A Study of Parameter Efficient Fine-tuning by Learning to Efficiently
Fine-Tune

Taha Ceritli!, Savas Ozkan!, Jeongwon Min?, Eunchung Noh?,
Jung Min Cho?, Mete Ozay'

!Samsung R&D Institute UK (SRUK), 2Samsung Electronics Korea

Correspondence: {t.ceritli, m.ozay} @samsung.com

Abstract

The growing size of large language mod-
els (LLMs) requires parameter-efficient fine-
tuning (PEFT) methods for their adaptation to
new tasks. Existing methods, such as Low-
Rank Adaptation (LoRA), typically involve
model adaptation by training the PEFT pa-
rameters. One open problem required to be
solved to effectively employ these methods is
the identification of PEFT parameters. More
precisely, related works identify PEFT parame-
ters by projecting high dimensional parameters
of LLMs onto low dimensional parameter man-
ifolds with predefined projections, or identify-
ing PEFT parameters as projections themselves.
To study this problem, we propose a new ap-
proach called Learning to Efficiently Fine-tune
(LEFT) where we aim to learn spaces of PEFT
parameters from data. In order to learn how to
generate the PEFT parameters on a learned pa-
rameter space while fine-tuning the LLMs, we
propose the Parameter Generation (PG) method.
In the experimental analyses, we examine the
effectiveness of our solutions exploring accu-
racy of fine-tuned LLMs and characteristics of
PEFT parameters on benchmark GLUE tasks.

1 Introduction

Most natural language processing applications to-
day rely on pre-trained large language models
(LLMs), which are designed for general use. Even
s0, one can enhance their adaptation to a new spe-
cific task through a fine-tuning process in which
their parameters are updated with fine-tuning data.
However, fine-tuning all the parameters of modern
LLMs is highly computationally complex due to
the need for increased computational resources.
The problem of efficient fine-tuning of mod-
els has been studied (Aghajanyan et al., 2021)
by exploring their objective (Li et al., 2018), or
in general, optimization landscape (Ozay, 2019).
For training a model with D dimensional param-
eters, Li et al. (2018) and Ozay (2019) suggest

Decomposition L LEFT Learning
]_-‘ g B\H — Training
W(] (AI‘, BI‘) Y * — Projection|
- - Argument
IC <€
Agrry — Ay P
X—FA{F’L}X__)BL X———>AgX—> Bj

Figure 1: A comparison of different approaches for
identifying PEFT parameters. Unlike identification by
decomposition (ID) and construction (IC), our approach
(LEFT) learns A (Ap) and B (Bp) parameters with a
hypernetwork ~ from the embeddings £. The learned
By can be further trained using projected data Ay X
with a task objective. In ID, W, is decomposed to
(Ar, Br) with a deterministic function I'. In IC, a ran-
dom projection A or trained Ay, is used to project in-
put data X (or the gradients Vyy, L) to low-dimensional
manifolds to train By,.

performing optimization on a lower dimensional
(D << D) manifold of the parameters, where the
solutions to the model training problem first appear.
Aghajanyan et al. (2021) proposed that measuring
intrinsic dimension can provide information on the
number of free parameters which are required to
closely approximate the optimization problem that
is solved while fine-tuning BERT models.

In the context of LLMs, this approach has been
utilized for developing parameter efficient fine-
tuning (PEFT) methods (Hu et al., 2022; Xu et al.,
2023; Lialin et al., 2023a) by optimizing only a
small subset of parameters while keeping the re-
maining parameters Wy of the LLMs frozen. In-
spired from Li et al. (2018); Aghajanyan et al.
(2021), Hu et al. (2022) hypothesized that the
change in parameters during fine-tuning also has a
low intrinsic dimension. Following this hypothesis,
they proposed a method named low-rank adapta-
tion (LoRA) to compute low-rank approximation
of the change AW. To employ LoRA methods
effectively, their fine-tuning parameters should be
well-designed.

The characteristics of fine-tuning parameters:
Despite the recent efforts (Fan et al., 2024; Hao

15819

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15819-15836
November 12-16, 2024 ©2024 Association for Computational Linguistics

mailto:t.ceritli@samsung.com
mailto:m.ozay@samsung.com

et al., 2024), the characteristics of these parameters
(e.g. their roles in adaptation process, impact on
outcome of fine-tuning, and their relationship) are
still not fully understood. For instance, LoRA meth-
ods constrain fine-tuning of a pre-trained model
with a parameter matrix Wy € RP*X by a low-
rank decomposition Wy + AW = Wy + BA with
A € REXK and B € RP*E, Inspired from the in-
trinsic dimension of manifolds, R << min(D, K)
is described as the rank of A and B.

In the literature, various methods and configura-

tions have been proposed to define characteristics
of A and B under two approaches. These configu-
rations are illustrated in Figure 1.
(1) Identification by decomposition (ID) where
A and B are mapped onto low-dimensional man-
ifolds by projection: Babakniya et al. (2023) ap-
plied a decomposition method, such as Singular
Value Decomposition (SVD), to assure that the A
and B matrices reside on low-dimensional man-
ifolds (e.g. the Stiefel manifold (Ozay, 2019)).
However, performing SVD for LLMs can be com-
putationally complex. To address the complex-
ity problem, model compression methods such as
quantization can be applied (Guo et al., 2024).
However, accuracy of the solutions decreases as
more aggressive quantization schemes are applied.
(2) Identification by construction (IC) where
A and B are projections mapping high dimen-
sional input onto low-dimensional manifolds:
The parameters are identified as matrices with spe-
cial structures by construction

Zhu et al. (2024) observed that A applies a ran-
dom projection on features. Then, B is utilized
to learn features on low-dimensional manifolds of
projected features. Furthermore, the authors reveal
their asymmetric behavior by demonstrating that
fine-tuning B is inherently more effective than fine-
tuning A, and that a random untrained A should
perform nearly as well as a fine-tuned one. Note
that fixing randomly initialized A and training only
B can also help to avoid mismatch issues when
merging LoRA parameters (Sun et al., 2024).

Conversely, Hao et al. (2024) explained the role
of A through random projection of A B when small
learning rates are utilized. When the random A ma-
trices are frozen and only B parameters are updated
using gradients with upper-bounded norms, the A
matrices project Vyy,L onto lower-dimensional
manifolds. Following these results, Hao et al.
(2024) proposed optimizing parameters Wy on low-
dimensional manifolds of rank-deficient gradients

as an alternative approach to the LoRA.

In this work, we address the PEFT problem for
LLMs in computationally constrained settings such
as for mobile and edge devices. Therefore, we pose
the problem of PEFT for LLMs using frozen W)
different from that investigated by the ID. Similar
to the ID, we aim to update low-dimensional ap-
proximation of original parameters instead of Wj.
More precisely, we aim to learn a low-dimensional
representation of newly introduced data during fine-
tuning, which is then integrated to W), for inference.
Following this constraint, we identify A and B pa-
rameters by construction as in the IC instead of
decomposing Wy. Thereby, we consider their ap-
proximation B A as a representation learned during
fine-tuning, and we aim to learn these representa-
tions efficiently. For this purpose, we first study the
following question (Q1):

Q1: How should we identify the structure
of A and B for PEFT of LLMs?

Learning to Efficiently Fine-tune: To eluci-
date this question, we introduce a new approach
named Learning to Efficiently Fine-tune (LEFT).
In the LEFT, similar to the ID, we consider study-
ing the characteristics of BA on low-dimensional
parameter manifolds. However, we aim to learn
these manifolds by parameter generation using gen-
erative models, such as hypernetworks. In other
words, we target learning to generate PEFT pa-
rameters residing on low-dimensional parameter
manifolds for learning new representations unlike
ID and IC as depicted in Figure 1.

To this end, we propose a method called Pa-
rameter Generation (PG) to learn how to generate
PEFT parameters in LEFT. Deutsch et al. (2019)
showed that a hypernetwork can learn to gener-
ate a distribution of parameters of a deep neural
network on a non-trivial manifold, and the hyper-
network can be considered as the coordinate map
of this low-dimensional manifold (Shamsian et al.,
2021). Therefore, during fine-tuning, we train hy-
pernetworks to learn how to generate the PEFT
parameters on low-dimensional manifolds.

Similar to the IC, we explore random structures
of matrices identifying A. Our PG enables us to
control how to utilize different random and deter-
ministic structures for identifying A and B by pa-
rameter generation. In the experiments, we con-
sider several configurations where the parameters
are randomly generated (as in the related work),
optimized (as utilized by LoRA), and generated

15820

by conditioning on network properties (e.g. layers
and embeddings). However, designing PEFT pa-
rameters according to network properties is another
understudied open problem as addressed next.

Shareability of PEFT parameters among the
layers of LLLMs: Existing works applying PEFT
parameters to LLMs, including the studies focusing
on the role of A with random projections (Fan et al.,
2024; Hao et al., 2024), follow the standard practice
of defining separate matrices for each target layer.
Such applications do not explicitly consider the
hierarchy of the layers and their roles, which are
investigated in various studies.

For instance, Durrani et al. (2023) show that
basic lexical details such as suffixation or word
structure are concentrated at the lower layers of a
pre-trained model, whereas non-local dependencies
are primarily captured at the higher layers. This
may also be connected to why “easy” tasks activate
the neurons of LLMs at shallower layers while
“hard” ones at deeper layers, as inspected by Fan
et al. (2024). Motivated by these observations, we
explore the next follow-up question:

Q2: How does shareability and dependency
of representations learned at different lay-
ers guide designing PEFT parameters and
affect their accuracy?

In order to investigate this question, we first an-
alyze distribution of parameters trained by LoRA
and that of parameters generated by our PG. Then,
we examine the accuracy of fine-tuned LLMs with
parameters generated by sharing hypernetworks
among different layers of the LLMs.

Our contributions can be summarized as follows:

* We propose a new approach, called LEFT, to
study the fine-tuning parameter identification
problem. To employ this approach for fine-tuning
LLMs in resource constraints setups, we propose
the PG method which implements hypernetworks
for generating PEFT parameters.

* In the experimental analyses of the question Q1,
PG improves the accuracy of LoRA methods that
identify A parameters as random projections by
up to 16% using just 65K more trainable parame-
ters for the benchmark GLUE tasks. Moreover,
PG achieves similar accuracy using 30K less pa-
rameters compared to these LoORA methods.

» Experimental analyses of the question Q2 re-
veal different shareability patterns for LLMs fine-

tuned for different tasks. For instance, we ob-
serve that shareability of hypernetworks among
layers of the LLMs can consistently improve ac-
curacy for the MNLI, MRPC, QQP, RTE and
STS-B tasks. However, the accuracy fluctuates
or does not change remarkably for the other tasks.

Organization Our paper is organized as fol-
lows. We introduce our Parameter Generation (PG)
method in Section 2, which is followed by our
experimental analyses (Section 3). Section 4 con-
cludes the paper.

2 Parameter Generation for LEFT

Suppose that Wy represents the parameters of a
pre-trained LLM kept frozen during fine-tuning.
Parameter Generation (PG) produces the fine-tuned
model parameters W through a non-linear transfor-
mation function (NTF) f by

W = f(Wo,v(€;05)), (1)

where £ is a set of embeddings assigned to the
layers of a pre-trained LLM, and v is a hyper-
network parametrized by ©,. In Eq. (1), we
compute f(Wy,v(€;05)) = Wy + BA, where A
and B are obtained from the hypernetwork v by
(A, B) = ~(&; ©,). Thereby, the nonlinearity of f
is attributed to that of . Notice that PG offers a
flexible approach for PEFT, that can be designed in
different ways based on the choices of f, v, and £.

Figure 2 presents an overview of our method
where Wé denotes the fixed parameters at the [*"
layer of a pre-trained LLM. The corresponding
parameters W/ are obtained by passing the em-
beddings {e!,p'} € & through the hypernetwork
~. Finally, the function f combines these parame-
ters to produce the final fine-tuned parameters W.
Thereby, the function f learns how to fine-tune the
parameters by training the hypernetwork v which
generates fine-tuning parameters, and integrating
the generated parameters with).

In this work, we use our PG to generate a sep-
arate set of PEFT parameters for each layer of a
pre-trained LLLM, as shown in Figure 3. Unlike
LoRA where the parameters A and B are trained
during fine-tuning, we train a generative model to
learn how to generate and integrate them by updat-
ing the NTF f, which is described next.

2.1 The non-linear transformation function

The main block of PG is the non-linear transforma-
tion function (NTF) f. Given a set of embeddings

15821

Layer1 Layer2 Layer L
NTF f NTF f NTF f
Input —>| =N = o ——>»Output
T W, w2 WLt y
T T i
¢!, p'] [€?,p’] ", p"]

Figure 2: A diagram describing employment of the
PG method. W{} denotes the fixed parameters at the
Ith layer of a pre-trained LLM. The corresponding pa-
rameters W/ are obtained by passing the embeddings
{el, pl} € & through the hypernetwork . Finally, the
function f combines these parameters to produce the
final fine-tuned parameters W using the Eq. (1).

£ and a hypernetwork +, it aims to produce the fine-
tuned model parameters W by feeding the embed-
dings into the hypernetwork. Below, we describe
these components and their roles.

Layer and positional embeddings (£): The goal
of the embeddings is to incorporate the sequential
order of the layers so that the transformation func-
tion f can produce distinct layer-wise fine-tuning
parameters. In this work, we develop two types of
embeddings which are (i) layer embeddings (fixed
or trainable) and (ii) positional embeddings (fixed).
Layer embeddings (e'): Perhaps the simplest ap-
proach to characterize the sequential order of the
layers is to represent a layer of an LLM by a ran-
domly generated embedding vector, i.e., e! € Rl
for the I layer where h,. denotes its dimension
(note that the dimension h,. depends on the design
of hypernetwork ~, as the embeddings form the
inputs to the hypernetwork). Unfortunately, ran-
domly generated embeddings, whether trained or
not, do not necessarily reflect the order of layers.

Positional embeddings (p'): We complement layer
I

embeddings e with positional embeddings
p! € R, which are carefully chosen to follow the
sequential order of the layers. Inspired from trans-
formers (Vaswani et al., 2017), the idea behind
using positional embeddings is to describe the loca-
tion of a layer, similarly to describing the position
of a word in a sequence in transformers.

Let [be the location of a layer in a pre-trained
LLM with L layers. Then, the h, dimensional
positional embedding p! € R"» is defined by

p = [sin(w; - 1), cos(w; - Z)]?ZQ’ (2)

where sin(-) and cos(-) are respectively the sine

and cosine functions, with wy, = m, Vk.
Hypernetworks (v): A hypernetwork (Ha et al.,
2017) is a neural network that generates the param-
eters of another, typically larger, neural network
performing a target task. The inputs of a hypernet-
work can be chosen to generate personalized, task-
specific or layer-specific parameters, making them
applicable in various domains such as language
modeling (Suarez, 2017), computer vision (Klo-
cek et al., 2019), continual learning (von Oswald
et al., 2020), multi-tasking (Tay et al., 2021), and
personalized federated learning (Shamsian et al.,
2021).

Our motivation behind using hypernetworks is
to facilitate information sharing across the lay-
ers of a pre-trained LLM, following their sequen-
tial order which are represented by the embed-
dings £. Passing the embeddings through the
same hypernetwork enables its parameters ©, to be
shared while generating the layer-wise parameters
Wl ={Al B} Vi € [L].

A few studies utilize hypernetworks to generate

LoRA parameters such as HyperDreamBooth (Ruiz
et al., 2024) for personalized text-to-image gener-
ation, PIHLoRA (Majumdar et al., 2023) for solv-
ing partial differential equations, and HyperTuning
(Phang et al., 2023) for multi-task fine-tuning of
language models. These methods show the gener-
alization capabilities of hypernetwork-based LoRA
for a diverse set of applications. However, the
proposed hypernetworks rely only on data or its
extracted features by discarding the relationship
across layers. Conversely, our approach considers
layer indices and their positional information using
different random and deterministic structures.
Our hypernetwork architecture: We implement the
hypernetwork ~ based on fully connected networks
parametrized by ©,. Specifically, we build the
hypernetwork ~ with two linear layers where the
weights are initialized either using Kaiming uni-
form distribution or zero initialization.

2.2 Conditional Parameter Generation

We generate parameters conditioned on three types
of embeddings described above. To this end, we
develop three PG schemes to utilize embeddings at
each [layer of a pre-trained LLM to better under-
stand their impact on fine-tuning performance:
PG-Fixed initializes the layer embeddings e’ using
the standard Gaussian distribution NV (0, 1), which
are kept frozen during fine-tuning.

PG-Trainable is implemented similarly to PG-

15822

Fixed except that the layer embeddings e’ are
trained during fine-tuning.

PG-Pos extends the PG-Trainable by concatenat-
ing fixed positional embedding p’ with the layer
embedding €' defined earlier.

2.3 Layer-wise Parameter Generation

Once the components f, £, and y are specified,
PG lets us produce layer-wise PEFT parameters,
as shown in Figure 3. The function f utilizes both
Wé and W/ by transforming the embedding e’ and
p', V1. In LoRA, the parameters Wcll are optimized
during fine-tuning. Instead, PG enables us to gen-
erate the parameters A, B! or both for all layers
during fine-tuning. Figure 3 illustrates how PG
can generate both A' and B' at the I'" layer of
an LLM by optimizing the parameters ©. during
fine-tuning to learn how to generate A’ and B'. In
different configurations, the generated parameters
can be further fine-tuned or identified as random
matrices as considered in the ID and IC. In the
experimental analyses, we explore the effect of dif-
ferent configurations on accuracy.

Non-Linear Transformation
Function (NTF) f

Wi= (5 4) o @ XYRC

Figure 3: Generating layer-wise PEFT parameters
through the non-linear transformation function f. W}
denotes the fixed parameters at the ! layer of a pre-
trained model. The corresponding fine-tuning param-
eters W' are generated by the hypernetwork ~ condi-
tioned on the layer ¢! and positional p' embeddings.

1

2.4 Computational Complexity of Parameter
Generation

PEFT methods such as LoRA reduce the memory
usage during fine-tuning by decreasing the number
of trainable parameters. However, the independent
construction of LoRA parameters scales the num-
ber of trainable parameters linearly by the number
of layers in an LLM, which is not desirable. PG al-
lows us to avoid this issue by using hypernetworks.

Table 1 presents the number of trainable param-
eters. For a given pre-trained LLM with L layers,
the independent application of LoRA with rank
R leads to a total number of trainable parameters

L x R x (D + K) where {D, K} denote the di-
mensions of a frozen layer.

Method Number of Trainable Parameters

LoRA LxRx(D+K)

PG-Fixed he X Rx (D+ K)+ h1 X hy

PG-Trainable | ha X R X (D + K) + hy X hg + L x hy
PG-Pos ho x Rx (D+K)+hy Xxhy+Lxhy x2

Table 1: Parameter size of LoRA and three PG vari-
ants for a pre-trained LLM with L layers where R
denotes the rank, while h; and hs denote the hidden
dimensions of the layers of a hypernetwork.

Let us first consider PG-Fixed where the layer
embeddings e’ are kept frozen for each layer of an
LLM. If the first layer of the model ~ has dimen-
sions {h1, ho}, then its second layer would have
the dimensions {hz2, R X (D + K)}.Therefore, the
number of trainable parameters becomes h1 X hy +
he x R x (D + K). For PG-Trainable, we have an
additional term of L x b1 as the layer embeddings ¢’
are now updated during fine-tuning. Similarly, PG-
Pos has an extra term for the positional embeddings
p'. Even though the positional embeddings are kept
frozen, they are concatenated with the layer embed-
dings €', resulting in additional weights in the first
linear layer of the hypernetwork .

Table 1 provides two main insights into the com-
plexity of PG. First, the complexity of our approach
largely depends on the dimension ho rather than h;.
Second, choosing ho lower than L (i.e., ho < L)
reduces the parameter size.

3 Experiments

We give a description of the setup used throughout
the experiments in Section 3.1, which is followed
by a motivating example for our approach (Section
3.2). We then explore the questions Q1 and Q2
(Sections 3.3 and 3.4, respectively), and present
ablation studies to illustrate the properties of our
proposed approach (Section 3.5).

3.1 Environmental Setup

All experiments are conducted using the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018) and Tiny Llama
with 1.1B parameters (Zhang et al., 2024), due to
its suitability to on-device applications.

Data: The labels are not publicly available for the
test sets of the GLUE benchmark. Therefore, fol-
lowing Chen et al. (2022), we use the development
set of each task as the test set, and split the training
set into training and development sets with a 9:1

15823

ratio (see Appendix C for a brief description of the
tasks and the number of samples for each split).
Methods: We compare PG with LoRA under var-
ious setups which are denoted by subscripts: Ap
indicates that the parameter A is fixed during fine-
tuning. Learning the parameter A using PG is de-
noted by Ay (Bpy for learning B using PG). Simi-
larly, Ay, refers to training the parameter A using
LoRA (By, for training B using LoRA).

Metrics: We report Matthews correlation coeffi-
cient for CoLA, Pearson correlation coefficient for
STS-B, and accuracy for the remaining tasks.
Implementation Details: As proposed by Hu et al.
(2022), we apply the PEFT parameters to query and
value projection matrices in self-attention modules
of the LLM, utilizing the AdamW optimizer in the
training phase. As proposed by Ding et al. (2023),
we fine-tune and evaluate the models 5 times with
randomly selected seeds, and report the average
of the results. The hypernetwork architecture is
composed of two fully connected linear layers with
bias terms and one non-linear activation function
(GeLU) used between these linear layers. This
architecture provides us a lightweight computation-
ally efficient model. Please see Appendix D for the
additional details.

3.2 Motivating Examples

Goal: This example tests our assumption on the
benefits of relying on low-dimensional parameter
manifolds for learning PEFT parameters. We test
this hypothesis by comparing LoRA and three PG
variants using the MRPC dataset with a rank of 8
and perform two analyses on two sample sets: (i)
each sample s; € S corresponds to the ¢ column
vector AL € RP Ve € [R], of the A' matrix at
the 1! layer, VI € [L] (to analyze the similarities
of projections), (ii) each sample s; corresponds to
the A" € RPE vl ¢ [L] with the rank R = 8,
D = 2048 and L = 22 (to analyze the relation-
ships across the layers). The samples are visual-
ized on two-dimensional manifolds using t-SNE
in Figure 4 for LoRA and PG-Pos. The results for
different configurations are given in Appendix F.

Results: Figure 4 (a) shows that the vectors AlC
obtained from LoRA are scattered across the lower-
dimensional manifold. Conversely, PG-Pos pro-
vides a clustering of these vectors. A closer in-
spection of the clusters reveal that they are ho-
mogeneous in that each cluster contains one vec-
tor per layer. Therefore, the ¢ cluster C.. corre-
sponds to ¢! component of the A parameters, i.e.,

C. = {AL}L . This confirms that the A parame-
ters share similar characteristics across the layers.
Figure 4 (b) indicates that LoRA produces ran-
domly distributed layers, whereas PG-Pos captures
the sequential order among the layers. We also
observe that some layers can be grouped together,
which reflect their similarities within the group and
dissimilarities across the other groups.

MRPC

LoRA (A LB L) PG-Pos (A H B_L)

t-SNE dimension

(a) Analysis of S = {si}f?':Ll where each sample s; corre-
sponds to the ¢ column vector AL € R” Ve € [R] at
the I*" layer, VI € [L].

MRPC

LoRA (A LB L)
a7

PG-Pos (A HB_L)

a3

t-SNE dimension
'

(b) Analysis for S = {s;}%; where each sample s; cor-
responds to the A' € RPT at the 1" layer, VI € [L].

Figure 4: A visualization of the A parameters pro-
vided by LoRA and PG-Pos on a two-dimensional
manifold. We obtain the parameters associated with
the query matrices using the MRPC dataset with the
rank R = 8, D = 2048 and L = 22. The parameters
are then mapped to a two-dimensional manifold using
t-SNE. a) shows that the A parameters share similarities
across the layers. b) shows that our method learns the
sequential order of the layers and their groupings.

3.3 Comparison with fixed A identified by a
random matrix

Goal: The goal of these experiments is to analyze
the impact of information-sharing among the A pa-
rameters (denoted by Ar Br), as opposed to no ex-
plicit information-sharing while keeping A frozen
(denoted by Ar By,). Note that we evaluate using
hypernetworks with two different sizes for Ay By,
to make a fair comparison. Additionally, we report
the impact of fixing A when learning B using the
PG (denoted by A Byy) for completeness.

15824

Trainable GLUE
Method Config Rank £ Params | MNLI ~ SST-2 MRPC CoLA QNLI QQP RTE STS-B | Ave.
LoRA ApBj, - 405,504 | 83.00403 93.66406 7212115 4254133 8850105 86.72101 5875138 72.041p5 | 747
"PG-Fixed 387,492 | 79.09504 9257104 69.67122 26.6513> 85.08107 85.03102 5695155 51.04177 | 682
PG-Trainable A;-'BH 20 387,932 80.49i0 3 92-92i() 5 69.79i2 3 27~29i7 9 85.86i(, 8 85.54i() 2 57-22i2 7 52.63i7 6 69.0
PG-Pos 388,332 | 82.00403 93.06407 72.55435 42.22437 87314109 86.47401 5821427 7319404 | 744
"PG-Fixed s 471,061 | 86.1102 94.63193 77.55400 5525411 91.06:03 8832401 743012, 8478453 | 815~
PG-Trainable ApBj 1 471,501 | 86.13403 94.61403 77.60119 552645 91.06103 8833101 7430120 8480453 | 815
PG-Pos 471,521 | 86.32401 9422405 7779409 5536412 91.06104 884910, 7415413 8532412 | 81.6
"PG-Fixed 1,094,052 | 86.72401 94.541035 7740411 5550451 9126404 8853405 626417 854241, | 802
PG-Trainable AHB] 20 1,094,492 86.761() 1 94.471{] 2 7744512 3 55.7112 2 91.2510 4 88.5410 1 62.8217 6 85.5511 2 80.3
PG-Pos 1,077,720 | 87.38.02 9454103 80.39107 56.62118 91.29193 89.01.90 70.85117 87.43.07 | 82.2
LoRA ArBL - 811,008 | 83.09104 9404105 7335117 3663165 8780100 8674101 5848136 72.15435 | 740
"PG-Fixed 774,564 | 8025105 93.32104 7059115 19.1916; 86.15412 8546401 53.25i23 54571102 | 679
PG-Trainable ApBpy 20 775,404 | 819503 93.6103 70.65114 20.0lise 8699111 86.0310; 533416 5644195 | 68.6
PG-Pos 775,404 | 83.11403 9329404 7261414 3596466 88444108 8699100 5532404 7576434 | 739
"PG-Fixed % 942,101 | 86.1040> 9443104 7691411 5450125 909604 8835101 73.21,6 84.674; | 8I.1
PG-Trainable AHB] 1 942,541 86.14i()2 94.43:&()3 76486:&] 1 54.31;&27 90.991()4 88.351() 1 73,21;&2(, 84.6911 3 81.1
PG-Pos 942,561 86.48i0 2 94-29i0 5 77-99i0 7 55.38i] 4 91~O7i0 3 88.52i0 1 73-57i2 4 85. 1411 2 81.6
"PG-Fixed 2,187,684 | 86.80401 94.61403 77.65400 5580420 9129103 885440y 63.63129 85.5241, | 80.5
PG-Trainable Ag By, 20 2,188,124 | 86.840, 94.68. 92 78.09109 56.11415 91.34. 94 88.564g; 63.541309 85.664;; | 80.6
PG-Pos 2,188,524 | 8754102 94.4040> 80.00404 5688414 91264104 89.06100 70.58414 87.55.06 | 82.2

Table 2: Performance of the methods when the A parameter is kept frozen during fine-tuning. The experiments
are based on all the GLUE datasets over 5 randomly selected seeds. We report Matthews correlation coefficient for
CoLA, Pearson correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations
given in the subscript. The best performance per rank is highlighted by bold.

Results: In Table 2, we obtain the best perfor-
mance using PG-Pos under the Ay By, setting,
which consistently improves over the performance
of ApBj by a large margin. These results re-
flect the benefit of learning A parameters with
information-sharing. Conversely, fixing A leads to
similar results for PG and LoRA (with Ar By, per-
forming better than Ar By on two (for R = 8) and
three tasks (for R = 16). With these findings, we
form the following answer to Q1:

Al: Learning PEFT parameters can help
improving the performance of LoRA when
A is characterized as a random projection
for both trained and learned B.

3.4 Comparison with trained A

Goal: We first compare our approach with LoRA
when A is trained, leading to two settings which
are: (i) Ay By, where both parameters are learned
using LoRA and (ii) Ay By, where Ay is learned
using PG while By, is learned using LoRA. Second,
we explore the shareability of the layers by using
different number of hypernetworks for PG-Pos. In
addition to using 1 hypernetwork for all layers, we
create (i) 1 hypernetwork per layer and (ii) 1 hyper-
network per 11 layers (in this case, we group lower
layers and upper layers). Additionally, we compare
our method with two other PEFT baselines, namely
HiRA (Authors, 2024) and ReLoRA (Lialin et al.,
2023Db).

Results: Table 3 shows that PG-Pos (1 hypernet-

work in total) consistently improves over the per-
formance of LoRA across all the tasks, except for
QNLI when the rank is 8 and for CoLA when the
rank is 16. Moreover, LoRA achieves better results
than the best performing PG variant only by 0.04%
on QNLI and by 0.14% on CoLA. The performance
gap is larger for MRPC, CoLA, RTE, and STS-B
than it is for the remaining datasets for R = 8. Sim-
ilarly, the RTE and STS-B tasks lead to a larger gap
than the other tasks when the rank is 16. For the
remaining tasks, the gap is usually in the favor of
PG-Pos. These differences can also be seen in the
convergence plots (e.g., see Figure 5 where PG-Pos
converges faster than LoRA on the MRPC dataset,
achieving higher final accuracy. The results for
additional datasets are provided in Appendix F).

The results also show that although the loss con-
verges to a lower value for LoRA for R = 16, PG
provides higher accuracy. Moreover, the accuracy
for the PG generated parameters continues increas-
ing for larger number of epochs. This observa-
tion suggests that the LORA may cause over-fitting
where PG can resolve this over-fitting problem.

Our method outperforms HiRA and ReLoRA on
the GLUE benchmark. In particular, even when
the parameter size is doubled for HiRa, our method
still achieves performance comparable to that of
the PEFT baselines.

We obtain comparable results under different
number of hypernetworks. PG-Pos with 1 hy-
pernetwork per layer achieves the best perfor-
mance, which may partially be due to the increased

15825

Method Config Rank # Layers # Trainable GLUE
per Hypernet Params | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B | Avg.
LoRA ArLBr - 1,126,400 | 87.094+02 94.52405 79.66413 55.68431 91.33401 88.72401 7040428 8545403 | 81.6
ReLoRA sALBp, - 1,126,401 | 86.23.01 9390403 78.82411 5741418 9131402 884140; 6513143 8446450 | 80.7
JHiRA - OLDIW +ALBL o - 2,252,800 | 86.69:+01 _94.31404 8024109 5724105 9140101 88851 7054127 86.35:05 | 819
PG-Pos AyBj, 22 1,094,892 | 87.38.92 94.54.03 80.39:07 56.62418 91.29.103 89.01400 70.85117 8743407 | 822
PG-Pos AyByp 11 1,784,280 | 86944103 93.90402 81.13451 5692413 91.13401 89.13401 69.17430 8741407 | 82.0
PG-Pos ApBp 1 15,572,040 | 87.15102 9415404 8250117 5746125 9147193 89.40.0;1 73.07.1s 87.68.92 | 829
LoRA ArLBr, - 2,252,800 | 86914102 94.24103 79.75418 57.02417 9l.1lign 88.7040; 6832413 8581416 | 81.5
ReLoRA sApBy, 2,252,801 | 87.00+0.1 9431401 7995419 58.05411 91.35402 8893101 7191413 86.46400 | 82.2
CHRA CuDUW o+ AuBy o - hSOS600 | 870301 9435.y $000s17 $8.08s13 913Tig1 8$896s01 720611 8638 | 822
PG-Pos Ay Br, 22 2,188,524 | 87.54.9, 944092 80.00104 5688114 9126104 89.06400 70.58+14 87.55406 | 82.2
PG-Pos ApBj, 11 3,566,040 | 86.93103 94.04104 8098112 5647417 9118102 89.19:i01 69.68435 8741405 | 82.0
PG-Pos AyBj, 1 31,116,360 | 87.20402 94.38403 83.04113 5823150 91.47.02 894501 7256112 87.6219, | 83.0

Table 3: Evaluation of the methods under different groupings of the layers We run the experiments on all the
GLUE datasets and average the results over 5 randomly selected seeds. We report Matthews correlation coefficient
for CoLA, Pearson correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard
deviations given in the subscript. The best performance per rank is highlighted by bold.

MRPC

Rank=16 LoRA - Val

. PG-Fixed (AB.) - Val
— PG-Fixed (A;By) - Val
,,,,, PG-Fixed (ABy) - Val
- - PG-Trainable (A4B,) - Val
g PG-Trainable (A.By) - Val
rrrrr PG-Trainable (AyBy) - Val
PG-Pos (AyBy) - Val
PG-Pos (A.By) - Val

0.80

Accuracy
e ©
Sy
S G

o
o
o

10 PG-Pos (AuBy) - Val

Figure 5: Convergence of the methods on the validation split of the MRPC dataset. The figures display the loss
and the corresponding performance metric at each epoch and the ranks of 8 and 16.

number of trainable parameters. Based on these
findings, we form the following answer to Q2:

A2: Learning the projection matrices A
with information shared across the layers
of an LLM improves the fine-tuning per-
formance. The performance gain can be
relatively smaller when one hypernetwork is
utilized per layer depending on the task.

3.5 Ablation Studies

We carry out ablation studies to: (i) show the im-
pact of combining LoRA and the PG methods using
different configurations, (ii) illustrate the impact
of hypernetwork size on the performance and (iii)
investigate whether the benefits of PG over LoORA
generalize to different LLM architectures and sizes.
Hypernetwork configurations: We design two ad-
ditional configurations to characterize the impact of
information-sharing across the B parameters (de-
noted by A7, By) and both the A and B parameters
(denoted by A Bpp),

Table 4 displays a declining trend in the perfor-
mance in the order of Ay By, A, By and Ay Bp.
Information-sharing is more effective on the A pa-
rameters than it is on the B parameters, especially
for the MRPC, CoLLA, RTE and STS-B tasks. We
conjecture that projecting the inputs onto a lower-
dimensional manifold makes it difficult to incor-

porate the layer hierarchy into the B parameters
through information sharing. Moreover, Ay By
leads to the worst performance which might be due
to the difficulty of jointly learning the A and B pa-
rameters using the same hypernetwork. To address
this issue, one can use separate hypernetworks for
these parameters; however, we avoid doing so, not
to optimize on the test sets.

Lastly, we observe a trend in that the best per-
forming PG variant is PG-Pos, which is respec-
tively followed by PG-Trainable and PG-Fixed.
These results are perhaps not surprising as PG-Pos
is utilizing the positional embeddings in addition
to the layer embeddings.

Hypernetwork size: We conduct experiments un-
der varying hypernetwork sizes using the MRPC,
CoL A, RTE and STS-B datasets. Given that the
hypernetwork size largely depends on the dimen-
sion hg, we sweep across ha € {1,5, 10,20} while
keeping h; = 20. The results given in Figure 6
indicate that using a higher number of trainable
parameters often improves the performance, with
exceptions for the RTE dataset which may be ex-
plained by overtfitting. Please see Appendix E for
results on all of the datasets and ranks.

Generalization of the results: Here, we investi-
gate whether the results generalize to other LLM
architectures and sizes. Specifically, we compare
LoRA and PG using Pythia-1B, Llama2-7B, Pythia-

15826

Trainable GLUE

Method Config Rank Params | MNLI ~ SST-2 MRPC CoLA QNLI QQP RTE STS-B | Avg.

ApBu 1,108,388 | 8572402 93.81403 7554119 50.64124 90.05:02 88.10401 6191409 8144413 | 78.4

PG-Fixed AHB[1,094,052 86-72i0.l 94-54:&0,3 77.401].[SS-SOiZ.l 91.26i0.4 88-5310.] 62.64i2 7 85.421[2| 80.2

ApBu 1,076,040 | 84.69102 93.12105 72.55126 4550450 8847103 87.08402 5298118 77.69422 | 753
7777777777 A By 1,108,828 [8579402 9390103 75.59i1s5 S51.1012; 90.1340, 88.1210; 6191159 80.864;5 | 78.4

PG-Trainable AHBL 8 1,094,492 86.76i() 1 94‘47i0 2 77~45i1 1 55‘71i2 2 91~25i04 88‘54i0 1 62.82i2 6 85.55i1 2 80.3

ApBpy 1,076,920 | 84.97101 93.35104 7270427 4640149 88.8ligr 8724100 53.16416 7822195 | 75.6
7777777777 ALBy 1,109,228 | 8635402 9411406 77.70117 5355106 90.3010s 88.58101 65.07143 8475104 | 80.0

PG-Pos AuBy, 1,094,892 | 87.38.92 94.54103 803907 56.62118 91.29.93 89.01. 99 70.85.17 87.43.07 | 82.2

ApBy 1,077,720 | 86.331092 9390404 77.01420, 5345418 9049402 88.3940; 6534439 85524, | 80.0

ALBy 2216356 | 862210, 94.11405 7471112 5130120 904410, 88264101 5821121 82.98100 | 78.3

PG-Fixed AHB] 2,187,684 86.80i0_1 94.61i0 3 77.65j:0_‘) 55.8012,0 91»29i0.3 88.5410 1 63.63i2 9 85-521[_2 80.5

ApBpy 2,151,240 | 84.85401 9330403 72.06431 4642445 8883103 87.20401 53.25+07 78.17424 | 75.5
7777777777 ApBy 2216796 | 86.33402 94.08105 74.80113 5166151 90.49:0; 8831101 5812123 83.13409 [784

PG-Trainable AHBL 16 2, 1 88, 124 86.84i() 2 94.68io 2 78.09i0_(, 56.11 +18 91.343:0 4 88.56i0 1 63.54i3_0 85.66i1 1 80.6

ApBy 2,152,120 | 85.1410; 9342404 7211431 47.04145 89.0240, 87.32.00 53.16405 78.86403 | 75.8
””””” ArBy 2217196 | 8690402 94.11s01 7843405 5408423 90.88s01 88.95:01 6408127 85.6006 | 80.4

PG-Pos AHBL 2, 1 88,524 87~54i0 2 94-40i0‘2 80.00i0,4 56.88i1 4 91 .26i0_4 89.06i0 0 70.58i1_4 87.55i0 6 82.2

AnBy 2,152,920 | 8677501 94.06105 7770115 5430114 90.8410, 88.59.10; 6426126 85.68:00 | 80.3

Table 4: Evaluation of the PG variants in terms of embeddings We run the methods on GLUE benchmark and
average the results over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson
correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the
subscript. The best performance per rank is highlighted by bold.

MRPC (rank=8)

o PG-Fixed (A4B.) ;
801 —e- PG-Fixed (4,8:) @
©- PG-Fixed (AyBy) g
©— PG-Trainable (AxB)
78 PG-Trainable (A.B) 1
. 8. e
©- PG-Trainable (AxB) 20, g x> > S,
©— PG-Pos (AuBL) (05 Soee
>
Frof 3 ey
5 ° -Pos -
g 1By r et?nw,.unu
g a0, 5057
74
=]
0,20
72
z; ‘T‘ —-— = e 411‘; ;y (20, 10)
10 10°

Trainable Parameters

Figure 6: Accuracy of the methods with respect to
the number of trainable parameters for the MRPC.

6.9B, Pythia-12B, Llama2-13B, and Gemma2-27B.
The results are presented in Appendix E. We ob-
serve that PG-Pos improves over the performance
of LoRA in all settings, except for the MRPC task
using Pythia-1B and Pythia-12B for both ranks and
Gemma-2-27B for rank 8.

4 Conclusion

Parameter-efficient fine-tuning (PEFT) methods
play a critical role in adapting large language mod-
els (LLMs) to new tasks. Existing PEFT methods
typically employ direct optimization on the PEFT
parameters during fine-tuning. In this paper, we
propose a new approach called Learning to Effi-
ciently Fine-tune (LEFT) where the focus is on
modelling the generative process of these parame-
ters. To this end, we develop the Parameter Gener-
ation (PG) method where we utilize hypernetworks

conditioned on the properties of a pre-trained LLM.
Our experimental analyses on the GLUE bench-
mark confirm the effectiveness of PG. Future work
includes its application to text-generation tasks and
its extension to data-dependent model adaptation.

5 Potential Risks

Since our work is based on large-language models
(LLMs), it has two main potential risks: environ-
mental risk and fairness considerations. Although
our work aims for parameter-efficient model fine-
tuning, training foundational LMs consumes huge
computational resources and electricity that can be
harmful for the environment. Additionally, fairness
for different concepts is not adequately considered
in our experiments.

6 Limitations

Despite the encouraging results demonstrated by
LEFT, there are certain limitations in our current
study that are worth acknowledging. This paper
only evaluates the effectiveness of PG on traditional
natural language processing tasks. However, recent
studies demonstrate that parameter-efficient meth-
ods could be applied to cross-modal or instruction-
tuning scenarios. We believe that our proposed
LEFT and PG methods can be used in more gen-
eral cross-modal and multi-modal tasks as well. In
addition, we used hypernetworks for implementing
the PG methods. Exploring other generative mod-
els, such as Bayesian Neural Networks and GANs
would be a valuable future direction.

15827

References

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319—
7328. Association for Computational Linguistics.

Anonymous Authors. 2024. HiRA: Parameter-efficient
Hadamard high-rank adaptation for large language
models. In ACL ARR 2024 June Submission. https:
//openreview.net/forum?id=UHAFkcfNdL (avail-
able on 30 July 2024).

Sara Babakniya, Ahmed Elkordy, Yahya Ezzeldin,
Qingfeng Liu, Kee-Bong Song, Mostafa EL-Khamy,
and Salman Avestimehr. 2023. SLoRA: Federated
parameter efficient fine-tuning of language models.
In International Workshop on Federated Learning in
the Age of Foundation Models in Conjunction with
NeurIPS 2023.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2612-2626.
Association for Computational Linguistics.

Lior Deutsch, Erik Nijkamp, and Yu Yang. 2019. A
generative model for sampling high-performance
and diverse weights for neural networks. Preprint,
arXiv:1905.02898.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 4133-4145. Association for Computational
Linguistics.

Nadir Durrani, Fahim Dalvi, and Hassan Sajjad. 2023.
Discovering Salient Neurons in deep NLP models.
Journal of Machine Learning Research, 24(362):1-
40.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of LLMs
are necessary during inference. arXiv preprint
arXiv:2403.02181.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim.
2024. LQ-1oRA: Low-rank plus quantized matrix de-
composition for efficient language model finetuning.
In The Twelfth International Conference on Learning
Representations.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
FLORA: Low-rank adapters are secretly gradient
compressors. In Proceedings of the 41st Interna-
tional Conference on Machine Learning.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Sylwester Klocek, Lukasz Maziarka, Maciej Wotczyk,
Jacek Tabor, Jakub Nowak, and Marek gmieja. 2019.
Hypernetwork functional image representation. In
International Conference on Artificial Neural Net-

works, pages 496-510. Springer.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. 2018. Measuring the intrinsic dimension
of objective landscapes. In International Conference
on Learning Representations.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023a. Scaling down to scale up:
A guide to parameter-efficient fine-tuning. arXiv
preprint arXiv:2303.15647.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023b. Relora: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Ritam Majumdar, Vishal Sudam Jadhav, Anirudh Deod-
har, Shirish Karande, Lovekesh Vig, and Venkatara-
mana Runkana. 2023. PIHLoRA: Physics-informed
hypernetworks for low-ranked adaptation. In Al for
Accelerated Materials Design-NeurIPS 2023 Work-
shop.

Mete Ozay. 2019. Fine-grained optimization of deep
neural networks. In Advances in Neural Information
Processing Systems, volume 32.

Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen.
2023. HyperTuning: Toward adapting large language
models without back-propagation. In Proceedings
of the 40th International Conference on Machine
Learning, pages 27854-27875. PMLR.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei,
Tingbo Hou, Yael Pritch, Neal Wadhwa, Michael
Rubinstein, and Kfir Aberman. 2024. HyperDream-
Booth: HyperNetworks for fast personalization
of text-to-image models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6527-6536.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal
Chechik. 2021. Personalized federated learning us-
ing hypernetworks. In International Conference on
Machine Learning, pages 9489-9502. PMLR.

Joseph Suarez. 2017. Language modeling with recur-
rent highway hypernetworks. In Advances in Neural
Information Processing Systems, volume 30.

15828

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://openreview.net/forum?id=UHAFkcfNdL
https://openreview.net/forum?id=UHAFkcfNdL
https://openreview.net/forum?id=06quMTmtRV
https://openreview.net/forum?id=06quMTmtRV
https://arxiv.org/abs/1905.02898
https://arxiv.org/abs/1905.02898
https://arxiv.org/abs/1905.02898
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=ryup8-WCW
https://openreview.net/forum?id=ryup8-WCW

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding.
2024. Improving LoRA in privacy-preserving feder-
ated learning. In International Conference on Learn-
ing Representations.

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, and
Da-Cheng Juan. 2021. HyperGrid Transformers: To-
wards a single model for multiple tasks. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, volume 30.

Johannes von Oswald, Christian Henning, Benjamin F.
Grewe, and Jodo Sacramento. 2020. Continual learn-
ing with hypernetworks. In International Conference
on Learning Representations.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355. Association for Computational Linguistics.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Saez de Ocariz Borde, Rickard Briiel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. 2024. Asymmetry
in low-rank adapters of foundation models. arXiv
preprint arXiv:2402.16842.

A Appendix
B Background

This section provides a brief description of LoRA.

Parameter efficient fine-tuning methods inject a
relatively small number of trainable parameters into
LLMs while keeping the original parameters frozen.
In particular, Low-Rank Adapdation (LoRA, Hu
et al. 2022) introduces two low-dimensional train-
able parameters, whose multiplication approxi-
mates the weight updates during fine-tuning.

Denoting the weights of a pre-trained LLM by
Wy € RP*K the forward pass of the vanilla LoRA
yields the output y as follows:

y=Wox + AWz = Woz + BAz, (3)

where B € RP*% and A € Rf*K In the vanilla
LoRA methods, these parameters are identified by
the trainable LoRA matrices. More recent works
suggest defining A by random matrices as dis-
cussed in the Introduction section. By choosing
a low value for R, LoRA reduces the number of
trainable parameters from D x K to R x (D + K).

We can apply LoRA to any subset of layers in
a deep neural network. For transformers-based
LLMs, LoRA can be applied to the self-attention
and the multilayer perceptron (MLP) modules.
However, Hu et al. (2022) show that applying
LoRA to the query and value projection param-
eters in the self-attention module gives the best
performance overall.

C Additional Information about the
Datasets

Table 5 presents a summary of the datasets in the
GLUE benchmark. Note that the MNLI dataset is
shared with the ONAC license, whereas the QNLI
dataset is licensed with CC-BY-SA 4. No license
specified for the remaining tasks.

D Implementation Details

Our experimental setup partly follows the evalua-
tion setup used by Ding et al. (2023). For instance,
we fine-tune and evaluate the methods 5 times with
randomly selected seeds, and report the average of
the results. We use the learning rate and the number
of training epochs reported in Table 6. Note that the
remaining hyper-parameters are the default param-
eters of the huggingface library used for AdamW
optimizer. Lastly, we also use standard initializa-
tion across models for the MRPC, RTE and STS-B

15829

https://arxiv.org/abs/1906.00695
https://arxiv.org/abs/1906.00695
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385

Corpus Task # Train #Dev #Test # Labels

Evaluation Metrics

Single Sentence Tasks

CoLA Grammatical Acceptability 7,695 856 1,043 2 Matthews corr. coef.
SST-2 Sentiment 60,614 6,735 872 2 Accuracy
Pairwise Sentences Tasks

MNLI Entailment 353,431 39,271 19,647 3 Accuracy

MRPC Semantic Equivalence 3,301 367 408 2 Accuracy

QNLI Question Answering 94,268 10,475 5,463 2 Accuracy

QQP Semantic Equivalence 327,461 36,385 40,430 2 Accuracy

RTE Entailment 2,241 249 277 2 Accuracy

STS-B Sentence Similarity 5,174 575 1,500 1 Pearson corr. coef.

Table 5: Summary of the GLUE benchmark datasets.

datasets rather than initializing using the model
checkpoint on the MNLI dataset. We use NVIDIA
A100-SXM4-80GB with 8 GPUs. Each fine-tuning
process utilizes all the GPUs, taking approximately
12 GB memory per GPU. We also initiate multiple
runs at the same time to make a better use of the
memory.

We implement a simple hypernetwork v with
two linear layers using PyTorch. The weights
are initialized using Kaiming uniform distribution
for Ay By and Ay By, and zero initialization for
Ar Bpy. The training is done using Transformers li-
brary. We utilize the evaluate library for calculating
the metrics.

E Ablation Studies

We conduct experiments using LLLMs other than
Tiny Llama to investigate whether our method
brings similar improvements for larger models and
different model architectures. The results are pre-
sented in Table 7 for Pythia-1B, Table 8 for Llama2-
7B, Table 9 for Pythia-6.9B, Table 10 for Pythia-
12B, Table 11 for Llama2-13B, and Table 12 for
Gemma?2-27B.

F Additional Results

Table 13 gives the average training times. We also
provide the convergence plots in Figure 9 for the
rank R = 8 and Figure 10 for the rank R = 16.

15830

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
Weight Decay 0.01
51 0.9
Bo 0.999
Accumulation Steps 1
Warmup Ratio 0.0
Warmup Steps 0
LR Schedule Linear
Batch Size per GPU 32 8 8 8 32 32 8 8
Epochs 5 10 10 10 10 5 10 10
Learning Rate Se-5
Rank {8, 16}
« 16
Max Seq. Len. 128
Dropout Prob. 0.0
Random Seeds {100, 482, 584, 721, 770}

Table 6: The hyper-parameters used for employing Tiny-Llama on the GLUE benchmark.

Method Config Rank hy #Trﬁﬁﬁi MNLI SST2 MRPC GL%EP RTE STS-B | Avg.
LoRA ApB - 786,432 | 7877102 9048106 72.01i2g 85.06102 60.79:20 719410 | 76.5
LoRA ArB;, 8 - 1048576 | 8242503 928040y 7779117 8749102 65.70+15 85.094i05 | 81.9
PG-Pos ApyBjp 14 1,032,822 | 8270592 9296104 768111, 8777101 662115 864904 | 82.2
LoRA ArBp - 1,572,864 | 7787404 9050407 7186125 84.9210; 594915 727541, | 76.2
LoRA ArB;, 16 - 2,097,152 | 8241402 9280403 7799120 8749102 6520470 8522405 | 81.9
PG-Pos ApyBj 14 2065014 | 8274105 9291.94 7652+, 87.81i0; 66.50,9 8647594 | 84.3

Table 7: Performance of the methods using Pythia-1B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Trainable GLUE
Method = Config - Rank h2 = "p s | SST2 MRPC CoLA RTE STS-B | Avg.
LoRA ApBg - 2,097,152 | 96121092 72.894+15 46.72437 5697420 5831419 | 66.2
LoRA ApBy 8 - 4,194,304 | 96.26193 8338111 6454107 793512, 8447109 | 81.6
PG-Pos ApByp, 28 4,000,188 | 96.31.93 83.87116 6695.27 80.36.35 87.95.19 | 83.0
LoRA ApBp - 4,194,304 | 95.99404 7225117 36.17+146 5791433 57.24437 | 63.9
LoRA ArBr 16 - 8,388,608 | 96.24104 83.33412 63.79412 7733413 84.59410 | 81.1
PG-Pos AHBL 28 7,997,884 96.26i0'2 84.26i1.3 67.74i1.3 79.7113.4 88.21i1.6 83.2

Table 8: Performance of the methods using Llama2-7B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

15831

Trainable GLUE
Method ~ Config ~ Rank 2 = "p, me| MRPC ~ CoLA RTE STS-B | Ave.
LoRA AprBy, - 3,145,728 | 76.76498 52.5141¢ 61.52433 76.31430 | 66.8
LoRA A By, 8 - 4,194,304 | 8191416 56.02110 75.09420 87.5040¢ | 75.1
PG-Pos AHBL 28 4,098,492 82.3011_4 58.39i0_9 77.9813_5 89.19i0_3 77.0
LoRA ApBy, - 6,291,456 | 7598106 5297497 61.81431 76.254,5 | 66.8
LoRA A By, 16 - 8,388,608 | 82.214+98 56.58412 7451400 8751497 | 75.2
PG-Pos ApgBjy, 28 8,194,492 | 82.25113 57.55411 76.75133 89.07.95 | 76.4

Table 9: Performance of the methods using Pythia-6.9B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Trainable GLUE
Method ~ Config ~ Rank 2 = "p, me| MRPC ~ CoLA RTE STS-B | Ave.
LoRA ApBj, - 4,423,680 | 67.30430 51.89453 58.12433 66.67146 | 61.0
LoRA A Byp, 8 - 5,898,240 | 70.881 25 60.70417 68.09499 79.7444, | 69.9
PG-Pos AHBL 32 5,778,592 69.17:&2.3 62.85i2_3 70.8312‘0 87.01i0_9 72.5
LoRA ApBy, - 8,847,360 | 6745419 51.0149, 57.3343; 65.86435 | 60.4
LoRA ALBj, 16 - 11,796,480 | 69.264,5 60.61120 66214176 83.01479 | 69.8
PG-Pos ApBj, 32 11,553,952 | 70.3949 62.69_ 15 713455 868119 | 72.8

Table 10: Performance of the methods using Pythia-12B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Trainable GLUE
Method ~ Config - Rank 7 Params | MRPC CoLA RTE STS-B | Avg.
LoRA ArBj, - 3,276,800 | 69.07109 37.30452 51.84416 30434117 | 47.2
LoRA A By, 8 - 6,553,600 | 78.58.108 67.0611; 5827119 86.09199 | 72.5
PG-Pos AHBL 36 6,3 11,908 82.99:“),6 67.53i1_1 62.74i2_3 88.88i1,1 75.5
LoRA ArpBj, - 6,553,600 | 68.68+11 34.871103 53.00423 31.98495 | 47.1
LoRA Ap By, 16 - 13,107,200 | 80.8311, 672997 60.1413¢ 87.08407 | 73.8
PG-Pos ApyBj, 36 12,619,748 | 83.48.11 68.56.9¢ 62.60. 3, 88.66.99 | 75.8

Table 11: Performance of the methods using Llama2-13B. The experiments are based on all the GLUE datasets
over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Trainable GLUE
Method Config Rank /2 Params | SST-2 ~ MRPC CoLA QNLI RTE STS-B | Avg.
LoRA ApBp, - 2,260,992 | 969510, 78.53410 64.18411 9532401 70.11417 7590419 | 80.1
LoRA A Byp, 8 - 5,652,480 | 97.0940, 86.32415 69.041;7 96.1049; 84.124¢95 86.5341, | 86.5
PG-Pos AHBL 40 5,288,920 97.18;&&1 86.03i1.3 69-83i1.ﬁ 96.2210_1 86.57;&13 87.6611,3 87.2
LoRA ApBj ~ 4521084 | 9686502 7877400 6391116 9529:0; 704012, 759712, | 802
LoRA A By, 16 - 11,304,960 | 97.0940, 85.54+1; 68.601;8 96.0719; 8390115 86.74110 | 86.3
PG-Pos AyBj 40 10,572,760 | 971102 864205 703915 96.18.0; 85.99.,6 87.68.05 | 87.3

Table 12: Performance of the methods using GemmaZ2-27B-it. The experiments are based on all the GLUE
datasets over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation
coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The
best performance per rank is highlighted by bold.

15832

MRPC (rank=8) MRPC (rank=16)

—e— PG-Fixed (ABy) o 801 —e— PG-Fixed (AuBy) ° ®
801 _o- PG-Fixed (ABx) o -@- PG-Fixed (AB) e
—o- PG-Fixed (AnBy) o —o- PG-Fixed (AuB)
©— PG-Trainable (AuB;) 78 ©— PG-Trainable (AuB;) o f
781 ~e- PG-Trainable (A.B:) . ©- PG-Trainable (ABy) A ~
©- PG-Trainable (AyBr) 20,1 ! ©- PG-Trainable (AyBs) m“z '
: 20,2
&~ PG-Pos (AuBy) I o~ PG-Pos (AyBy) wy 7
> >
g 76 ~©- PG-Pos (ABy) P 376 ~e- PG-Pos (AiBy) o 4
=] ®- PG-Pos (AuBy) -—0 3 ®- PG-Pos (AyB)
é(UJ @ “’.'0'?;.0‘ 10) (20.2p) §
o o H ”'420 2p)
& 8 s g
74 1 74 1 08 o
72 == (20,20
B =t 4 =
@ P — 72 po = (20, 20
___________________ o= o ¢ s e ¢ ¢ o
%o 20, 5) (20,200 0.1 D (20,10)
10° 106 106
Trainable Parameters # Trainable Parameters
CoLA (rank=8) CoLA (rank=16)
—e— PG-Fixed (AyB.) Y o —e— PG-Fixed (AyB.) ®
561 —e- PG-Fixed (4,8,) ® 8020 561 -@- PG-Fixed (A.By) o © em = o o)
—o- PG-Fixed (AuBr) W i —o- PG-Fixed (AuB) s g
541 —e PG-Trainable (A48, S . 544 —& PG-Trainable (A8,) R %
@~ PG-Trainable (A.By) r ©®- PG-Trainable (A;By) é
‘g 529 ~©- PG-Trainable (AyB) ° é ‘g 521 ~@- PG-Trainable (A4Bx) N
5 o PG-Pos (AuBL) . p 4.1 8 o PG-Pos (AuBL) 3;/?20, o
§ 50{ ~@- PG-Pos (A.By) L szl 20, 2) § 50 ~e- PG-Pos (4,84 '/ 0, 10)
), . #1120, 5)
2 ©- PG-Pos (AuBr) bo.5) g ©- PG-Pos (AuBy) @ &
2 48 9 48+
£ £ o
o o -
= 461 = 464 P XY
A T T Q0,20 @) -
o, -
. =
wal @ r-//./ 44) /‘,.—-‘Qm,m
mTiT T 0.5 T 2
24 %y 421 &5
10° 106 106

Trainable Parameters # Trainable Parameters

RTE (rank=8)

RTE (rank=16)

—&— PG-Fixed (AuB.) —&— PG-Fixed (A4B.) P |
-@- PG-Fixed (ABn) -®- PG-Fixed (A.By)
~@- PG-Fixed (A4By) ~@- PG-Fixed (A4By)
©— PG-Trainable (AxB;) @ PG-Trainable (A48;)
704 ~®- PG-Trainable (A.By) ©- PG-Trainable (A.By)
- PG-Trainable (ABy) ©- PG-Trainable (AyB4)
o ®— PG-Pos (AnBy) o ®— PG-Pos (AuBy)
g ®- PG-Pos (ABh) 9 ®- PG-Pos (AB)
5651 —- PG-Pos (AnBy) 3 654 —©- PG-Pos (AuB,))
< 2
e
60 'Q_O..]—)-—-—'"'“— 60
)
554 551
10° 106
Trainable Parameters # Trainable Parameters
STS-B (rank=8) STS-B (rank=16)
88 88
—@— PG-Fixed (A4B) ° ® —&— PG-Fixed (A4B) o
g6 —©- PG-Fixed (A84) o -~ PG-Fixed (A.Bx) —
~0- PG-Fixed (AxBr) @ T ;887 —e- PG-Fixed (AuBn)
ol ° PG-Trainable (Ay8,) 01 (0.5 ' &~ PG-Trainable (AxB;) @20 T
®- PG-Trainable (A.Bx) o4 @ 844 -®- PG-Trainable (A By) o
< 82 © - PG-Trainable (AyBy) P % © - PG-Trainable (AyBp)
2 g5
S ®— PG-Pos (AuB.) . ch § g2 | —® PG-Pos (AuBy) R
£ ®- PG-Pos (ABy) 42_0,3%0‘ i £ ®- PG-Pos (ABy)
O 801 —@- PG-Pos (ABy) Lodl” o @~ PG-Pos (AuBH)
5 ’ 5 80
2 2
© 78 ° ©
& P 5 -7
6] @ e TR
-
761 @
74 ==t
== 744 gui=i=—
72 1 &0 qz_o 1
10° 10° 10°

Trainable Parameters # Trainable Parameters

Figure 7: Performance of the methods with respect to the number of trainable parameters We conduct
these experiments using the MRPC, CoLLA, RTE and ?é%%—? datasets. Here, we denote the hidden dimensions of
hypernetworks by (h1, ho).

LoRA (A LB_L)

MRPC
PG-Fixed (A HB_L)

PG-Trainable (A_H B_L)

PG-Pos (A HB_L)

t-SNE dimension 2

t-SNE dimension 2

t-SNE dimension 2
o

|
N

4

t-SNE dimension 2

-15 -10

-5 [5
t-SNE dimension 1

10

-100 =75 -5.0 -2.5 0.0 25 50 75 10.0
t-SNE dimension 1

4
-100 -7.5 -50 -2.5 00 25 50 7.5 10.0

t-SNE dimension 1

-75 -50 -25 00 25
t-SNE dimension 1

5.0

75 100

(a) Analysis of S = {s; }2; where each sample s; corresponds to the ¢'" column vector AL € R”, Ve € [R] at the I*" layer,

vl e [L].

LoRA (A LB L)

MRPC
PG-Fixed (A HB_L)

PG-Trainable (A HB_L)

PG-Pos (A HB_L)

60

a0

20

t-SNE dimension 2

-75 -50 -25 0 25
t-SNE dimension 1

21

-75 -50 -25 50

0 25
t-SNE dimension 1

19

=75 =50 -25 0 25 50 75 100
t-SNE dimension 1

-75 =50 -25 50

0 25
t-SNE dimension 1

(b) Analysis for S = {s;}%; where each sample s; corresponds to the A' € RP® at the I*" layer, VI € [L].

100

Figure 8: A visualization of the A parameters provided by LoRA, PG-Fixed, PG-Trainable and PG-Pos on a
two-dimensional manifold. We obtain the parameters associated with the query matrices using the MRPC dataset
with the rank R = 8, D = 2048 and L = 22. The parameters are then mapped to a two-dimensional manifold using
t-SNE. a) shows that the A parameters share similarities across the layers. b) shows that our method learns the
sequential order of the layers and their groupings.

Trainable GLUE
Method Config Rank Params | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B | Ave.
LoRA A.Br 1,126,400 | 2.12 065 008 0.5 098 191 008 0.11 | 0.76
A By 1,108388 | 193 057 008 0.5 087 178 008 011 | 0.70
PG-Fixed ApBr 1,004,052 | 254 078 0.0 020 118 231 010 0.5 | 092
ApBy 1,076,040 | 1.89 058 0.1 019 088 177 008 0.14 | 0.70
7777777777 ArBy g © 1,108,828 | 1.93 057 008 0.15 088 1.78 008 0.11 |0.70
PG-Trainable Ay By, 1,004,492 | 253 078 0.0 020 1.8 232 010 0.5 | 092
AuBy 1,076,920 | 1.90 058 0.1 020 088 179 008 0.5 | 0.71
7777777777 ArBy C 1,109,228 | 192 057 008 0.15 0.88 1.78 0.08 0.11 | 0.70
PG-Pos ApBr 1,094,892 | 254 078 0.0 020 118 232 010 0.5 | 092
ApBy 1,077,720 | 190 058 0.1 020 088 179 008 0.4 | 0.71
LoRA A By 2,252,800 | 2.09 065 009 015 098 193 008 011 |0.76
A By 2216356 | 1.93 058 008 015 090 1.80 0.08 0.I1 |0.70
PG-Fixed ApBy 2,187,684 | 252 079 011 020 1.8 234 0.10 015 | 092
ApBy 2,151,240 | 1.92 058 011 020 090 180 008 0.14 |0.72
7777777777 A By 16 ©2216,796 | 193 058 008 0.15 090 1.81 008 0.11 [0.70
PG-Trainable Ay By, 2,188,124 | 252 079 011 020 1.19 234 0.0 015 |092
ApBy 2,152,120 | 1.92 058 011 020 090 180 008 015 |0.72
7777777777 ArBy ©2217,196 | 194 058 008 015 090 1.81 008 0.11 | 071
PG-Pos AuB; 2,188,524 | 252 079 011 020 1.19 234 0.0 015 | 092
ApBy 2,152,920 | 1.93 058 011 020 090 179 008 0.15 | 0.72

Table 13: Average training runtimes (in hours) We run the experiments on all the GLUE datasets and average the
results over 5 randomly selected seeds.

15834

Rank=8 Rank=8 LORA - Val

- - PG-Fixed (A4By) - Val
PG-Fixed (A.By) - Val

""" PG-Fixed (AnBy) - Val

- - PG-Trainable (A4By) - Val
PG-Trainable (A.By) - Val

———— PG-Trainable (A4By) - Val

- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val

----- PG-Pos (AyBp) - Val

0.50

0.45

Loss

0.40

0.35

Rank=8 LoRA - Val
- - PG-Fixed (AyBy) - Val
- PG-Fixed (A.By) - Val
voal - — e T PG-Fixed (AyBy) - Val
- - PG-Trainable (AyBy) - Val

PG-Trainable (A.By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (A4By) - Val
. s PG-Pos (A;By) - Val

8 10 2 4 6 8 10 PG-Pos (AyBy) - Val

Epoch

Rank=8 MRPC Rank=8 LoRA - Val

- - PG-Fixed (A4By) - Val
PG-Fixed (A.By) - Val
""" PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (A4By) - Val
PG-Pos (ABy) - Val
- PG-Pos (AyBy) - Val

Accuracy
o
o
~

R Rank=8 LoRA - Val
Ny - - PG-Fixed (A4B,) - Val
PG-Fixed (A.By) - Val
,,,,, PG-Fixed (AyBy) - Val
- - PG-Trainable (A4B) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val
,,,,, PG-Pos (AuBy) - Val

0.6

o
'S

o
N

0.4

Matthews Correlation

m
°
o
a
=y

LoRA - Val
- - PG-Fixed (A4By) - Val
PG-Fixed (ABy) - Val
PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB) - Val
PG-Trainable (A By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (AuBy) - Val
PG-Pos (ABy) - Val
————— PG-Pos (AuBy) - Val

0.45 0.900

0.40 0.875

a
go3s

Accuracy
o
©
a
o

o
©
]
o

0.30

0.25

~—— LoRA-Val

- - PG-Fixed (AyB.) - Val
PG-Fixed (A.By) - Val

rrrrr PG-Fixed (AuBp) - Val

- - PG-Trainable (AyBy) - Val
PG-Trainable (ABy) - Val

rrrrr PG-Trainable (A4By) - Val

- - PG-Pos (AuBy) - Val
PG-Pos (A.By) - Val

rrrrr PG-Pos (AuBy) - Val

LoRA - Val
- - PG-Fixed (AyBy) - Val
PG-Fixed (A.By) - Val
""" PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB.) - Val
PG-Trainable (A.By) - Val
----- PG-Trainable (AyBy) - Val
- - PG-Pos (AuBy) - Val
PG-Pos (ABy) - Val
————— PG-Pos (AuBy) - Val

—— LoRA-Val

- - PG-Fixed (AuBy) - Val
PG-Fixed (A.By) - Val

————— PG-Fixed (AuBp) - Val

- - PG-Trainable (A4B.) - Val
PG-Trainable (A.By) - Val

————— PG-Trainable (A4By) - Val

- - PG-Pos (AyB.) - Val
PG-Pos (A.By) - Val

———— PG-Pos (AxBy) - Val

Epoch

Figure 9: Convergence of the methods on the validation datasets The figures display the loss and the correspond-
ing performance metric at each epoch for all the GLUE datasets and a ranks of 8.

15835

Rank=16 Rank=16
0.50 I
0.45
. =
S
0.40
0.35
4 5
0.25 -
>
3
£0.20]
@ =1
S gooz
0.15
== 0.90
2 4 6 8 10 6 8 10
Epoch
MRPC
Rank=16 Rank=16
0.7
20.6
0.5
CoLA
Rank=16 Rank=16
50.6
0.6 S
]
°
504
30.5 2
=
g02
8
0.4 =
5 6 8 10
Epoch
NLI
Rank=16 Q Rank=16
0.45 0.900
0.40 L.0.875
" B
£20.35 5 0.850
S o
0.30 ¥ 0.825

6 8 10
Rank=16
L . i =
Rank=16 RTE Rank=16
o 0.7
g
o
Bos E 0.6
<
06 05
6 8 10
Epoch
Rank=16 T8 Rank=16

Epoch

LoRA - Val
- - PG-Fixed (A4By) - Val
PG-Fixed (A.By) - Val
rrrr PG-Fixed (AnBy) - Val
- - PG-Trainable (A4By) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (AnBy) - Val
- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val
----- PG-Pos (AyBp) - Val

LoRA - Val
- - PG-Fixed (AyBy) - Val
PG-Fixed (A.By) - Val
rrrrr PG-Fixed (AyBy) - Val
- - PG-Trainable (AyBy) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val
,,,,, PG-Pos (AnBy) - Val

LoRA - Val
- - PG-Fixed (A4By) - Val
PG-Fixed (A.By) - Val
———— PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (A4BH) - Val
- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val
- PG-Pos (AuBy) - Val

LoRA - Val
- - PG-Fixed (A4B,) - Val
PG-Fixed (A.By) - Val
,,,,, PG-Fixed (AyBy) - Val
- - PG-Trainable (A4B) - Val
PG-Trainable (A.By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (A4By) - Val
PG-Pos (A.By) - Val
,,,,, PG-Pos (AuBy) - Val

LoRA - Val
- - PG-Fixed (A4By) - Val
PG-Fixed (ABy) - Val
PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB) - Val
PG-Trainable (A By) - Val
————— PG-Trainable (A4By) - Val
- - PG-Pos (AuBy) - Val
PG-Pos (ABy) - Val
————— PG-Pos (AuBy) - Val

~—— LoRA-Val

- - PG-Fixed (AyB.) - Val
PG-Fixed (A.By) - Val

rrrrr PG-Fixed (AuBp) - Val

- - PG-Trainable (AyBy) - Val
PG-Trainable (ABy) - Val

rrrrr PG-Trainable (A4By) - Val

- - PG-Pos (AuBy) - Val
PG-Pos (A.By) - Val

rrrrr PG-Pos (AuBy) - Val

LoRA - Val
- - PG-Fixed (AyBy) - Val
PG-Fixed (A.By) - Val
""" PG-Fixed (AyBy) - Val
- - PG-Trainable (AyB.) - Val
PG-Trainable (A.By) - Val
----- PG-Trainable (AyBy) - Val
- - PG-Pos (AuBy) - Val
PG-Pos (ABy) - Val
————— PG-Pos (AuBy) - Val

—— LoRA-Val

- - PG-Fixed (AuBy) - Val
PG-Fixed (A.By) - Val

————— PG-Fixed (AuBp) - Val

- - PG-Trainable (A4B.) - Val
PG-Trainable (A.By) - Val

————— PG-Trainable (A4By) - Val

- - PG-Pos (AyB.) - Val
PG-Pos (A.By) - Val

———— PG-Pos (AxBy) - Val

Figure 10: Convergence of the methods on the validation datasets The figures display the loss and the corre-
sponding performance metric at each epoch for all the GLUE datasets and a rank of 16.

15836

