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Abstract

In Medical question-answering (QA) tasks, the
need for effective systems is pivotal in deliv-
ering accurate responses to intricate medical
queries. However, existing approaches often
struggle to grasp the intricate logical structures
and relationships inherent in medical contexts,
thus limiting their capacity to furnish precise
and nuanced answers. In this work, we address
this gap by proposing a novel Abstractive QA
system MEDLOGIC-AQA that harnesses First
Order Logic (FOL) based rules extracted from
both context and questions to generate well-
grounded answers. Through initial experimen-
tation, we identified six pertinent first-order
logical rules, which were then used to train a
Logic-Understanding (LU) model capable of
generating logical triples for a given context,
question, and answer. These logic triples are
then integrated into the training of MEDLOGIC-
AQA, enabling effective and coherent reason-
ing during answer generation. This distinc-
tive fusion of logical reasoning with abstrac-
tive QA equips our system to produce answers
that are logically sound, relevant, and engag-
ing. Evaluation with respect to both automated
and human-based demonstrates the robustness
of MEDLOGIC-AQA against strong baselines.
Through empirical assessments and case stud-
ies, we validate the efficacy of MEDLOGIC-
AQA in elevating the quality and comprehen-
siveness of answers in terms of reasoning as
well as informativeness 1.

1 Introduction

In recent years, the demand for effective question-
answering (QA) systems in the field of medicine
has surged, driven by the need to provide accu-
rate and informative responses to complex medical
inquiries (Shickel et al., 2018). With the prolifer-
ation of medical data and the increasing reliance
on digital platforms for healthcare information, the

*Equal contribution.
1Code: https://github.com/aizanzafar/MedLogicAQA

development of robust QA systems has become
imperative to support medical professionals and
patients alike (Pons et al., 2016).

Existing abstractive question-answering (AQA)
approaches in medicine face significant challenges
in capturing the intricate logical structures and re-
lationships inherent in medical contexts (Minsky,
1975; Zhu et al., 2020a; Zafar et al., 2023). This
leads to sub-optimal outcomes (Rajpurkar et al.,
2018), i.e. limiting the AQA systems to furnish
precise and nuanced answers to medical queries ne-
cessitating logical reasoning (Cappanera, 2023).
Through the integration of logical reasoning in
AQA systems, they can navigate the complexities
of medical data and provide reasoned, coherent,
and informative answers to medical queries (Rat-
ner et al., 2017; Choi et al., 2017).

Therefore, to address the limitations of the ex-
isting approaches, We propose a novel abstractive
QA system, MEDLOGIC-AQA. Central to our ap-
proach is the conceptualization of the logical struc-
ture of the context as a graph. We achieve this by
employing six carefully chosen First Order Logi-
cal (FOL) rules, with nodes representing entities
and edges encapsulating their logical relationships.
This structured representation facilitates a more
nuanced understanding of the context, enabling
us to navigate intricate logical dependencies effec-
tively. Utilizing this graph-based information as
output and with the context, question, and answer
as input, we initially train a Logic-Understanding
(LU) model using LLAMA2 (Touvron et al., 2023).
Subsequently, we fine-tune the LU model with the
input of context, question, and the desired output
answer. This fine-tuning process emphasizes logi-
cal coherence and contextual relevance, enhancing
the generation of answers. This logic-based repre-
sentation offers a flexible and scalable framework
for integrating logical rules, making it applicable
across diverse domains and datasets.

An example of MEDLOGIC-AQA is shown in
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Paragraph: Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be
studied in future Phase II trials building on the newly established platform of concurrent
chemoradiotherapy. The addition of high-dose tamoxifen to standard radiotherapy does not improve the
survival of patients ... (truncated)

Question: Was tamoxifen tested for treatment of glioma patients?

LLama+Rule: Yes, tamoxifen was tested for treatment of glioma patients. However, clinical efficacy of
tamoxifen in glioma patients remains unclear and should be tested in further studies.

MedLogicAQA: Yes, tamoxifen was tested for treatment of glioma patients.  It was tested in a phase II
trial.  It was also tested in a phase I clinical trial assessing temozolomide and tamoxifen with
concomitant radiotherapy for treatment of high-grade glioma.

Answer: Yes, tamoxifen was tested for glioma treatment.

LLama-Rule: Yes, tamoxifen was tested for treatment of glioma patients. 

GPT2: The tumor suppressor, tamoxifen, is dangerous for patients with brain-stem loma, glioblastoma and tinea-
implant culture and has recently been approved for treatment of severe glioma

KG Triples for Diagnosis and Interaction: [(tamoxifen, diagnoses, temozolomide), (tamoxifen, diagnoses,
carboplatin), (tamoxifen, diagnoses, propylthiouracil), (tamoxifen, diagnoses, interferon-alpha), (tamoxifen,
diagnoses, liposomal_doxorubicin), (tamoxifen, diagnoses, hypericin), (tamoxifen, diagnoses, interferon_alpha)]
KG Triple for Co-occurrence: [(thyroid_function, affects, tumor), (thyroid_function, affects, glioma),
(hypothyroidism, affects, glioma), (tumor, affects, glioma)]
KG Triple for Conjunction: [(glioma, co-occurs_with, tumors), (glioma, co-occurs_with, hypothyroidism)] 

Figure 1: Illustration of Responses Generated by MEDLOGIC-AQA: Demonstrating the approach’s utilization
of background knowledge and first-order logic-based rules to provide comprehensive answers to medical queries,
exemplifying its logical reasoning capabilities"

Figure 1. It can be seen that MEDLOGIC-AQA
first establishes the background knowledge of dif-
ferent entities involved with the user to provide
the answer for a better understanding. To perform
reasoning, MEDLOGIC-AQA leverages first-order
logic-based rules extracted from both context and
questions to generate well-grounded answers that
encapsulate the underlying logical reasoning be-
hind medical concepts and relationships (Wang
et al., 2021). Our key contributions can be sum-
marized as follows:

1. Proposed an effective neuro-symbolic ap-
proach that leverages first-order logic reason-
ing in a neural network framework for Medi-
cal Abstractive Question Answering System
MEDLOGIC-AQA.

2. Develop a Logic Understanding model that
generates Logic triples without the need for
any traditional graph-based method.

3. Through a series of empirical evaluation and
case studies, we demonstrate the efficacy of
MEDLOGIC-AQA in elevating the quality and
comprehensiveness of answers provided in
terms of reasoning as well as informativeness.

2 Related Work

Abstractive Question Answering (AQA) has wit-
nessed substantial research efforts, with several

approaches aiming to enhance the generation of
contextually relevant and coherent answers (Fan
et al., 2019; Krishna et al., 2021; Pal et al., 2022).
The pursuit of effective question-answering (QA)
systems in medical domain has garnered consid-
erable attention in the recent years (Shickel et al.,
2018). This surge in interest stems from the critical
necessity of furnishing accurate and informative
responses to intricate medical inquiries amidst the
proliferation of medical data and the increasing re-
liance on digital platforms for healthcare informa-
tion (Pons et al., 2016). Existing literature primar-
ily falls into two categories: methods leveraging
neural networks and those incorporating logical
reasoning.

Neural Network-based Approaches: Early en-
deavors in AQA predominantly focused on neural
network-based models, often employing recurrent
neural networks (RNNs) and later transitioning to
attention mechanisms and transformers (Vaswani
et al., 2017). Notable works include the introduc-
tion of sequence-to-sequence models (Sutskever
et al., 2014). While these methods demonstrated
promising results, they struggled to capture intri-
cate logical structures and dependencies within the
context, limiting their ability to handle complex
queries that require nuanced reasoning.

Logical Reasoning in Question Answering:
Recognizing the limitations of neural network-
centric approaches, researchers delved into incor-
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porating logical reasoning to imbue AQA systems
with enhanced inferential capabilities (Moldovan
et al., 2003; Asai and Hajishirzi, 2020; Li and Sriku-
mar, 2019). Early attempts utilized knowledge
graphs and semantic parsing to introduce explicit
logical structures (Berant and Liang, 2014). How-
ever, these methods faced challenges in scalability
and were often domain-specific.

Graph-Based Representations: Recent ad-
vancements in graph-based representations (Lin
et al., 2022; Fouladvand et al., 2023) have offered
a more versatile and scalable approach to captur-
ing logical relationships within text. Graph neural
networks (GNNs) have shown promise in model-
ing dependencies and hierarchies in various natu-
ral language processing tasks (Zhang et al., 2020;
Huai et al., 2023; Amador-Domínguez et al., 2023).
However, the application of GNNs in AQA (Zafar
et al., 2023) has been limited, and their efficacy
in handling logical rules derived from the context
remains an under-explored area.

In healthcare, several attempts have been made
to develop persuasive (Mishra et al., 2022; Samad
et al., 2022) and counseling conversation systems
(Mishra et al., 2023b,c; Priya et al., 2023; Mishra
et al., 2023a). However, these systems primarily
focus on enhancing meta-communicative aspects,
such as politeness, empathy, and personalization,
rather than generating context-sensitive responses.
Specifically, within the domain of medical care,
while there has been work in the field of medicine,
current QA approaches face significant challenges
in capturing the complex logical structures and re-
lationships inherent in medical contexts (Zhu et al.,
2020a; Varshney et al., 2023; Zafar et al., 2024b,a;
Varshney et al., 2022). The inability to effectively
discern intricate logical patterns within medical
data often leads to sub-optimal results, impacting
both the accuracy and relevance of the answers
provided (Leaman et al., 2015). These limitations
hinder the ability of QA systems to offer precise
and nuanced responses to medical queries that de-
mand logical reasoning (Huth and Ryan, 2004).
Wang et al. (2021) proposed a logic-based approach
that leverages first-order logic rules extracted from
both the context and questions to generate well-
grounded answers, incorporating the underlying
logical reasoning embedded within medical con-
cepts and relationships.

This work bridges the gap between neural
network-based AQA models and logical reasoning
by proposing a novel framework that leverages first-

order logic-based rules extracted from the context,
represented as a graph. Our approach draws inspi-
ration from Minsky’s seminal work on knowledge
representation (Minsky, 1975), aiming to integrate
explicit logical structures into the AQA process.
Additionally, the attention mechanism proposed
by Vaswani et al. (2017) serves as a cornerstone
in our approach, facilitating the nuanced integra-
tion of logical rules into the abstractive question-
answering paradigm. Unlike previous works, our
method focuses on the extraction of logical rules
directly from the context, enabling a more dynamic
and context-aware system.

3 Methodology

The proposed system MEDLOGIC-AQA involves
two components, viz. (i.) Logic Understanding
module - responsible for infusing logical rules into
the model’s decision-making process. It plays a
critical role in enhancing the model’s reasoning
capabilities, making it adept at understanding com-
plex relationships and dependencies within the data.
(ii.) MedAQA module - this step utilizes LU’s log-
ical reasoning capabilities to refine the model’s
understanding of complex dependencies to gener-
ate logically correct and contextually relevant an-
swers as per first-order logic rules. The two-stage
fine-tuning approach is detailed in Section E of the
appendix.

3.1 Logic Understanding Module

Medical Knowledge Graph Creation: We con-
struct a self-built knowledge graph using Quick-
UMLS (Soldaini and Goharian, 2016), which is
based on the UMLS (Bodenreider, 2004). Knowl-
edge Construction: To construct knowledge graph
(KG) triples, each context is processed through the
UMLS (Bodenreider, 2004) to generate a smaller
and more pertinent KG. Medical Entity Extraction:
We identify medical entities from each context by
employing the Metathesaurus. Each distinct con-
cept found in the UMLS is represented as a node
in our knowledge graph. Relation Extraction: Re-
lations within our knowledge graph are sourced
from both the Metathesaurus and the Semantic
Network of UMLS. Graph Construction: Using
the extracted relations from both sources, we es-
tablish connections between the filtered medical
concepts retrieved from UMLS. These steps result
in a Medical Knowledge Graph (MKG) that en-
riches our understanding of medical concepts and
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their relationships for the given question qi and
context ci.
Logic Rule Injection: After going through k num-
ber of FOL-based rules, we finalized six rules
which were relevant and were able to serve as essen-
tial knowledge for enhancing the model’s reasoning
and inference capabilities. Additional information
about the derivation of logical rules can be found
in the Appendix D.

1. Rule of Co-occurrence: If entity X co-occurs
with entity Y, and Y affects entity Z, then
entity X also affects entity Z.

co_occurs_with(X,Y ) ∧ affects(Y,Z) ⇒
affects(X,Z) (1)

2. Rule of Prevention and Causation: If in-
tervention X prevents event Y, and Y causes
event Z, it can be inferred that X can also
prevent Z.

prevent(X,Y ) ∧ causes(Y,Z) ⇒
prevent(X,Z) (2)

3. Rule of Treatment and Classification: If
treatment X is effective for condition Y, and
Y is a type of condition Z, then X can also be
used to treat Z.

treat(X,Y ) ∧ is_a(Y, Z) ⇒
treat(X,Z) (3)

4. Rule of Diagnosis and Interaction: If entity
X is diagnosed with condition Y, and X inter-
acts with entity Z, it suggests that Z can be
used for the diagnosis of Y.

diagnosis(X,Y )∧interacts_with(X,Z) ⇒
diagnosis(Z, Y ) (4)

5. Rule of Conjunction: If entity X co-occurs
with entity Y and X affects entity Z, it implies
that Y and Z also co-occur.

co_occurs_with(X,Y ) ∧ affects(X,Z) ⇒
co_occurs_with(Y, Z) (5)

6. Rule of Disjunction: If either entity X pre-
vents Y or Y causes Z, then it can be inferred
that either X prevents Z or X causes Z.

prevent(X,Y ) ∨ causes(Y,Z) ⇒
(prevent(X,Z) ∨ causes(X,Z)) (6)

The logical rules described above are integrated
with the MKG triples. Triples that meet the criteria
of a given first-order logical rule Rk are selected
as outputs, where X and Y represent the head and
tail of a triple, respectively, and the relationship is
a function, such as "affects" or "causes" applied to
these triples. Consequently, each rule produces a
set of logic-injected triples. These triples obtained
from each rule are aggregated to obtain a logic-
injected knowledge graph.
Logic Graph Learning: We fine-tune LLama2-7b-
hf (Touvron et al., 2023) to obtain the Logic Under-
standing (LU) model. It learns the logic graphs for
the given input x = [qi + ci + ai +Ri] and output
y = lt: where, qi, ci, ai, and Ri is ith represent the
question, context, answer, and set of six predefined
logical rules, respectively; lt denotes the obtained
logical triples. LUθ is the approximated probability
distribution pθ(y|x) on all N instances of the given
input-output (xi, yi) pairs, where 0 ≤ i < n.

pθ(y|x) = softmax(fθ(x, y)) (7)

fθ(x, y) is the output of the LLama2-7b-hf when
fine-tuning. pθ(y|x) is the probability of generating
y given input x.

L(θ) = − 1

N

N∑

i=1

log pθ(yi|xi) (8)

L(θ) is the computed cross-entropy loss on N in-
stances. The parameters are updated as follows:

θt+1 = θt − α∇θL(θ) (9)

This training process enables the model to learn the
logic embedded in the context in the form of rules.

3.2 MEDLOGIC-AQA

To obtain MEDLOGIC-AQA, LU is further fine-
tuned with input x = [qi + ci + Ri], and output
y = ai. Building upon the knowledge acquired by
LU, this step utilizes its logical reasoning capabili-
ties to refine the model’s understanding of complex
dependencies. This ensures the generation of log-
ically correct and contextually relevant answers
based on the learned rules. The inclusion of logical
rules in both fine-tuning stages contributes to mak-
ing the model more context-aware and adaptable
to the intricacies of medical queries. The overall
architecture of the proposed system can be seen in
Figure 2.
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Relugolix is an orally active nonpeptide GnRH-
ant, recently licensed for marketing in Japan for
the treatment of symptoms related to prostate

cancer, uterine fibroids, endometriosis and
uterine myomas.

Figure 2: Illustration of architecture of the MedLogic-AQA system. The Logic Understanding (LU) Module
comprises several components: Context, Question, Logical Rule, and Answer. These components are input to the
LLama2-7B model to generate logical knowledge triples. Subsequently, the LU module is fine-tuned using the
context, logical rule, and question to generate the final answer.

4 Dataset

Our experiments are conducted on two benchmark
datasets: MASH-QA (Zhu et al., 2020b) and the
BioASQ Task 10b Phase B (QA task) dataset (Nen-
tidis et al., 2022).

The BioASQ Task 10b Phase B (Nentidis et al.,
2022) dataset is meticulously designed for biomed-
ical QA, encompassing tasks like biomedical se-
mantic indexing and QA, with a specific emphasis
on the QA task. On the other hand, the MASH-QA
(Zhu et al., 2020b) dataset consists of consumer
healthcare questions extracted from WebMD, cov-
ering diverse healthcare sectors and addressing
common healthcare concerns. With approximately
25K question-answer pairs, it is the largest dataset
available in the medical domain. For detailed
dataset statistics and pre-processing information,
please refer to the Appendix A.

5 Experiments

5.1 Baselines

We compare the proposed MEDLOGIC-AQA to
seven strong baselines, BART (Lewis et al., 2020),
GPT2 (Radford et al., 2019), BioGPT (Luo

et al., 2022), BioMistral-7B (Labrak et al., 2024),
BioMedGPT-LM-7B (Luo et al., 2023), LLama2-
Rule - Fine-tuning LLamA2 (Touvron et al., 2023)
considering input: x = [qi+ci], and output y = ai,
LLama2+Rule - Fine-tuning LLamA2 (Touvron
et al., 2023) considering input: x = [qi + ci +Ri],
and output y = ai. Additional information about
baselines can be found in Appendix B.

5.2 Implementation Details

We implement all the models on a train:test split
of 80:20. For all the models, we used ran-
dom_seed=40, learning rate = 1e-5, dropout = 0.2,
Adam optimizer (Loshchilov and Hutter, 2018),
and n_epochs = 15. The implementation utilized
the A100-PCIE-40GB with CUDA version 11.2
for GPU acceleration. Each training epoch lasted
approximately 4.5 hours. Additional information
about hyperparameters can be found in the Ap-
pendix H.

5.3 Evaluation Metrics

Automatic Evaluation: All the models are eval-
uated on the test set, using the standard met-
rics: BLEU score (Papineni et al., 2002) -
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checks word overlap between predicted and ground
truth responses, ROUGE-L (Lin, 2004) assesses
the longest matching word sequence, METEOR
(Banerjee and Lavie, 2005), Medical Entity F1-
score 2 computed by comparing predicted and
ground truth sentences, Embedding-based metrics
(i.e. Embedding Average metric)3 (Liu et al., 2016)
and A-LEN gives the average number of tokens in
the generated answer.

Human Evaluation: Automated metrics alone
cannot fully capture critical aspects, such as the
adequacy of logical reasoning, contextual consis-
tency, or response accuracy. Therefore, a human
evaluation was conducted on the generated answers
from all models. To evaluate the quality of re-
sponses, we selected 120 generated answers along
with their corresponding questions, contexts, and
ground-truth answers from the BioASQ dataset.
Five human evaluators were recruited to assess an-
swer quality across four dimensions: Adequacy,
which examines whether the response is relevant
and meaningful; Fluency, which measures gram-
matical correctness; Logical Reasoning, which
evaluates the coherence and correctness of reason-
ing based on the provided context and question;
and Contextual Consistency, which checks whether
the answer aligns with the given context.

All evaluators hold postgraduate qualifications
in linguistics and possess substantial experience in
related evaluation tasks. The models were rated
on a 5-point Likert scale, with 1 representing the
lowest performance and 5 representing the highest,
across all metrics. The inter-evaluator agreement
scores (Cohen, 1960) for Adequacy, Fluency, Logi-
cal Reasoning, and Contextual Consistency were
81.3%, 85.6%, 80.1%, and 83.5%, respectively,
confirming substantial agreement. For more de-
tailed information, please refer to the Appendix
C

6 Results and Analysis

In assessing the MEDLOGIC-AQA performance,
we employ both quantitative (Tables 1 and 2) and
qualitative analyses (Table 3) to gauge its effective-
ness in addressing medical queries.

6.1 Automatic Evaluation
Table 1 showcases the results of our automatic eval-
uation metrics on the BioASQ dataset.

2https://github.com/facebookresearch/ParlAI/parlai/metrics.py
3https://github.com/Maluuba/nlg-eval

MEDLOGIC-AQA demonstrates exceptional
proficiency across various metrics, underscoring its
adeptness in abstractive QA for biomedical queries.
Notably, MEDLOGIC-AQA achieves the highest
scores for Medical Entity F1% (38.47%) and all
BLEU levels, indicating precision in identifying
medical entities and generating contextually rele-
vant responses. Additionally, the model performs
impressively in ROUGE-L, showcasing its abil-
ity to produce summaries closely aligned with ref-
erence summaries. The superior performance in
embedding-based metrics, particularly in Embed-
ding Average, underscores the model’s effective-
ness in generating meaningful contextual embed-
dings.

Similarly, Table 2 presents the outcomes of
automatic evaluation metrics on the MASHQA
dataset. Here, MEDLOGIC-AQA demonstrates
consistent excellence across various metrics, show-
casing its proficiency in abstractive QA for medical
queries. An insightful observation from both the
datasets reveals the consistent outperformance of
MEDLOGIC-AQA over baseline models across all
the evaluation metrics. Particularly notable are the
significant improvements in medical entity identifi-
cation, summarization quality, and overall contex-
tual understanding compared to the baseline mod-
els.

6.2 Human Evaluation
Table 3 presents the results of human evalua-
tion, comparing baseline models with our pro-
posed approach. In this assessment, our pro-
posed models consistently outperforms the base-
line models across various criteria, including Flu-
ency, Adequacy, Logical-Reasoning and Context-
consistency.

The proposed model secures the highest rat-
ings in Fluency (4.41), Adequacy (3.84), Logical-
Reasoning (4.39), and Context-consistency (4.14),
aligning with its superior performance in automatic
evaluation metrics. These findings collectively af-
firm the effectiveness of the proposed model in
generating contextually coherent, adequately infor-
mative, and logically sound responses to biomedi-
cal questions, as validated by both automatic and
human evaluation.

6.3 Result Analysis: Comparison of Answer
Generation

While analyzing the results obtained from both au-
tomatic evaluation metrics and human assessments,
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Models Medical Entity F1% BLEU ROUGE-L METEOR Embedding Average A-LEN
GPT-2 8.52 0.0094 0.0678 0.1087 0.708 20.66
BART 21.68 0.209 0.2468 0.4083 0.779 37.85
BioGPT 10.96 0.0294 0.1074 0.2166 0.732 24.85
BioMistral 19.19 0.2053 0.2599 0.4153 0.780 55.20
BioMedGPT-LM 15.53 0.1715 0.2314 0.3549 0.778 32.85
LLama2-Rule 24.88 0.2309 0.2615 0.4220 0.782 48.28
LLama2+Rule 25.12 0.2476 0.2626 0.4248 0.821 70.57
MEDLOGIC-AQA 38.47 0.2729 0.2768 0.4383 0.838 53.71

Table 1: Automatic evaluation results of BioASQ dataset. Here, LLama2-Rule represents fine-tuned LLama2-7b
model only on given context and question to generate answer, while LLama2+Rule represents fine-tuned LLama2-7b
with logical rules.

Models Medical Entity F1% BLEU ROUGE-L METEOR Embedding Average A-LEN
GPT-2 7.88 0.0089 0.0604 0.0987 0.688 17.32
BART 22.69 0.1154 0.1521 0.1723 0.729 29.19
BioGPT 10.06 0.0241 0.0988 0.1212 0.701 21.25
BioMistral 18.65 0.1358 0.1652 0.1798 0.735 54.50
BioMedGPT-LM 14.25 0.1019 0.1427 0.1689 0.715 36.80
LLama2-Rule 25.88 0.1558 0.1709 0.1864 0.741 66.23
LLama2+Rule 27.12 0.2066 0.2047 0.1978 0.761 94.47
MEDLOGIC-AQA 31.87 0.2284 0.2513 0.1969 0.788 56.47

Table 2: Automatic evaluation results on MASHQA dataset

Models Fluency Adequacy Logical-Reasoning Contextual-Consistency
GPT-2 (Radford et al., 2019) 2.65 1.80 0.59 2.21
BART (Lewis et al., 2020) 3.21 2.18 1.92 2.81
BioGPT (Luo et al., 2022) 2.75 1.88 1.02 2.47
BioMistral (Labrak et al., 2024) 3.11 2.10 1.80 2.95
BioMedGPT-LM (Luo et al., 2023) 3.37 2.08 0.92 2.02
LLama2-Rule(Touvronet al., 2023) 3.55 2.81 3.10 3.25
LLama2+Rule(Touvronet al., 2023) 4.10 3.11 3.75 3.65
MEDLOGIC-AQA 4.41 3.84 4.39 4.14

Table 3: Human assessment results for the baseline and proposed model. The bolded values represent the best
value.

a clear distinction emerges between the perfor-
mance of MedLogic-AQA and the baseline models.
MedLogic-AQA consistently outperforms the base-
line models across various evaluation metrics. For
instance, consider the comparison between the an-
swers generated by MedLogic-AQA and the base-
line model "LLama + Rule" for the question "Is
Apremilast effective for Behcet’s syndrome?", and
ground truth answer was "Yes. Apremilast was
proven to be effective for treatment of Behcet’s
syndrome."

Answer generated by MedLogic-AQA: "Yes,
Apremilast is effective for Behcet’s syndrome.
Apremilast is an immunomodulatory agent that
works through phosphodiesterase 4 inhibition. A
randomized controlled trial has shown that it is
effective for the management of oral and genital
ulcers and is generally well tolerated."

Answer generated by "LLama + Rule" model:
"Apremilast, an oral small molecule inhibitor of
phosphodiesterase 4 (PDE4), is in development for

chronic inflammatory disorders, and has shown ef-
ficacy in psoriasis, psoriatic arthropathies, and Be-
hçet’s syndrome. Apremilast (Otezla(®)), an oral
small molecule inhibitor of type-4 cyclic nucleotide
phosphodiesterase (PDE-4), is under development
with Celgene Corporation for the treatment of pso-
riatic arthritis, psoriasis, ankylosing spondylitis,
Behçet’s syndrome, atopic dermatitis, and rheuma-
toid arthritis."

While both the models provide responses,
MEDLOGIC-AQA generates a more detailed and
logically coherent answer. It explains that Apremi-
last, as an immunomodulatory agent working
through phosphodiesterase 4 inhibition, has shown
efficacy in managing oral and genital ulcers based
on a randomized controlled trial. This demonstrates
the model’s logical understanding capacity and its
ability to reason during answer generation. In con-
trast, the baseline model’s response lacks detailed
explanation and logical inference regarding medi-
cal entities.
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Result analysis of the LU model are shown in
the Appendix G.

6.4 Case Study
Evaluation figures mentioned in the tables under-
score the effectiveness of our proposed technique,
demonstrating its prowess in offering a more holis-
tic comprehension of evidence and context. This
section illuminates specific examples, with Table
4 showcasing two instances. The initial case study
delves into the evaluation of Apremilast’s efficacy
for Behçet’s syndrome. The responses from BART
and GPT2 succinctly confirm Apremilast’s effec-
tiveness, while Llama2-Rule straightforwardly af-
firms this conclusion. In contrast, Llama2+Rule
delivers a more detailed response, highlighting
Apremilast’s role as an oral small molecule in-
hibitor of phosphodiesterase 4, currently in devel-
opment for various inflammatory disorders, includ-
ing Behçet’s syndrome. The MedLogic-AQA model
echoes this sentiment, referencing a randomized
controlled trial that validates Apremilast’s efficacy
in managing oral and genital ulcers associated with
Behçet’s syndrome. The inclusion of logical rea-
soning enriches the affirmation, aligning it with
the broader context of Apremilast’s mechanism of
action and its potential applications in chronic in-
flammatory conditions.

Similarly, the second case study explores the di-
agnosis of Meigs’ syndrome, characterized by a
benign ovarian tumor accompanied by ascites and
pleural effusion. For the models BART, GPT2, and
Llama2-Rule, concise affirmations underscore the
consideration of Meigs’ syndrome in the presence
of specific symptoms. However, Llama2+Rule
and MedLogic-AQA contribute more nuanced in-
sights, elucidating the benign nature of Meigs’
syndrome and underscoring the potential for mis-
diagnosis in cases with elevated CA-125 levels.
These responses align with the broader medical
context, showcasing a deeper understanding of
Meigs’ syndrome. The detailed context provided
by Llama2_finetune with rule and MedLogic-AQA
enhances the overall comprehension of Meigs’ syn-
drome, presenting a more comprehensive perspec-
tive on its diagnosis and potential pitfalls in clinical
assessments.

6.5 Error Analysis
To provide a comprehensive investigation into the
performance of the system, aiming to identify and
understand the nature of errors encountered dur-

ing evaluation, qualitative and quantitative error
analysis is also performed.

6.5.1 Qualitative Analysis
In the qualitative analysis of errors, we delve into
the specific instances where MEDLOGIC-AQA pro-
duced incorrect or irrelevant answers.

Triples Generated by the LU Model

LU Model-Generated Triples Table 13 illus-
trates the LU model’s output for a question from
the MASHQA dataset: "How do doctors diag-
nose delusional disorder?" Utilizing the ’Rule of
Co-occurrence,’ the model produces KG triples,
such as ("delusional disorder", "affects", "psychotic
disorders") and ("delusional disorder", "affects",
"dopamine"). However, these triples do not directly
address the query or provide relevant medical in-
sights regarding diagnosis or treatment methods.

The presence of irrelevant triples highlights a
constraint in the LU model’s capacity to discern
contextually significant associations and generate
triples that align with the semantic context of the
questions. Consequently, MEDLOGIC-AQA may
encounter difficulties in effectively utilizing the LU
model’s output to furnish coherent and informative
answers to medical inquiries. Addressing this is-
sue is crucial for enhancing the model’s ability to
provide accurate and relevant responses in medical
question-answering tasks.

Impact of Incomplete Knowledge Graph In-
complete knowledge graph triples within datasets
can significantly affect the performance of models.

For example, in the BioASQ dataset, consider
the question: "How does trimetazidine affect in-
tracellular kinase signaling in the heart?" The
generated triples from UMLS, such as ("injury",
"affects", "function") and ("trimetazidine", "diag-
noses", "mitogen"), indicate a lack of relevant infor-
mation regarding trimetazidine’s effects on intracel-
lular kinase signaling in the heart. This deficiency
in the knowledge graph triples may lead to inaccu-
rate or incomplete responses from MedLogic-AQA,
highlighting the importance of comprehensive and
accurate knowledge representation in biomedical
question answering.

6.5.2 Quantitative Analysis
In the quantitative analysis of MedLogic-AQA, two
notable issues emerge. Firstly, semantic inadequa-
cies within the ground truth responses pose chal-
lenges for evaluation. For instance, in response
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to the query regarding treatment options for os-
teoporosis spine fractures, the provided ground
truth focuses on hip fractures instead, indicating a
lack of alignment between the questions and pro-
vided answers. Secondly, instances of ambiguous
answers arise, as seen in the response to the in-
quiry about tests for diagnosing hypertensive heart
disease. While the ground truth offers a general
overview, MedLogic-AQA’s response delves into
specific tests and treatment options, potentially in-
troducing ambiguity due to variations in medical
practice. Addressing these issues is crucial to en-
hance the accuracy and reliability of MedLogic-
AQA in providing contextually relevant responses
to medical queries.

7 Conclusion

Our work presents MEDLOGIC-AQA, an inno-
vative AQA system that addresses the inherent
challenges of capturing complex logical structures
within contextual information. By leveraging first-
order logic-based rules and adopting a graph-based
representation, our system demonstrates a signifi-
cant advancement in enhancing reasoning capabili-
ties for nuanced and intricate queries. It excels in
generating contextually rich answers, surpassing
the limitations of existing methods, hence, facilitat-
ing a more structured understanding of information
by incorporating logical rules derived from the con-
text. This ensures that the generated answers not
only align with the given query but also adhere to
logical constraints within the text.

As we move forward, continued research and
refinement of MedLogic-AQA hold the potential
to further elevate its performance and broaden its
applicability across diverse domains, establishing
a foundation for the next generation of advanced
abstractive question answering system.

Limitations

While MedLogic-AQA demonstrates promising
performance in biomedical QA, several limitations
should be acknowledged. Firstly, the model’s
reliance on pre-existing knowledge graphs and
databases may result in limitations due to incom-
plete or outdated information, leading to inaccu-
racies in generated responses. Additionally, the
model’s performance may be constrained by the
quality and coverage of the underlying knowl-
edge sources. Secondly, the abstractive nature of
MEDLOGIC-AQA may occasionally lead to the

generation of responses that deviate from the input
query or lack specificity, particularly in complex
medical scenarios requiring precise and detailed ex-
planations. Furthermore, the model’s performance
may vary across different medical domains and spe-
cialties, depending on the availability and relevance
of training data. Lastly, while efforts have been
made to address biases in training data and model
outputs, inherent biases in the underlying datasets
and knowledge sources may still persist, potentially
influencing the generated responses. For more in-
formation refer to the Appendix F.

Ethics Statement
Our research adheres to ethical principles and
guidelines to ensure responsible use of AI technolo-
gies in healthcare. We prioritize patient privacy,
and confidentiality in data collection and usage.
Furthermore, we strive to mitigate biases in our
models and outputs by employing diverse and repre-
sentative datasets, conducting rigorous evaluations,
and transparently reporting limitations and uncer-
tainties. Our goal is to develop AI-driven tools like
MEDLOGIC-AQA to augment, rather than replace,
human expertise in medical decision-making, with
a focus on improving patient outcomes and advanc-
ing medical research. We are committed to ongoing
monitoring and evaluation of our models’ impact
to ensure ethical and responsible deployment in
clinical settings.

8 Acknowledgement

Authors gratefully acknowledge the generous sup-
port for the project “Percuro-A Holistic Solution
for Text Mining“, sponsored by Wipro Ltd.

References
Elvira Amador-Domínguez, Emilio Serrano, and Daniel

Manrique. 2023. Geni: A framework for the genera-
tion of explanations and insights of knowledge graph
embedding predictions. Neurocomputing, 521:199–
212.

Akari Asai and Hannaneh Hajishirzi. 2020. Logic-
guided data augmentation and regularization for
consistent question answering. arXiv preprint
arXiv:2004.10157.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

16852



Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Paolo Cappanera. 2023. Logic in computer science.
arXiv preprint arXiv:2301.02454.

Edward Choi, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. 2017. Doctor ai: Predicting clinical
events via recurrent neural networks. arXiv preprint
arXiv:1511.05942.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. Eli5:
Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567.

Sajjad Fouladvand, Federico Reyes Gomez, Hamed
Nilforoshan, Matthew Schwede, Morteza Noshad,
Olivia Jee, Jiaxuan You, Jure Leskovec, Jonathan
Chen, et al. 2023. Graph-based clinical recom-
mender: Predicting specialists procedure orders using
graph representation learning. Journal of Biomedical
Informatics, page 104407.

Zepeng Huai, Guohua Yang, Jianhua Tao, et al. 2023.
Spatial-temporal knowledge graph network for event
prediction. Neurocomputing, page 126557.

Michael Huth and Mark Ryan. 2004. Logic in Computer
Science: Modelling and reasoning about systems.
Cambridge university press.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answering.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4940–4957.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-
Antoine Gourraud, Mickael Rouvier, and Richard
Dufour. 2024. Biomistral: A collection of open-
source pretrained large language models for medical
domains. arXiv preprint arXiv:2402.10373.

Robert Leaman, Ritu Khare, and Zhiyong Lu. 2015.
Challenges in clinical natural language processing
for automated disorder normalization. Journal of
biomedical informatics, 57:28–37.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:

Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Tao Li and Vivek Srikumar. 2019. Augmenting neu-
ral networks with first-order logic. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 292–302.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Xuan Lin, Zhe Quan, Zhi-Jie Wang, Yan Guo, Xiangxi-
ang Zeng, and S Yu Philip. 2022. Effectively identify-
ing compound-protein interaction using graph neural
representation. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in bioinformatics, 23(6):bbac409.

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang,
Yushuai Wu, Mu Qiao, and Zaiqing Nie. 2023.
Biomedgpt: Open multimodal generative pre-trained
transformer for biomedicine. arXiv preprint
arXiv:2308.09442.

Marvin Minsky. 1975. A framework for representing
knowledge. MIT-AI Laboratory Memo.

Kshitij Mishra, Mauajama Firdaus, and Asif Ekbal.
2022. Please be polite: Towards building a politeness
adaptive dialogue system for goal-oriented conversa-
tions. Neurocomputing, 494:242–254.

Kshitij Mishra, Priyanshu Priya, Manisha Burja, and
Asif Ekbal. 2023a. e-therapist: I suggest you to
cultivate a mindset of positivity and nurture uplifting
thoughts. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 13952–13967.

16853

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230


Kshitij Mishra, Priyanshu Priya, and Asif Ekbal. 2023b.
Help me heal: A reinforced polite and empathetic
mental health and legal counseling dialogue system
for crime victims. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
14408–14416.

Kshitij Mishra, Priyanshu Priya, and Asif Ekbal. 2023c.
Pal to lend a helping hand: Towards building an
emotion adaptive polite and empathetic counseling
conversational agent. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12254–
12271.

Dan Moldovan, Chris Clark, Sanda Harabagiu, and
Steven J Maiorano. 2003. Cogex: A logic prover for
question answering. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 166–172.

Anastasios Nentidis, Georgios Katsimpras, Eirini
Vandorou, Anastasia Krithara, Antonio Miranda-
Escalada, Luis Gasco, Martin Krallinger, and Geor-
gios Paliouras. 2022. Overview of bioasq 2022: The
tenth bioasq challenge on large-scale biomedical se-
mantic indexing and question answering. In Inter-
national Conference of the Cross-Language Evalua-
tion Forum for European Languages, pages 337–361.
Springer.

Vaishali Pal, Evangelos Kanoulas, and Maarten Rijke.
2022. Parameter-efficient abstractive question an-
swering over tables or text. In Proceedings of the
Second DialDoc Workshop on Document-grounded
Dialogue and Conversational Question Answering,
pages 41–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ewoud Pons, Loes M Braun, Myriam G Hunink, and
Jan A Kors. 2016. Natural language processing
in radiology: A systematic review. Radiology,
279(2):329–343.

Priyanshu Priya, Kshitij Mishra, Palak Totala, and Asif
Ekbal. 2023. Partner: A persuasive mental health
and legal counselling dialogue system for women
and children crime victims. In IJCAI, pages 6183–
6191.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2018. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing.

Alexander J Ratner, Stephen H Bach, Henry Ehren-
berg, Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proceedings of the VLDB Endowment,
11(3):269–282.

Azlaan Mustafa Samad, Kshitij Mishra, Mauajama Fir-
daus, and Asif Ekbal. 2022. Empathetic persuasion:
reinforcing empathy and persuasiveness in dialogue
systems. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 844–856.

Benjamin Shickel, Patrick J Tighe, Azra Bihorac, and
Parisa Rashidi. 2018. Deep ehr: A survey of recent
advances in deep learning techniques for electronic
health record (ehr) analysis. IEEE Journal of Biomed-
ical and Health Informatics, 22(5):1589–1604.

Luca Soldaini and Nazli Goharian. 2016. Quickumls:
a fast, unsupervised approach for medical concept
extraction. In MedIR workshop, sigir, pages 1–4.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Deeksha Varshney, Aizan Zafar, Niranshu Behera, and
Asif Ekbal. 2022. Cdialog: A multi-turn covid-19
conversation dataset for entity-aware dialog gener-
ation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11373–11385.

Deeksha Varshney, Aizan Zafar, Niranshu Kumar Be-
hera, and Asif Ekbal. 2023. Knowledge graph as-
sisted end-to-end medical dialog generation. Artifi-
cial Intelligence in Medicine, 139:102535.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xinyu Wang, Tao Sun, Deqing Zou, Wei Wu, and Jiawei
Han. 2021. Logic-guided data augmentation and reg-
ularization for consistency learning. arXiv preprint
arXiv:2104.04379.

Aizan Zafar, Sovan Kumar Sahoo, Harsh Bhardawaj,
Amitava Das, and Asif Ekbal. 2023. Ki-mag: A
knowledge-infused abstractive question answering
system in medical domain. Neurocomputing, page
127141.

Aizan Zafar, Sovan Kumar Sahoo, Deeksha Varshney,
Amitava Das, and Asif Ekbal. 2024a. Kimedqa: to-
wards building knowledge-enhanced medical qa mod-
els. Journal of Intelligent Information Systems, pages
1–26.

16854



Aizan Zafar, Deeksha Varshney, Sovan Kumar Sahoo,
Amitava Das, and Asif Ekbal. 2024b. Are my an-
swers medically accurate? exploiting medical knowl-
edge graphs for medical question answering. Applied
Intelligence, 54(2):2172–2187.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and
Li Sun. 2020. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint
arXiv:2001.05140.

Jie Zhu, Chenyan Xiong, and Richard Socher. 2020a.
Knowledge-driven semantic role labeling: A new
perspective for interpreting human activity. arXiv
preprint arXiv:2011.06745.

Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei,
and Chandan K Reddy. 2020b. Question answering
with long multiple-span answers. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3840–3849.

16855



Context 1 Apremilast is an immunomodulatory agent that works through phosphodiesterase 4 inhibi-
tion. A randomized controlled trial has shown that it is effective for the management of
oral and genital ulcers and is generally well tolerated. AREAS COVERED: This review
provides a digest of all current experience and evidence about pharmacological agents
recently described as having a role in the treatment of BS, including...(truncated)

Question Is Apremilast effective for Behcet’s syndrome?
Ideal Answer Yes. Apremilast was proven to be effective for treatment of Behcet’s syndrome.
BART Yes Apremilast is effective for Behcet’s syndrome
GPT2 Yes it is effective for Behcet’s syndrome
Llama2-Rule Yes, Apremilast is effective for Behcet’s syndrome.
Llama2+Rule Apremilast , an oral small molecule inhibitor of phosphodiesterase 4 (PDE4) , is

in development for chronic inflammatory disorders , and has shown efficacy in

psoriasis, psoriatic arthropathies, and Behçet’s syndrome. Apremilast (Otezla(®)), an

oral small molecule inhibitor of type-4 cyclic nucleotide phosphodiesterase (PDE-4) ,
is under development with Celgene Corporation for the treatment of
psoriatic arthritis, psoriasis, ankylosing spondylitis, Behçet’s syndrome,
atopic dermatitis, and rheumatoid arthritis.

MedLogic-
AQA

Yes, Apremilast is effective for Behcet’s syndrome. Apremilast is an immunomodula-

tory agent that works through phosphodiesterase 4 inhibition. A randomized controlled

trial has shown that it is effective for the management of oral and genital ulcers and is
generally well tolerated.

Context 2 Meigs’ syndrome is a benign ovarian tumor associated with ascites and pleural effusion.
Although postmenopausal women with ovarian tumor, ascites, pleural effusion, and
elevation of CA-125 levels probably have malignant ovarian tumors, Meigs’ syndrome
must be considered in the differential diagnosis....(truncated)

Question List symptoms of Meigs’ Syndrome.
Ideal Answer Meigs’ syndrome is a benign ovarian tumor associated with

ascites and pleural effusion.
BART Meigs’ syndrome should be considered at the differential diagnosis for a patient with

pelvic mass
GPT2 The Meigs syndrome must be evoked in case of presence of a typical triad
Llama2-Rule Meigs’ syndrome is a benign ovarian tumor associated with

ascites and pleural effusion .
Llama2+Rule Meigs’ syndrome is a benign ovarian tumor associated with

ascites and pleural effusion . Although postmenopausal women with

ovarian tumor, ascites, pleural effusion, and elevation of CA-125 levels probably
have malignant ovarian tumors, Meigs’ syndrome must be considered in the differential
diagnosis.

MedLogic-
AQA

Meigs’ syndrome is a benign ovarian tumor associated with

ascites and pleural effusion . Although postmenopausal women with

ovarian tumor, ascites, pleural effusion, and elevation of CA-125 levels probably

have malignant ovarian tumors , Meigs’ syndrome must be considered in the differen-
tial diagnosis. Meigs’ syndrome should be considered at the differential diagnosis for a
patient with pelvic mass, pleural effusion and ascites with normal cytology , increased
CA125 levels. When benign ovarian fibroma is associated with ascites and/or pleural
effusion it is termed Meigs syndrome.

Table 4: Case Study: Pink box represents medical entities found in sentences16856



A Dataset

A.1 BioASQ Dataset

The BioASQ Task 10b Phase B (QA task) dataset (Nentidis et al., 2022), meticulously designed for
biomedical question-answering. It centers around two primary tasks: biomedical semantic indexing (Task
A) and question-answering (Task B). Our focus lies on the dataset specifically tailored for the QA task.
The BioASQ Task 10b Phase B dataset consists of biomedical questions and relevant snippets. Participants
in the challenge must provide either the exact answer or the ideal answer based on the given snippets. The
questions and answers in the dataset are carefully constructed by a team of biomedical experts from across
Europe, ensuring their quality and relevance. The questions in the dataset are categorized into four groups:
yes/no questions, factoids, lists, and summaries. Participants are expected to provide the ideal answer for
each question, depending on its specific category and requirements. The content of BioASQ task 10b
Phase B dataset are:

• Questions: The dataset includes a diverse set of biomedical questions. These questions can be
categorized into four main types:

– Yes/No Questions: Questions that require a binary "yes" or "no" answer.
– Factoids: Questions that seek specific factual information often require a concise answer.
– Lists: Questions that request a list of items, such as medications or diseases.
– Summaries: Questions that ask for a summary or synthesis of information.

• Snippets: For each question, the dataset provides relevant text snippets from biomedical sources.
These snippets serve as the context from which answers should be derived. These snippets are used
as context in our case.

• Answers: The dataset contains both "exact" answers and "ideal" answers. "Exact" answers are the
precise answers to the questions, while "ideal" answers represent the most informative and relevant
responses based on the context. We use the ideal answers as our ground truth answers.

The detailed dataset statistics are given in Table 5.

Background Data Unique Value
QA pairs 4,232

Average Question token 9
Average Answer token 37
Average context token 342

Table 5: Detailed statistics of BioASQ Dataset

A.2 MASH-QA Dataset

The MASH-QA dataset consists of consumer healthcare questions gathered from the well-known health
website WebMD. The website includes content from a wide range of consumer healthcare sectors. The
website’s healthcare sections offer questions regarding frequent healthcare difficulties that people confront.
It is the largest available dataset having around 25K question-answer pairs in the medical domain. The
detailed dataset statistics are given in Table 6.

Background Data Unique Value
QA pairs 25,289

Average Question token 25.8
Average Answer token 67.2
Average context token 696.2

Table 6: Detailed statistics of MASHQA Dataset

16857



A.3 Dataset Preparation
We prepared our datasets through two key processes: converting the MASHQA dataset into an Abstractive
QA format and pre-processing the dataset for the Logic Understanding (LU) module.

Converting MASHQA Dataset into Abstractive QA Dataset: To transform the MASHQA dataset
into an abstractive form, we utilized the "chatgpt_paraphraser_on_T5_base" model4, which is built upon
the T5-base architecture. This model employs transfer learning to generate paraphrases and leverages
ChatGPT for the conversion process.

For instance, given the question "What is hypertensive heart disease?" and its extracted answer "It refers
to a group of disorders that includes heart failure, ischemic heart disease, and left ventricular hypertrophy,"
the abstractive answer becomes "Heart failure, ischemic heart disease, and left ventricular hypertrophy are
among the disorders that fall under this category."

Dataset Pre-processing for LU Module: For the Logic Understanding (LU) module, we employed
the Unified Medical Language System (UMLS)(Bodenreider, 2004) to extract knowledge graph triplets.
These triplets were then subjected to logical rules to filter and create new triplets based on predefined
logical rules.

For instance, for the question "Which disease can be treated with Relugolix," the UMLS generated
triples include (androgen deprivation therapy, affects, uterine fibroids), (androgen deprivation therapy,
treats, pain), (androgen deprivation therapy, prevents, endometriosis), among others. These triples were
further processed by logical rules, resulting in Rule of Co-occurrence: (androgen deprivation therapy,
affects, disorders), (androgen deprivation therapy, affects, endometriosis), (androgen deprivation therapy,
affects, suppression),...(truncated) Rule of Prevention and Causation: (androgen deprivation therapy,
prevents, endometriosis), (androgen deprivation therapy, prevents, disorders), (external beam radiotherapy,
prevents, endometriosis),...(truncated) Rule of Treatment and Classification: (androgen deprivation
therapy, treats, pain), (androgen deprivation therapy, treats, endometriosis), (androgen deprivation therapy,
treats, prostate cancer)... (truncated)

A.4 Prompt used to fine-tune LU module
To fine-tune the Llama2-7b model, we utilize a prompt consisting of specific rules and context. The
prompt includes rules, such as co-occurrence, prevention and causation, treatment and classification,
diagnosis and interaction, conjunction, and disjunction. This fine-tuning process enables the model to
generate knowledge graph triples to support answers for given questions and contexts effectively.

B Baseline Models: Detailed Descriptions and Comparisons

In this section, we provide detailed descriptions of the baseline models used in our experiments, including
their training methodologies and how they differ from our proposed MEDLOGIC-AQA system.

BART (Lewis et al., 2020) BART is a sequence-to-sequence model pre-trained as a denoising autoen-
coder. It is fine-tuned on the question-answering task using the input format x = [qi + ci], where qi is the
question and ci is the context. The model is then trained to generate the answer y = ai. This baseline
does not incorporate explicit logical rules, making it purely a text-based QA system.

GPT2 (Radford et al., 2019) GPT-2 is a transformer-based language model trained on a large corpus of
general-domain text. Similar to BART, it is fine-tuned for the question-answering task using the input
x = [qi + ci] and output y = ai. GPT-2 lacks any domain-specific medical knowledge and logical
reasoning capabilities, focusing solely on context-based responses.

BioGPT (Luo et al., 2022) BioGPT is a variant of GPT-2 specifically pre-trained on biomedical text.
It is designed to understand and generate domain-specific language. We fine-tune BioGPT on the input
format x = [qi + ci], using the output y = ai. While it possesses a deeper understanding of medical
terminology compared to GPT-2, it still does not incorporate structured logical rules.

4humarin/chatgpt_paraphraser_on_T5_base
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BioMistral-7B (Labrak et al., 2024) BioMistral-7B is a recent large language model (LLM) pre-trained
on biomedical data. We adapt it to the question-answering task using x = [qi + ci] and y = ai. This
model leverages a large-scale biomedical corpus for enhanced comprehension but does not include explicit
logical reasoning.

BioMedGPT-LM-7B (Luo et al., 2023) BioMedGPT-LM-7B is a language model pre-trained on a
diverse range of biomedical sources, including academic papers and medical guidelines. Similar to other
baselines, it is fine-tuned for question-answering using x = [qi + ci] and y = ai. While it is more
specialized in the biomedical domain, it does not explicitly model logical relationships.

LLama2-Rule This baseline involves fine-tuning the LLama2 model (Touvron et al., 2023) using the
standard input x = [qi + ci] and output y = ai. This setup serves as a control baseline that does not
incorporate logical rules. The focus is on evaluating LLama2’s performance when fine-tuned with medical
text alone.

LLama2+Rule This variant of LLama2 is fine-tuned using logical rules as additional input, i.e.,
x = [qi + ci + Ri], where Ri represents the set of six predefined logical rules. The output remains
y = ai. By including the logical rules, this baseline aims to understand the impact of structured logic on
the question-answering performance.

Comparison to MEDLOGIC-AQA Unlike these baselines, our proposed MEDLOGIC-AQA system
follows a two-stage training process. In the first stage, the Logic Understanding (LU) model is fine-tuned
to generate logical triples (y = lt) from the input x = [qi + ci + ai +Ri], which helps the model learn
structured logical representations. In the second stage, this structured logical information is leveraged by
the Answer Quality Assurance (AQA) model, which uses the input x = [qi+ ci+Ri] to generate logically
coherent answers y = ai. This two-stage approach allows MEDLOGIC-AQA to produce answers that are
not only contextually relevant but also logically consistent, differentiating it from baselines that do not
incorporate explicit logical reasoning.

C Human Evaluation

To assess the quality of answers generated by our model, we carefully selected 120 generated answers
along with their corresponding questions, contexts, and ground-truth answers from the BioASQ dataset.
For the human evaluation, we recruited a panel of five evaluators with diverse backgrounds. Three
of the evaluators hold post-graduate qualifications in linguistics and possess significant experience in
tasks related to natural language generation. Additionally, two evaluators have MD degrees, providing
domain-specific expertise. Evaluation were performed in two phases. In the first phase, three evaluators
evaluate the answers generated by all baselines and MEDLOGIC-AQA as per context, question and ground-
truth answer. Then in the second phase, these evaluation were cross checked by two medical experts
possessing MD degrees. Evaluations where deviating high or low scores were found were re-evaluated by
these medical experts as per their own domain specific knowledge, given context, question and answer.
By including evaluators with both linguistic and medical backgrounds, we ensured a comprehensive
assessment of answer quality. Our evaluators were not sourced from Mechanical Turk but were specifically
recruited based on their qualifications and expertise.

D Derivation of Logical Rules

The process of deriving the six logical rules involved several steps to ensure their effectiveness and
applicability across diverse medical knowledge domains. Initially, we constructed a medical KG using
the UMLS, which contains a comprehensive set of semantic relations between medical entities. Out of
the 54 available semantic relations in UMLS, we carefully selected seven key relationships, including
"co-occurs-with," "prevent," "treat," "diagnosis," "interacts-with," "affects," and "causes."

This selection was made to strike a balance between computational efficiency and relevance, as
processing a larger number of relations would require significant computing resources and may introduce
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irrelevant or redundant information into the KG. Subsequently, we created the KG based on this curated
set of relationships, using contextual information extracted from medical documents.

For instance, when processing a context related to the treatment of uterine fibroids with Relugolix, the
KG received contained triples such as ["androgen_deprivation_therapy", "affects", "uterine_fibroids"]
and ["heavy_menstrual_bleeding", "co-occurs-with", "uterine_fibroids"], among others. After thorough
analysis of these KG triples, we identified patterns indicating logical relationships between entities, such as
the rule "co-occurs-with(X, Y) ∧ affects(Y, Z) leads to affects(X, Z)." These rules underwent verification
by medical domain specialists to ensure their accuracy and relevance. Ultimately, we finalized six rules
out of the initial twelve, as the rejected six rules did not yield any logical triples.

E Two-Stage Model Training: LU and AQA Models

The Logic Understanding (LU) model and the Answer Quality Assurance (AQA) model, although
stemming from the same base architecture, serve different purposes and thus operate with different inputs
and outputs during their respective training stages.

Stage 1 (LU Model Training) In this stage, the LU model is fine-tuned using the following input and
output format:

Input: x = [qi + ci + ai + Ri], where qi is the question, ci is the context, ai is the answer, and Ri

represents a set of six predefined logical rules.
Output: y = lt, denoting the logical triples.

This stage focuses on enabling the model to learn logic graphs that capture the logical relationships
within the input data. The probability distribution, pθ(y|x), approximates the likelihood of generating
logical triples given the input sequence.

Stage 2 (AQA Model Training) The same base model is further fine-tuned to become the AQA model
with a different input and output format:

Input: x = [qi + ci +Ri].
Output: y = ai.

The first-stage model (LU model) enhances the second-stage training (AQA model) by providing
structured logical information that helps the model understand the relationships and dependencies in
the data. This structured representation aids the AQA model in generating answers that are not only
contextually relevant but also logically coherent.

Training Rationale and Relation to Previous Work The two-stage training strategy is inspired by the
approach used in pre-trained language models (LLMs), which first learn general interactions between
words and then leverage this knowledge when fine-tuned on downstream tasks. Specifically, this approach
is motivated by the observations in the Phi-1.5 paper (Li et al., 2023), which demonstrated that a double-
fine-tuned model (trained on specialized fine-grained data) could effectively utilize the learning from a
single-fine-tuned model (trained on raw data) to call the correct libraries when generating code.

By training the LU model first, we ensure that the parameters learn to perform logical reasoning. These
parameters are then leveraged in the second stage to develop the AQA model, ensuring that the final model
can generate logically coherent answers.

F Limitations of Models and Analysis

The evaluation of our model’s performance revealed several limitations and areas for improvement.
Firstly, an error analysis conducted on the BioASQ dataset, as shown in Table 7, highlighted a factual

knowledge problem. Despite the ideal answer indicating that splicing speckles contain little detectable
transcriptional activity, some models, including MEDLOGIC-AQA, initially asserted that splicing speckles
are not associated with transcription. However, upon further examination of the context, these models
provided detailed explanations indicating the presence of transcription-related processes within splicing
speckles. This discrepancy underscores a potential limitation in the models’ ability to accurately infer
factual information solely based on the provided context, necessitating the integration of logical reasoning
to refine and rectify such errors.
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Furthermore, an error analysis from the MASHQA dataset, presented in Table 8, revealed a bias in
our model’s responses towards infants. While the ideal answer underscored the risk of dehydration in
both adults and young children, specifically infants, the MEDLOGIC-AQA model’s responses focused
solely on infants, neglecting to provide guidance for adults or other age groups. This bias towards infants
could potentially lead to inadequate or incomplete information for caregivers and adults facing similar
situations.

Additionally, the deviation of answers, as seen in the example of Table 9, was evident. While the ideal
answer addressed the long-term effects of chemotherapy on weight, emphasizing the challenges faced
by individuals, particularly those undergoing breast cancer treatment, the MEDLOGIC-AQA responses
diverged by primarily focusing on the effects of chemotherapy on hair and the risk of permanent baldness.
This deviation from the intended scope of the question suggests a slight hallucination or misinterpretation
of the context, highlighting the need for improved model robustness and comprehension of nuanced
medical queries.

Upon further analysis, differences in reasoning abilities were observed between the BioASQ and
MASHQA datasets. The BioASQ dataset demonstrated higher fluency and logical explanation in its
responses compared to the MASHQA dataset, prompting further investigation into the underlying factors.

These differences in reasoning abilities can be attributed to variations in the performance of the Logic
Understanding (LU) model, particularly in the quality of the knowledge graph (KG) triplets generated
by the Unified Medical Language System (UMLS). The LU model exhibited better performance in the
BioASQ dataset, generating more accurate and relevant triplets conducive to logical reasoning. Conversely,
the MASHQA dataset showed slightly lower performance, likely due to limitations or inconsistencies in
the KG triplets generated by the UMLS. These disparities may have affected the LU model’s ability to
infer logical relationships effectively, resulting in less coherent and contextually relevant responses.

G Results of Logic Understanding Module

We have assessed the performance of the LU module using both the BioASQ and MASHQA datasets.
Table 10 presents the results of our automatic evaluation metrics.

From Table 10, it is evident that the LU model performs better on the BioASQ dataset across all the
metrics compared to the MASHQA dataset. However, both the datasets present persistent challenges.
Ambiguously defined answer spans and semantic inadequacies notably contribute to errors in MASHQA.
In contrast, the BioASQ dataset benefits from meticulously crafted questions and answers by biomedical
experts, resulting in more relevant knowledge triples.

The LU model’s performance underscores these challenges, with reduced coverage of domain-specific
concepts and impaired inference capabilities, especially in tasks necessitating intricate reasoning within
biomedical contexts. To mitigate these limitations and bolster the LU model’s performance across a
spectrum of biomedical QA tasks, enhancements in dataset annotation and model training strategies are
imperative.

An illustrative example in Table 11 highlights the module’s efficiency in analyzing which logical rule
should be applied and generating knowledge triples based on that rule. When provided with the answer
generated by MedLogicQA model, "Yes, Apremilast is effective for Behcet’s syndrome. Apremilast is an
immunomodulatory agent that works through phosphodiesterase 4 inhibition. A randomized controlled
trial has shown that it is effective for the management of oral and genital ulcers and is generally well
tolerated," the LU module generates knowledge triples based on the Rule of Diagnosis and Interaction
viz. are (apremilast, diagnoses, immunomodulatory agent), (apremilast, diagnoses, phosphodiesterase),
(apremilast, diagnoses, treatment), (apremilast, diagnoses, phosphodiesterase 4), (apremilast, diagnoses,
treatment agent), (apremilast, diagnoses, phosphodiesterase 4 inhibition).

H Hyperparameters

Table 12 provides an organized representation of the hyperparameters used in the experiment, categorized
by model setup and training parameters.
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Context We show here that RNA splicing speckled domains (splicing speckles) fluctuate in con-
strained nuclear volumes and remodel their shapes. We present a model where recycling
splicing factors return as part of small sub-speckles from distal sites of RNA processing
to larger splicing speckles by a directed ATP-driven mechanism through interchromatin
spaces. Analysis of a HeLa cell line stably expressing EYFP-NHPX showed that the
nucleolar accumulation of NHPX was preceded by its transient accumulation in splicing
speckles....(truncated)

Question Are splicing speckles associated with transcription?
Ideal Answer Speckles contain little detectable transcriptional activity.
BART plicing speckles are major nuclear domains rich in components of the splicing machinery

and polyA(+) RNA.
GPT2 yes, an inducible splicing speckle, R/H, serves as part of pre-mRNA metabolism in BPS
Llama2-Rule Yes, splicing speckles are associated with transcription.
Llama2+Rule Splicing speckles are major nuclear domains rich in components of the splicing machinery

and polyA(+) RNA. Although speckles contain little detectable transcriptional activity,
they are found preferentially associated with specific mRNA-coding genes and gene-rich
R bands, and they accumulate some unspliced pre-mRNAs RNA polymerase II transcribes
mRNAs and is required for splicing, with some reports suggesting that the inactive
complexes are stored in splicing speckle In normal cell growth conditions GFPeIF4A-III
was mainly nucleoplasmic, but in hypoxia stress conditions it moved to the nucleolus and
splicing speckles. Localization of eIF4A-III in the nucleolus and splicing speckles is an
indicator of plant stress. Using antibodies raised against mouse RBM6 to immunostain
mammalian cell lines we found that the endogenous protein was both distributed diffusely
in the nucleus and concentrated in a small number of nuclear foci that corresponded
to splicing speckles/interchromatin granule clusters (IGCs Subnuclear targeting of the
RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts

MedLogic-
AQA

No, splicing speckles are not associated with transcription. Splicing speckles are major nu-
clear domains rich in components of the splicing machinery and polyA(+) RNA. Although
speckles contain little detectable transcriptional activity, they are found preferentially
associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate
some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for
splicing, with some reports suggesting that the inactive complexes are stored in splicing
speckle. Localization of eIF4A-III in the nucleolus and splicing speckles is an indicator
of plant stress. Analysis of a HeLa cell line stably expressing EYFP-NHPX showed
that the nucleolar accumulation of NHPX was preceded by its transient accumulation
in splicing speckles. In vivo analysis of NHPX reveals a novel nucleolar localization
pathway involving a transient accumulation in splicing speckles.

Table 7: Error Analysis from BioASQ dataset indicating a factual knowledge problem. The proposed model initially
provides a "No" answer, but later transitions to a "Yes" with logical reasoning.

I Experimental Design and Hypotheses

Our research aims to investigate the model’s inherent reasoning capabilities and its adaptability to different
inputs. We hypothesize that fine-tuning the LU model with diverse outputs enables it to effectively
perform logical reasoning tasks. This study is motivated by the need to explore the model’s ability to
prioritize and weigh rules based on context. We posit that the fine-tuning process will facilitate the
organization and consolidation of knowledge acquired during the training of the LU module. This
knowledge, embedded within the parameters of the LU module, may not be fully captured or explicitly
present in the output triples from the LU module. Therefore, our approach of double fine-tuning aims to
leverage the model’s internalized understanding of context and rules. Further, to check our hypothesis,
experiments are conducted utilizing LU triples and compared with our proposed MEDLOGIC-AQA model.
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Context Nausea is an uneasiness of the stomach that often comes before vomiting. Vomiting is the
forcible voluntary or involuntary emptying (ẗhrowing up)̈ of stomach contents through the
mouth. Nausea and vomiting are not diseases, but they are symptoms of many conditions
such as: Motion sickness or seasickness Early stages of pregnancy....(truncated)

Question How can I get dehydration from vomiting?
Ideal Answer The risk of dehydration is lower for adults as they can usually sense signs of thirst and

dryness, but young children are more likely to become dehydrated, especially if they have
diarrhea. Adults who care for sick children should be alert to dehydrating symptoms, such
as dry lips and mouth, sunken eyes, and rapid breathing or pulse. In infants, it is important
to monitor for decreased urine production and a sunkken fontanelle in newborns.

BART Take a child over age six years to the doctor if vomiting lasts one day, diarrhea combined
with vomiting lasts for more than 24 hours, this are any signs of dehydration

GPT2 consult a doctor if vomiting occurs for more than one day
Llama2-Rule Adults are at risk of becoming dehydrated due to the presence of dry lips and mouth,

sunken eyes, and rapid breathing or pulse. In infants, also watch for decreased urination
and a sunken fontanelle (soft spot on top of the baby’s head). Recurrent vomiting in
pregnancy can lead to a serious condition called hyperemesis gravidarum in which the
mother may develop fluid and mineral imbalances

Llama2+Rule Adults should consult a doctor if vomiting occurs for more than one day, diarrhea and
vomiting lasts for more than 24 hours, there are signs of dehydration, there is a fever
higher than 101 degrees, or the child hasn’t urinated for six hours. Take a child over age
six years to the doctor if vomiting lasts one day, diarrhea combined with vomiting lasts
for more than 24 hours, there are any signs of dehydration, there is a fever higher than 101
degrees, or the child hasn’t urinated for six hours.

MedLogic-
AQA

Infants are more likely to experience dehydration due to recurrent vomiting during preg-
nancy, which can lead to life-threatening conditions such as hyperemesis gravidarum.

Table 8: Error Analysis from MASHQA dataset illustrating a bias towards infants in our model’s response

The results of these experiments provide valuable insights into the effectiveness of the model when trained
with externally obtained triples versus internally generated ones and are shown in Tables 14 and 15.
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Context Some side effects of chemotherapy only happen while you’re having treatment and
disappear quickly after it’s over. But others can linger for months or years, or may never
completely go away. Watch out for signs of chemo’s long-term changes, and let your
doctor know...(truncated)

Question How can chemotherapy affect your weight?
Ideal Answer Some chemo treatments can cause weight gain. However, it may not disappear even after

the treatment is over. For example, some breast cancer medications result in loss of muscle
mass and fat accumulation, making it more challenging to lose weight. Consult your
doctor or nutritionist to help you shed some extra pounds by performing strength training
exercises.

BART Some chemo treatments can cause weight gain. However, it may not disappear even after
the treatment is over.

GPT2 some drugs that treat breast cancer can cause you to lose muscle and gain fat, which makes
it more difficult to lose weight.

Llama2-Rule The weight may remain on your body even after treatment has ended. Some types of
chemotherapy can cause you to lose muscle and gain fat, which makes it more difficult to
lose weight. Incorporate strength training exercises into your workout routine to help you
shed some pounds. Consult a dietitian or nutritionist for advice.

Llama2+Rule The weight may remain on your body even after treatment, but it is possible that the effects
of chemotherapy on your hair follicles will wear off over time. In rare cases, such as after
years of strong chemotherapy, you may become permanently bald. Some types of chemo
can cause you to lose muscle and gain fat, which makes it more difficult to lose weight.
Work with a dietitian or nutritionist and add strength training exercises to your workout
routine to help you shed some pounds. You may remember the fatigue that hit you while
you were getting chemo. But some people still feel extremely tired after treatment ends.
Even when you get enough rest, you may still feel sl

MedLogic-
AQA

The weight of your hair may not return to its original state after treatment. It may be
different in texture, shape, and color. Over time, as the effects of the chemo on your hair
follicles wear off, your hair will likely return to its original state. In rare cases, such as
after years of strong chemotherapy, your hair follicles can shut down, preventing new hair
from growing and causing permanent baldness. Some types of chemo can cause you to
put on extra pounds. You may find that the weight stays on even after treatment ends. For
instance, some drugs that treat breast cancer can cause you to lose muscle and gain fat,
which makes it more difficult to lose weight. Work with a dietitian or nutritionist and add
strength training exercises to your workout routine to help you.

Table 9: Error Analysis from MASHQA dataset highlighting the answer deviation problem (which is slightly
related to hallucination).

Frequently Asked Questions (FAQ)

* How does MedLogic-AQA handle the inherent complexities and nuances of medical terminology
and contexts, particularly in generating logically coherent answers?
→MedLogic-AQA addresses the complexities of medical terminology and contexts through the integration
of first-order logic-based rules extracted from medical data sources like UMLS. These rules help the
system discern complex logical structures and relationships within medical contexts, enabling it to generate
answers that are logically coherent and contextually relevant.

* What distinguishes the Logic Understanding (LU) module from traditional natural language
understanding models in the context of MedLogic-AQA?
→The LU module in MedLogic-AQA differs from traditional natural language understanding models
by its focus on extracting logical relationships and rules from medical contexts and questions. While
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Evaluation Metric Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L
BioASQ 0.115723 0.071302 0.046654 0.028698 0.128755 0.099447
MASHQA 0.105723 0.069302 0.041654 0.024698 0.112755 0.08844

Table 10: LU model results on BioASQ and MASHQA datasets.

Module Results
Question Is Apremilast effective for Behcet’s syndrome?
MedLogic-AQA Yes, Apremilast is effective for Behcet’s syndrome. Apremilast is an

immunomodulatory agent that works through phosphodiesterase 4 inhibi-
tion. A randomized controlled trial has shown that it is effective for the
management of oral and genital ulcers and is generally well tolerated.

LU Module Rule of Diagnosis and Interaction: [(apremilast, diagnoses, immunomodu-
latory agent), (apremilast, diagnoses, phosphodiesterase), (apremilast, di-
agnoses, treatment), (apremilast, diagnoses, phosphodiesterase 4), (apremi-
last, diagnoses, treatment agent), (apremilast, diagnoses, phosphodi-
esterase 4 inhibition)]

Medical KG Rule of Co-occurrence: [(behcet, affects, adverse_events), (oral_ulcer,
affects, adverse_events)], Rule of Treatment and Classification: [(apremi-
last, treats, adverse_events), (alemtuzumab, treats, adverse_events),
(tocilizumab, treats, adverse_events), (ustekinumab, treats, ad-
verse_events)], Rule of Diagnosis and Interaction: [(tocilizumab, diag-
noses, apremilast), (alemtuzumab, diagnoses, tocilizumab), (alemtuzumab,
diagnoses, ustekinumab)]

Table 11: LU model results on BioASQ and MASHQA datasets.

traditional models may prioritize semantic understanding, the LU model emphasizes the identification of
first-order logic-based rules and associations, enabling more nuanced reasoning and inference in medical
question answering.

* What are the limitations and potential areas for improvement in the LU model, and how might
future research address these challenges?

→Some limitations of the LU model include its reliance on pre-existing knowledge graphs and datasets,
which may limit coverage and relevance, and its susceptibility to noise and inaccuracies in entity recogni-
tion and relation extraction. Future research could focus on enhancing the robustness and adaptability
of the model through improved data preprocessing techniques, more sophisticated logic rule extraction
algorithms, and integration with external knowledge sources to enrich the representation of medical
concepts and relationships.

* How are logical rules derived and selected for integration into MedLogic-AQA, and what criteria
are used to determine their relevance and effectiveness?

→Logical rules in MedLogic-AQA are derived from comprehensive analysis of medical literature,
ontologies, and domain-specific knowledge bases. The selection process involves identifying rules
that capture common patterns and relationships within medical data while minimizing redundancy and
ambiguity. Criteria for selecting logical rules include their applicability across diverse medical domains,
interpretability, and ability to capture nuanced logical dependencies relevant to question answering tasks.

* What are the potential applications of MedLogic-AQA beyond medical question-answering, and
how might it contribute to advancements in healthcare technology and research?

→Beyond medical question-answering, MedLogic-AQA holds potential applications in clinical decision
support systems, medical education, and biomedical research. By providing accurate and contextually
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Table 12: Hyperparameters Used in the Experiment

Model Setup
BitsAndBytesConfig
load_in_4bit True
bnb_4bit_quant_type "nf4"
bnb_4bit_compute_dtype float16
bnb_4bit_use_double_quant False
Training
LoRA Configuration
lora_alpha 16
lora_dropout 0.1
lora_r 64
task_type "CAUSAL_LM"
TrainingArguments
per_device_train_batch_size 8
per_device_eval_batch_size 4
gradient_accumulation_steps 2
gradient_checkpointing True
optim "paged_adamw_32bit"
logging_steps 25
learning_rate 2e-4
fp16 False
bf16 False
max_grad_norm 0.3
num_train_epochs 15
max_steps -1
evaluation_strategy "steps"
eval_steps 0.2
warmup_ratio 0.03
weight_decay 0.001
lr_scheduler_type "cosine"
seed 42
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Context 1 Delusional disorder, previously called paranoid disorder, is a type of serious mental illness
called a psychotic disorder. People who have it can’t tell what’s real from what is imagined.
Delusions are the main symptom of delusional disorder. They’re unshakable beliefs in
something...(truncated)

Question How do doctors diagnose delusional disorder?
Ideal Answer If you exhibit symptoms of delusional disorder, your doctor may conduct a medical

examination and comprehensive medical history. Although there are no lab tests to
diagnose delusion disorder in general, the doctor can sometimes use imaging studies or
blood tests as diagnostic tools to help diagnose symptoms.

KG triple
for Co-
occurrence

[’delusional disorder’, ’affects’, ’psychotic disorders’], [’delusional disorder’, ’affects’,
’mental illness’], [’delusional disorder’, ’affects’, ’dopamine’]

KG triple for
Conjunction

[’delusions’, ’co-occurs_with’, ’psychological factors’], [’delusions’, ’co-occurs_with’,
’perceptions’], [’delusions’, ’co-occurs_with’, ’insight’], [’delusions’, ’co-occurs_with’,
’hallucinations’]

Table 13: Qualitative Analysis: LU Model’s Failure to Generate Appropriate KG Triple.

Models Medical Entity F1% BLEU ROUGE-L METEOR Embedding Average A-LEN
LLama2+Rule +Triples 27.12 0.2511 0.2678 0.4301 0.827 65.51
MEDLOGIC-AQA 38.47 0.2729 0.2768 0.4383 0.838 53.71

Table 14: Experimental results comparing the performance on the BioASQ dataset.

Models Medical Entity F1% BLEU ROUGE-L METEOR Embedding Average A-LEN
LLama2+Rule +Triples 28.48 0.2115 0.2211 0.1971 0.761 91.47
MEDLOGIC-AQA 31.87 0.2284 0.2513 0.1969 0.788 56.47

Table 15: Experimental results comparing the performance on the MASHQA dataset.

relevant answers to complex medical queries, the system can assist healthcare professionals in making
informed decisions, facilitate medical education and training, and contribute to the discovery of new
insights and knowledge in healthcare and biomedicine.
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