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Abstract

Citation intention Classification (CIC) tools
classify citations by their intention (e.g., back-
ground, motivation) and assist readers in eval-
uating the contribution of scientific litera-
ture. Prior research has shown that pretrained
language models (PLMs) such as SciBERT
can achieve state-of-the-art performance on
CIC benchmarks. PLMs are trained via self-
supervision tasks on a large corpus of gen-
eral text and can quickly adapt to CIC tasks
via moderate fine-tuning on the corresponding
dataset. Despite their advantages, PLMs can
easily overfit small datasets during fine-tuning.
In this paper, we propose a multi-task learning
(MTL) framework that jointly fine-tunes PLMs
on a dataset of primary interest together with
multiple auxiliary CIC datasets to take advan-
tage of additional supervision signals. We de-
velop a data-driven task relation learning (TRL)
method that controls the contribution of aux-
iliary datasets to avoid negative transfer and
expensive hyper-parameter tuning. We conduct
experiments on three CIC datasets and show
that fine-tuning with additional datasets can im-
prove the PLMs’ generalization performance
on the primary dataset. PLMs fine-tuned with
our proposed framework outperform the cur-
rent state-of-the-art models by 7% to 11% on
small datasets while performing competitively
with the best-performing model on the largest
benchmark dataset.

1 Introduction

Citation count is a crucial bibliometric for assess-
ing the impact of scientific papers (Manchanda
and Karypis, 2021). Highly cited papers are of-
ten regarded as seminal works in their respective
fields. Scientists cite other papers for various rea-
sons, each contributing differently to the impact of
the cited papers. For example, they may cite a pa-
per because its the bedrock of their work or because
it provides background knowledge. Recently, it is

also found that citations can be purchased and ma-
nipulated (Ibrahim et al., 2024). This highlights the
need for tools that can identify the intention behind
citations to create more nuanced bibliometrics.

Citation intention classification (CIC) tools clas-
sify citations based on their underlying intentions.
Prior research formulates CIC as a text classifica-
tion problem and solves it using machine learn-
ing methods (Jurgens et al., 2018; Cohan et al.,
2019; Berrebbi et al., 2022). They extract the ci-
tation context from the citing papers (i.e., a span
of text around the citation), and use it as the input
to classifiers. Among these methods, pretrained
language models (PLMs) (Devlin et al., 2019; Liu
et al., 2019b) achieve the current state-of-the-art
performance on CIC benchmarks (Beltagy et al.,
2019). Researchers apply PLMs to the CIC prob-
lem by fine-tuning them on citations with intention
labels. However, obtaining labeled citations is chal-
lenging, as labeling citations in a scientific domain
requires experts with in-depth domain knowledge.

Over the years, different CIC datasets have been
curated that assign the citations to different inten-
tion categories (Hernández-Alvarez and Gomez,
2016). They share an input space which is a set
of citation contexts extracted from scientific pa-
pers. The set of citation labels of these datasets
may contain semantically identical or similar in-
tention categories (e.g., "Background" and "Un-
used"). Accordingly, fine-tuning a PLM on one
such dataset may benefit its generalization perfor-
mance on others. In this paper, we aim to improve
PLMs’ generalization performance on CIC datasets
by leveraging supervision signals from additional
CIC datasets.

We propose a multi-task learning (MTL) frame-
work that jointly fine-tunes PLMs on auxiliary CIC
datasets to improve the PLMs’ generalizability on
a primary CIC dataset of interest. To prevent nega-
tive transfer (Wang et al., 2019) (wherein sharing
information with unrelated tasks harms the per-
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formance of the primary task) and to reduce the
burden of hyper-parameter search, we propose a
task relation learning (TRL) method to control the
contribution of the auxiliary datasets to the train-
ing. The TRL method measures the relevance of
an auxiliary dataset to the primary dataset by eval-
uating the information gain (Shannon, 1948) of a
model trained on the auxiliary dataset on the pri-
mary dataset. We also find that the position of a
citation within its context provides useful informa-
tion for CIC tasks and a position-aware readout
function, i.e., a function that aggregates the PLM
output token embeddings to a fixed length citation
embedding, can improve PLMs’ performance.

Our contributions are summarized as follows:

• We introduce a MTL framework that fine-
tunes PLMs jointly on multiple CIC datasets
to improve their generalizability on the pri-
mary dataset of interest.

• We propose a data-driven TRL method that
controls the contribution of auxiliary datasets
in the MTL framework. It effectively and
efficiently avoids negative transfer.

• We find that the position of the citation within
the context is an informative signal for pre-
dicting citation intentions. We propose a
position-aware readout function that outper-
forms the commonly used CLS and MEAN
readout functions.

• We curate a new benchmark dataset called
KIM that is specialized for the development
of CIC applications in materials science.

We carefully design and conduct experiments on
three benchmark datasets which show that jointly
fine-tuning PLMs on multiple datasets with the pro-
posed MTL framework improves the PLMs’ per-
formance on the primary dataset. PLMs fine-tuned
with our framework outperform the current state-
of-the-art models by 7% to 11% on small datasets
while align with the best-performing model on a
large dataset. We release the code and datasets
used in our experiments at https://github.com/
shuix007/Deep-Citation.git.

2 Related Work

2.1 Citation Intention Classification
CIC is a classification task that assigns citations
into discrete intention categories such as back-

ground and motivation. A citation consists of sev-
eral components, including a citation context (i.e.,
a span of text that contains the citation), topology
information about the citing paper and the cited pa-
per (e.g., their neighbors in citation graphs), meta
information such as the title of the section that con-
tains the citation, and etc.

Citation context is arguably the primary sig-
nal for CIC methods. The majority of prior re-
search formulates CIC as a text classification prob-
lem and focuses on featurization of citation con-
texts. Early works (Abu-Jbara et al., 2013; Jur-
gens et al., 2018) represent citation contexts by
hand-engineered features and pre-trained word em-
beddings (e.g., GloVe (Pennington et al., 2014),
ELMo (Peters et al., 2018)). These methods apply
traditional classification models such as support
vector machines (SVM) (Schölkopf and Smola,
2002) to predict citation intentions. Deep learning-
based methods (Cohan et al., 2019) use word
embeddings together with a bi-directional long
short-term memory network (BiLSTM) (Hochre-
iter and Schmidhuber, 1997) to learn context rep-
resentations end-to-end for CIC tasks. In recent
years, Transformer (Vaswani et al., 2017)-based
PLMs (Devlin et al., 2019; Liu et al., 2019b) revolu-
tionized a wide range of NLP tasks, including CIC.
PLM-based methods that fine-tune different PLMs
such as SciBERT (Beltagy et al., 2019) and XL-
Net (Yang et al., 2019) achieve the state-of-the-art
performance on various CIC benchmarks (Mercier
et al., 2020; Lahiri et al., 2023).

Some methods explore leveraging the other
sources of information to improve CIC perfor-
mance. Cohan et al. (2019) demonstrate that train-
ing CIC models with two auxiliary tasks, citation
worthiness prediction and the section title predic-
tion, effectively improves the generalization perfor-
mance of CIC models. Berrebbi et al. (2022) lever-
age the topology information from citation graphs
as additional signals for predicting citation inten-
tions and achieve better performance than methods
that only predict by citation context.

2.2 Multi-task Learning
Multi-task learning (MTL) (Ruder, 2017) is a
paradigm that jointly trains a model with shared pa-
rameters on multiple related tasks such that the
knowledge acquired from them can benefit the
learning of each other (Yu et al., 2020; Liu et al.,
2019a; Tao and Busso, 2020). MTL formulations
usually fall into two categories. The first category,
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Figure 1: Overview of the architecture of our multi-task learning framework. (a) An overview of the MTL training
process. The same language model parameters are shared across all datasets.; (b) The three readout operations (CLS,
MEAN, CITED HERE) over the language model embeddings to generate representations for citation contexts; (c)
The task relation learning (TRL) method. We train a classification model on an auxiliary dataset then evaluate its
information gain on the primary dataset.

which includes the present work, has one or more
primary tasks (a.k.a. target tasks) and a set of auxil-
iary tasks that serve as regularizers to improve the
model’s generalizability on the primary tasks (Ning
et al., 2009; Liebel and Körner, 2018; Cohan et al.,
2019). In the second category, tasks are equally
important and the goal is to reach the Pareto fron-
tier (Lin et al., 2019) over these tasks (Cao et al.,
2022; Kendall et al., 2018).

Task weight assignment is an essential topic in
MTL research. Earlier methods either assign task
weights apriori by experts to reflect domain prefer-
ence (Kokkinos, 2017; Eigen and Fergus, 2015) or
tune the weights as hyper-parameters using valida-
tion sets (Cohan et al., 2019). Kendall et al. (2018)
propose to weigh different tasks by a measurement
of their uncertainties and show improved perfor-
mance on all tasks compared to training separate
models for each task. Our task relation learning
method is a data-driven method that finds the rela-
tion between each auxiliary dataset (task) and the
target dataset (task) to improve the model’s perfor-
mance on the target dataset.

2.3 Pretrained Language Model

Pretrained language models (PLM), a.k.a. large
language models (LLM), are models pretrained

on unlabeled text corpus with self-supervised lan-
guage modeling tasks such as causal language mod-
eling (Radford et al., 2018) and masked language
modeling (Taylor, 1953). PLMs achieve state-of-
the-art performance on a wide range of downstream
NLP tasks via gradient-based fine-tuning on the cor-
responding datasets (Devlin et al., 2019; Liu et al.,
2019b; Beltagy et al., 2019; Raffel et al., 2020;
Radford et al., 2019).

Recently, Brown et al. demonstrate generative
PLMs can be specialized for different tasks with in-
context learning (ICL), a fine-tuning-free learning
paradigm that unifies NLP tasks to the language
generation task. Although the increasing scale of
PLMs has been improving the performance of ICL
on NLP tasks (Wei et al., 2023), we find that ICL
with GPT4 (Bubeck et al., 2023) still underper-
forms our proposed method.

3 Methodology

3.1 Problem Setting

We formulate the CIC task as a text classification
problem. A CIC dataset Dt = {xt

i, y
t
i}

|Dt|
i=1 is a set

of instances where xti ∈ X t is a citation context
and yti ∈ Yt is a discrete variable that indicates
the intention of the citation. A citation context
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is a span of text around the citation. We posit
the existence of multiple CIC datasets and use the
superscript t to distinguish different datasets. In the
MTL setting, there is a primary dataset of interest
Dp and a set of auxiliary datasets {Da}a∈A. We
assume the datasets share an input space X t =
X ,∀t ∈ {p} ∪ A (the text of the citation context
from scientific literature). We do not posit any
assumptions on the label space Yt, different CIC
datasets can have different label spaces. Our goal
is to train a CIC model M such that

M (xp
i ) = ypi ,∀ (x

p
i , y

p
i ) ∈ Dp.

3.2 Multi-task Learning

Although the intention (label) spaces for different
CIC datasets are different, most of the CIC datasets
share an input space, citation context from scien-
tific literature, for predicting the intention of the
citations (Hernández-Alvarez and Gomez, 2016).
Moreover, the label spaces of the datasets may con-
tain semantically similar or even shared intention
categories (e.g., "Background" and "Not Used").
It is intuitive to assume leveraging the supervision
signal of one dataset to fine-tune a PLM can im-
prove its performance on another dataset. To that
end, we propose a MTL framework that jointly
fine-tunes a PLM on additional CIC datasets as
auxiliary tasks to improve its generalizability on a
primary dataset.

The MTL framework shares a PLM across
datasets while using a separate prediction head
(MLP) for each of them. During training, each
dataset-specific MLP optimizes its parameters us-
ing gradients computed from its own prediction
while losses of all prediction heads back-propagate
to the PLM to update its parameters. Inference
over the primary dataset is performed using its cor-
responding MLP. The MTL framework is shown in
Figure 1.

Letting ΘLM be the parameters of the PLM and
ΘMLPa be the parameters of the MLP for dataset a,
the objective function for the MTL framework is

L =
1

|Dp|
∑

(xp
i ,y

p
i )∈Dp

lp
(
fp

(
xpi ; ΘLM,ΘMLPp

)
, ypi

)

+
∑

a∈A

λa

|Da|
∑

(xa
i ,y

a
i )∈Da

la (fa (xai ; ΘLM,ΘMLPa) , y
a
i )

(1)
where p is the primary dataset and A is the set of
auxiliary datasets. fa(·) and la(·) are the prediction

function and the cross-entropy loss associated with
dataset a, respectively. The coefficients λa ∈ [0, 1],
whose importance we discuss in the next section,
control the contribution of dataset a towards the
primary dataset p.

3.3 Task Relation Learning
In MTL, sharing information with relevant tasks
may benefit the primary task but learning unrelated
tasks may harm the performance of the primary
task (negative transfer) (Wang et al., 2019). Iden-
tifying related tasks is thus critical in designing
MTL frameworks. As shown in Equation 1, we use
a coefficient λa to control how much an auxiliary
dataset a contributes to the primary dataset. A com-
mon way to determine the value of λa is to treat
it as a hyper-parameter and tune its value for best
primary accuracy on a validation set via grid search.
However, the search space grows exponentially as
the number of auxiliary datasets increases, making
a grid search too inefficient.

Since all datasets are for CIC tasks and share
input space, a model trained on one dataset may
generate meaningful predictions in the label space
of another dataset. For example, a citation that
is labeled as "Background" in one dataset may be
classified as "Unused" by a model trained on an-
other dataset. Based on this insight, we propose a
task relation learning (TRL) method to determine
the value of λa. Our method trains a model on the
auxiliary dataset a and evaluates it on the primary
dataset p. If the model performs well on the pri-
mary dataset, we assume that jointly training on the
auxiliary dataset could benefit the model’s perfor-
mance on the primary dataset. Considering the dif-
ferent label spaces of the datasets, it is intractable
to employ traditional classification metrics such as
accuracy and F1 scores for such evaluations. We
propose to use information gain as the metric for
the evaluation.

Information gain is defined on the basis of en-
tropy (Shannon, 1948), a measure of uncertainty
in information theory. Let Yp and Ya be the la-
bel spaces of the primary dataset and an auxilary
dataset, respectively. The entropy of Yp is

Entr(Yp) = −
∑

i∈Yp

P (i) log|Yp|(P (i)), (2)

which measures the uncertainty in set Yp in the
range of [0, 1]. P (i) is the probability that intention
i emerges in the dataset. When there is only one
label i ∈ Yp in the dataset, it is certain that any
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sample will have label i and the entropy is zero.
When the labels are evenly distributed, a sample
from the dataset is completely uncertain and the
value of the entropy is one. We compute entropy
on the label distribution of the primary dataset.

After training a model on the auxiliary dataset,
we apply the model to the primary dataset and ob-
tain a predicted label from the auxiliary label space
for each instance. We group the instances by their
predicted labels and obtain a conditional primary
label distribution for each auxiliary label j ∈ Ya.
We compute entropy on each conditional label dis-
tribution by

Entr(Yp|j) = −
∑

i∈Ya

P (i|j) log|Yp|(P (i|j)), (3)

where P (i|j) denotes the probability that a primary
instance with label i is predicted into the auxiliary
intention j. Note that, a small value of Entr(Yp|j)
indicates the predicted auxiliary label j is likely
to be a sub-class of one label in the primary label
space Yp as most of the instances with predicted
label j belong to one label in the primary label
space Yp. We calculate information gain by

IG(Yp|Ya) = Entr(Yp)−
∑

j∈Ya

P (j)(Entr(Yp|j)),

(4)
where P (j) is the probability that a primary in-
stance is predicted as label j. Information gain
quantifies the uncertainty reduction when we group
the primary instances by their predicted label in the
auxiliary label space. A large value of information
gain indicates that each label in the auxiliary space
is a sub-class of a primary label which means the
auxiliary label space is highly correlated with the
primary label space.

We compute the value of λa as the relative re-
duction of entropy

λa =
IG(Yp|Ya)

Entr(Yp)
, (5)

which falls into the range of [0, 1]. The closer λa is
to one, the more similar dataset a is to the primary
dataset. We show an example of the TRL method
in Figure 1.

3.4 Readout Function
A common practice of fine-tuning PLMs for text
classification is to use them as text encoders that
convert citation contexts to vectors in a latent space
and feed the latent vectors through prediction heads

Dataset # instances # papers 1 # labels

ACL 1904 186 6
KIM 804 614 3
SciCite 11020 6627 3

Table 1: Statistics of the datasets

(MLPs) to obtain classification probabilities (Sun
et al., 2019). PLMs output a contextualized embed-
ding for tokens at each position of the citation con-
texts. For each context, we use a readout function
to aggregate its contextualized token embeddings to
a sentence embedding to feed into the downstream
MLPs. We explore two standard readout functions,
CLS that uses the output embedding of the <CLS>
token as the context embedding, and MEAN that
averages the contextualized embeddings of all to-
kens to be the context embedding (Beltagy et al.,
2019; Devlin et al., 2019; Reimers and Gurevych,
2019). We propose a third approach called CITED
HERE that is motivated by the fact that the posi-
tion of the citation in the citation context can be
informative for predicting the intention of the ci-
tation (Jurgens et al., 2018). We insert a special
mark, <CITED HERE>, into the position of the
citation in the context and apply mean pooling on
the embeddings of the corresponding tokens as the
representation of the citation to feed into MLPs
(see an example in Figure 1). Our experiments in
Section 4.6 show that the CITED HERE readout
function performs better than the standard position-
agnostic readout functions.

4 Experiments

4.1 Datasets

We conduct experiments on three datasets:
ACL (Jurgens et al., 2018), SciCite (Cohan et al.,
2019), and a newly curated in-house dataset called
KIM. The ACL dataset was collected from the
ACL Anthology Reference Corpus and consists of
natural language processing papers. The SciCite
dataset is the largest one we consider and contains
citations from general computer science and med-
ical domains. The papers are collected from the
Semantic Scholar Open Research Corpus (Lo et al.,
2020). Detailed statistics and descriptions of the
datasets are shown in Table 1 and Table 5.

1Number of unique citing papers.

16722



PLM Method ACL KIM SciCite

Scaffolds 67.90 - 84.00

GPT4
ICL 0-shot 38.55 33.86 72.86
ICL 5-shot 50.18 60.55 74.55

XLNet ImpactCite 64.62 61.01 84.98

BERT
Default 57.44 57.30 83.46
Ours (Search) 65.98 64.18 84.08
Ours (TRL) 66.32 62.00 83.48

SciBERT

Default 67.25 60.27 85.22
CitePrompt 66.58 62.22 85.02
Ours (Search) 73.74 63.11 85.25
Ours (TRL) 75.57 64.56 85.35

Table 2: Performance (Macro-F1) of the MTL fine-
tuning approach compared to the baseline methods.
Search indicates grid search while TRL indicates our
proposed task relation learning method. Results are av-
eraged over five runs, the best performing method for
each primary dataset is in bold, and the second best
results are underlined.

KIM Dataset. Despite the fact that ACL and Sci-
Cite are widely used as CIC benchmarks, their fo-
cus on the fields of computer science and medicine
renders them insufficient for building CIC models
applicable to other scientific domains. In this pa-
per, we curate a new CIC dataset in the field of
materials science called KIM. The KIM dataset
was constructed by collecting the primary citations
for interatomic models archived in the OpenKIM
repository2 (Tadmor et al., 2011), retrieving as
many papers as possible from the literature that
cite any one of them, and extracting the associated
citation context(s). This forms a set of 804 citations
to be labeled. The guidelines describing each of
the annotation labels assigned for the KIM dataset
are provided in Table 5. The KIM dataset was an-
notated by three different domain experts but the
labeling was not performed independently. While
the initial labeling was carried out separately on
disjoint subsets of the full dataset, all annotators
ultimately reviewed each and every label together
and came to an agreement for it.

4.2 Baselines
We compare our methods with Scaffolds (Cohan
et al., 2019), ImpactCite (Mercier et al., 2020),
CitePrompt (Lahiri et al., 2023), BERT (Devlin
et al., 2019), SciBERT (Beltagy et al., 2019), and
GPT4 (Bubeck et al., 2023). Scaffolds is the state-

2openkim.org

of-the-art RNN-based CIC method that does not
rely on PLMs. We report its results from the orig-
inal paper for comparison as we use the same
train-test split of the ACL and the SciCite dataset.
ImpactCite and CitePrompt are two PLM-based
CIC models. ImpactCite fine-tunes XLNet (Yang
et al., 2019) while CitePrompt apply prompt-tuning
methods to SciBERT for CIC tasks. For these two
baseliens, we use the codebases and the training
configurations provided by the authors. BERT and
SciBERT are PLMs pretrained on general domain
text corpus and scientific literature, respectively.
For BERT and SciBERT as baselines, we follow
the setting from their original papers and use the
output embedding of the CLS token as the context
representation.

We evaluate zero-shot and few-shot ICL per-
formance on one of the most capable generative
PLMs, GPT4. We prompt GPT4 with a detailed
text description of the CIC task, definition of the
intentions, and/or a few examples. For few-shot
experiments, we follow the common practice in
ICL (Brown et al., 2020) and randomly select five
examples for each intention class as examples. De-
tails about the prompts are shown in Section D.

4.3 Experimental Settings

We evaluate our proposed multi-task learning
(MTL) framework, the task relation learning (TRL)
method, and the position-aware CITED HERE
readout function on two backbone PLMs, BERT
and SciBERT. We employ two methods to com-
pute the value of the aforementioned λ coefficients:
grid search and the TRL method. For grid search,
we explore values in the range 0.1 to 1.0 in incre-
ments of 0.1 using the validation set of the primary
dataset. For the TRL method, we fine-tune one
PLM on an auxiliary dataset and evaluate its in-
formation gain on the training set of the primary
dataset to compute a λ that is associated with the
PLM-primary-auxiliary triplet. This λ is used for
jointly fine-tuning the PLM that computes it on
the primary-auxiliary datasets. For fine-tuning a
PLM on a primary dataset with more than one aux-
iliary dataset, we use the λs associated with the
PLM-primary-auxiliary triplets, respectively. In
all MTL experiments involving BERT and SciB-
ERT, CITED HERE is the default readout function
unless stated otherwise. A detailed experimental
setting is shown in Section E.
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Figure 2: BERT performance of all binary combinations of primary and auxiliary datasets with different value of λs.
The yellow line denotes the baseline performance of fine-tuning on only the primary dataset. The blue line denotes
the performance of fine-tuning the primary and the auxiliary dataset with different λs. The star and the triangle
indicate the λ found by our TRL method and the grid search method, respectively. Time in the brackets indicates
the GPU time needed for the method.

4.4 Results

The main results of our experiments can be found
in Table 2. Our method achieves the state-of-the-
art performance on the three benchmark datasets.
On the two small benchmark datasets, ACL and
KIM, our proposed fine-tuning framework signifi-
cantly improves the backbone PLMs’ performance
compared to the default fine-tuning process. In par-
ticular, our method outperforms the current state-
of-the-art by 7% on the KIM dataset and by 11%
on the ACL dataset. On the largest benchmark
dataset of the three, SciCite, our framework per-
form competitively with the best-performing base-
lines. Our method outperforms the zero-shot and
few-shot ICL methods on GPT4 by a significant
margin. This demonstrates that, despite the in-
creasing reasoning capability of LLMs, in the CIC
application with a few thousands training instances,
our methodology is still necessary.

4.5 Task Relation Learning

We investigate the effectiveness of our proposed
TRL method for identifying the value of the λ coef-
ficients. In Figure 2, we show BERT’s performance
of all binary combinations of primary and auxiliary
datasets with different value of λs. For each pair of
primary-auxiliary datasets, we show the λ values
identified by our TRL method and the grid search

method. We observe that the choice of λ is criti-
cal to the joint fine-tuning performance. A poorly
chosen λ could amortize the benefit of auxiliary
datasets and even degrade the performance.

When the auxiliary dataset can lead to positive
transfer, our TRL method can effectively identify
λs that improve the performance of the primary
datasets and it performs on par or better than those
selected by the grid search method (e.g., Primary:
KIM, Auxiliary: SciCite). On the other hand, when
the primary dataset causes negative transfer, the
TRL method chooses a small value of λ that avoids
performance degradation on the primary dataset
(e.g., Primary: ACL, Auxiliary: KIM). We reach
similar conclusions on SciBERT and show the anal-
ysis in Section C.1.

Note that, the TRL method is also significantly
faster compared to the grid search method, exhibit-
ing a factor of 10 to 100 in run time improvement
when only one auxiliary dataset is used. This ad-
vantage is more significant when dealing with more
auxiliary datasets.

4.6 Readout Function

We compare the performance of the three readout
functions, CLS, MEAN and CITED HERE and
show the results in Figure 3. On the two small
datasets ACL and KIM, the CITED HERE read-
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Figure 3: Performance (Macro-F1 with standard deviation) of the three readout functions: CLS, MEAN, and CITED
HERE on BERT and SciBERT.

out function significantly outperforms the other
two readout functions. On the SciCite dataset,
CITED HERE matches the performance of CLS
and MEAN on BERT and slightly outperforms
them on SciBERT.

This demonstrates that the position of the cita-
tion in the citation context is informative for the pre-
diction of the its intention. Our proposed position-
aware readout function, CITED HERE, has an edge
over position-agnostic readout functions especially
on small datasets.

4.7 Ablation on Dataset Size

To investigate the influence of dataset size on the
effectiveness of our method, we conduct additional
experiments using subsets of various sizes from
SciCite. In the first experiment, we use SciCite
subsets (20% and 50%) as the primary datasets and
the ACL and KIM datasets as auxiliary datasets.
We then apply our method to fine-tune SciBERT on
these datasets. The results in Table 3 indicate that
the performance improvement is more significant
on the subsets of SciCite compared to the entire
SciCite dataset. This demonstrates that smaller pri-
mary datasets benefit more from our method and
the additional supervision signals from the auxil-
iary datasets. In the second experiment, we use the
ACL and the KIM datasets as the primary datasets
and SciCite subsets as the auxiliary datasets. We
observe from Table 4 that, our method’s perfor-
mance increases significantly as the size of the
auxiliary dataset grows.

5 Conclusion

We propose a multi-task learning (MTL) frame-
work to fine-tune pretrained language models

20% (1.5K) 50% (3.9K) 100% (7.7K)

Baseline 83.87 84.28 85.22
Ours (TRL) 85.02 (+1.15) 85.44 (+1.16) 85.35 (+0.13)

Table 3: Performance (Macro-F1) of SciBERT fine-
tuned using the default method and our proposed MTL
+ TRL fine-tuning approach on a 20% subset, a 50%
subset of SciCite, and the full SciCite dataset.

Baseline 5% (0.4K) 20% (1.5K) 100% (7.7K)

ACL 67.25 74.56 75.35 75.57
KIM 60.27 62.35 63.47 64.56

Table 4: Performance (Macro-F1) of the proposed MTL
+ TRL fine-tuning approach when using ACL and KIM
as the primary dataset, respectively. The auxiliary
datasets are subsets of three different sizes of SciCite
(5%, 20%, and 100%).

(PLMs) for citation intention classification (CIC)
tasks. Our framework treats additional CIC
datasets as auxiliary tasks to be jointly trained
with a primary CIC dataset. We develop an ef-
ficient, data-driven task relation learning (TRL)
method that controls the contribution of auxiliary
datasets to avoid negative transfer. The proposed
TRL method effectively identifies a set of coef-
ficients that is critical to the performance of the
MTL framework with magnitudes lower computa-
tional cost compared to grid search. We introduce
a position-aware readout function and demonstrate
that a citation’s position within the context is infor-
mative for predicting its intention. Experimental
results suggest that jointly fine-tuning PLMs on
primary and auxiliary datasets with our proposed
MTL framework effectively improves their perfor-
mance on the primary datasets.
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7 Limitations

In this paper, we experiment with one way of fine-
tuning PLMs, i.e., finetuning the pretrained PLM
encoder with randomly initialized task specific
multi-layer perceptrons while the multi-task learn-
ing (MTL) framework and the task relation learning
(TRL) method proposed in this work are supposed
to be applicable to any classification models. In
the future, we will extend our study to different
PLM finetuning techniques such as soft-prompt
tuning (Lester et al., 2021) and adaptor-based fine-
tuning (Houlsby et al., 2019; Hu et al., 2021) and
different CIC models such as GraphCite (Berrebbi
et al., 2022).

8 Ethical Statement

Our work aims to improve the accuracy of cita-
tion intention classification (CIC) tools that assist
readers in comprehending scientific literature and
evaluate the relevance and contribution of scientific
publications. The method could be extended to
other classification tasks. The datasets we used in
this work are generated from scientific literature
that are accessible through scientific publishers or
pre-print servers. We believe our work should not
raise any ethical concerns.
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A Intention Definitions

We show the definition of the intentions of the three
CII datasets we used in our experiments in Table 5.
Although the label spaces of the three datasets are
different, they contain semantically similar and
shared intention categories. For example, "Back-
ground" exists in both the ACL-ARC and the Sci-
Cite dataset. "Method" in the SciCite dataset and
"Used" in the KIM dataset are semantically similar
to each other.

B KIM Dataset

B.1 Choice of the Labels

As listed in Table 4, each data point in the KIM
dataset was assigned to one of three labels: “Used”,
“Not Used”, and “Extended”. A label of “Used” in-
dicates that the exact model presented in the cited
paper is used in materials simulations in the cit-
ing paper without modification; “Extended” means
that the model of the cited paper is updated or built
upon in some aspect before subsequently used in
materials simulations carried out in the citing pa-
per; “Not Used” means that the model is not used in
any of the simulations of the citing paper but rather
that the citation provides other information such
as background and motivation. The reasoning for
having only these three labels is domain-specific.
A typical material scientist evaluating the influ-
ence of an interatomic potential model on a literary
work would typically only discern between these
labels—any finer granularity is irrelevant.

B.2 Motivation of the Dataset

Because CIC models are typically trained on the
same widely available datasets pertaining only to
several fields, specifically computer science, the
introduction of a dataset from a new domain to
the study provides a way to better evaluate their
transferability. A model capable of accurately pre-
dicting citation intention with respect to the three
aforementioned labels for the KIM dataset is also
of direct practical interest to the KIM project and
the materials science community, as a whole.

C Additional Experimental Results

C.1 Effectiveness of the TRL Method

In Figure 4, we show SciBERT’s performance of
all binary combinations of primary and auxiliary
datasets with different value of λs. We have simi-
lar observations to the results for BERT. The fine-

tuning performance is sensitive to the choice of λs.
Our TRL method can effectively identify λs that
improve the performance of the primary datasets
and performs on par or better than those selected
by the grid search method.

C.2 Multi-Dataset Fine-tuning

We explore all combinations of primary and aux-
iliary datasets and show the results in Table 6. In
most of the cases, jointly fine-tuning PLMs on pri-
mary datasets with auxiliary datasets using our
proposed MTL framework improves the PLMs’
performance on the primary datasets. In cases
when no improvement is achieved, jointly fine-
tuning performs on par with fine-tuning the primary
dataset by itself. In the table, we also observe a
few cases (e.g., Primary: KIM, Auxiliary: SciCite,
PLM: SciBERT) where adding auxiliary datasets
degrades the PLMs’ performance on the primary
dataset. While auxiliary datasets can bring addi-
tional knowledge to PLMs, they may also cause
distribution shift that degrades the performance of
the PLMs.

D In-Context Learning Prompts

We present detailed examples of the zero-shot and
few-shot prompts that we use for in-context learn-
ing on GPT4. We access to GPT4, specifically
gpt-4-0125-preview, through the OpenAI API.

D.1 Zero-shot Prompt

I want you to act as a research
assistant with expertise in atom-
istic modeling. I will provide
you with a piece of text from a
scientific paper that cites an-
other paper. You will classify
the text into one of the follow-
ing labels that indicate the in-
tention of the citation: [Back-
ground, Method, Result]. The
labels are defined as

"Background": "The citation
states, mentions, or points to
the background information giv-
ing more context about a problem,
concept, approach, topic, or im-
portance of the problem that is
discussed in the present paper."

"Method": "The present paper
uses a method, tool, approach or
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Dataset Intention Definition

ACL-ARC

Background The citation provides relevant information for the domain that the present paper discusses.
Motivation The citation illustrates the need for data, goals, methods, etc that is proposed in the present paper.
Uses The present paper uses data, methods, etc., from the paper associated with the citation.
Extends The present paper extends the data, methods, etc. from the paper associated with the citation.
Compare or Contrast The present paper expresses similarity / differences to the citation.
Future The citation is a potential avenue for future work of the present paper.

KIM
Used The present paper uses at least one method that is proposed in the paper associated with the citation.
Not Used The present paper does not use or extend any methods that is proposed in the paper associated with the citation.
Extended The present paper uses an extended / modified version of the method proposed in the paper associated with the citation.

SciCite
Background

The citation states, mentions, or points to the background information giving more context about a problem,
concept, approach, topic, or importance of the problem that is discussed in the present paper.

Method The present paper uses a method, tool, approach or dataset that is proposed in the paper associated with the citation.
Result The present paper compares its results/findings with the results/findings of the paper associated with the citation.

Table 5: Definition of intentions.
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Figure 4: SciBERT performance of all binary combinations of primary and auxiliary datasets with different value
of λs. The yellow line denotes the baseline performance of fine-tuning on only the primary dataset. The blue line
denotes the performance of fine-tuning the primary and the auxiliary dataset with different λs. The star and the
triangle indicate the lambda found by our TRL method and the grid search method, respectively. Time in the
brackets indicates the GPU time needed for the method.

dataset that is proposed in the
paper associated with the cita-
tion."

"Result": "The present paper
compares its results/findings
with the results/findings of the
paper associated with the cita-
tion."

You will only respond with the
predicted label. Below is the
input text:

We used an active contour algo-
rithm <CITED HERE> to segment the
organs from 340 coronal slices
over the two patients.

D.2 Few-shot Prompt

I want you to act as a research
assistant with expertise in atom-
istic modeling. I will provide
you with a piece of text from a
scientific paper that cites an-
other paper. You will classify
the text into one of the follow-
ing labels that indicate the in-
tention of the citation: [Back-
ground, Method, Result]. The
labels are defined as

"Background": "The citation
states, mentions, or points to
the background information giv-
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Primary Auxiliary BERT SciBERT
Search TRL Search TRL

ACL

- 57.44 57.44 67.25 67.25
KIM 62.16↑ 64.39↑ 71.70↑ 75.57↑
SciCite 65.98↑ 66.32↑ 73.74↑ 73.75↑
KIM + SciCite 63.91↑ 62.53↑ 71.78↑ 72.87↑

KIM

- 57.30 57.30 60.27 60.27
ACL 60.70↑ 62.00↑ 63.11↑ 63.44↑
SciCite 63.21↑ 62.74↑ 58.88↓ 63.26↑
ACL + SciCite 64.18↑ 62.98↑ 61.86↑ 64.56↑

SciCite

- 83.46 83.46 85.22 85.22
ACL 83.96↑ 83.98↑ 85.25↑ 85.35↑
KIM 84.08↑ 83.48↑ 84.94↓ 84.86↓
ACL + KIM 84.34↑ 84.00↑ 85.43↑ 84.55↓

Table 6: Performance (Macro-F1) of the MTL fine-
tuning approach with different combinations of primary
and auxiliary datasets. Search indicates grid search
while TRL indicates our proposed task relation learning
method. We group the results by the primary dataset.
Baseline results of each primary dataset are shown in
the first row of each group.

ing more context about a problem,
concept, approach, topic, or im-
portance of the problem that is
discussed in the present paper."

"Method": "The present paper
uses a method, tool, approach or
dataset that is proposed in the
paper associated with the cita-
tion."

"Result": "The present paper
compares its results/findings
with the results/findings of the
paper associated with the cita-
tion."

Here are some examples:
Example: We used an active con-

tour algorithm <CITED HERE> to
segment the organs from 340 coro-
nal slices over the two patients.

Output: Method
Example: The remnant of the

total plasma membranes after ex-
traction of caveolae is called
bulk plasma membranes <CITED
HERE> (Fig.

Output: Background
Example: More examples of con-

tradictory results have been ob-
served in bovines; some reports
<CITED HERE> indicated a signifi-
cant decrease in blastocyst

Output: Result
You will only respond with the

predicted label. Below is the
input text:

Following <CITED HERE> and Koo
and Collins (2010), before train-
ing we transform the training set
trees to be the best achievable
within the model class (i.e.,
the closest projective tree or
1-Endpoint-Crossing tree).

E Experimental Settings

We use the Adam optimizer (Kingma and Ba, 2014)
to minimize the cross-entropy loss in all our pre-
training and fine-tuning tasks. The batch size is set
to 32. For fine-tuning tasks, we set the learning
rate to be 5e-5 and use a slated triangular sched-
uler (Howard and Ruder, 2018) to first warm up
and then decrease the learning rate linearly. The
model is fine-tuned for 10 epochs and evaluated
on the validation set after every epoch. For the
ACL and the SciCite datasets, we use the original
train-test split and use 15% of the training set as
validation set. For the KIM dataset, we randomly
split the dataset into train, validation, and test sets
with a 70%/15%/15% ratio. Test performance is
reported on the checkpoint that performs the best
on the validation set. We report the macro-F1 score
as the evaluation metric. The macro-F1 scores that
we report in this paper are averaged numbers of
five independent runs. All experiments are con-
ducted on a machine with an Intel(R) Core(TM)
i9-10900F CPU and an Nvidia RTX 3090 GPU.
Our methods and experiments are implemented
using PyTorch (Paszke et al., 2019). For experi-
ments including BERT and SciBERT, we use the
implementation and pre-trained weights from the
transformers library.3

F Visualization of Citation Contexts

In Figure 5, we show the t-SNE (Van der Maaten
and Hinton, 2008) visualization of the citation con-
texts in the three datasets. We use SciBERT and
the CLS readout function to convert the contexts
to latent embeddings. We observe that the citation
contexts of different datasets form into clusters
because the fields of the papers are different, but
there are significant overlaps between the clusters.

3https://github.com/huggingface/transformers
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Figure 5: T-SNE visualization of the citation contexts
in different datasets. Citation contexts are encoded by
SciBERT using the CLS readout function.

It is reasonable to assume that the datasets share an
input space.
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