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Abstract

The correct specification of reward models is a
well-known challenge in reinforcement learn-
ing. Hand-crafted reward functions often lead
to inefficient or suboptimal policies and may
not be aligned with user values. Reinforcement
learning from human feedback is a successful
technique that can mitigate such issues, how-
ever, the collection of human feedback can be
laborious. Recent works have solicited feed-
back from pre-trained large language models
rather than humans to reduce or eliminate hu-
man effort, however, these approaches yield
poor performance in the presence of hallucina-
tion and other errors. This paper studies the
advantages and limitations of reinforcement
learning from large language model feedback
and proposes a simple yet effective method for
soliciting and applying feedback as a potential-
based shaping function. We theoretically show
that inconsistent rankings — which approximate
ranking errors — lead to uninformative rewards
with our approach. Our method empirically im-
proves convergence speed and policy returns
over commonly used baselines even with signif-
icant ranking errors, and eliminates the need for
complex post-processing of reward functions.

1 Introduction

The correct specification of task rewards is a
well-known challenge in reinforcement learning
(RL) (Leike et al., 2018). Complex tasks often
necessitate complex, nuanced reward models, par-
ticularly as shaping terms may be required to guide
exploration. However, hand-crafting these reward
functions is difficult and often leads to a phe-
nomenon known as reward hacking, wherein an
agent learns to exploit a reward function for in-
creased returns while yielding unexpected or un-
desired behavior (Skalse et al., 2022). Reward
hacking is symptomatic of the broader challenge of
value alignment, in which it is difficult for a human
domain expert to fully and accurately specify the

desired behavior of the learned policy in terms of a
reward function.

In this study, we aim to eliminate the dependence
on handcrafted reward functions by training agents
with reward functions derived from data. A notable
method in this domain is reinforcement learning
from human feedback (RLHF), where policy tra-
jectories are ranked by humans. These rankings are
then used to learn a reward function which guides
model training and facilitates value alignment. This
process is extremely costly in terms of human ef-
fort, however, requiring a significant number of
rankings to train accurate reward models (Casper
et al., 2023).

We can avoid the need for humans-in-the-
loop by instead generating rankings with pre-
trained large language models (LLMs) in a process
known as reinforcement learning with Al feedback
(RLAIF) (Lee et al., 2023; Bai et al., 2022; Kim
et al., 2023). However, LLMs are well known
to hallucinate and present false information as
fact (Zhang et al., 2023), which reduces the accu-
racy and reliability of the resulting rankings. This
is often overcome through complex reward post-
processing techniques, which may be task-specific
and difficult to tune (Klissarov et al., 2023).

In this work, we propose a simple and effective
strategy for reinforcement learning in the face of
unreliable LLM feedback. The core idea underly-
ing our approach is to issue uninformative rewards
for states in which the LLM is uncertain. Thus,
we avoid issuing potentially misleading rewards
which allows us to train performant policies even
in the face of significant ranking errors. Building
off the insight that certainty in language models
is expressed through output consistency (Tanneru
et al., 2024), we show that rewards issued from a
potential-based scoring function learned over re-
peated rankings naturally reflect an LLM’s uncer-
tainty.

Our contributions are as follow, we 1) introduce
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a methodology for incorporating noisy LLM feed-
back into RL which out-performs prior SOTA; and
2) provide theoretical and empirical analysis show-
ing that uncertain LLLM outputs — as given by incon-
sistent responses — lead to uninformative rewards
which improve convergence speed and policy re-
turns in experiments. The codes of this work can
be accessed here.

2 Related Works

Constructing rewards based on human feedback
has a long history (Thomaz et al., 2006). To effi-
ciently use human domain knowledge and provide
more generalizable rewards, human preference on
episode segments (Sadigh et al., 2017; Christiano
et al., 2017; Biyik et al., 2019) and human demon-
strations (Biyik et al., 2022) are distilled into mod-
els which serve as reward functions for RL. The
method has witnessed great success in complex do-
mains where rewards are difficult to specify such
as training large language models (LLM) to align
with human logic and common sense (Ziegler et al.,
2019; Ouyang et al., 2022).

One major drawback of RLHF is its require-
ment of exhaustive human participation to provide
demonstrations and feedback. LL.Ms have shown
deductive logic abilities comparable to humans in
recent years (Du et al., 2023), and are able to substi-
tute humans in reward issuing (Kwon et al., 2023;
Yu et al., 2023; Lee et al., 2023; Xie et al., 2023),
or data collection and labeling for reward model
training (Lee et al., 2023; Klissarov et al., 2023).
While the former suffers from time and resource
costs for training RL agents, the latter is becoming
promising for training complex RL tasks (Wang
et al., 2024).

An outstanding challenge with leveraging LLM-
based feedback is that the performance of RLHF
is dependent on the quality of feedback re-
ceived (Casper et al., 2023). Different LLMs have
distinct probabilities of giving wrong feedback,
thus leading to rewards of varying quality. Casper
et al. (2023) also suggests that comparison-based
feedback may not be efficient and adequate to train
reward models with noisy LLM outputs. In this
work, we analyze the training performance of re-
inforcement learning agents across various LLMs,
each of which produce different error distributions
in feedback.

Another challenge is that of the reward formu-
lation itself. Many works train a model distilling

LLM or human preference and use it as the reward
model (Christiano et al., 2017; Wang et al., 2024;
Klissarov et al., 2023; Lee et al., 2023), but in prac-
tice, this needs post-processing on outputs of the re-
ward model such as filtering (Klissarov et al., 2023),
and normalization (Christiano et al., 2017). Our
work posits that a reward function trained without
complex post-processing and environment rewards
would be more general and adaptable to various
practical scenarios.

3 Background

Reinforcement Learning: In reinforcement learn-
ing, an agent interacts with an environment and
receives a reward for its current action at each time
step, learning an optimal action policy to maximize
the rewards over time. This procedure can be for-
mulated as an infinite horizon discounted Markov
Decision Process (MDP) (Sutton and Barto, 2018).

At each discrete timestep ¢ in this process, the
agent observes environment state s; and takes ac-
tion ay, leading to the next environment state S¢y1
and a reward r;. An MDP is represented as a tuple
(S, A, R, T,v), where S is a set of states, A is a
set of actions, R : & +— R is a reward function,
T (s,a,s") = P(s'|s,a) is a transition function,
and v is a discount factor. A stochastic policy
m(als) : A x S — [0, 1] indicates the probability
that the agent selects action a given the state s. The
agent’s goal is to learn m maximizing the expected
discounted return through training, given an initial
state distribution.

Preference-based Reinforcement Learning: Our
work is based on the framework of preference-
based reinforcement learning, where the reward
function is learned from preference labels over
agent behaviors (Christiano et al., 2017; Ibarz et al.,
2018; Lee et al., 2021a,b). For a pair of states
(Sa, S»), an annotator gives a preference label y that
indicates which state is ranked higher, considering
which state is closer to the given task goal. The
preference label y € {0, 1}, where 0 indicates s, is
ranked higher than s, and 1 indicates sy is ranked
higher than s,. Given a parameterized state-score
function oy, which is commonly called the poten-
tial function and usually equated with the reward
model ry, we compute the preference probabil-
ity of a state pair with the standard Bradley-Terry
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Figure 1: Our approach: (a) We train our scoring model with randomly sampled consecutive state pairs, which
are ranked by an LLM with respect to task completion. The resulting dataset of ranked state pairs is utilized in an
RLHEF fashion to train a single scoring model, capable of providing a score for any novel state. (b) Using the scoring
model, an RL agent is trained by scoring each state. Prior work uses this score as a reward; however, our approach

utilizes the score differences as a potential reward.

model (Bradley and Terry, 1952),

exp (04 (50))
exp (04 (sa)) + exp (o(s0))
= sigmoid(oy(sp) — oy (sa)),

(D
where s; > s, indicates s; is ranked higher than
the state s,. With a preference dataset D =
(sh,st,y'), preference-based RL learns the state-
score model o, by minimizing the cross-entropy
loss, which aims to maximize the score difference
between the high and low states:

Pw [Sb - Sa] =

L= —E(,s,9)~D []I{y = (84 > sp)}
log Py[sa = s +1{y = (s = sa)} ()
log P"/’ [Sb - Sa]:| .

This framework is used in both RLHF and RLAIF
where rewards are issued directly from the state-
score model and differ only in the choice of anno-
tator, i.e., human or LLM.

4 Methodology

Despite the success of LLMs in few-shot task gener-
alization, these models are imperfect and yield sub-
optimal performance in many areas. One notable
issue is the well-documented tendency of LLMs to
hallucinate, which results in LLM-generated pref-
erence rankings frequently containing errors (see
Table 1). These errors present major challenges
for reinforcement learning from LLM feedback, as
they result in noise in the learned score function.
Under the standard RLHF formulation where re-
wards are directly issued from the score function
(Christiano et al., 2017), this can lead to inefficient

exploration at best and, at worst, trap the agent in
sub-optimal local minima.

4.1 Quantifying Feedback Error through
Output Consistency

It has been shown that the certainty of LLM pre-
dictions can be quantified by issuing the same
query multiple times and measuring the consis-
tency of the predictions (Lyu et al., 2024). Specifi-
cally, the confidence of ranking s, higher than sy,
conf{y = (sa > sp)}, is defined as %
where N (s, > sp) denotes the number of times
LLM ranks s, higher than s, and Nyyery(Sq, Sp)
denotes the total number of queries on s, and sy.
Confidence is a necessary condition to consider
when evaluating LL.M feedback quality, given that
low confidence often causes considerable noise
in feedback which manifests as incorrect rewards.
Based on the definition of feedback confidence, we
derive an equivalent form of the RLHF loss based

on ranking confidence and consistency as follows:

E = _E(Sa78b,y)ND ENquery |:]I{y = (sa e Sb)}

log Pylsa = sp] + I{y = (sp > sa)}
log Py[sp >~ sa]}

= —E(s, 5.0)~D | cONf{y = (5a > 5p)}

log(sigmoid(oy(sq) — oy (sp)))+
conf{ly = (sp = sq)}
fog(sigmoid(a(ss) ~ 7o(s0)) .
3)
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This loss function uses confidence-based weights
to relate the scores between each state in ranked
pairs. From this derivation, we see the following.
1) A more confident ranking produces a larger score
difference between the ranked states, i.e., the mag-
nitude of the score difference is proportional to the
confidence. Formally, if conf{y = (s, > sp)}
> conf{y = (sp > Sq)} then oy(s.) — oy (sp)
> 0. In the event the LLM is perfectly confident,
conf{y = (sq > sp)} = 1, then the loss function
will maximize oy (s,) — 0y(sp). 2) As the confi-
dence decreases, then |[conf{y = (sq > Sp)} —
conf{y = (sp = sq)}| converges to 0. When
the LLM is completely uncertain then conf{y =
(sa > sp)} = conf{y = (sp > sq)} and the loss
function will minimize |0 (54) — 0y (Sp)|, resulting
in identical state scores such that o, (sq) = 0y (5p).
The formal proof is given in Appendix A.

4.2 Potential-based Rewards for Learning
with Noisy Feedback

The above observations stemming from Eq. 5 moti-
vate the form of our proposed method. Intuitively,
when the LLM is completely uncertain when rank-
ing s, and s, then the difference between their
scores is zero. This is ideal, as when the LLM
is unable to issue an accurate ranking then we
would like it to issue an uninformative reward,
i.e., a reward of zero. Our solution is to treat the
state-score as a potential function, defining the re-
ward as the difference between the scores of suc-
cessive state pairs:

r(s¢) = oy(st) — op(Si—1). ()

Thus, the more uncertain an LLM’s ranking is, the
less informative the reward is. The potential in
Eq. 4 is naturally shaped to a proper scale range,
with positive rewards for actions that are beneficial
and promising to the given task goal and negative
rewards for detrimental actions. Large values corre-
spond to more confident rankings, while small ones
to less confident rankings. As such, our approach
is particularly well-suited to RLAIF with smaller,
specialized models which are often necessary in
resource-constrained environments.

There is an additional benefit to this formulation.
Prior works treat the state-score function as a re-
ward function and directly issue rewards from it,
which we call the “direct-reward” method. This of-
ten leads to training instability as the rewards may
have significant differences in scale, which need to

be corrected via post-processing techniques such as
normalization and thresholding as well as extrinsic
per-step reward penalties. However, the perfor-
mance of post-processed direct rewards is highly
sensitive to these hyper-parameters, as they are of-
ten task-specific. Our potential difference formula-
tion helps alleviate this issue as 1) uncertain states
converge to the same score value so the impact
of noisy rankings no longer needs to be mitigated
through post-processing, and 2) per-step penalties
can be discarded in favor of simple timestep-based
discounting which are far less sensitive.

4.3 Algorithm

Our algorithm consists of the following four steps:
1) Randomly sample pairs of sequential states from
the environment. 2) Query the LLM to rank states
in each pair with respect to a natural language
task description, e.g., “Go to the green goal”. The
prompt contains a language task description, en-
vironment description, and in-context learning ex-
amples (Wei et al., 2022) as context to generate
preference labels for states in each pair. 3) Train
the state-score model oy, with the loss function in
Eq. 2. 4) Train a reinforcement learning agent with
feedback from the state-score model.

5 Performance Analysis of
Potential-Difference Rewards

We evaluate our approach in commonly-used
discrete (Grid World) and continuous (Mu-
JoCo) (Brockman et al., 2016) benchmark envi-
ronments. Throughout these experiments, we in-
vestigate the effectiveness of our potential-based
reward function a) as compared to using the score
as a reward directly in both single and multi-query
settings; and b) its sensitivity to inconsistency in
state rankings.

5.1 Experiment Setup

Grid World. We examine three scenarios within
Grid World (Swamy et al., 2024): NoLock, Lock,
and MultiLock. The layouts are shown in Fig. 2.
In each scenario, the agent (green triangle) must
navigate to the target (green rectangle). There are
one and two locked doors in the Lock and Multi-
Lock variants, respectively, that block the agent’s
way to the goal. To unlock each door the agent
must pick up the appropriate key and use it on the
door. The agent, goal, and key positions are ran-
domly initialized in every episode.
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Figure 2: Grid world environments with NoLock (upper-
left), Lock (lower-left), and MultiLock (right) variants
from left to right.

MuJoCo. We examine a subset of robot control
tasks selected from the simulated robotics bench-
mark MuJoCo (Todorov et al., 2012). We choose
3 tasks with increasing degrees of complexity: In-
verted Pendulum, Reacher, and Hopper.

For each of these six environments, we compare
our approach with the following baselines:

* Direct reward directly utilizes the trained
state-score functions’ score as reward; i.e.,
r(s) = oy(s). Following Christiano et al.
(2017), the reward is normalized to zero-mean
with a standard deviation of 1.

* Default reward utilizes the vanilla RL ob-
jective of each environment with human-
specified reward functions. In grid world vari-
ants, the default reward is defined as 0 for
failure and 1 — 0.99n /7,4, Otherwise when
the agent reaches the goal, where 1,44 is the
maximum time steps for each episode and
n is the step count until success. For Mu-
JoCo tasks, the default rewards are specified
as those defined in OpenAl Gym (Brockman
et al., 2016).

In each environment, we randomly sample pairs
of sequential states from the environment with re-
placement in order to generate rankings for train-
ing the state-score model used by both potential
difference and direct reward. For single-query ex-
periments, Grid World uses 2500, 3500, and 6000
samples for NoLock, Lock, and MultiLock respec-
tively while MuJoCo uses 1000 samples for each
environment.

Without loss of generality, we employ PPO as
the underlying policy-training framework (Schul-
man et al., 2017) and make the following assump-
tions: a) the environment is fully observable; and
b) the agent has no knowledge of the task before
training, i.e., is randomly initialized.

Env. Mthd. GT Llama-3 8B Mixtral Llama-3 70B GPT-4
o % Rank 1.0 0.69 0.76 0.93 1.0
Z S Score 1.0 0.77 0.89 0.98 1.0
4 Rank 1.0 0.54 0.65 0.89 0.98
3 Score 1.0 0.55 0.74 0.97 0.98
% § Rank 1.0 0.58 0.60 0.90 0.99
=3 Score 1.0 0.66 0.66 0.96 0.99

Table 1: Ranking accuracy for each LLM across 1000
state pairs sampled from each environment. Rank indi-
cates the direct ranking performance of the LLMs and
Score indicates the ranking performance of the trained
score models. Given that the ground-truth ranking are
only accessible in grid world environments, we only
show the ranking correctness of LLMs and state-score
models in these three environments.

5.2 LLM Ranking Performance

We first quantify the performance of four differ-
ent LLM models used in this work over each Grid
World environment. After sampling pairs of se-
quential states as discussed in Sec. 5.1, we measure
the accuracy of a) the LLM’s rankings and b) the
resulting state-score model with respect to ground
truth rankings. The results, shown in Table 1, pro-
vide us with an approximate ordering of LLM rank-
ing performance, where GPT-4 > Llama-3 70B >
Mixtral > Llama-3 8B.

5.3 Single-Query Evaluation

We next examine how our approach performs com-
pared to the standard direct reward approach com-
monly utilized in RLHF. In each environment, we
train our state score models with 4 LLMs: Mix-
tral (Jiang et al., 2024), GPT 4 (Achiam et al.,
2023), and Llama-3 with 8B and 70B parameters
(Touvron et al., 2023). For Grid World environ-
ments, we add an additional baseline in which rank-
ings are generated using a ground truth heuristic
function (GT) which serves as an upper bound for
our methods.

The state score models are trained by minimizing
the loss in Eq. 2. Then they are employed to train 5
RL policies with random seeds and initializations
for each method. As a common approach to avoid
reward hacking, a constant step penalty is applied
to the produced rewards from both methods in all
environments except for MuJoCo Reacher, which
exploits a torque penalty as described in Brockman
et al. (2016). The results, as well as the default
reward performance, are shown in Fig. 3 and Fig. 4.

In Grid World environments, our method (in
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Figure 4: The average learning curves with reward functions trained from single LLM queries in the MuJoCo
environments over 5 random seeds, with the return variance visualized as shaded areas.

blue) of potential difference-based reward outper-
forms the direct reward method in most cases.
When using GT, GPT-4, or Llama-3 70B rankings,
our method converges the fastest and yields the
highest final reward. For the environments of Lock
and MultiLock (bottom two rows), the tasks are
more challenging when using the default reward;
however, our method remains on par, or outper-
forms the baseline with respect to convergence
speed and final reward. However, when using
LLMs which generate noisy outputs (i.e., Mixtral
and Llama-3 8B), all methods fail to converge in
the Lock and MultiLock environments. In Sec. 5.4,
we detail our approach of using multiple queries,
particularly for low-performing LLMs, to regain
training performance using our potential-based re-
ward function.

In MuJoCo environments, reported in Fig. 4,
our potential-based reward method slightly out-
performs (particularly in Hopper with GPT-4 and
Llama-3 70B) or is on par with our baseline meth-
ods. Exceptions to this trend can be seen with low-

performing LLMs (e.g., Llama-3 8b). Our method
outperforms direct reward in Reacher and achieves
a performance similar to the well-crafted default
reward function, showing that potential-difference
rewards are better. However, direct reward outper-
forms ours when using low-performing LLMs, par-
ticularly Mixtral and Llama-3 8B. We attribute this
to the challenge of designing appropriate prompts
based on human intuition, i.e., we prompt LLMs
to compare the hopper’s speed in two consecutive
states because the hopper should learn to move for-
ward without falling down. However, these LLMs
then encourage moving faster instead of simply
moving forward. While this prompt could lead
to a good reward for high-performing LLMs, low-
performing LLMs could not handle such situations,
and we hypothesize that this leads to sub-optimal
training results.

5.3.1 Hyper-Parameter Sensitivity Analysis

Since potential difference reward and direct re-
ward suffer from reward hacking without post-
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processing, a step penalty is essential; however,
choosing this value can be difficult. We conduct
further experiments in the grid world Lock sce-
nario to show that our method is less sensitive
to step penalty than direct reward. Two penalty
schemes with multiple parameters are tested: 1)
Flat Step Penalty: A positive constant is sub-
tracted at each time step. 2) Reward Discount: Re-
ward for episode step ¢ is discounted by ¢, where
v < 11is a positive constant. We use the state score
model trained from ground truth human heuristics
for comparison. Each parameter is tested to train
3 RL policies with random seeds and initialization.
The results are shown in Fig. 6.

Our method shows robustness to the choice of
the flat step penalty, as the curves of penalty vari-
ances are less divergent. However, when using it as
a direct reward, it can be seen that the performance
is affected significantly with respect to the penalty,
as many of them prevent the agent from converging.
The results also show that our method can perform
well by picking a commonly-used discount factor
such as 0.99, avoiding the burden of extensive hy-
perparameter tuning. However, using it as a direct
reward requires further hyperparameter tuning.

5.4 Multi-Query Evaluation

We introduce a multi-query approach that queries
about ranking each state-transition case in the
scoring-model training dataset a given number of
times to address the rankings’ inconsistency with
lower-performing LLLMs to push potential differ-
ence rewards toward zeros in the face of conflict-
ing responses. In Fig. 5, we illustrate the heat
maps of state scores trained with datasets of dis-
tinct consistency degrees, demonstrated in the Grid
World MultiLock environment. Each grid in the
heat maps records the score the scoring model as-
signs for an agent at that location. The left sub-
figure demonstrates the ideal case in which 100%
correct rankings are utilized to train the scoring
model, demonstrating a smooth gradient from the
start room (top left corner) to the final room (bot-
tom left corner) roughly following the correct path.
However, if the scoring model is trained with 50%
confidence on all state pairs (right sub-figure in
Fig. 5), the score in any state becomes equal as
no adjacent states are ranked higher with high con-
fidence. This demonstrates our method’s ability
to disregard states, and thus not provide rewards
when LLM rankings are inconsistent across multi-
ple queries. Finally, when the ranking results for
a subset of states are inconsistent, yet consistent
for all other locations (see Fig. 5 center), the cor-
rect gradual change in score is maintained outside
of the affected area. These results underline our
method’s capabilities with respect to the effects of
pushing uncertain state scores toward zero while
giving contrasting rewards to confident pairs, ulti-
mately improving performance of our method with
low-performing LLMs (see Sec. 5.4.1).

5.4.1 Synthetic Ranking Evaluation

To test what ranking accuracy of datasets is needed
for the LLM with multi-query methods, and how
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Figure 8: The average-performance comparison of 5-query variation of potential-difference rewards and direct
rewards with 1800, 2200, 1000, 1000 state pairs ranked with Mixtral, over 5 random seeds.

many queries are required, we synthesized training
datasets with specific ranking accuracy from 60%
to 90% and simulated query times from 1 to 10.
State-score models trained with these datasets out-
put rewards when training RL policies, and their
performance is shown in Fig. 7. The specific rank-
ing correctness rates are controlled by introducing
random ranking errors into the ground-truth rank-
ing datasets. This approach is repeated on several
copies of the ground-truth datasets to simulate the
multi-query ranking results.

The result demonstrates that with more and more
queries, the potential-difference reward gradually
improves the training performance. Two or more
queries may achieve fast policy training converging
towards optimal if using ranking datasets with high
feedback consistency to train state-score models.
Notably, even for the datasets of only 60% rank-
ing accuracy, which is close to random guessing,
potential-difference rewards trained with enough
queries can still increase the average policy training
returns from O to an almost optimal level with 10
queries. This indicates that with enough queries,
even the datasets with low-ranking accuracy can
be boosted to function like those with high accu-
racy. This finding is consistent with our theoretic
analysis and demonstrates considerable potential
in mitigating significant ranking errors.

5.4.2 LLM Ranking Evaluation

Observing that Mixtral has the highest inconsis-
tency in ranking states and thus has the largest
potential for improvement, we evaluate the 5-query
variations of potential-difference rewards and di-
rect rewards with ranking results from Mixtral to
verify our claims. Different methods’ RL policy
training curves averaged over 5 random seeds are
compared in Fig. 8. As hypothesized, the 5-query
potential-difference rewards achieve faster policy
training and result in the highest rewards in all ex-
periments. The single-query potential-difference
rewards also outperform the single-query direct re-
wards. The improvement is most significant in Grid
World - Lock scenario.

6 Conclusions

In this work, we propose a simple method for in-
corporating noisy LLM feedback into reinforce-
ment learning. Our approach is based on learning a
potential-based score function over repeated LLM-
generated preference rankings which issues unin-
formative rewards for states in which the LLM is
uncertain. We show both theoretically and empiri-
cally that this results in a natural trade-off between
reward sparsity and LLM confidence in a variety
of discrete and continuous environments.
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7 Limitations

Our current analysis is limited to relatively sim-
ple discrete and continuous environments so that
we could perform a thorough empirical evaluation.
However, the consequence of this is that several
of the LLMs, e.g., GPT-4, perform exceptionally
well when ranking which leaves limited room for
improvement. This is especially notable in the Mu-
JoCo environments where our potential difference
approach results in insignificant changes to perfor-
mance. On the other hand, smaller-parameter mod-
els such as Mixtral exhibit worse performance and
as such benefit more from our approach (Fig. 4)
which is in-line with our synthetic experiments
(Fig. 8). In the future, we wish to explore more
complex, realistic environments which induce sim-
ilar ranking errors in a larger set of language mod-
els. Our method is theoretically compatible with
visual and multimodal environments that possess
richer state and action spaces and local observa-
tions, which can be ranked by LLMs or VLMs.
Exploring these scenarios will be the focus of our
future work. A further limitation is that we cur-
rently assume that sequential state pairs can be
randomly sampled from the environment. While
this is true in most simulated environments, this
assumption is violated in others such as the real
world. In future work, we will explore iterative
algorithms which alternate training the policy and
sampling state pairs for ranking.
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A Theoretical Proof: Inconsistent
rankings lead to uninformative rewards

Lemma 1. In the scope of RL based on LLM
feedback, the confidence-based preference loss is
equivalent to the standard preference loss used by
state-score model training over multi-query rank-
ing datasets.

Proof. Given that the the confidence of ranking s,
higher than sy, conf{y = (sq > sp)}, is defined

N (sa>5p)
A § o) where N (s, > sp) denotes the

number of times LLM ranks s, higher than s;, and
Nguery(Sa, sp) denotes the total number of queries
on s, and s.

The standard preference loss over multiple-
query ranking dataset D can be written as

ED = _E(Sa,Sb,y)ND |:ENque7‘y |:]I{y = (Sa s Sb)}

log(sigmoid(oy(sa) — oy(sp)))+
{y = (sp = sa)}

log(sigmoid(oy(sp) — U¢(Sa)>):|:|

- _E(5a75byy)ND |:

conf{y = (sa > sb)}
log(sigmoid(oy(sa) — oy(sp)))+
conf{y = (sp > sa)}
log(sigmoid(oy(sp) — ad,(sa)))} .

®)
O

Theorem 1. As inconsistency of a ranking over
two states increases, the scores of these two states
converge to the same value.

Proof. Based on Equation 5,

Lp = _E(Sa75b,y)ND conf{y = <Stl - Sb)}

log(sigmoid(oy(sq) — oy(sp)))+
(1 —conf{y = (sa > sp)})

log(1 — sigmoid(oy(sa) — oy(sp))) |-

(6)

Take an arbitrary state pair (sg, s1) from D. As
inconsistency of the ranking over so and s; in-
creases, conf{y = (so > s1)} — 0.5. Denote

sigmoid(oy(so) — 0y (51)) as po,1, £ over other
states in D without so, 1 as Lp\ (59,51}

lim
conf{y=(so>s1)}—0.5
1
- —m log(po,1(1 —poa)) + LD\ {s0,51} @)
1
> ﬁ 10g2 + ED\{SO,Sl}'

If and only if po; — where oy (s0) —

1
20
0—1[1(51) - 0, hmconf{y:(so>sl)}—>0.5 Lp —
‘%‘ log 2 4+ L\ {s,s,}- reaching the lower bound.

Therefore, when training the state-score model
with this loss £, the scores of any two states whose
ranking confidence is close to 50% will be pushed
to the same value. O

B Scoring-Model Training Datasets

To train the scoring model, we randomly sample
sequential state pairs and collect LLM ranking re-
sults on them, assembling all the data into a train-
ing dataset. The training data for all six environ-
ments can be accessed here: Scoring-Model Train-
ing Data. The details of collection process are as
follows.

B.1 LLM Preference Generating Process

The LLM does pairwise state ranking in this work.
We follow the methodology described in (Lee et al.,
2023), where the LLM prompt consists of four
parts:

1. Preamble: A description of the environment,
task, and ranking criteria.

2. Few-shot exemplar: Pairwise state-ranking
example, showcasing the chain of thought on
ranking according to given environment con-
ditions and state evaluation criteria.

3. Sample to annotate: The pair of specific
states a and b, described with natural lan-
guage.

4. Ending: Ending text to prompt a preferred
response as ranking.

In the generated response, the LLM determines
the ranking based on the specified criteria between
two sequential states and outputs either ‘Yes’ (a is
ranked higher than b) or ‘No’ (b is ranked higher
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than a). The following is an example prompt for
the Inverted Pendulum environment:

Preamble

You are in an environment, which involves a
cart that can move linearly, with a pole fixed
on it at one end and having another end free.
The cart can be pushed left or right, and the
goal is to balance the pole on the top of the
cart by applying forces on the cart.

Few-shot exemplar

O|

State[a]:
The pole leans to the left by 0.1 radians
with a leftward velocity.

State[b]:
The pole stands vertically with a rightward
velocity.

Is the transition from State[a] to State[b] a
good transition?

A:

Yes, the pole currently stands vertically, so
it has been balanced. Therefore, the answer
is yes.

Sample to annotate

Q:

State[0]:

The pole leans to the right by 0.6 radians
with a leftward velocity.

State[1]:
The pole leans to the right by 0.1 radians
with a rightward velocity.

Ending

Is the transition from State[0] to State[1] a
good transition?

Prompts for other environments can be accessed
here: Prompts for all 6 environments. To maintain
consistent settings across all experiments and elim-
inate the influence of irrelevant variables, we use
the same prompts for all LLM models.

C Experiment Details for Reproducibility

C.1 Model Architecture

Grid World The policy model for all scenarios
contains separate actor and critic networks, both
with 3 convolutional layers followed by 1 fully
connected layer mapping the flattened vector to the
output vector. The convolutional layers consist of
16 2 x 2 filters, followed by 2 x 2 pooling, then 32
2 x 2 filters, and finally 64 2 x 2 filters. Scoring
model architectures for each scenario are shown in
Table 2.

NoLock Lock
conv 16, (2,2),
pool (2,2),

MultiLock

conv 16, (2,2),
pool (2,2),

Conv conv 32, (2,2), conv 32, (2.2).
conv 64,(22), v 64, (2.2)
conv 128, (2,2) (&

256, 128 512, 256

FC hidd ) 126 » =20,

Chidden 1 3. 16 128, 64, 16

Table 2: Scoring model architecture for Grid World
scenarios. The number of output channels and kernal
size is given for each convolutional layer. The number
of nodes for each fully connected hidden layer are given.

MuJoCo Policy model follows Schulman et al.
(2017), where both actor and critic networks have a
fully connected network using a hidden layer with
64 nodes. Distinct scoring model architectures are
used in each scenario, shown in Table 3.

Reacher
FC hidden 128 128

Inverted Pendulum Hopper
128, 64

Table 3: Scoring model architecture for MuJoCo sce-
narios. The number of nodes for each fully connected
hidden layer are given.

C.2 Hyperparameters

The hyperparameters of training scoring models
and PPO policies were tuned manually. The details
are recorded in Table 4, 5, 6, 7.
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Hyperparameter NoLock Lock

MultiLock
[0.008, 100000]
Learning Rate [ 0%%8833015?2882) 0] [0.001, 1270001, 0.0001
’ [0.000005, 180000]
Batch Size 1024 2048 2048
Num. SGD Epochs 4 4 4
Minibatch Size 128 128 128
Clipping Prameter 0.2 0.2 0.2
VF Clip Parameter 10.0 10.0 10.0
VF Coeff. 0.5 0.5 0.5
KL Coeff. 0.5 0.5 0.5
Entropy Coeff. 0.01 0.01 0.01
GAE 0.8 0.8 0.8
Discount 0.99 0.99 0.99
Table 4: PPO hyperparameters for Grid World scenarios.
Hyperparameter NoLock Lock MultiLock
[0.004, 17] [0.000000001, 20]  [0.000004, 201,
SM. LR. Schedule  [0.0001, 45], [0.00004, 45], [0.000004, 100],
[0.0000001, 250] [0.0000001, 250] [0.0000001, 250]
SM. Batch Size 32 16 64
SM. Epochs 200 120 250

Table 5: Scoring model training hyperparameters for
Grid World scenarios. Learning rate schedule is pre-
sented as the learning rate value along with the corre-
sponding final epoch it is applied to.

Hyperparameter Value
Learning Rate 0.0003

Batch Size 2048
Num. SGD Epochs 10
Minibatch Size 64

Clipping Prameter 0.2
VF Clip Parameter 10

VF Coeft. 1
KL Coeff. 0.2

Entropy Coeff. 0
GAE 0.95
Discount 0.99

Table 6: PPO hyperparameters for all 3 MuJoCo envi-
ronments

Hyperparameter Pendulum Reacher
[0.000004, 20]  [0.000004, 20]
SM. LR. Schedule [0.00002, 40], [0.00002, 120], [([)008888; ’ 75(())]] ’
[0.000008, 50] [0.000008, 300] ' ’
SM. Batch Size 16 16 16

SM. Epochs 50 300 70

Hopper

Table 7: Scoring model training hyperparameters for
Mujoco scenarios. Learning rate schedule is presented
as the learning rate value along with the corresponding
final epoch it is applied to.
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