiter-
separated sequence (Yuan et al., 2020); and one2set,
where the model generates the keyphrases as a set
(Ye et al., 2021b).

Architecturally, KPG research falls into three cat-
egories, depicted in Figure 1. A common approach
is to treat both present and absent keyphrases
together, generating them autoregressively (e.g.,
Yuan et al., 2020), and Figure 1 (a) illustrates this.
A small number of approaches treat extraction and
abstraction separately, but in a multi-task learning
setup (e.g., Wu et al., 2021; Ahmad et al., 2021)
where extraction is treated as sequence labeling
and abstraction as autoregressive generation, illus-
trated by Figure 1 (b). Treating them as completely
distinct (Figure 1 (c)) has the potential to achieve
increased performance on both, which we explore
in this paper.

A recurring problem in KPG research is that
of repetition and duplication among the generated
keyphrases. Various approaches have been pro-
posed in the literature to address this issue, which
often result in high recall, low precision scenar-
ios. An absent keyphrase generation approach that
offers a good trade-off between precision and re-
call while generating diverse keyphrases is needed,

1568

which is also addressed in this paper.
To summarize, we treat present keyphrase extrac-

tion and absent keyphrase generation as separate
tasks, and focus on improving the diversity of ab-
sent keyphrase generation by introducing what we
call diversity heads in this paper. The main contri-
butions of the paper are listed below:

1. We propose a new one2set model for absent
keyphrase generation that uses a modified
cross-attention layer that leverages additional
heads to capture diverse views for the same
context encoding, and achieve state-of-the-art
absent keyphrase generation performance on
5 of the 6 test sets.

2. By separating present keyphrase extraction
and absent keyphrase generation into indepen-
dent tasks, we show better performance on
both tasks for 4 of the 6 test sets we tested
with.

The rest of the paper provides some background
(Section 2), describes our algorithm (Section 3) and
our experimental setup (Section 4), followed by a
discussion of our results (Section 5), main conclu-
sions (Section 6) and brief notes on the limitations,
and an ethics statement (Section 7 and 8).

2 Related Work

KPG was first introduced as a task by Liu et al.
(2011), who applied statistical machine translation
techniques to keyphrase extraction to be able to
generate phrases that did not directly appear in the
document. Since then, it has been predominantly
treated as a supervised learning problem in the
literature, although some research on unsupervised
approaches exists (Shen et al., 2022). We will focus
on supervised approaches in this paper.

Meng et al. (2017)’s CopyRNN is perhaps the
first to adapt a sequence-to-sequence generation
approach to KPG, which resulted in a new wave of
neural keyphrase generation models (Chen et al.,
2018; Zhang and Xiao, 2018; Chen et al., 2019b;
Yuan et al., 2020; Chen et al., 2020, etc.). Gen-
erative adversarial networks (Swaminathan et al.,
2020; Lancioni et al., 2020), variational autoen-
coders (Santosh et al., 2021a), graph neural net-
works (Ye et al., 2021a), multi-task learning (Ye
and Wang, 2018; Chen et al., 2019a; Koto et al.,
2022; Zahera et al., 2022), reinforcement learning
(Chan et al., 2019; Luo et al., 2021), contrastive

learning (Choi et al., 2023) and pre-trained lan-
guage models have all been explored for KPG (Wu
et al., 2021, 2022a; Chowdhury et al., 2022; Diya
and Mizuho, 2022; Kundu et al., 2023; Wu et al.,
2023b, 2024).

A recent strand of research modeled KPG as a
set generation problem, instead of sequence gen-
eration, to suit the nature of KPG better instead
of forcing it into the seq-to-seq setting (Ye et al.,
2021b; Xie et al., 2022). Improving sequence to
sequence architectures with additional information
using topic models (Wang et al., 2019; Zhou et al.,
2021), gazetteers (Santosh et al., 2021b), incor-
porating linguistic constraints (Zhao and Zhang,
2019), addressing the semantic bias in training
(Zhao et al., 2022), developing structure aware rep-
resentations that consider additional textual infor-
mation such as title or full-text along with abstract
(Chen et al., 2019b; Wang et al., 2020; Kim et al.,
2021) were all explored in past research.

Some research explicitly separate present and ab-
sent keyphrase modeling with a multi-task learning
framework that jointly learns to extract (present)
as well as and generate (absent) keyphrases (Chen
et al., 2019a; Ahmad et al., 2021; Wu et al., 2021),
and a few approaches just treat them as separate
tasks (Liu et al., 2021; Wu et al., 2022b). Other
recent research reported comparisons of contempo-
rary KPG approaches with zero-shot performance
of ChatGPT (Martínez-Cruz et al., 2023; Song
et al., 2023b). Xie et al. (2023) presents a compre-
hensive survey of existing research on this topic.

One major issue KPG is repetition and du-
plication. Beam search decoding is commonly
used to over-generate and consider the top-ranked
keyphrases, along with additional strategies. Yuan
et al. (2020) described a semantic coverage mech-
anism to increase the diversity by altering the de-
coder hidden states. Chen et al. (2020) proposed
a hierarchical decoding mechanism which keeps
track of previously generated keyphrases and in-
creases diversity. Bahuleyan and El Asri (2020)
addressed this issue by training the keyphrase gen-
eration model with a neural unlikelihood objective
and Ahmad et al. (2021) employed sentence selec-
tion and layer-wise coverage attention to increase
diversity among the generated keyphrases, along
with beam search. Ye et al. (2021b); Xie et al.
(2022) address the diversity issue by treating the
problem as sequence-to-set generation instead of
sequence-to-sequence. In this paper, we propose a

1569

new architecture for absent keyphrase generation
and address this issue using what we call as diver-
sity heads.

3 Our Approach

We separate present keyphrase extraction and ab-
sent keyphrase generation in this paper, by treat-
ing the former as sequence labeling, and the latter
as sequence-to-set generation. Details of our ap-
proach are explained below.

3.1 Present Keyphrase Extraction
We define Present Keyphrase (PKP) extraction as
sequence labeling using the standard BIO encoding
scheme, and use an additional label X to denote sub-
word tokens within a keyphrase, following Wu et al.
(2021). Additionally, we address the inherent class
imbalance of sequence labels (as most tokens have
a O label, indicating "other") by using a weighted
negative log-likelihood loss function based on mini-
batch statistics (Eq. (1)) where the weight per token
label is defined as the inverse of its frequency in
the mini-batch (Eq. (2)).

LSeqLab = −
S∑

s=1

w(b)
s log

(
ey

(b)
s

∑C
c=1 e

y
(b)
s,c

)
(1)

w(b)
s =


 1

|B| ∗ S

|B|∗S∑

n=1

1 · [ŷn = ŷ(b)s]




−1

(2)

Here, S is the maximum number of tokens in any
given instance b for a batch B and C is the number
of sequence labels defined using the BIO-X scheme
i.e., 4.

Note that while some previous approaches do
treat PKP as sequence labeling (Chen et al., 2019a;
Liu et al., 2021; Wu et al., 2021; Ahmad et al.,
2021; Wu et al., 2022b), they still treat the extrac-
tion and generation tasks either in a joint-learning
setup or as a cascade where the sequence labeling
output informs the generation step. We just treat
the two as independent tasks.

3.2 Absent Keyphrase Generation
We propose a new sequence-to-set generation
model that improves the diversity of the gener-
ated Absent Keyphrases (AKP) using specialized
attention heads. The absent keyphrase generation
task is defined formally as follows: Let D repre-
sent the sequence of input document tokens and
Ŷ = {y1, y2, ..., yn} the target set of keyphrases

to be generated. If K is the maximum number of
keyphrases generated by the transformer decoder,
and S the maximum keyphrase length per unit, then
the goal is to optimize the Encoder weights (θe) and
Decoder weights (θd) to generate a prediction set
Y = {y1, y2, . . . , yk}, that is closest to the target
keyphrase set Ŷ where |yk| ≤ S and k ≤ K. Our
approach (depicted in Figure 2) adapts the trans-
former model, which is only capable of sequence-
to-sequence generation, to predict a set instead by
using a permutation-invariant training strategy.

Permutation Invariance To enforce target order
invariance during training, we employ the Hun-
garian algorithm (Kuhn, 1955) to first re-align the
targets to the corresponding decoder keyphrase unit
predictions following Ye et al. (2021b). The op-
timal permutation σ̂(k) at any given training step
is given by Eq. (3), where m = min(|ŷσ(k)|, S)
and yab denotes the bth token of the ath KP unit
and yab,c represents the probability that this token
corresponds to the cth token in the vocabulary.

σ̂(k) = argmax
σ∈S(K)

K∑

k=1

m∑

s=1

1 · [ŷσ(k)s /∈ Sϕ]y
k

s,ŷ
σ(k)
s

(3)
The keyphrase sets at any given training step can

be modeled as a complete weighted bipartite graph
where the nodes at each side correspond to the
target tokens ŷ and predicted tokens y, and the
edge weights correspond to the likelihood of pre-
dicted keyphrase matching the target. The edge
weights are computed by summing over the pre-
dicted keyphrase token-level likelihoods where the
tokens for extracting the likelihood scores is ob-
tained from the σ(k)th target keyphrase permu-
tation index. The encoder-decoder model can
then be optimized by minimizing the negative log-
likelihood of the softmax scores as shown in Eq.
(4) where Kv is the set of all indices of non-empty
keyphrase units and V is the vocabulary.

LEncDec = −
∑

k∈Kv

m∑

s=1

log


 e

yk
s,ŷ

σ̂(k)
s

∑|V |
c=1 e

yks,c


 (4)

Diversity Heads: In the traditional encoder-
decoder architecture, the input key and value pro-
jections from the encoder are consistent across all
the generated keyphrases which limits the diver-
sity. This effect is amplified in the set generation
setting where independent decoding restricts the

1570

model from learning the relationships with previ-
ously generated keyphrases and subsequently re-
duces repetitions. To increase the diversity of the
generated keyphrases, we propose a modified cross-
attention layer that leverages additional heads to
capture diverse views for the same context encod-
ing. We introduce separate key and value attention
modules for each decoder keyphrase unit to achieve
this. As seen in Eq. (5), W (l)

ik is used to learn dif-
ferent encoder representations for the lth layer, and
for each of the k units respectively. The attention
function Vaswani et al. (2017), is then computed
over the packed diversity head keys and values, and
the queries as shown in Eq. (6).

DivK
(l)
i = Concat(K

(l)
1 W

(l)K
i1 , ...,K

(l)
k W

(l)K
ik)

DivV
(l)
i = Concat(V

(l)
1 W

(l)V
i1 , ...,K

(l)
k W

(l)V
ik)

Q
(l)
i = Concat(Q

(l)
1 W

(l)Q
i , ..., Q

(l)
k W

(l)Q
i)

(5)

H
(l)
i = Softmax


Q

(l)
i ∗DivK

(l)
i

T

√
dk


∗DivV

(l)
i

(6)
The resultant projections are then concatenated

to collectively focus on different representation sub-
spaces obtained by the h attention heads (Eq. (7)).

DivCrossAttn = Concat(H
(l)
i , ...,H

(l)
h)WF

(7)
The self-attention mechanism follows Vaswani

et al. (2017) for both the encoder and the decoder.
Figure 2 gives a high level depiction of the pro-
posed architecture.

3.2.1 Training Methodology
The training process can be divided into three major
steps A.1, A.2 and A.3 as described in Algorithm
1. We start with the encoder input sequence x1:n,
max AKP units K, max keyphrase length S, de-
coder target y1:k∗s, decoder positional ids pid1:k∗s,
iterations T and batch size B. At each step, the con-
textual embeddings he is obtained using a single
forward pass through the encoder (A.1). The re-
alignment of the target is performed by ignoring the
gradient computations in the first decoder forward
pass block (lines 4-10). Student forcing is used to
obtain the hidden states lds (A.2), and subsequently
the best permutation of the target keyphrases σ (Eq.
(3)), is used to realign the target (line 7). This is
followed by the second stage (A.2), where the re-
ordered target and encoder hidden states are used

Figure 2: Proposed Architecture with Diversity Heads
and Target Realignment.

to train the AKP model using teacher forcing and
the encoder-decoder Loss as described in Eq. (4)).

Algorithm 1: AKP Model Training Cycle
1 repeat T times
2 for b = 1, . . . , B do
3 he

1:k∗s,1:hdim = Encoder(x(b)
1:n)

4 with gradientTracking = False do
5 hds , lds1:k∗s,1:|V | =

DivHeadsDecoder(he, pid1:k∗s) ; ▷ (A.1)

6 σ1:k = LinearAssignment(lds1:k∗s,1:|V |, y1:k∗s)

7 ỹ1:k∗s = Realign(σ1:k, y1:k∗s)
8 end
9 hdt , ldt1:k∗s,1:|V | = DivHeadsDecoder(he, ỹ1:k∗s)

; ▷ (A.2)

10 L= LEncDec(ỹ1:k∗s, l
dt)

11 end
12 end

It is to be noted that the additional latency due to
the two-stage training process does not translate to
the inference stage as the first forward pass for re-
aligning the targets is exclusive to the training cycle.
The Greedy search decoding strategy coupled with
the diversity heads can result in improved diver-
sity of generated absent keyphrases, without using
costly search techniques such as beam search dur-

1571

ing inference. Additionally, we also note that while
the original Seq2Set approach (Ye et al., 2021b)
has a higher inference latency due to costly auto-
regressive decoding of both the AKP and PKP se-
quences, our approach optimizes the inference la-
tency by treating extraction as a separate, sequence
labeling task1.

4 Experimental Setup

This section describes the implementation details,
and provides the details of the datasets used, eval-
uation measures, and the baselines we compare
against.

Implementation Details All experiments were
conducted in a distributed training setup with four
NVidia Tesla V100 GPUs, and run for 5 epochs,
with a batch size of 128 (per-gpu batch size of
32), and a text length of 384 tokens. The decoder
is configured to have 8 independent decoder units
with a maximum keyphrase length of 5 tokens (total
40 output tokens). These numbers were set after an
empirical analysis with the validation datasets. The
model is based on the transformer encoder-decoder
backbone (Vaswani et al., 2017) with 12 layers.
A learning rate of 3e-05 is used with the Adam
Optimizer (Kingma and Ba, 2014) and a non-linear
learning rate scheduler with warm-up proportion
of 0.1.

Datasets We used two datasets for training, and
six datasets (including the test splits of training
datasets) for testing in our experiments. All the
datasets are in English, and we used the partitions
used in previous research. They are described be-
low:

1. KP20K (Meng et al., 2017) is a large dataset
of ∼530k scientific paper abstracts from the
computer science domain, with author as-
signed keyphrases, and is the most commonly
used dataset to train KPG models. We used
the official train/validation splits for training
and test split for evaluation.

2. KPTIMES consists of ∼290k news articles
with expert labeled keyphrases (Gallina et al.,
2019), and we used the official train/validation
splits for training and test split for evaluation.

1Our implementation code is provided
as supplementary material at: https:
//github.com/edwinthomas444/
diverse-keyphrase-generation

3. INSPEC (Hulth, 2003) is a test set with 500
computer science abstracts annotated by pro-
fessional indexers.

4. SEMEVAL (Kim et al., 2010)’s test set con-
sists of 100 full length articles from ACM dig-
ital library with student and expert annotated
keyphrases.

5. KRAPIVIN (Krapivin et al., 2009) consists full
text computer science articles with author an-
notated keyphrases.

6. NUS (Nguyen and Kan, 2007) consists of full
text scientific articles with author assigned,
and externally annotated keyphrases by stu-
dent volunteers.

Table 1 shows some basic statistics about the
datasets. For models trained on KP20K, we tested
using KP20K’s test split, and the four test sets - In-
spec, Krapivin, Semeval and NUS, as is commonly
done in practice. For models trained on KPTimes,
we evaluated only on the test-split of KPTimes,
as they are all from a different domain, with less
than 5% overlap between the labeled keyphrases in
KPTimes and other test sets2.

Dataset #docs #pkp/doc #akp/doc
Train

KP20K-Train ∼530k 2.34 2.94
KPTimes-Train ∼ 260k 2.15 2.88

Test
KP20K-Test 20000 2.34 2.93
KPTimes-Test 20000 2.72 2.31
Inspec 500 6.57 3.26
SemEval 100 9.2 6
Krapivin 2304 3.73 1.6
NUS 211 8 3.07

Table 1: Dataset statistics

Evaluation: Evaluation measures in KPG are not
uniform and a range of measures (recall, f-score,
MAP, etc.) are reported. In this paper, we report
a commonly used measure, macro-F1@M, where
M is the number of generated keyphrases, and a
less commonly used macro-F1@O, where O is the

2More detailed statistics are provided in the appendix Ta-
ble A1 and overlap statistics among the datasets are provided
in Table A2

1572

https://github.com/edwinthomas444/diverse-keyphrase-generation
https://github.com/edwinthomas444/diverse-keyphrase-generation
https://github.com/edwinthomas444/diverse-keyphrase-generation

number of ground truth keyphrases and compare
them later in Section 5.5 3.

Baselines: We re-trained three recent keyphrase
generation models that shared code repositories
publicly - UniKeyphrase (Wu et al., 2021), KP-
Drop (Ray Chowdhury et al., 2022) and One2Set
(Ye et al., 2021b), and these are used as external
baselines for both present and absent keyphrases.
KPDrop is a model-agnostic technique, and we
use the KPDrop-A with One2Set model, which
achieved the best results in their experiments. Re-
training of all the three approaches was done for 5
epochs, keeping the rest of the settings unchanged,
to keep the number of epochs consistent across all
experiments. Additionally, we also compare with
other recent results (without re-implementation, cit-
ing as is). For absent keyphrases, we also do abla-
tion tests comparing our diversity heads approach
to sequence-to-sequence generation and sequence-
to-set generation without diversity heads, and also
discuss the effect of increased model parameters
in our approach. Additionally, while greedy de-
coding is our default, we also report results with
beam search for comparison. Note that our ab-
sent keyphrase generation model is trained only on
that part of the data, unlike the other approaches
mentioned above, which treat present and absent
keyphrases together for generation.

5 Results and Discussion

We present the main findings about present
keyphrase extraction and absent keyphrase genera-
tion, followed by an analysis of the results in this
section. Considering the multiple train/test sets, we
separate the discussion by short (abstracts) vs long
(full text) documents. The first three approaches we
compare against (UniKP, TransSet and KPDrop-A
in Tables 2– 5) were replicated and re-run and the
next three (zero-shot ChatGPT, SEG-Net and Wu
et al. (2023a) are taken as-is from the cited papers.

5.1 Present Keyphrase Extraction
Tables 2 and 3 summarize the performance of our
present keyphrase extraction approach in compari-
son with other existing models respectively. Treat-
ing extraction as separate from abstraction (and
hence, generation) seems to show clear benefits
for longer documents with our model achieving
the best results on all the four datasets in terms of

3Additional evaluation measures (P/R/F@5,M,O) are pro-
vided in the supplementary material in Tables A3– A7.

F1@M and on three of them in terms of F1@O (Ta-
ble 3). There is an over 5% improvement over the
state-of-the-art for one of the datasets (SEMEVAL).
For shorter texts, while our approach performed
comparably to the best approach on KP20K, the
performance on INSPEC, was poor, especially in
terms of F1@M. We compare the evaluation mea-
sures in Section 5.5.

5.2 Absent Keyphrase Generation
Tables 4 and 5 present a comparison of our ap-
proach with other recent models in terms of absent
keyphrase generation. Our model outperforms the
state-of-the-art for both short and long texts on five
of the six datasets we used, in terms of F1@O and
four of the six datasets in terms of F1@M. There
is a stark difference between the performance of
models trained on KP20K and KPTimes, though.
While the KPTimes model has a 10-15% drop be-
tween present and absent keyphrase performance,
the KP20K trained model >30% drop between
both cases, when tested on its own test partition.
This was also reflected in the results for other test
datasets the model was tested on. For example,
on NUS, the present keyphrase performance was
48.59 and 43.09 in terms of F1@M and O respec-
tively, whereas the absent keyphrase performance
was 7.72 and 6.82 respectively, and in both cases,
our model gave the best results compared to others.
We discuss this issue briefly in Section 5.5.

5.3 Effect of Diversity Heads
While the results on absent keyphrase generation
establish the merits of our method, they do not
tell much on how better is the model when com-
pared to plain sequence-to-sequence generation or
sequence-to-set generation without diversity heads.
Table 6 shows the results of this comparison for the
two test datasets we used.

Since the differences (especially for KP20K)
are under 1% in some cases, we conducted tests
for statistical significance using bootstrap and per-
mutation tests4 following the guidance of Dror
et al. (2018) on applying appropriate tests for NLP
tasks. our proposed approach (seq2set+diversity
heads) was significantly better than plain sequence-
to-sequence generation as well as sequence-to-set
generation for models trained on both the datasets,
for both the evaluation measures (p < 0.001), with
both the tests.

4https://github.com/rtmdrr/
testSignificanceNLP

1573

https://github.com/rtmdrr/testSignificanceNLP
https://github.com/rtmdrr/testSignificanceNLP

Trained on: KP20K-Train
Model KP20K-Test Inspec

F1@M F1@O F1@M F1@O
UniKP (Wu et al., 2021)∗ 27.19 38.21 13.85 14.35
TransSet (Ye et al., 2021b)∗ 37.16 29.53 31.97 30.16
KPDrop-A (Ray Chowdhury et al., 2022)∗ 38.42 30.85 30.06 29.18
zero-shot ChatGPT (Martínez-Cruz et al., 2023) 25.1 - 40.3 -
SEG-net (Ahmad et al., 2021) 37.9 - 26.5 -
Wu et al. (2023a) 43.1 - 40.2 -
Our Model 41.65 41.81 32.14 28.6

Table 2: Present Keyphrase Extraction for short documents (* indicates our reproduced results.)

Training Data KP20k-Train KPTimes-Train
Test Data Krapivin SemEval NUS KPTimes-Test
Model F1@M F1@O F1@M F1@O F1@M F1@O F1@M F1@O
UniKP (Wu et al., 2021)∗ 25.8 34.23 30.68 39.8 39.67 47.17 34.49 53.29
TransSet (Ye et al., 2021b)∗ 36.19 27.43 34.31 33.31 42.2 38.11 54.77 49.34
KPDrop-A (Ray Chowdhury et al., 2022)∗ 35.26 28.74 31.01 30.24 42.4 38.58 55.49 49.91
zero-shot ChatGPT (Martínez-Cruz et al., 2023) - - 18.6 - 19.96 - 29.0 -
SEG-net (Ahmad et al., 2021) 36.6 - 33.2 - 46.1 - 48.1 -
Wu et al. (2023a) 35.2 - 34.1 - 44.9 - - -
Our Model 37.35 39.33 39.59 40.5 48.59 43.09 56.34 56.47

Table 3: Present Keyphrase Extraction for long texts (* indicates our reproduced results)

Trained on: KP20K-Train
Model KP20K-Test Inspec

F1@M F1@O F1@M F1@O
UniKP (Wu et al., 2021)∗ 1.87 1.87 1.6 1.6
TransSet (Ye et al., 2021b)∗ 4.22 3.64 2.01 1.59
KPDrop-A (Ray Chowdhury et al., 2022)∗ 5.57 4.71 2.12 2.12
zero-shot ChatGPT (Martínez-Cruz et al., 2023) 4.4 - 4.9 -
SEG-net (Ahmad et al., 2021) 3.6 - 1.5 -
Wu et al. (2023a) 7.6 - 3.6 -
Our Model 7.84 6.9 1.18 0.89
Our Model (Beam search, n=5) 9.68 9.4 2.11 2.02

Table 4: Absent Keyphrase Generation for short documents (* indicates our reproduced results.)

Training Data KP20k-Train KPTimes-Train
Test Data Krapivin SemEval NUS KPTimes-Test
Model F1@M F1@O F1@M F1@O F1@M F1@O F1@M F1@O
UniKP (Wu et al., 2021)∗ 2.88 2.88 0.43 0.43 1.83 1.83 20.78 20.49
TransSet (Ye et al., 2021b)∗ 5.15 4.88 2.85 2.85 4.10 4.17 41.02 35.55
KPDrop-A (Ray Chowdhury et al., 2022)∗ 6.96 6.51 4.06 4.06 5.54 4.51 42.64 37.68
zero-shot ChatGPT (Martínez-Cruz et al., 2023) - 2.1 - 4.2 - 2.2 -
SEG-net (Ahmad et al., 2021) 3.6 - 3.0 - 3.6 - 23.7 -
Wu et al. (2023a) 8.6 - 4.0 - 6.8 - - -
Our Model 7.59 7.42 4.21 4.21 7.72 6.82 44.12 41.18
Our Model (Beam search, n=5) 8.15 7.98 4.79 4.79 8.18 7.02 43.26 44.13

Table 5: Absent Keyphrase Generation results for long texts. (* indicates our reproduced results).

In KPG research, beam search is preferred over
greedy search during inference, to improve re-

call and the diversity of the generated keyphrases
(Meng et al., 2021). Table 7 shows how using diver-

1574

KP20K KPTimes
F1@M F1@O F1@M F1@O

Seq2Seq 6.25 6.14 41.24 39.71
Seq2Set 6.31 5.81 36.98 35.5
Our model 7.84∗ 6.9∗ 44.12∗ 41.18∗

Table 6: Effect of Diversity Heads on AKP performance
(* indicates that the result is significantly better than
both the other approaches)

sity heads achieves better recall than a plain seq2set
approach’s beam search decoding even with greedy
search. Using beam search with our approach re-
sults in slight improvements in recall compared to
greedy search, although with longer inference time.

Seq2Set Ours
Greedy Beam

(n=5)
Greedy Beam

(n=5)
R@K R@K R@K R@K

KPTimes 29.64 30.22 45.22 47.68
KP20K 5.89 7.38 9.11 11.71
Krapivin 6.78 6.42 8.25 10.32
Inspec 1.04 1.72 1.16 2.7
SemEval 2.75 2.07 2.74 3.25
NUS 3.98 4.22 7.48 7.65

Table 7: Comparison of Recall@K (K=5) for Greedy
versus Beam decoding

The comparisons in Tables 6 and 7 clearly show
that the insertion of diversity heads results in a bet-
ter performance across datasets, both in terms of
overall F1 score as well as recall, even with greedy
decoding. However, an alternative explanation for
these better results could just be that our approach
has much more parameters due to using different
head weights for different decoder units in cross-
attention, which would naturally(?) lead to more
representational power and better performance. To
explore this further, we performed some parameter
scaling experiments, described in the next subsec-
tion.

5.4 Scaling the Model Parameters
We scaled the two seq2set models without diver-
sity heads - plain Seq2Set model (second row in
Table 6) and the TransSet model (second row in Ta-
ble 4 to approximately match that of our proposed
model with diversity heads5. The scaling operation

5We did not do this with the other Seq2Set model we
replicated, namely KPDrop-A, because it uses TransSet as the
base model.

model F1@M F1@O
Scaled Seq2Set 6.51(6.31) 6.47(5.81)
Scaled TransSet 4.6 (4.22) 4.1(3.64)
Our model (greedy) 7.84 6.9
Our model (beam,
n=5)

9.68 9.4

Table 8: Comparison of scaled models. The unscaled
performance is shown in parantheses

was achieved by increasing the number of heads in
the cross-attention layer of the two seq2set models.
To ensure that the representational power of the
network is not changed after the scaling operation,
a linear transformation layer is introduced after the
cross-attention mechanism in the baseline seq2set
model to reduce the embedding dimensions to size
768 (that matches our architecture). Table 8 shows
the results on KP20K-TEST dataset (all scaled
models are trained on KP20K-TRAIN).

We can observe that the scaled versions of
Seq2Set and TransSet achieve slightly better re-
sults than their original versions, but are still not
closer to our model. That leads us to a conclusion
that the performance gain is not "just" because the
model has more parameters, but is potentially be-
cause of the placement of diversity heads within
the model architecture. 6

5.5 Analysis of Results

In this section, we discuss two specific aspects of
the results in more detail: the difference between
the two performance measures used, and the perfor-
mance difference between the two training datasets
used.

F1@M versus F1@O We compared different
methods using two evaluation measures F1@M
and F1@O, where M and O refer to the number
of predicted and ground-truth keyphrases respec-
tively. Since we don’t know the number of pre-
dicted phrases before hand, we could expect that
F1@O will give lower numbers than F1@M, and
we indeed notice it in many cases across Tables 2-
6, but there are several interesting observations.

In present keyphrases, (Tables 2 and 3), UniKP
is the exceptional case where F1@O consistently
reports much higher numbers in present keyphrase
extraction (e.g., almost 20% for KPTIMES-TEST)

6Detailed results with other test sets for both these models
are in Appendices A8 and A9 for scaled Seq2Set and scaled
TransSet respectively.

1575

and TransSet and KPDrop report a drop for F1@O
(almost 10% in some cases). One explanation
could be that the number of keyphrases UniKP
model outputs is closer to the number of ground
truth keyphrases. However, it appears from the
original paper (Wu et al., 2021, see Table 3) that
UniKP does generate more keyphrases than other
approaches compared there. Hence, an alternative
explanation could be that UniKP generates better
keyphrases in the top-K, but over-generates several
other keyphrases, resulting in a better F1@O but
worse F1@M. We leave more detailed explorations
into the phenomenon for future work.

For our model, both the measures are relatively
closer to each other for 4/6 datasets (∼2% differ-
ence) and somewhat apart (∼5% difference) for the
other two datasets. For absent keyphrase genera-
tion (Tables 4 and 5), the differences are not as
stark, considering the low values across all KP20K
trained models. These observations indicate the
need to study the evaluation measures more closely
in future. Within the current setup, it is perhaps
worthwhile to consider reporting F1@O along side
F1@M though, since they both seem to consider
different aspects for measurement.

Performance difference between KP20K
and KPTimes For both present and absent
keyphrases, we observe a superior performance
with the KPTimes dataset compared to KP20K,
across all the models. The difference is more
stark for absent keyphrases, where the drop for
our KPTimes trained model is 12% compared to
present keyphrases, but close to 30% for KP20K
trained model. Some qualitative analysis of our
model output (examples are in Table A10) along
with what we know about how the datasets are
created lead us to two main observations:

1. The text part of KP20K consists of only ab-
stracts, whereas KPTimes includes full text ar-
ticles. Thus, in many cases, there just wasn’t
enough information in the abstract to gener-
ate the labeled abstractive keyphrases (even
when those keyphrases were actually directly
present in the later text). This could explain
the low performance of absent keyphrase gen-
eration for KP20K, despite having close to
60% overlap between the ground truth absent
keyphrases of train and test sets.

2. KP20K’s keyphrases are author annotated,
with no further verification. The annotation

process for KPTimes was relatively more
structured, where experienced editors added
the keyphrases to the document by consid-
ering the tag suggestions from an automated
labeler, adding new tags as needed. This could
have resulted in a more consistent labeling of
both present and absent keyphrases in KPTi-
mes, which can explain the superior perfor-
mance of all the models on this dataset.

A more detailed qualitative analysis of the datasets
themselves, and the similarities and dissimilarities
among the models can lead into further insights
into this performance difference, and identifying
potential coverage issues in the dataset labeling
process in future.

6 Conclusions

We proposed to improve the keyphrase generation
performance by a) developing a new approach for
absent keyphrase generation with diversity heads
and b) separating present keyphrase extraction as
a plain sequence labeling problem. Our experi-
ments with six standard datasets consisting of short
as well as long documents showed that our present
keyphrase generation model outperformed the state-
of-the-art on four of the six datasets, and our absent
keyphrase generation model outperformed the state-
of-the-art on five of the six datasets. The insights
from further analysis of results on the evaluation
measures and the nature of the datasets point to
interesting directions for future work. Improving
cross-domain transfer, and exploring the portabil-
ity of our approach to other languages are other
possible future directions. It is important to note
that the performance for this task reports much
lower overall scores compared to other NLP tasks
even with the recent generative LLMs like Chat-
GPT. This emphasizes the need for more focused
research on the nature of the task itself along with
model development.

7 Limitations

Our experiments in this paper have focused only
on English datasets and supervised learning sce-
narios, which can be considered a limitation. Our
model, while performing over the state-of-the-art
for many datasets, still does poorly with cross-
domain datasets (e.g., KP20K trained model tested
on KPTimes or viceversa). Finally, our evaluation
(which is the standard procedure for KPG) is more

1576

of a surface comparison and not a semantic compar-
ison of the ground truth and predicted output, thus
ignoring the keyphrases that semantically closer
but lexically different from ground truth. There
are also potential coverage issues in the original
labeled keyphrases in one of the datasets, as quali-
tative analysis revealed some instances where the
model’s labels seem appropriate but do not fig-
ure in the ground truth (examples in Table A10),
which our evaluation process does not address at
this point. Additionally, while we separate extrac-
tion and generation, the two tasks indeed share
some commonalities, which the complete separa-
tion ignores. A better multi-task framing of the
task, where extraction can learn from generation
and vice-versa may result in a better performance.
Finally, our experimental choices (e.g., number of
epochs, not doing multiple runs of experiments)
are limited by the compute availability, which can
be considered a limitation in terms of exploring
the experimental space in full. All our results and
findings are to be understood in the context of these
limitations.

8 Ethics Statement

The research did not involve in the creation of any
data artifacts and used publicly accessible English
datasets. However, some of the dataset instances
can be directly traced to the original authors and
writeups, through a simple google search. We share
our code as supplementary material at https:
//github.com/edwinthomas444/
diverse-keyphrase-generation for
supporting reproducible research.

9 Acknowledgements

We thank the three anonymous reviewers for their
constructive comments and active engagement dur-
ing the author rebuttal phase, and we think the
discussion eventually made the paper better than
the initial version. We also thank Gabriel Bernier-
Colborne and Taraka Rama for their comments on
the initial draft. Finally, we thank the authors of
the models we replicated, for sharing their code in
a usable manner. This research was conducted at
the National Research Council of Canada, thereby
establishing a copyright belonging to the Crown
in Right of Canada, that is, to the Government of
Canada.

References
Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei

Chang. 2021. Select, extract and generate: Neu-
ral keyphrase generation with layer-wise coverage
attention. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1389–1404, Online. Association for Computa-
tional Linguistics.

Hareesh Bahuleyan and Layla El Asri. 2020. Diverse
keyphrase generation with neural unlikelihood train-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 5271–
5287, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.
2019. Neural keyphrase generation via reinforcement
learning with adaptive rewards. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2163–2174, Florence,
Italy. Association for Computational Linguistics.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase generation with corre-
lation constraints. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4057–4066, Brussels, Belgium.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019a. An integrated approach for
keyphrase generation via exploring the power of re-
trieval and extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2846–2856, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.
2020. Exclusive hierarchical decoding for deep
keyphrase generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1095–1105, Online. Association
for Computational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and
Michael R Lyu. 2019b. Title-guided encoding for
keyphrase generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 6268–6275.

Minseok Choi, Chaeheon Gwak, Seho Kim, Si Kim,
and Jaegul Choo. 2023. SimCKP: Simple contrastive
learning of keyphrase representations. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 3003–3015, Singapore. Associ-
ation for Computational Linguistics.

Md Faisal Mahbub Chowdhury, Gaetano Rossiello,
Michael Glass, Nandana Mihindukulasooriya, and

1577

https://github.com/edwinthomas444/diverse-keyphrase-generation
https://github.com/edwinthomas444/diverse-keyphrase-generation
https://github.com/edwinthomas444/diverse-keyphrase-generation
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2023.findings-emnlp.199
https://doi.org/10.18653/v1/2023.findings-emnlp.199

Alfio Gliozzo. 2022. Applying a generic sequence-to-
sequence model for simple and effective keyphrase
generation. arXiv preprint arXiv:2201.05302.

A Diya and I Mizuho. 2022. Keyphrase generation by
utilizing bart finetuning and bert-based ranking. In
DEIM Forum.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Ygor Gallina, Florian Boudin, and Béatrice Daille. 2019.
Kptimes: A large-scale dataset for keyphrase gener-
ation on news documents. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 130–135.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical meth-
ods in natural language processing, pages 216–223.

Jihyuk Kim, Myeongho Jeong, Seungtaek Choi, and
Seung-won Hwang. 2021. Structure-augmented
keyphrase generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2657–2667, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Tim-
othy Baldwin. 2010. SemEval-2010 task 5 : Auto-
matic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Sweden.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Fajri Koto, Timothy Baldwin, and Jey Han Lau. 2022.
LipKey: A large-scale news dataset for absent
keyphrases generation and abstractive summariza-
tion. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 3427–
3437, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases extrac-
tion.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Tuhin Kundu, Jishnu Ray Chowdhury, and Cornelia
Caragea. 2023. Neural keyphrase generation: Analy-
sis and evaluation. arXiv preprint arXiv:2304.13883.

Giuseppe Lancioni, Saida S.Mohamed, Beatrice Portelli,
Giuseppe Serra, and Carlo Tasso. 2020. Keyphrase
generation with GANs in low-resources scenarios. In
Proceedings of SustaiNLP: Workshop on Simple and
Efficient Natural Language Processing, pages 89–96,
Online. Association for Computational Linguistics.

Rui Liu, Zheng Lin, and Weiping Wang. 2021.
Addressing extraction and generation separately:
Keyphrase prediction with pre-trained language mod-
els. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 29:3180–3191.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011. Automatic keyphrase extraction
by bridging vocabulary gap. In Proceedings of the
Fifteenth Conference on Computational Natural Lan-
guage Learning, pages 135–144, Portland, Oregon,
USA. Association for Computational Linguistics.

Yichao Luo, Yige Xu, Jiacheng Ye, Xipeng Qiu, and
Qi Zhang. 2021. Keyphrase generation with fine-
grained evaluation-guided reinforcement learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 497–507, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Roberto Martínez-Cruz, Alvaro J López-López, and
José Portela. 2023. Chatgpt vs state-of-the-art mod-
els: A benchmarking study in keyphrase generation
task. arXiv preprint arXiv:2304.14177.

Rui Meng, Xingdi Yuan, Tong Wang, Sanqiang Zhao,
Adam Trischler, and Daqing He. 2021. An empir-
ical study on neural keyphrase generation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4985–5007, Online. Association for Computational
Linguistics.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He,
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase
generation. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 582–592, Vancouver,
Canada. Association for Computational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International conference on Asian digital libraries,
pages 317–326. Springer.

Jishnu Ray Chowdhury, Seo Yeon Park, Tuhin Kundu,
and Cornelia Caragea. 2022. KPDROP: Improving
absent keyphrase generation. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 4853–4870, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Tokala Yaswanth Sri Sai Santosh, Nikhil Reddy Vari-
malla, Anoop Vallabhajosyula, Debarshi Kumar
Sanyal, and Partha Pratim Das. 2021a. Hicova: Hi-
erarchical conditional variational autoencoder for

1578

https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/2021.emnlp-main.209
https://doi.org/10.18653/v1/2021.emnlp-main.209
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://doi.org/10.18653/v1/2020.sustainlp-1.12
https://doi.org/10.18653/v1/2020.sustainlp-1.12
https://aclanthology.org/W11-0316
https://aclanthology.org/W11-0316
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/2022.findings-emnlp.357
https://doi.org/10.18653/v1/2022.findings-emnlp.357

keyphrase generation. In Proceedings of the 30th
ACM International Conference on Information &
Knowledge Management, pages 3448–3452.

TYSS Santosh, Debarshi Kumar Sanyal, Plaban Kumar
Bhowmick, and Partha Pratim Das. 2021b. Gazetteer-
guided keyphrase generation from research papers.
In Advances in Knowledge Discovery and Data Min-
ing: 25th Pacific-Asia Conference, PAKDD 2021,
Virtual Event, May 11–14, 2021, Proceedings, Part I,
pages 655–667. Springer.

Xianjie Shen, Yinghan Wang, Rui Meng, and Jingbo
Shang. 2022. Unsupervised deep keyphrase genera-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 11303–11311.

Mingyang Song, Yi Feng, and Liping Jing. 2023a. A
survey on recent advances in keyphrase extraction
from pre-trained language models. In Findings of the
Association for Computational Linguistics: EACL
2023, pages 2153–2164, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Mingyang Song, Haiyun Jiang, Shuming Shi, Song-
fang Yao, Shilong Lu, Yi Feng, Huafeng Liu, and
Liping Jing. 2023b. Is chatgpt a good keyphrase
generator? a preliminary study. arXiv preprint
arXiv:2303.13001.

Avinash Swaminathan, Haimin Zhang, Debanjan Ma-
hata, Rakesh Gosangi, Rajiv Ratn Shah, and Amanda
Stent. 2020. A preliminary exploration of GANs for
keyphrase generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8021–8030, On-
line. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yue Wang, Jing Li, Hou Pong Chan, Irwin King,
Michael R. Lyu, and Shuming Shi. 2019. Topic-
aware neural keyphrase generation for social media
language. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2516–2526, Florence, Italy. Association for
Computational Linguistics.

Yue Wang, Jing Li, Michael Lyu, and Irwin King. 2020.
Cross-media keyphrase prediction: A unified frame-
work with multi-modality multi-head attention and
image wordings. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3311–3324, Online. As-
sociation for Computational Linguistics.

Di Wu, Wasi Uddin Ahmad, and Kai-Wei Chang.
2022a. Pre-trained language models for
keyphrase generation: A thorough empirical
study. https://arxiv.org/abs/2212.10233.

Di Wu, Wasi Uddin Ahmad, and Kai-Wei Chang.
2023a. Rethinking model selection and decoding
for keyphrase generation with pre-trained sequence-
to-sequence models. Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Di Wu, Wasi Uddin Ahmad, and Kai-Wei Chang. 2024.
On leveraging encoder-only pre-trained language
models for effective keyphrase generation. arXiv
preprint arXiv:2402.14052.

Di Wu, Da Yin, and Kai-Wei Chang. 2023b. Kpeval:
Towards fine-grained semantic-based evaluation of
keyphrase extraction and generation systems. arXiv
preprint arXiv:2303.15422.

Huanqin Wu, Wei Liu, Lei Li, Dan Nie, Tao Chen,
Feng Zhang, and Di Wang. 2021. UniKeyphrase:
A unified extraction and generation framework for
keyphrase prediction. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 825–835, Online. Association for Computa-
tional Linguistics.

Huanqin Wu, Baijiaxin Ma, Wei Liu, Tao Chen, and Dan
Nie. 2022b. Fast and constrained absent keyphrase
generation by prompt-based learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11495–11503.

Binbin Xie, Jia Song, Liangying Shao, Suhang Wu, Xi-
angpeng Wei, Baosong Yang, Huan Lin, Jun Xie,
and Jinsong Su. 2023. From statistical methods
to deep learning, automatic keyphrase prediction:
A survey. Information Processing & Management,
60(4):103382.

Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan Lin,
Jun Xie, Xiaoli Wang, Min Zhang, and Jinsong
Su. 2022. WR-One2Set: Towards well-calibrated
keyphrase generation. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7283–7293, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Hai Ye and Lu Wang. 2018. Semi-supervised learn-
ing for neural keyphrase generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4142–4153,
Brussels, Belgium. Association for Computational
Linguistics.

Jiacheng Ye, Ruijian Cai, Tao Gui, and Qi Zhang. 2021a.
Heterogeneous graph neural networks for keyphrase
generation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2705–2715, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021b. One2Set: Generating diverse
keyphrases as a set. In Proceedings of the 59th An-
nual Meeting of the Association for Computational

1579

https://doi.org/10.18653/v1/2023.findings-eacl.161
https://doi.org/10.18653/v1/2023.findings-eacl.161
https://doi.org/10.18653/v1/2023.findings-eacl.161
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/2020.emnlp-main.268
https://doi.org/10.18653/v1/2020.emnlp-main.268
https://doi.org/10.18653/v1/2020.emnlp-main.268
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2022.emnlp-main.491
https://doi.org/10.18653/v1/2022.emnlp-main.491
https://doi.org/10.18653/v1/D18-1447
https://doi.org/10.18653/v1/D18-1447
https://doi.org/10.18653/v1/2021.emnlp-main.213
https://doi.org/10.18653/v1/2021.emnlp-main.213
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354

Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4598–4608, Online. Association
for Computational Linguistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker,
Peter Brusilovsky, Daqing He, and Adam Trischler.
2020. One size does not fit all: Generating and evalu-
ating variable number of keyphrases. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7961–7975, On-
line. Association for Computational Linguistics.

Hamada M Zahera, Daniel Vollmers, Mohamed Ahmed
Sherif, and Axel-Cyrille Ngonga Ngomo. 2022.
Multpax: Keyphrase extraction using language mod-
els and knowledge graphs. In The Semantic Web–
ISWC 2022: 21st International Semantic Web Con-
ference, Virtual Event, October 23–27, 2022, Pro-
ceedings, pages 303–318. Springer.

Yong Zhang and Weidong Xiao. 2018. Keyphrase gen-
eration based on deep seq2seq model. IEEE access,
6:46047–46057.

Guangzhen Zhao, Guoshun Yin, Peng Yang, and Yu Yao.
2022. Keyphrase generation via soft and hard seman-
tic corrections. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7757–7768, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporating
linguistic constraints into keyphrase generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5224–
5233, Florence, Italy. Association for Computational
Linguistics.

Cangqi Zhou, Jinling Shang, Jing Zhang, Qianmu
Li, and Dianming Hu. 2021. Topic-attentive
encoder-decoder with pre-trained language model
for keyphrase generation. In 2021 IEEE Interna-
tional Conference on Data Mining (ICDM), pages
1529–1534. IEEE.

A Appendix

Dataset Statistics More detailed dataset statistics
are shown in Tables A1 and A2.

Detailed Performance Measures Tables A3
and A4 show additional evaluation measures
(P/R/F@O,M,K where K=5) for both present and
absent keyphrase extraction.

Effect of Diversity Heads: Tables A5 and A6
provide detailed results for Seq2Seq and Seq2Set
(without diversity heads).

Beam Search Decoding: Table A7 shows the
detailed results for using beam search (n=5) instead
of the default greedy decoding for our model.

Comparisons between scaled models: Table A8
and Table A9 show the detailed results parameter
scaled Seq2Set and TransSet models respectively,
when trained with KP20K-TRAIN dataset.

Example Outputs Table A10 shows some ex-
ample outputs from our model trained on KP20K
dataset, illustrating some of the issues in the dataset
and our model. For example, in the first example,
the predicted extractive and abstractive keyphrases
seem to suit the context, but the ground truth has
too few keyphrases. In the second example, the
ground truth abstractive phrase is difficult to infer
from the provided abstract, and the model’s outputs
include incomplete words. In the third example,
both model and ground truth agree with each other
better, and in the fourth example, the outputs seem
to represent the text better than the ground truth
(especially abstractive).

1580

https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2022.emnlp-main.529
https://doi.org/10.18653/v1/2022.emnlp-main.529
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515

Dataset #docs #words/doc #kp #uniquekp avg len
extractivekp

avg len
abstractivekp

#presentkp/doc #absentkp/doc

Train sets
KP20k ∼530k 157.8 ∼2.8m ∼723k 1.9 2.15 2.34 2.94
KPTimes ∼260k 783.32 ∼1.3m ∼102k 1.62 2.5 2.15 2.88

Test sets
KP20k 20k 157.94 ∼105k ∼57k 1.9 2.15 2.34 2.93
KPTimes 20k 643.24 ∼100k ∼21k 1.5 2.09 2.72 2.31
Inspec 500 134.6 ∼5k ∼4.6k 2.21 2.49 6.57 3.26
Krapivin 2304 ∼9k ∼12k 8728 1.96 2.26 3.73 1.6
SemEval 100 ∼8k ∼1.5k 1388 1.95 2.4 9.2 6
NUS 211 ∼8k ∼2k ∼2k 1.87 2.49 8 3.07

Table A1: More detailed statistics about the datasets used

Overlap-Extractive Overlap-Abstractive
KP20k-Train KPTimes-Train KP20k-Train KPTimes-Train

KP20K-Test 70.9 2.83 KP20K-Test 61.64 0.96
Inspec-Test 42.68 3.57 Inspec-Test 31.55 1.66
SemEval-Test 57.16 3.18 SemEval-Test 29.26 0.17
NUS-Test 69.07% 3.61 NUS-Test 47.39 0.63%
Krapivin-Test 75.83 1.46 Krapivin-Test 71.76 0.38
KPTimes-Test 18.15 51.89 KPTimes-Test 11.27 63.96

Table A2: Overlap between different train/test sets, separated by Extractive and Abstractive keyphrases (without
stemming)

Train: KP20K
test set P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 30.74 64.56 41.65 46.32 44.99 45.64 54.6 33.88 41.81
krapivin 27.72 57.22 37.35 39.99 41.76 40.85 50.09 32.37 39.33
inspec 37.02 28.4 32.14 42.83 20.52 27.75 41.38 21.85 28.6
semeval 32.57 50.47 39.59 59.21 34.13 43.3 56.25 31.65 40.5
nus 41.89 57.84 48.59 58.44 37.44 45.64 61.86 33.06 43.09

Train: KPTimes
test set P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kptimes 44.99 75.34 56.34 60.3 58.94 59.61 70.78 46.97 56.47
krapivin 9.31 5.94 7.25 9.31 5.62 7.01 10.25 5.51 7.17
inspec 13.14 4.06 6.21 13.47 3.65 5.75 13.2 3.69 5.76
semeval 30.56 16.95 21.81 33.33 14.71 20.41 33.08 12.99 18.65
nus 26.56 10.36 14.91 28.87 9.85 14.69 28.29 9.68 14.42

Table A3: Performance of our model for Present Keyphrase Extraction

1581

Train: KP20K

dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 6.87 9.11 7.84 6.87 9.11 7.84 7.48 6.4 6.9
krapivin 7.03 8.25 7.59 7.03 8.25 7.59 7.95 6.96 7.42
inspec 1.21 1.16 1.18 1.21 1.16 1.18 1.04 0.77 0.89
semeval 9.04 2.74 4.21 9.04 2.74 4.21 9.04 2.74 4.21
nus 7.98 7.48 7.72 7.98 7.48 7.72 9.05 5.47 6.82

Train: KPTimes
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kptimes 43.07 45.22 44.12 43.07 45.22 44.12 45.27 37.76 41.18
krapivin 0.14 0.23 0.17 0.14 0.23 0.17 0.12 0.12 0.12
inspec 0.22 0.17 0.19 0.22 0.17 0.19 0.22 0.17 0.19
semeval 0 0 0 0 0 0 0 0 0
nus 0.8 0.31 0.45 0.8 0.31 0.45 0.8 0.31 0.45

Table A4: Performance of our model for Absent Keyphrase Generation

Train:KP20K
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 8.83 4.84 6.25 8.84 4.84 6.25 8.87 4.7 6.14
krapivin 10.62 3.97 5.78 10.62 3.97 5.78 10.62 3.97 5.78
inspec 1.58 1.2 1.36 1.58 1.2 1.36 1.86 1.2 1.46
semeval 11.62 1.69 2.95 11.62 1.69 2.95 11.62 1.69 2.95
nus 8.29 2.63 4.0 8.29 2.63 4.0 8.54 2.63 4.02

Train:KPTimes
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kptimes 45.0 38.05 41.24 45.05 38.02 41.24 46.55 34.62 39.71
krapivin 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
inspec 0.39 0.43 0.41 0.39 0.43 0.41 0.3 0.17 0.22
semeval 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nus 0.75 0.16 0.27 0.75 0.16 0.27 0.75 0.16 0.27

Table A5: Seq2Seq Model Detailed Results for AKP (Row 1 in Table 6)

Train:KP20K
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 6.81 5.89 6.31 6.81 5.89 6.31 7.11 4.91 5.81
krapivin 7.48 6.78 7.11 7.48 6.78 7.11 8.06 6.08 6.93
inspec 0.95 1.04 0.99 0.95 1.04 0.99 1.21 1.04 1.12
semeval 10.02 2.75 4.31 10.02 2.75 4.31 10.27 2.75 4.33
nus 6.57 3.98 4.96 6.57 3.98 4.96 6.49 3.23 4.31

Train:KPTimes
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kptimes 49.15 29.64 36.98 49.15 29.64 36.98 49.15 27.78 35.5
krapivin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
inspec 0.13 0.04 0.06 0.13 0.04 0.06 0.13 0.04 0.06
semeval 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nus 1.01 0.31 0.47 1.01 0.31 0.47 1.01 0.31 0.47

Table A6: Seq2Set Model Detailed Results for AKP (Row 2 in Table 6)

1582

Train:KP20K
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 8.25 11.71 9.68 8.25 11.71 9.68 10.02 8.86 9.4
krapivin 6.73 10.32 8.15 6.73 10.32 8.15 8.38 7.62 7.98
inspec 1.74 2.7 2.11 1.74 2.7 2.11 2.13 1.92 2.02
semeval 9.14 3.25 4.79 9.14 3.25 4.79 9.14 3.25 4.79
nus 8.78 7.65 8.18 8.78 7.65 8.18 9.05 5.73 7.02

Train:KPTimes
dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kptimes 39.59 47.68 43.26 39.59 47.68 43.26 46.66 41.86 44.13
krapivin 0.14 0.23 0.17 0.14 0.23 0.17 0 0 0
inspec 0.35 0.28 0.32 0.35 0.28 0.32 0.35 0.28 0.32
semeval 0 0 0 0 0 0 0 0 0
nus 0.96 0.38 0.54 0.96 0.38 0.54 0.96 0.38 0.54

Table A7: Performance of our model with beam search decoding (n=5)

dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 11.1 4.61 6.51 11.1 4.61 6.51 11.11 4.56 6.47
krapivin 11.9 4.72 6.76 11.9 4.72 6.76 12.02 4.72 6.78
inspec 1.17 0.93 1.04 1.17 0.93 1.04 1.17 0.93 1.04
semeval 11.62 1.53 2.7 11.62 1.53 2.7 11.62 1.53 2.7
nus 11.81 2.66 4.35 11.81 2.66 4.35 11.81 2.66 4.35

Table A8: Detailed results for the scaled Seq2Set model (trained on KP20K-TRAIN)

dataset P@M R@M F1@M P@K R@K F1@K P@O R@O F1@O
kp20k 4.99 4.35 4.65 4.99 4.35 4.65 5.01 3.52 4.13
krapivin 6.92 4.73 5.62 6.92 4.73 5.62 6.9 4.11 5.15
inspec 2.11 1.87 1.98 2.11 1.87 1.99 2.15 1.48 1.74
semeval 8.12 2.04 3.27 8.12 2.04 3.27 8.12 2.04 3.27
nus 6.75 4.1 5.1 6.75 4.1 5.1 6.35 2.68 3.77

Table A9: Detailed results for the scaled TransSet model (trained on KP20K-TRAIN)

1583

a framework to automate the parsing of arabic language sentences . this paper proposes a framework
to automate the parsing (sic) of arabic language sentences in general , although it focuses on the
simple verbal sentences but it can be extended to any arabic language sentence . the proposed
system is divided into two separated phases which are lexical analysis and syntax analysis . lexical
phase analyses the words , finds its originals and roots , separates it from prefixes and suffixes ,
and assigns the filtered words to special tokens . syntax analysis receives all the tokens and finds
the best grammar for the given sequence of the tokens by using context free grammar . our system
assumes that the entered sentences are correct lexically and grammatically .
Ground truth-extractive: lexical analysis ; syntax analysis
Pred-extractive: syntax analysis ; arabic language sentences ; lexical analysis ; parsing ; context
free grammar
Ground truth-abstractive: arabic language parser
Pred-abstractive: arabic language ; natural language processing ; lexical context ; lexical parsing ;
sentence parsing
existence of solutions of abstract fractional integrodifferential equations of Sobolev type This paper
deals with the study of existence of solutions of nonlinear fractional integrodifferential equations of
Sobolev type with nonlocal condition in Banach spaces. The results are obtained by using resolvent
operators, fractional calculus and fixed point technique. An example is provided to illustrate the
theory.
Ground truth - extractive: sobolev type ; resolvent operators ; fractional integrodifferential
equations
Pred-extractive: sobolev type ; resolvent operators ; fractional integrodifferential equations ;
fractional calculus ; existence ; fixed point technique
Ground truth - abstractive: krasnoselskii fixed point theorem
Pred-Abstractive: fixed point theorem ; nonlocal integ ; resolvent integro
an action compiler targeting standard ml . we present an action compiler that can be used in
connection with an action semantics based compiler generator . our action compiler produces code
with faster execution times than code produced by other action compilers , and for some nontrivial
test examples it is only a factor of two slower than the code produced by the gnu c compiler .
targeting standard ml makes the description of the code generation simple and easy to implement .
the action compiler has been tested on a description of the core of standard ml and a subset of c .
Ground truth - extractive: code generation ; action semantics ; standard ml
Pred-extractive: action compiler ; action semantics ; standard ml
Ground truth-abstractive: compiler generation
Pred-abstractive: compilation ; compiler generator
exploiting discourse information to identify paraphrases . we show the relation between discourse
units and paraphrasing . we propose a new method for computing text similarity based on elementary
discourse units . we apply the method to the task of paraphrase identification . we achieved < digit >
. 4 accuracy in experiments conducted on the pan corpus . Ground truth - extractive: elementary
discourse unit ; text similarity ; paraphrase identification
Pred-extractive: elementary ; discourse ; para ; paraphrase identification ; pan corpus ; discourse
unit ; text similarity
Ground truth-abstractive: support vector machine ; mt metric ; discourse segmentation
Pred-abstractive: discourse analysis ; natural language processing ; paraphrase extraction

Table A10: Examples of Model Outputs - KP20K

1584

