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Abstract

The growing size of large language mod-
els (LLMs) requires parameter-efficient fine-
tuning (PEFT) methods for their adaptation to
new tasks. Existing methods, such as Low-
Rank Adaptation (LoRA), typically involve
model adaptation by training the PEFT pa-
rameters. One open problem required to be
solved to effectively employ these methods is
the identification of PEFT parameters. More
precisely, related works identify PEFT parame-
ters by projecting high dimensional parameters
of LLMs onto low dimensional parameter man-
ifolds with predefined projections, or identify-
ing PEFT parameters as projections themselves.
To study this problem, we propose a new ap-
proach called Learning to Efficiently Fine-tune
(LEFT) where we aim to learn spaces of PEFT
parameters from data. In order to learn how to
generate the PEFT parameters on a learned pa-
rameter space while fine-tuning the LLMs, we
propose the Parameter Generation (PG) method.
In the experimental analyses, we examine the
effectiveness of our solutions exploring accu-
racy of fine-tuned LLMs and characteristics of
PEFT parameters on benchmark GLUE tasks.

1 Introduction

Most natural language processing applications to-
day rely on pre-trained large language models
(LLMs), which are designed for general use. Even
so, one can enhance their adaptation to a new spe-
cific task through a fine-tuning process in which
their parameters are updated with fine-tuning data.
However, fine-tuning all the parameters of modern
LLMs is highly computationally complex due to
the need for increased computational resources.

The problem of efficient fine-tuning of mod-
els has been studied (Aghajanyan et al., 2021)
by exploring their objective (Li et al., 2018), or
in general, optimization landscape (Ozay, 2019).
For training a model with D dimensional param-
eters, Li et al. (2018) and Ozay (2019) suggest

Figure 1: A comparison of different approaches for
identifying PEFT parameters. Unlike identification by
decomposition (ID) and construction (IC), our approach
(LEFT) learns A (AH ) and B (BH ) parameters with a
hypernetwork γ from the embeddings E . The learned
BH can be further trained using projected data AHX
with a task objective. In ID, W0 is decomposed to
(AΓ, BΓ) with a deterministic function Γ. In IC, a ran-
dom projection AF or trained AL is used to project in-
put data X (or the gradients ∇W0L) to low-dimensional
manifolds to train BL.

performing optimization on a lower dimensional
(D̂ << D) manifold of the parameters, where the
solutions to the model training problem first appear.
Aghajanyan et al. (2021) proposed that measuring
intrinsic dimension can provide information on the
number of free parameters which are required to
closely approximate the optimization problem that
is solved while fine-tuning BERT models.

In the context of LLMs, this approach has been
utilized for developing parameter efficient fine-
tuning (PEFT) methods (Hu et al., 2022; Xu et al.,
2023; Lialin et al., 2023a) by optimizing only a
small subset of parameters while keeping the re-
maining parameters W0 of the LLMs frozen. In-
spired from Li et al. (2018); Aghajanyan et al.
(2021), Hu et al. (2022) hypothesized that the
change in parameters during fine-tuning also has a
low intrinsic dimension. Following this hypothesis,
they proposed a method named low-rank adapta-
tion (LoRA) to compute low-rank approximation
of the change ∆W . To employ LoRA methods
effectively, their fine-tuning parameters should be
well-designed.
The characteristics of fine-tuning parameters:
Despite the recent efforts (Fan et al., 2024; Hao
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et al., 2024), the characteristics of these parameters
(e.g. their roles in adaptation process, impact on
outcome of fine-tuning, and their relationship) are
still not fully understood. For instance, LoRA meth-
ods constrain fine-tuning of a pre-trained model
with a parameter matrix W0 ∈ RD×K by a low-
rank decomposition W0 +∆W = W0 +BA with
A ∈ RR×K and B ∈ RD×R. Inspired from the in-
trinsic dimension of manifolds, R << min(D,K)
is described as the rank of A and B.

In the literature, various methods and configura-
tions have been proposed to define characteristics
of A and B under two approaches. These configu-
rations are illustrated in Figure 1.
(1) Identification by decomposition (ID) where
A and B are mapped onto low-dimensional man-
ifolds by projection: Babakniya et al. (2023) ap-
plied a decomposition method, such as Singular
Value Decomposition (SVD), to assure that the A
and B matrices reside on low-dimensional man-
ifolds (e.g. the Stiefel manifold (Ozay, 2019)).
However, performing SVD for LLMs can be com-
putationally complex. To address the complex-
ity problem, model compression methods such as
quantization can be applied (Guo et al., 2024).
However, accuracy of the solutions decreases as
more aggressive quantization schemes are applied.
(2) Identification by construction (IC) where
A and B are projections mapping high dimen-
sional input onto low-dimensional manifolds:
The parameters are identified as matrices with spe-
cial structures by construction

Zhu et al. (2024) observed that A applies a ran-
dom projection on features. Then, B is utilized
to learn features on low-dimensional manifolds of
projected features. Furthermore, the authors reveal
their asymmetric behavior by demonstrating that
fine-tuning B is inherently more effective than fine-
tuning A, and that a random untrained A should
perform nearly as well as a fine-tuned one. Note
that fixing randomly initialized A and training only
B can also help to avoid mismatch issues when
merging LoRA parameters (Sun et al., 2024).

Conversely, Hao et al. (2024) explained the role
of A through random projection of ∆B when small
learning rates are utilized. When the random A ma-
trices are frozen and only B parameters are updated
using gradients with upper-bounded norms, the A
matrices project ∇W0L onto lower-dimensional
manifolds. Following these results, Hao et al.
(2024) proposed optimizing parameters W0 on low-
dimensional manifolds of rank-deficient gradients

as an alternative approach to the LoRA.
In this work, we address the PEFT problem for

LLMs in computationally constrained settings such
as for mobile and edge devices. Therefore, we pose
the problem of PEFT for LLMs using frozen W0

different from that investigated by the ID. Similar
to the ID, we aim to update low-dimensional ap-
proximation of original parameters instead of W0.
More precisely, we aim to learn a low-dimensional
representation of newly introduced data during fine-
tuning, which is then integrated to W0 for inference.
Following this constraint, we identify A and B pa-
rameters by construction as in the IC instead of
decomposing W0. Thereby, we consider their ap-
proximation BA as a representation learned during
fine-tuning, and we aim to learn these representa-
tions efficiently. For this purpose, we first study the
following question (Q1):

Q1: How should we identify the structure
of A and B for PEFT of LLMs?

Learning to Efficiently Fine-tune: To eluci-
date this question, we introduce a new approach
named Learning to Efficiently Fine-tune (LEFT).
In the LEFT, similar to the ID, we consider study-
ing the characteristics of BA on low-dimensional
parameter manifolds. However, we aim to learn
these manifolds by parameter generation using gen-
erative models, such as hypernetworks. In other
words, we target learning to generate PEFT pa-
rameters residing on low-dimensional parameter
manifolds for learning new representations unlike
ID and IC as depicted in Figure 1.

To this end, we propose a method called Pa-
rameter Generation (PG) to learn how to generate
PEFT parameters in LEFT. Deutsch et al. (2019)
showed that a hypernetwork can learn to gener-
ate a distribution of parameters of a deep neural
network on a non-trivial manifold, and the hyper-
network can be considered as the coordinate map
of this low-dimensional manifold (Shamsian et al.,
2021). Therefore, during fine-tuning, we train hy-
pernetworks to learn how to generate the PEFT
parameters on low-dimensional manifolds.

Similar to the IC, we explore random structures
of matrices identifying A. Our PG enables us to
control how to utilize different random and deter-
ministic structures for identifying A and B by pa-
rameter generation. In the experiments, we con-
sider several configurations where the parameters
are randomly generated (as in the related work),
optimized (as utilized by LoRA), and generated
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by conditioning on network properties (e.g. layers
and embeddings). However, designing PEFT pa-
rameters according to network properties is another
understudied open problem as addressed next.

Shareability of PEFT parameters among the
layers of LLMs: Existing works applying PEFT
parameters to LLMs, including the studies focusing
on the role of A with random projections (Fan et al.,
2024; Hao et al., 2024), follow the standard practice
of defining separate matrices for each target layer.
Such applications do not explicitly consider the
hierarchy of the layers and their roles, which are
investigated in various studies.

For instance, Durrani et al. (2023) show that
basic lexical details such as suffixation or word
structure are concentrated at the lower layers of a
pre-trained model, whereas non-local dependencies
are primarily captured at the higher layers. This
may also be connected to why “easy” tasks activate
the neurons of LLMs at shallower layers while
“hard” ones at deeper layers, as inspected by Fan
et al. (2024). Motivated by these observations, we
explore the next follow-up question:

Q2: How does shareability and dependency
of representations learned at different lay-
ers guide designing PEFT parameters and
affect their accuracy?

In order to investigate this question, we first an-
alyze distribution of parameters trained by LoRA
and that of parameters generated by our PG. Then,
we examine the accuracy of fine-tuned LLMs with
parameters generated by sharing hypernetworks
among different layers of the LLMs.

Our contributions can be summarized as follows:

• We propose a new approach, called LEFT, to
study the fine-tuning parameter identification
problem. To employ this approach for fine-tuning
LLMs in resource constraints setups, we propose
the PG method which implements hypernetworks
for generating PEFT parameters.

• In the experimental analyses of the question Q1,
PG improves the accuracy of LoRA methods that
identify A parameters as random projections by
up to 16% using just 65K more trainable parame-
ters for the benchmark GLUE tasks. Moreover,
PG achieves similar accuracy using 30K less pa-
rameters compared to these LoRA methods.

• Experimental analyses of the question Q2 re-
veal different shareability patterns for LLMs fine-

tuned for different tasks. For instance, we ob-
serve that shareability of hypernetworks among
layers of the LLMs can consistently improve ac-
curacy for the MNLI, MRPC, QQP, RTE and
STS-B tasks. However, the accuracy fluctuates
or does not change remarkably for the other tasks.

Organization Our paper is organized as fol-
lows. We introduce our Parameter Generation (PG)
method in Section 2, which is followed by our
experimental analyses (Section 3). Section 4 con-
cludes the paper.

2 Parameter Generation for LEFT

Suppose that W0 represents the parameters of a
pre-trained LLM kept frozen during fine-tuning.
Parameter Generation (PG) produces the fine-tuned
model parameters W through a non-linear transfor-
mation function (NTF) f by

W = f(W0, γ(E ; Θγ)), (1)

where E is a set of embeddings assigned to the
layers of a pre-trained LLM, and γ is a hyper-
network parametrized by Θγ . In Eq. (1), we
compute f(W0, γ(E ; Θγ)) = W0 +BA, where A
and B are obtained from the hypernetwork γ by
(A,B) = γ(E ; Θγ). Thereby, the nonlinearity of f
is attributed to that of γ. Notice that PG offers a
flexible approach for PEFT, that can be designed in
different ways based on the choices of f , γ, and E .

Figure 2 presents an overview of our method
where W l

0 denotes the fixed parameters at the lth

layer of a pre-trained LLM. The corresponding
parameters W l

a are obtained by passing the em-
beddings {el, pl} ∈ E through the hypernetwork
γ. Finally, the function f combines these parame-
ters to produce the final fine-tuned parameters W .
Thereby, the function f learns how to fine-tune the
parameters by training the hypernetwork γ which
generates fine-tuning parameters, and integrating
the generated parameters with W0.

In this work, we use our PG to generate a sep-
arate set of PEFT parameters for each layer of a
pre-trained LLM, as shown in Figure 3. Unlike
LoRA where the parameters A and B are trained
during fine-tuning, we train a generative model to
learn how to generate and integrate them by updat-
ing the NTF f , which is described next.

2.1 The non-linear transformation function
The main block of PG is the non-linear transforma-
tion function (NTF) f . Given a set of embeddings
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Figure 2: A diagram describing employment of the
PG method. W l

0 denotes the fixed parameters at the
lth layer of a pre-trained LLM. The corresponding pa-
rameters W l

a are obtained by passing the embeddings
{el, pl} ∈ E through the hypernetwork γ. Finally, the
function f combines these parameters to produce the
final fine-tuned parameters W using the Eq. (1).

E and a hypernetwork γ, it aims to produce the fine-
tuned model parameters W by feeding the embed-
dings into the hypernetwork. Below, we describe
these components and their roles.
Layer and positional embeddings (E): The goal
of the embeddings is to incorporate the sequential
order of the layers so that the transformation func-
tion f can produce distinct layer-wise fine-tuning
parameters. In this work, we develop two types of
embeddings which are (i) layer embeddings (fixed
or trainable) and (ii) positional embeddings (fixed).
Layer embeddings (el): Perhaps the simplest ap-
proach to characterize the sequential order of the
layers is to represent a layer of an LLM by a ran-
domly generated embedding vector, i.e., el ∈ Rhe

for the lth layer where he denotes its dimension
(note that the dimension he depends on the design
of hypernetwork γ, as the embeddings form the
inputs to the hypernetwork). Unfortunately, ran-
domly generated embeddings, whether trained or
not, do not necessarily reflect the order of layers.
Positional embeddings (pl): We complement layer
embeddings el with positional embeddings
pl ∈ Rhp , which are carefully chosen to follow the
sequential order of the layers. Inspired from trans-
formers (Vaswani et al., 2017), the idea behind
using positional embeddings is to describe the loca-
tion of a layer, similarly to describing the position
of a word in a sequence in transformers.

Let l be the location of a layer in a pre-trained
LLM with L layers. Then, the hp dimensional
positional embedding pl ∈ Rhp is defined by

pl =
[
sin(wi · l), cos(wi · l)

]hp/2

i=1
, (2)

where sin(·) and cos(·) are respectively the sine

and cosine functions, with wk = 1
100002k/hp

,∀k.
Hypernetworks (γ): A hypernetwork (Ha et al.,
2017) is a neural network that generates the param-
eters of another, typically larger, neural network
performing a target task. The inputs of a hypernet-
work can be chosen to generate personalized, task-
specific or layer-specific parameters, making them
applicable in various domains such as language
modeling (Suarez, 2017), computer vision (Klo-
cek et al., 2019), continual learning (von Oswald
et al., 2020), multi-tasking (Tay et al., 2021), and
personalized federated learning (Shamsian et al.,
2021).

Our motivation behind using hypernetworks is
to facilitate information sharing across the lay-
ers of a pre-trained LLM, following their sequen-
tial order which are represented by the embed-
dings E . Passing the embeddings through the
same hypernetwork enables its parameters Θγ to be
shared while generating the layer-wise parameters
W l

a = {Al, Bl}, ∀l ∈ [L].
A few studies utilize hypernetworks to generate

LoRA parameters such as HyperDreamBooth (Ruiz
et al., 2024) for personalized text-to-image gener-
ation, PIHLoRA (Majumdar et al., 2023) for solv-
ing partial differential equations, and HyperTuning
(Phang et al., 2023) for multi-task fine-tuning of
language models. These methods show the gener-
alization capabilities of hypernetwork-based LoRA
for a diverse set of applications. However, the
proposed hypernetworks rely only on data or its
extracted features by discarding the relationship
across layers. Conversely, our approach considers
layer indices and their positional information using
different random and deterministic structures.
Our hypernetwork architecture: We implement the
hypernetwork γ based on fully connected networks
parametrized by Θγ . Specifically, we build the
hypernetwork γ with two linear layers where the
weights are initialized either using Kaiming uni-
form distribution or zero initialization.

2.2 Conditional Parameter Generation
We generate parameters conditioned on three types
of embeddings described above. To this end, we
develop three PG schemes to utilize embeddings at
each lth layer of a pre-trained LLM to better under-
stand their impact on fine-tuning performance:
PG-Fixed initializes the layer embeddings el using
the standard Gaussian distribution N (0, 1), which
are kept frozen during fine-tuning.
PG-Trainable is implemented similarly to PG-
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Fixed except that the layer embeddings el are
trained during fine-tuning.
PG-Pos extends the PG-Trainable by concatenat-
ing fixed positional embedding pl with the layer
embedding el defined earlier.

2.3 Layer-wise Parameter Generation
Once the components f , E , and γ are specified,
PG lets us produce layer-wise PEFT parameters,
as shown in Figure 3. The function f utilizes both
W l

0 and W l
a by transforming the embedding el and

pl,∀l. In LoRA, the parameters W l
a are optimized

during fine-tuning. Instead, PG enables us to gen-
erate the parameters Al, Bl or both for all layers
during fine-tuning. Figure 3 illustrates how PG
can generate both Al and Bl at the lth layer of
an LLM by optimizing the parameters Θγ during
fine-tuning to learn how to generate Al and Bl. In
different configurations, the generated parameters
can be further fine-tuned or identified as random
matrices as considered in the ID and IC. In the
experimental analyses, we explore the effect of dif-
ferent configurations on accuracy.

Figure 3: Generating layer-wise PEFT parameters
through the non-linear transformation function f . W l

0

denotes the fixed parameters at the lth layer of a pre-
trained model. The corresponding fine-tuning param-
eters W l

a are generated by the hypernetwork γ condi-
tioned on the layer el and positional pl embeddings.

2.4 Computational Complexity of Parameter
Generation

PEFT methods such as LoRA reduce the memory
usage during fine-tuning by decreasing the number
of trainable parameters. However, the independent
construction of LoRA parameters scales the num-
ber of trainable parameters linearly by the number
of layers in an LLM, which is not desirable. PG al-
lows us to avoid this issue by using hypernetworks.

Table 1 presents the number of trainable param-
eters. For a given pre-trained LLM with L layers,
the independent application of LoRA with rank
R leads to a total number of trainable parameters

L × R × (D + K) where {D,K} denote the di-
mensions of a frozen layer.

Method Number of Trainable Parameters
LoRA L×R× (D +K)
PG-Fixed h2 ×R× (D +K) + h1 × h2
PG-Trainable h2 ×R× (D +K) + h1 × h2 + L× h1
PG-Pos h2 ×R× (D +K) + h1 × h2 + L× h1 × 2

Table 1: Parameter size of LoRA and three PG vari-
ants for a pre-trained LLM with L layers where R
denotes the rank, while h1 and h2 denote the hidden
dimensions of the layers of a hypernetwork.

Let us first consider PG-Fixed where the layer
embeddings el are kept frozen for each layer of an
LLM. If the first layer of the model γ has dimen-
sions {h1, h2}, then its second layer would have
the dimensions {h2, R× (D+K)}.Therefore, the
number of trainable parameters becomes h1×h2+
h2 ×R× (D+K). For PG-Trainable, we have an
additional term of L×h1 as the layer embeddings el

are now updated during fine-tuning. Similarly, PG-
Pos has an extra term for the positional embeddings
pl. Even though the positional embeddings are kept
frozen, they are concatenated with the layer embed-
dings el, resulting in additional weights in the first
linear layer of the hypernetwork γ.

Table 1 provides two main insights into the com-
plexity of PG. First, the complexity of our approach
largely depends on the dimension h2 rather than h1.
Second, choosing h2 lower than L (i.e., h2 < L)
reduces the parameter size.

3 Experiments

We give a description of the setup used throughout
the experiments in Section 3.1, which is followed
by a motivating example for our approach (Section
3.2). We then explore the questions Q1 and Q2
(Sections 3.3 and 3.4, respectively), and present
ablation studies to illustrate the properties of our
proposed approach (Section 3.5).

3.1 Environmental Setup
All experiments are conducted using the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018) and Tiny Llama
with 1.1B parameters (Zhang et al., 2024), due to
its suitability to on-device applications.
Data: The labels are not publicly available for the
test sets of the GLUE benchmark. Therefore, fol-
lowing Chen et al. (2022), we use the development
set of each task as the test set, and split the training
set into training and development sets with a 9:1
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ratio (see Appendix C for a brief description of the
tasks and the number of samples for each split).
Methods: We compare PG with LoRA under var-
ious setups which are denoted by subscripts: AF

indicates that the parameter A is fixed during fine-
tuning. Learning the parameter A using PG is de-
noted by AH (BH for learning B using PG). Simi-
larly, AL refers to training the parameter A using
LoRA (BL for training B using LoRA).
Metrics: We report Matthews correlation coeffi-
cient for CoLA, Pearson correlation coefficient for
STS-B, and accuracy for the remaining tasks.
Implementation Details: As proposed by Hu et al.
(2022), we apply the PEFT parameters to query and
value projection matrices in self-attention modules
of the LLM, utilizing the AdamW optimizer in the
training phase. As proposed by Ding et al. (2023),
we fine-tune and evaluate the models 5 times with
randomly selected seeds, and report the average
of the results. The hypernetwork architecture is
composed of two fully connected linear layers with
bias terms and one non-linear activation function
(GeLU) used between these linear layers. This
architecture provides us a lightweight computation-
ally efficient model. Please see Appendix D for the
additional details.

3.2 Motivating Examples
Goal: This example tests our assumption on the
benefits of relying on low-dimensional parameter
manifolds for learning PEFT parameters. We test
this hypothesis by comparing LoRA and three PG
variants using the MRPC dataset with a rank of 8
and perform two analyses on two sample sets: (i)
each sample si ∈ S corresponds to the cth column
vector Al

c ∈ RD, ∀c ∈ [R], of the Al matrix at
the lth layer, ∀l ∈ [L] (to analyze the similarities
of projections), (ii) each sample si corresponds to
the Al ∈ RDR, ∀l ∈ [L] with the rank R = 8,
D = 2048 and L = 22 (to analyze the relation-
ships across the layers). The samples are visual-
ized on two-dimensional manifolds using t-SNE
in Figure 4 for LoRA and PG-Pos. The results for
different configurations are given in Appendix F.
Results: Figure 4 (a) shows that the vectors Al

c

obtained from LoRA are scattered across the lower-
dimensional manifold. Conversely, PG-Pos pro-
vides a clustering of these vectors. A closer in-
spection of the clusters reveal that they are ho-
mogeneous in that each cluster contains one vec-
tor per layer. Therefore, the cth cluster Cc corre-
sponds to cth component of the A parameters, i.e.,

Cc = {Al
c}Ll=1. This confirms that the A parame-

ters share similar characteristics across the layers.
Figure 4 (b) indicates that LoRA produces ran-
domly distributed layers, whereas PG-Pos captures
the sequential order among the layers. We also
observe that some layers can be grouped together,
which reflect their similarities within the group and
dissimilarities across the other groups.

(a) Analysis of S = {si}RL
i=1 where each sample si corre-

sponds to the cth column vector Al
c ∈ RD, ∀c ∈ [R] at

the lth layer, ∀l ∈ [L].

(b) Analysis for S = {si}Li=1 where each sample si cor-
responds to the Al ∈ RDR at the lth layer, ∀l ∈ [L].

Figure 4: A visualization of the A parameters pro-
vided by LoRA and PG-Pos on a two-dimensional
manifold. We obtain the parameters associated with
the query matrices using the MRPC dataset with the
rank R = 8, D = 2048 and L = 22. The parameters
are then mapped to a two-dimensional manifold using
t-SNE. a) shows that the A parameters share similarities
across the layers. b) shows that our method learns the
sequential order of the layers and their groupings.

3.3 Comparison with fixed A identified by a
random matrix

Goal: The goal of these experiments is to analyze
the impact of information-sharing among the A pa-
rameters (denoted by AHBL), as opposed to no ex-
plicit information-sharing while keeping A frozen
(denoted by AFBL). Note that we evaluate using
hypernetworks with two different sizes for AHBL

to make a fair comparison. Additionally, we report
the impact of fixing A when learning B using the
PG (denoted by AFBH ) for completeness.
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Method Config Rank h2
# Trainable GLUE

Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA AFBL

8

- 405,504 83.00±0.3 93.66±0.6 72.12±1.2 42.54±3.3 88.50±0.5 86.72±0.1 58.75±3.8 72.04±2.5 74.7
PG-Fixed

AFBH 20
387,492 79.09±0.4 92.57±0.4 69.67±2.2 26.65±8.2 85.08±0.7 85.03±0.2 56.95±2.8 51.04±7.7 68.2

PG-Trainable 387,932 80.49±0.3 92.92±0.5 69.79±2.3 27.29±7.9 85.86±0.8 85.54±0.2 57.22±2.7 52.63±7.6 69.0
PG-Pos 388,332 82.00±0.3 93.06±0.7 72.55±3.5 42.22±3.7 87.31±1.0 86.47±0.1 58.21±2.7 73.19±2.4 74.4
PG-Fixed

AHBL 1
471,061 86.11±0.2 94.63±0.3 77.55±0.9 55.25±1.1 91.06±0.3 88.32±0.1 74.30±2.2 84.78±1.3 81.5

PG-Trainable 471,501 86.13±0.3 94.61±0.3 77.60±1.0 55.26±1.1 91.06±0.3 88.33±0.1 74.30±2.0 84.80±1.3 81.5
PG-Pos 471,521 86.32±0.1 94.22±0.5 77.79±0.9 55.36±1.2 91.06±0.4 88.49±0.1 74.15±1.3 85.32±1.2 81.6
PG-Fixed

AHBL 20
1,094,052 86.72±0.1 94.54±0.3 77.40±1.1 55.50±2.1 91.26±0.4 88.53±0.1 62.64±2.7 85.42±1.2 80.2

PG-Trainable 1,094,492 86.76±0.1 94.47±0.2 77.45±2.3 55.71±2.2 91.25±0.4 88.54±0.1 62.82±2.6 85.55±1.2 80.3
PG-Pos 1,077,720 87.38±0.2 94.54±0.3 80.39±0.7 56.62±1.8 91.29±0.3 89.01±0.0 70.85±1.7 87.43±0.7 82.2
LoRA AFBL

16

- 811,008 83.09±0.4 94.04±0.3 73.35±1.7 36.63±6.8 87.80±0.9 86.74±0.1 58.48±3.6 72.15±3.8 74.0
PG-Fixed

AFBH 20
774,564 80.25±0.3 93.32±0.4 70.59±1.5 19.19±6.1 86.15±1.2 85.46±0.1 53.25±2.3 54.57±10.2 67.9

PG-Trainable 775,404 81.95±0.3 93.61±0.3 70.65±1.4 20.01±5.6 86.99±1.1 86.03±0.1 53.34±2.6 56.44±9.5 68.6
PG-Pos 775,404 83.11±0.3 93.29±0.4 72.61±1.4 35.96±6.6 88.44±0.8 86.99±0.0 55.32±2.4 75.76±3.4 73.9
PG-Fixed

AHBL 1
942,101 86.10±0.2 94.43±0.4 76.91±1.1 54.50±2.8 90.96±0.4 88.35±0.1 73.21±2.6 84.67±1.3 81.1

PG-Trainable 942,541 86.14±0.2 94.43±0.3 76.86±1.1 54.31±2.7 90.99±0.4 88.35±0.1 73.21±2.6 84.69±1.3 81.1
PG-Pos 942,561 86.48±0.2 94.29±0.5 77.99±0.7 55.38±1.4 91.07±0.3 88.52±0.1 73.57±2.4 85.14±1.2 81.6
PG-Fixed

AHBL 20
2,187,684 86.80±0.1 94.61±0.3 77.65±0.9 55.80±2.0 91.29±0.3 88.54±0.1 63.63±2.9 85.52±1.2 80.5

PG-Trainable 2,188,124 86.84±0.2 94.68±0.2 78.09±0.9 56.11±1.8 91.34±0.4 88.56±0.1 63.54±3.0 85.66±1.1 80.6
PG-Pos 2,188,524 87.54±0.2 94.40±0.2 80.00±0.4 56.88±1.4 91.26±0.4 89.06±0.0 70.58±1.4 87.55±0.6 82.2

Table 2: Performance of the methods when the A parameter is kept frozen during fine-tuning. The experiments
are based on all the GLUE datasets over 5 randomly selected seeds. We report Matthews correlation coefficient for
CoLA, Pearson correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations
given in the subscript. The best performance per rank is highlighted by bold.

Results: In Table 2, we obtain the best perfor-
mance using PG-Pos under the AHBL setting,
which consistently improves over the performance
of AFBL by a large margin. These results re-
flect the benefit of learning A parameters with
information-sharing. Conversely, fixing A leads to
similar results for PG and LoRA (with AFBL per-
forming better than AFBH on two (for R = 8) and
three tasks (for R = 16). With these findings, we
form the following answer to Q1:

A1: Learning PEFT parameters can help
improving the performance of LoRA when
A is characterized as a random projection
for both trained and learned B.

3.4 Comparison with trained A

Goal: We first compare our approach with LoRA
when A is trained, leading to two settings which
are: (i) ALBL where both parameters are learned
using LoRA and (ii) AHBL where AH is learned
using PG while BL is learned using LoRA. Second,
we explore the shareability of the layers by using
different number of hypernetworks for PG-Pos. In
addition to using 1 hypernetwork for all layers, we
create (i) 1 hypernetwork per layer and (ii) 1 hyper-
network per 11 layers (in this case, we group lower
layers and upper layers). Additionally, we compare
our method with two other PEFT baselines, namely
HiRA (Authors, 2024) and ReLoRA (Lialin et al.,
2023b).
Results: Table 3 shows that PG-Pos (1 hypernet-

work in total) consistently improves over the per-
formance of LoRA across all the tasks, except for
QNLI when the rank is 8 and for CoLA when the
rank is 16. Moreover, LoRA achieves better results
than the best performing PG variant only by 0.04%
on QNLI and by 0.14% on CoLA. The performance
gap is larger for MRPC, CoLA, RTE, and STS-B
than it is for the remaining datasets for R = 8. Sim-
ilarly, the RTE and STS-B tasks lead to a larger gap
than the other tasks when the rank is 16. For the
remaining tasks, the gap is usually in the favor of
PG-Pos. These differences can also be seen in the
convergence plots (e.g., see Figure 5 where PG-Pos
converges faster than LoRA on the MRPC dataset,
achieving higher final accuracy. The results for
additional datasets are provided in Appendix F).

The results also show that although the loss con-
verges to a lower value for LoRA for R = 16, PG
provides higher accuracy. Moreover, the accuracy
for the PG generated parameters continues increas-
ing for larger number of epochs. This observa-
tion suggests that the LoRA may cause over-fitting
where PG can resolve this over-fitting problem.

Our method outperforms HiRA and ReLoRA on
the GLUE benchmark. In particular, even when
the parameter size is doubled for HiRa, our method
still achieves performance comparable to that of
the PEFT baselines.

We obtain comparable results under different
number of hypernetworks. PG-Pos with 1 hy-
pernetwork per layer achieves the best perfor-
mance, which may partially be due to the increased
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Method Config Rank
# Layers # Trainable GLUE

per Hypernet Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA ALBL

8

- 1,126,400 87.09±0.2 94.52±0.5 79.66±1.3 55.68±3.1 91.33±0.1 88.72±0.1 70.40±2.8 85.45±0.8 81.6
ReLoRA sALBL - 1,126,401 86.23±0.1 93.90±0.3 78.82±1.1 57.41±1.8 91.31±0.2 88.41±0.1 65.13±4.3 84.46±1.0 80.7
HiRA CLDLW +ALBL - 2,252,800 86.69±0.1 94.31±0.4 80.24±0.9 57.24±0.8 91.40±0.1 88.85±0.1 70.54±2.7 86.35±0.8 81.9
PG-Pos AHBL 22 1,094,892 87.38±0.2 94.54±0.3 80.39±0.7 56.62±1.8 91.29±0.3 89.01±0.0 70.85±1.7 87.43±0.7 82.2
PG-Pos AHBL 11 1,784,280 86.94±0.3 93.90±0.2 81.13±1.1 56.92±1.3 91.13±0.1 89.13±0.1 69.17±3.0 87.41±0.7 82.0
PG-Pos AHBL 1 15,572,040 87.15±0.2 94.15±0.4 82.50±1.7 57.46±2.8 91.47±0.3 89.40±0.1 73.07±1.5 87.68±0.2 82.9
LoRA ALBL

16

- 2,252,800 86.91±0.2 94.24±0.3 79.75±1.8 57.02±1.7 91.11±0.2 88.70±0.1 68.32±1.8 85.81±1.6 81.5
ReLoRA sALBL - 2,252,801 87.00±0.1 94.31±0.1 79.95±1.9 58.05±1.1 91.35±0.2 88.93±0.1 71.91±1.3 86.46±0.2 82.2
HiRA CLDLW +ALBL - 4,505,600 87.03±0.1 94.35±0.2 80.00±1.7 58.08±1.3 91.37±0.1 88.96±0.1 72.06±1.9 86.38±1.0 82.2
PG-Pos AHBL 22 2,188,524 87.54±0.2 94.40±0.2 80.00±0.4 56.88±1.4 91.26±0.4 89.06±0.0 70.58±1.4 87.55±0.6 82.2
PG-Pos AHBL 11 3,566,040 86.93±0.3 94.04±0.4 80.98±1.2 56.47±1.7 91.18±0.2 89.19±0.1 69.68±3.5 87.41±0.8 82.0
PG-Pos AHBL 1 31,116,360 87.20±0.2 94.38±0.3 83.04±1.3 58.23±2.0 91.47±0.2 89.45±0.1 72.56±1.2 87.62±0.2 83.0

Table 3: Evaluation of the methods under different groupings of the layers We run the experiments on all the
GLUE datasets and average the results over 5 randomly selected seeds. We report Matthews correlation coefficient
for CoLA, Pearson correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard
deviations given in the subscript. The best performance per rank is highlighted by bold.

Figure 5: Convergence of the methods on the validation split of the MRPC dataset. The figures display the loss
and the corresponding performance metric at each epoch and the ranks of 8 and 16.

number of trainable parameters. Based on these
findings, we form the following answer to Q2:

A2: Learning the projection matrices A
with information shared across the layers
of an LLM improves the fine-tuning per-
formance. The performance gain can be
relatively smaller when one hypernetwork is
utilized per layer depending on the task.

3.5 Ablation Studies
We carry out ablation studies to: (i) show the im-
pact of combining LoRA and the PG methods using
different configurations, (ii) illustrate the impact
of hypernetwork size on the performance and (iii)
investigate whether the benefits of PG over LoRA
generalize to different LLM architectures and sizes.
Hypernetwork configurations: We design two ad-
ditional configurations to characterize the impact of
information-sharing across the B parameters (de-
noted by ALBH ) and both the A and B parameters
(denoted by AHBH ),

Table 4 displays a declining trend in the perfor-
mance in the order of AHBL, ALBH and AHBH .
Information-sharing is more effective on the A pa-
rameters than it is on the B parameters, especially
for the MRPC, CoLA, RTE and STS-B tasks. We
conjecture that projecting the inputs onto a lower-
dimensional manifold makes it difficult to incor-

porate the layer hierarchy into the B parameters
through information sharing. Moreover, AHBH

leads to the worst performance which might be due
to the difficulty of jointly learning the A and B pa-
rameters using the same hypernetwork. To address
this issue, one can use separate hypernetworks for
these parameters; however, we avoid doing so, not
to optimize on the test sets.

Lastly, we observe a trend in that the best per-
forming PG variant is PG-Pos, which is respec-
tively followed by PG-Trainable and PG-Fixed.
These results are perhaps not surprising as PG-Pos
is utilizing the positional embeddings in addition
to the layer embeddings.
Hypernetwork size: We conduct experiments un-
der varying hypernetwork sizes using the MRPC,
CoLA, RTE and STS-B datasets. Given that the
hypernetwork size largely depends on the dimen-
sion h2, we sweep across h2 ∈ {1, 5, 10, 20} while
keeping h1 = 20. The results given in Figure 6
indicate that using a higher number of trainable
parameters often improves the performance, with
exceptions for the RTE dataset which may be ex-
plained by overfitting. Please see Appendix E for
results on all of the datasets and ranks.
Generalization of the results: Here, we investi-
gate whether the results generalize to other LLM
architectures and sizes. Specifically, we compare
LoRA and PG using Pythia-1B, Llama2-7B, Pythia-
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Method Config Rank
# Trainable GLUE

Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

PG-Fixed
ALBH

8

1,108,388 85.72±0.2 93.81±0.3 75.54±1.9 50.64±2.4 90.05±0.2 88.10±0.1 61.91±2.9 81.44±1.3 78.4
AHBL 1,094,052 86.72±0.1 94.54±0.3 77.40±1.1 55.50±2.1 91.26±0.4 88.53±0.1 62.64±2.7 85.42±1.2 80.2
AHBH 1,076,040 84.69±0.2 93.12±0.5 72.55±2.6 45.50±5.0 88.47±0.3 87.08±0.2 52.98±1.8 77.69±2.2 75.3

PG-Trainable
ALBH 1,108,828 85.79±0.2 93.90±0.3 75.59±1.8 51.10±2.1 90.13±0.2 88.12±0.1 61.91±2.9 80.86±1.5 78.4
AHBL 1,094,492 86.76±0.1 94.47±0.2 77.45±1.1 55.71±2.2 91.25±0.4 88.54±0.1 62.82±2.6 85.55±1.2 80.3
AHBH 1,076,920 84.97±0.1 93.35±0.4 72.70±2.7 46.40±4.9 88.81±0.2 87.24±0.2 53.16±1.6 78.22±2.2 75.6

PG-Pos
ALBH 1,109,228 86.35±0.2 94.11±0.6 77.70±1.7 53.55±0.6 90.30±0.5 88.58±0.1 65.07±4.3 84.75±0.4 80.0
AHBL 1,094,892 87.38±0.2 94.54±0.3 80.39±0.7 56.62±1.8 91.29±0.3 89.01±0.0 70.85±1.7 87.43±0.7 82.2
AHBH 1,077,720 86.33±0.2 93.90±0.4 77.01±2.2 53.45±1.8 90.49±0.2 88.39±0.1 65.34±3.0 85.52±1.1 80.0

PG-Fixed
ALBH

16

2,216,356 86.22±0.2 94.11±0.5 74.71±1.2 51.30±2.0 90.44±0.2 88.26±0.1 58.21±2.1 82.98±0.9 78.3
AHBL 2,187,684 86.80±0.1 94.61±0.3 77.65±0.9 55.80±2.0 91.29±0.3 88.54±0.1 63.63±2.9 85.52±1.2 80.5
AHBH 2,151,240 84.85±0.1 93.30±0.3 72.06±3.1 46.42±4.5 88.83±0.3 87.20±0.1 53.25±0.7 78.17±2.4 75.5

PG-Trainable
ALBH 2,216,796 86.33±0.2 94.08±0.5 74.80±1.3 51.66±2.1 90.49±0.1 88.31±0.1 58.12±2.3 83.13±0.9 78.4
AHBL 2,188,124 86.84±0.2 94.68±0.2 78.09±0.6 56.11±1.8 91.34±0.4 88.56±0.1 63.54±3.0 85.66±1.1 80.6
AHBH 2,152,120 85.14±0.1 93.42±0.4 72.11±3.1 47.04±4.8 89.02±0.2 87.32±0.0 53.16±0.5 78.86±2.3 75.8

PG-Pos
ALBH 2,217,196 86.90±0.2 94.11±0.1 78.43±0.5 54.08±2.3 90.88±0.1 88.95±0.1 64.08±2.7 85.60±0.6 80.4
AHBL 2,188,524 87.54±0.2 94.40±0.2 80.00±0.4 56.88±1.4 91.26±0.4 89.06±0.0 70.58±1.4 87.55±0.6 82.2
AHBH 2,152,920 86.77±0.1 94.06±0.5 77.70±1.3 54.30±1.4 90.84±0.2 88.59±0.1 64.26±2.6 85.68±0.9 80.3

Table 4: Evaluation of the PG variants in terms of embeddings We run the methods on GLUE benchmark and
average the results over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson
correlation coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the
subscript. The best performance per rank is highlighted by bold.

Figure 6: Accuracy of the methods with respect to
the number of trainable parameters for the MRPC.

6.9B, Pythia-12B, Llama2-13B, and Gemma2-27B.
The results are presented in Appendix E. We ob-
serve that PG-Pos improves over the performance
of LoRA in all settings, except for the MRPC task
using Pythia-1B and Pythia-12B for both ranks and
Gemma-2-27B for rank 8.

4 Conclusion

Parameter-efficient fine-tuning (PEFT) methods
play a critical role in adapting large language mod-
els (LLMs) to new tasks. Existing PEFT methods
typically employ direct optimization on the PEFT
parameters during fine-tuning. In this paper, we
propose a new approach called Learning to Effi-
ciently Fine-tune (LEFT) where the focus is on
modelling the generative process of these parame-
ters. To this end, we develop the Parameter Gener-
ation (PG) method where we utilize hypernetworks

conditioned on the properties of a pre-trained LLM.
Our experimental analyses on the GLUE bench-
mark confirm the effectiveness of PG. Future work
includes its application to text-generation tasks and
its extension to data-dependent model adaptation.

5 Potential Risks

Since our work is based on large-language models
(LLMs), it has two main potential risks: environ-
mental risk and fairness considerations. Although
our work aims for parameter-efficient model fine-
tuning, training foundational LMs consumes huge
computational resources and electricity that can be
harmful for the environment. Additionally, fairness
for different concepts is not adequately considered
in our experiments.

6 Limitations

Despite the encouraging results demonstrated by
LEFT, there are certain limitations in our current
study that are worth acknowledging. This paper
only evaluates the effectiveness of PG on traditional
natural language processing tasks. However, recent
studies demonstrate that parameter-efficient meth-
ods could be applied to cross-modal or instruction-
tuning scenarios. We believe that our proposed
LEFT and PG methods can be used in more gen-
eral cross-modal and multi-modal tasks as well. In
addition, we used hypernetworks for implementing
the PG methods. Exploring other generative mod-
els, such as Bayesian Neural Networks and GANs
would be a valuable future direction.
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A Appendix

B Background

This section provides a brief description of LoRA.
Parameter efficient fine-tuning methods inject a

relatively small number of trainable parameters into
LLMs while keeping the original parameters frozen.
In particular, Low-Rank Adapdation (LoRA, Hu
et al. 2022) introduces two low-dimensional train-
able parameters, whose multiplication approxi-
mates the weight updates during fine-tuning.

Denoting the weights of a pre-trained LLM by
W0 ∈ RD×K , the forward pass of the vanilla LoRA
yields the output y as follows:

y = W0x+∆Wx = W0x+BAx, (3)

where B ∈ RD×R and A ∈ RR×K . In the vanilla
LoRA methods, these parameters are identified by
the trainable LoRA matrices. More recent works
suggest defining A by random matrices as dis-
cussed in the Introduction section. By choosing
a low value for R, LoRA reduces the number of
trainable parameters from D×K to R× (D+K).

We can apply LoRA to any subset of layers in
a deep neural network. For transformers-based
LLMs, LoRA can be applied to the self-attention
and the multilayer perceptron (MLP) modules.
However, Hu et al. (2022) show that applying
LoRA to the query and value projection param-
eters in the self-attention module gives the best
performance overall.

C Additional Information about the
Datasets

Table 5 presents a summary of the datasets in the
GLUE benchmark. Note that the MNLI dataset is
shared with the ONAC license, whereas the QNLI
dataset is licensed with CC-BY-SA 4. No license
specified for the remaining tasks.

D Implementation Details

Our experimental setup partly follows the evalua-
tion setup used by Ding et al. (2023). For instance,
we fine-tune and evaluate the methods 5 times with
randomly selected seeds, and report the average of
the results. We use the learning rate and the number
of training epochs reported in Table 6. Note that the
remaining hyper-parameters are the default param-
eters of the huggingface library used for AdamW
optimizer. Lastly, we also use standard initializa-
tion across models for the MRPC, RTE and STS-B
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Corpus Task # Train # Dev # Test # Labels Evaluation Metrics
Single Sentence Tasks

CoLA Grammatical Acceptability 7,695 856 1,043 2 Matthews corr. coef.
SST-2 Sentiment 60,614 6,735 872 2 Accuracy

Pairwise Sentences Tasks
MNLI Entailment 353,431 39,271 19,647 3 Accuracy
MRPC Semantic Equivalence 3,301 367 408 2 Accuracy
QNLI Question Answering 94,268 10,475 5,463 2 Accuracy
QQP Semantic Equivalence 327,461 36,385 40,430 2 Accuracy
RTE Entailment 2,241 249 277 2 Accuracy
STS-B Sentence Similarity 5,174 575 1,500 1 Pearson corr. coef.

Table 5: Summary of the GLUE benchmark datasets.

datasets rather than initializing using the model
checkpoint on the MNLI dataset. We use NVIDIA
A100-SXM4-80GB with 8 GPUs. Each fine-tuning
process utilizes all the GPUs, taking approximately
12 GB memory per GPU. We also initiate multiple
runs at the same time to make a better use of the
memory.

We implement a simple hypernetwork γ with
two linear layers using PyTorch. The weights
are initialized using Kaiming uniform distribution
for AHBH and AHBL, and zero initialization for
ALBH . The training is done using Transformers li-
brary. We utilize the evaluate library for calculating
the metrics.

E Ablation Studies

We conduct experiments using LLMs other than
Tiny Llama to investigate whether our method
brings similar improvements for larger models and
different model architectures. The results are pre-
sented in Table 7 for Pythia-1B, Table 8 for Llama2-
7B, Table 9 for Pythia-6.9B, Table 10 for Pythia-
12B, Table 11 for Llama2-13B, and Table 12 for
Gemma2-27B.

F Additional Results

Table 13 gives the average training times. We also
provide the convergence plots in Figure 9 for the
rank R = 8 and Figure 10 for the rank R = 16.
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MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
Weight Decay 0.01
β1 0.9
β2 0.999
Accumulation Steps 1
Warmup Ratio 0.0
Warmup Steps 0
LR Schedule Linear
Batch Size per GPU 32 8 8 8 32 32 8 8
# Epochs 5 10 10 10 10 5 10 10
Learning Rate 5e-5
Rank {8, 16}
α 16
Max Seq. Len. 128
Dropout Prob. 0.0
Random Seeds {100, 482, 584, 721, 770}

Table 6: The hyper-parameters used for employing Tiny-Llama on the GLUE benchmark.

Method Config Rank h2
# Trainable GLUE

Params MNLI SST-2 MRPC QQP RTE STS-B Avg.
LoRA AFBL

8
- 786,432 78.77±0.2 90.48±0.6 72.01±2.8 85.06±0.2 60.79±2.0 71.94±1.9 76.5

LoRA ALBL - 1,048,576 82.42±0.3 92.80±0.2 77.79±1.7 87.49±0.2 65.70±1.8 85.09±0.5 81.9
PG-Pos AHBL 14 1,032,822 82.70±0.2 92.96±0.4 76.81±1.1 87.77±0.1 66.21±1.5 86.49±0.4 82.2
LoRA AFBL

16
- 1,572,864 77.87±0.4 90.50±0.7 71.86±2.5 84.92±0.1 59.49±2.5 72.75±1.1 76.2

LoRA ALBL - 2,097,152 82.41±0.2 92.80±0.3 77.99±2.0 87.49±0.2 65.20±2.0 85.22±0.5 81.9
PG-Pos AHBL 14 2,065,014 82.74±0.1 92.91±0.4 76.52±1.2 87.81±0.1 66.50±2.0 86.47±0.4 84.3

Table 7: Performance of the methods using Pythia-1B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Method Config Rank h2
# Trainable GLUE

Params SST-2 MRPC CoLA RTE STS-B Avg.
LoRA AFBL

8
- 2,097,152 96.12±0.2 72.89±1.5 46.72±8.7 56.97±2.0 58.31±1.9 66.2

LoRA ALBL - 4,194,304 96.26±0.3 83.38±1.1 64.54±0.7 79.35±2.2 84.47±0.9 81.6
PG-Pos AHBL 28 4,000,188 96.31±0.3 83.87±1.6 66.95±2.1 80.36±3.5 87.95±1.9 83.0
LoRA AFBL

16
- 4,194,304 95.99±0.4 72.25±1.7 36.17±14.6 57.91±3.8 57.24±3.7 63.9

LoRA ALBL - 8,388,608 96.24±0.4 83.33±1.2 63.79±1.2 77.33±1.3 84.59±1.0 81.1
PG-Pos AHBL 28 7,997,884 96.26±0.2 84.26±1.3 67.74±1.3 79.71±3.4 88.21±1.6 83.2

Table 8: Performance of the methods using Llama2-7B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.
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Method Config Rank h2
# Trainable GLUE

Params MRPC CoLA RTE STS-B Avg.
LoRA AFBL

8
- 3,145,728 76.76±0.8 52.51±1.6 61.52±3.3 76.31±3.0 66.8

LoRA ALBL - 4,194,304 81.91±1.6 56.02±1.0 75.09±2.0 87.50±0.6 75.1
PG-Pos AHBL 28 4,098,492 82.30±1.4 58.39±0.9 77.98±3.5 89.19±0.3 77.0
LoRA AFBL

16
- 6,291,456 75.98±0.6 52.97±0.7 61.81±3.1 76.25±2.8 66.8

LoRA ALBL - 8,388,608 82.21±0.8 56.58±1.2 74.51±2.0 87.51±0.7 75.2
PG-Pos AHBL 28 8,194,492 82.25±1.3 57.55±1.1 76.75±3.3 89.07±0.5 76.4

Table 9: Performance of the methods using Pythia-6.9B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Method Config Rank h2
# Trainable GLUE

Params MRPC CoLA RTE STS-B Avg.
LoRA AFBL

8
- 4,423,680 67.30±3.0 51.89±2.3 58.12±3.3 66.67±4.6 61.0

LoRA ALBL - 5,898,240 70.88±2.5 60.70±1.7 68.09±2.9 79.74±4.2 69.9
PG-Pos AHBL 32 5,778,592 69.17±2.3 62.85±2.3 70.83±2.0 87.01±0.9 72.5
LoRA AFBL

16
- 8,847,360 67.45±1.0 51.01±2.2 57.33±3.1 65.86±3.5 60.4

LoRA ALBL - 11,796,480 69.26±2.5 60.61±2.0 66.21±2.6 83.01±2.9 69.8
PG-Pos AHBL 32 11,553,952 70.39±4.9 62.69±1.8 71.34±2.5 86.81±1.0 72.8

Table 10: Performance of the methods using Pythia-12B. The experiments are based on all the GLUE datasets over
5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Method Config Rank h2
# Trainable GLUE

Params MRPC CoLA RTE STS-B Avg.
LoRA AFBL

8
- 3,276,800 69.07±0.9 37.30±5.2 51.84±1.6 30.43±11.7 47.2

LoRA ALBL - 6,553,600 78.58±0.8 67.06±1.1 58.27±1.9 86.09±0.9 72.5
PG-Pos AHBL 36 6,311,908 82.99±0.6 67.53±1.1 62.74±2.8 88.88±1.1 75.5
LoRA AFBL

16
- 6,553,600 68.68±1.1 34.87±10.3 53.00±2.3 31.98±9.5 47.1

LoRA ALBL - 13,107,200 80.83±1.2 67.29±0.7 60.14±3.6 87.08±0.7 73.8
PG-Pos AHBL 36 12,619,748 83.48±1.1 68.56±0.6 62.60±3.2 88.66±0.9 75.8

Table 11: Performance of the methods using Llama2-13B. The experiments are based on all the GLUE datasets
over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation coefficient
for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The best
performance per rank is highlighted by bold.

Method Config Rank h2
# Trainable GLUE

Params SST-2 MRPC CoLA QNLI RTE STS-B Avg.
LoRA AFBL

8
- 2,260,992 96.95±0.2 78.53±1.0 64.18±1.1 95.32±0.1 70.11±1.7 75.90±1.9 80.1

LoRA ALBL - 5,652,480 97.09±0.2 86.32±1.2 69.04±1.7 96.10±0.1 84.12±0.5 86.53±1.2 86.5
PG-Pos AHBL 40 5,288,920 97.18±0.1 86.03±1.3 69.83±1.6 96.22±0.1 86.57±1.9 87.66±1.3 87.2
LoRA AFBL

16
- 4,521,984 96.86±0.2 78.77±0.9 63.91±1.6 95.29±0.1 70.40±2.1 75.97±2.1 80.2

LoRA ALBL - 11,304,960 97.09±0.2 85.54±1.1 68.60±1.8 96.07±0.1 83.90±1.5 86.74±1.0 86.3
PG-Pos AHBL 40 10,572,760 97.11±0.2 86.42±0.8 70.39±1.5 96.18±0.1 85.99±2.6 87.68±0.8 87.3

Table 12: Performance of the methods using Gemma2-27B-it. The experiments are based on all the GLUE
datasets over 5 randomly selected seeds. We report Matthews correlation coefficient for CoLA, Pearson correlation
coefficient for STS-B, and accuracy for the remaining tasks, with the standard deviations given in the subscript. The
best performance per rank is highlighted by bold.
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Figure 7: Performance of the methods with respect to the number of trainable parameters We conduct
these experiments using the MRPC, CoLA, RTE and STS-B datasets. Here, we denote the hidden dimensions of
hypernetworks by (h1, h2).
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(a) Analysis of S = {si}RL
i=1 where each sample si corresponds to the cth column vector Al

c ∈ RD,∀c ∈ [R] at the lth layer,
∀l ∈ [L].

(b) Analysis for S = {si}Li=1 where each sample si corresponds to the Al ∈ RDR at the lth layer, ∀l ∈ [L].

Figure 8: A visualization of the A parameters provided by LoRA, PG-Fixed, PG-Trainable and PG-Pos on a
two-dimensional manifold. We obtain the parameters associated with the query matrices using the MRPC dataset
with the rank R = 8, D = 2048 and L = 22. The parameters are then mapped to a two-dimensional manifold using
t-SNE. a) shows that the A parameters share similarities across the layers. b) shows that our method learns the
sequential order of the layers and their groupings.

Method Config Rank
# Trainable GLUE

Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA ALBL

8

1,126,400 2.12 0.65 0.08 0.15 0.98 1.91 0.08 0.11 0.76

PG-Fixed
ALBH 1,108,388 1.93 0.57 0.08 0.15 0.87 1.78 0.08 0.11 0.70
AHBL 1,094,052 2.54 0.78 0.10 0.20 1.18 2.31 0.10 0.15 0.92
AHBH 1,076,040 1.89 0.58 0.11 0.19 0.88 1.77 0.08 0.14 0.70

PG-Trainable
ALBH 1,108,828 1.93 0.57 0.08 0.15 0.88 1.78 0.08 0.11 0.70
AHBL 1,094,492 2.53 0.78 0.10 0.20 1.18 2.32 0.10 0.15 0.92
AHBH 1,076,920 1.90 0.58 0.11 0.20 0.88 1.79 0.08 0.15 0.71

PG-Pos
ALBH 1,109,228 1.92 0.57 0.08 0.15 0.88 1.78 0.08 0.11 0.70
AHBL 1,094,892 2.54 0.78 0.10 0.20 1.18 2.32 0.10 0.15 0.92
AHBH 1,077,720 1.90 0.58 0.11 0.20 0.88 1.79 0.08 0.14 0.71

LoRA ALBL

16

2,252,800 2.09 0.65 0.09 0.15 0.98 1.93 0.08 0.11 0.76

PG-Fixed
ALBH 2,216,356 1.93 0.58 0.08 0.15 0.90 1.80 0.08 0.11 0.70
AHBL 2,187,684 2.52 0.79 0.11 0.20 1.18 2.34 0.10 0.15 0.92
AHBH 2,151,240 1.92 0.58 0.11 0.20 0.90 1.80 0.08 0.14 0.72

PG-Trainable
ALBH 2,216,796 1.93 0.58 0.08 0.15 0.90 1.81 0.08 0.11 0.70
AHBL 2,188,124 2.52 0.79 0.11 0.20 1.19 2.34 0.10 0.15 0.92
AHBH 2,152,120 1.92 0.58 0.11 0.20 0.90 1.80 0.08 0.15 0.72

PG-Pos
ALBH 2,217,196 1.94 0.58 0.08 0.15 0.90 1.81 0.08 0.11 0.71
AHBL 2,188,524 2.52 0.79 0.11 0.20 1.19 2.34 0.10 0.15 0.92
AHBH 2,152,920 1.93 0.58 0.11 0.20 0.90 1.79 0.08 0.15 0.72

Table 13: Average training runtimes (in hours) We run the experiments on all the GLUE datasets and average the
results over 5 randomly selected seeds.
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Figure 9: Convergence of the methods on the validation datasets The figures display the loss and the correspond-
ing performance metric at each epoch for all the GLUE datasets and a ranks of 8.

15835



Figure 10: Convergence of the methods on the validation datasets The figures display the loss and the corre-
sponding performance metric at each epoch for all the GLUE datasets and a rank of 16.
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