
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 14825–14838
November 12-16, 2024 ©2024 Association for Computational Linguistics

Unlocking Black-Box Prompt Tuning Efficiency via Zeroth-Order
Optimization

Heshen Zhan12, Congliang Chen1, Tian Ding2, Ziniu Li1, Ruoyu Sun†12
1The Chinese University of Hong Kong, Shenzhen, China

2Shenzhen International Center For Industrial And Applied Mathematics,
Shenzhen Research Institute of Big Data

{heshenzhan,congliangchen,ziniuli}@link.cuhk.edu.cn
dingtian@sribd.cn, sunruoyu@cuhk.edu.cn

Abstract

Prompt optimization emerges as an important
technique for adapting Large Language Mod-
els (LLMs) to specific tasks. Unfortunately,
LLM proprietors often limit access to mod-
els’ internal weights, confining users to infer-
ence API services. This restriction poses a
significant challenge for prompt optimization,
as conventional optimization-based algorithms
rely heavily on gradient information, which is
unavailable via inference APIs. Addressing
this challenge, this paper presents the Zeroth-
Order Tuning (ZOT) approach, which enables
efficient prompt tuning solely via inference
APIs. ZOT adopts the zeroth-order optimiza-
tion framework, utilizing finite differences to
approximate gradient information. We further
incorporate ZOT with gradient clipping and
momentum techniques to enhance the tuning
effectiveness. Experimental results show that
ZOT outperforms existing black-box prompt
tuning methods in terms of both task-specific
performance and convergence speed. Further-
more, we provide a theoretical explanation for
the unexpectedly strong performance of zeroth-
order methods on LLM prompt tuning. By
introducing the concept of effective dimension,
we establish a strong connection between the
inherently low effective dimension of prompt
spaces and the superior convergence speed of
zeroth-order methods. Our code is available at
https://github.com/ZhanHeshen/ZOT.

1 Introduction

Prompts serve as essential tools for adapting Large
Language Models (LLMs) to specific downstream
tasks and aligning them with human objectives
(Gao et al., 2020; Liu et al., 2023b; Schick and
Schütze, 2020b; Li and Liang, 2021; Liu et al.,
2023a). Research has demonstrated that carefully
crafted prompts can significantly boost LLM perfor-
mance across various applications, such as facilitat-
ing creative writing (Dang et al., 2023), streamlin-
ing question-answering processes (Ye et al., 2024),

and improving fairness by minimizing bias in con-
tent generation (Ma et al., 2023). A notable exam-
ple is the "Let’s think step by step" prompt (Ko-
jima et al., 2022), which enabled InstructionGPT
(Ouyang et al., 2022) to achieve an impressive
accuracy increase of over 30% on the GSM8K
task (Cobbe et al., 2021). Despite these advances,
creating effective prompts manually may involve
extensive trial and error and demand specialized
knowledge. These challenges has steered recent
studies towards the development of prompt tuning
algorithms, aiming at automating the discovery of
effective prompts (Sun et al., 2022b; Diao et al.,
2022).

Driven by commercial and security concerns,
LLM owners often restrict access to the models’ un-
derlying weights, offering services solely through
inference APIs (Brown et al., 2020). In such sce-
narios, LLMs are perceived as “black boxes” by
users. This poses a crucial challenge to prompt
tuning because gradient information, which is a
cornerstone for standard optimization algorithms,
is no longer accessible.

Black-Box Tuning (BBT) method (Sun et al.,
2022b) is among the first to perform automatic
prompt tuning by only accessing the LLM in-
ference API. Specifically, BBT adopts a black-
box optimization algorithm termed CMA-ES (Co-
variance Matrix Adaptation Evolution Strategy)
(Hansen, 2016) to refine the continuous embed-
ding of prompts, known as “soft prompts”. As a
population-based algorithm, CMA-ES samples a
considerable group of candidate solutions in each
iteration. This process can lead to a significant
increase in API calls, thereby incurring substan-
tial time and financial costs. Furthermore, despite
CMA-ES’s empirical efficacy across diverse appli-
cations, its theoretical convergence properties have
yet to be justified. These limitations underscore the
potential for future research on more efficient and
theoretically grounded black-box tuning methods.
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This paper harnesses the potential of zeroth-
order optimization methods to enhance black-box
prompt tuning. Zeroth-order methods stand as
the gradient-free analogs to first-order methods
like gradient descent and stochastic gradient de-
scent. By approximating gradients through finite
differences, these methods necessitate only func-
tion value evaluations, circumventing the need for
direct gradient access. In this work, we intro-
duce Zeroth-Order Tuning(ZOT). ZOT extends
the zeroth-order stochastic gradient descent (ZO-
SGD) framework by integrating gradient clipping
(Bengio et al., 2017) and momentum techniques
(Polyak, 1964; Nesterov, 1983) to improve the algo-
rithm performance. To counteract potential dimin-
ishment in momentum at the initial stage, we apply
a bias correction mechanism. In the experiments,
ZOT achieves over 2x speed-up compared to BBT
with comparable or even better performance across
various prompt tuning tasks.

The success of zeroth-order methods in prompt
tuning presents a notable surprise, offering a com-
pelling deviation from established optimization
theory. Although Nesterov’s seminal work (Nes-
terov and Spokoiny, 2017) theoretically proved that
zeroth-order gradient descent can converge, it also
highlighted a significant caveat: their theoretical
convergence speed is expected to be d times worse
than that of standard gradient descent, where d
is the dimensionality of the optimization problem.
This slowdown effect, characterized by the num-
ber of samples evaluated, suggests a seemingly
prohibitive inefficiency of zeroth-order methods
in high-dimensional problems, including the LLM
prompt tuning problem.

Upon revisiting and refining the proof in Nes-
terov and Spokoiny (2017), we uncover that the
anticipated slowdown of zeroth-order methods can
be significantly mitigated if the sum of the eigen-
value of the Hessian matrix remains small. This
observation leads us to introduce the concept of
effective dimension De, defined by

De =
supx∈Rd

∑
i λi(∇2f(x))

L
, (1)

where f denotes the loss function, λi(∇2f(·)) is
the i-th largest eigenvalue of ∇2f(·), L is the Lips-
chitz constant of ∇f . Our analysis reveals that the
reduction in the convergence speed of zeroth-order
gradient descent is more accurately characterized
by De, rather than d. This finding recalibrates the
expected efficiency of zeroth-order methods and

highlights a scenario where zeroth-order methods
can approach the speed of their first-order coun-
terparts. Experiment results further validate our
theoretical insight, showing that the effective di-
mension of LLM prompt spaces is notably smaller
than the ambient dimension.

Our contributions are summarized as follows:

• Zeroth-Order Approach: We introduce ZOT,
a zeroth-order algorithm tailored for the ef-
ficiently tuning LLM prompts. ZOT oper-
ates by only leveraging loss function values,
thereby circumventing the need for direct
gradient information. This method enables
prompt tuning in constrained scenarios, such
as the case where the access to LLMs is re-
stricted to inference APIs.

• Empirical Advances: Our experimental re-
sults show that ZOT achieves at least a 2x
training speed-up compared to existing black-
box tuning methods. Across 9 datasets, we
also report an average accuracy improvement
of 3.23%. These results underscore the practi-
cal effectiveness of our method.

• Theoretical Insights: We provide a theo-
retical explanation for the success of zeroth-
order methods in LLM prompt tuning by in-
troducing the concept of effective dimension.
We show that the anticipated inefficiencies of
zeroth-order methods can be significantly mit-
igated if the optimization problem exhibits a
low effective dimension. Our empirical inves-
tigation further demonstrates a strong corre-
lation between the characteristic of low effec-
tive dimension and the enhanced performance
achieved by zeroth-order methods

2 Problem Formulation

In this section, we provide the necessary back-
ground on prompt tuning and zeroth-order opti-
mization, followed by the introduction of our pro-
posed algorithm, ZOT.

2.1 Prompt Tuning
Prompting is a technique designed to augment in-
put data with carefully crafted phrases or vectors,
thereby enabling LLMs to more effectively tackle
downstream tasks. For training data (Xin, Y ), a
language model processes the text input Xin along-
side a prompt x, subsequently producing logits over
the label Y . Using these logits, we compute the
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loss value. The whole process can be formalized
as the optimization problem:

x∗ = argmin
x

f(x; (Xin, Y )) (2)

where f denotes the composition of model infer-
ence and loss computation.

In hard prompt tuning, the prompt x is a discrete
word or character. The input data is concatenated
with x, and then the model performs inference with
the new input. In soft prompt tuning, the input
data is first mapped into an embedding vector. The
prompt x, also represented as a vector, is either
concatenated or added to the embedding of the
input data. The model then performs inference
with the new embedding vector.

2.2 Zeroth-Order Optimization Methods

Zeroth-order optimization methods involve gradi-
ent estimation using query feedback. A commonly
used gradient estimator is given below.

Definition 2.1 (Randomized Gradient Estimation).
For a differentiable function f , its gradient can be
estimated with two stochastic queries:

∇̂f(x) =
f(x+ ρz)− f(x− ρz)

2ρ
z, (3)

where z ∼ N (0, Id) is a random vector, ρ > 0 is a
small number.

Remark 2.2. The gradient estimator, as defined in
Eq. (3) relies on the random variable z, rendering it
also randomized. Research by (Duchi et al., 2015)
and (Nesterov and Spokoiny, 2017) have showed
that E[∇̂f(x)] = ∇f(x)+o(ρ). Here the term o(ρ)
is the gradient estimation error, diminishing to 0
as ρ goes to 0. Consequently, the gradient can be
approximated well with a sufficiently small ρ and
enough estimations. This context also motivates the
concept of the n-points estimator, which averages
the outcomes from n-times stochastic estimation
in Eq. (3).

With the gradient estimator in Eq. (3), one can
easily apply the idea of gradient descent for opti-
mization. We outline this idea in Algorithm 2.

2.3 ZOT: Zeroth-Order Tuning

The direct application of ZO-SGD in prompt tuning
could fail due to the variance issue associated with
stochastic gradients. To address this challenge, we
propose integrating two techniques: gradient norm

Algorithm 1 Randomized_Grad
Input: loss function f , prompt x, the number
of points for gradient estimation n, perturbation
scale ρ, data D
for i = 1 to n

sample zi ∼ N (0, Id)
fi,1 = f(x+ ρzi;D)
fi,2 = f(x− ρzi;D)

∇̃fi =
fi,1−fi,2

2ρ zi
end for
∇̂f =

∑n
i=1 ∇̃fi
n

return ∇̂f

Algorithm 2 ZO-SGD: Zeroth-Order Stochastic
Gradient Descent.

Input: loss function f , learning rate γ, total
iterations T , and the number points for gradient
estimation n, full data D
Initialization set soft prompt x0 = 0
for t = 1 to T do

Sample mini batch of data B ⊂ D
gt−1 = Randomized_Grad(f , xt−1, n, ρ, B)
xt = xt−1 − γgt−1

end for
return xT

clipping (Zhang et al., 2019), and Polyak’s momen-
tum method (Polyak, 1964). Gradient norm clip-
ping effectively mitigates the impact of stochastic
noise, while Polyak’s momentum strategy enhances
gradient estimation by employing an exponential
moving average. Our experiments in the next sec-
tion will show that these two techniques are essen-
tial for achieving good performance. The resulting
algorithm named ZOT (Zeroth-Order Tuning) is
presented in Algorithm 3.

3 Experiments

3.1 Setup
Dataset We run experiments across a variety of
text processing tasks, including sentiment analy-
sis (SST-2 (Socher et al., 2013) and Yelp polarity
(Zhang et al., 2015)), content classification (AG’s
News (Zhang et al., 2015)), entity classification
(DBPedia (Zhang et al., 2015)), paraphrase identifi-
cation (MRPC (Dolan and Brockett, 2005)), natural
language inference (SNLI (Bowman et al., 2015)
and RTE (Wang et al., 2018)), question answering
(COPA (Roemmele et al., 2011)) and linguistic ac-
ceptability (CoLA (Warstadt et al., 2018)). Among
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Algorithm 3 ZOT: Zeroth-Order Tuning.

Input: loss function f , learning rate γ, total
iterations T , and the number points for gradi-
ent estimation n, perturbation scale ρ, clipping
threshold c, momentum factor β, full data D
Initialization set soft prompt x0 = 0, momen-
tum m0 = 0
for t = 1 to T do

Sample mini batch of data B ⊂ D
gt−1 = Randomized_Grad(f , xt−1, n, ρ, B)
gt−1 = min(1, c

||gt−1||)gt−1

mt = βmt−1 + (1− β)gt−1

m̂t =
mt

1−βt

xt = xt−1 − γm̂t

end for
return xT

them, SST-2, Yelp Polarity, AG’s News, DBPe-
dia and CoLA are single sentence dataset, MRPC,
SNLI, RTE and COPA are sentence pair dataset.

Backbone Model We implement our method-
ology on an encoder-only model and two
decoder-only models. For the encoder-only model,
we use RoBERTaLARGE (Liu et al., 2019), which
has about 355 million parameters and demonstrates
superior performance and robustness in a wide
range of NLP tasks, such as text classification,
sentiment analysis, and named entity recognition.
For the decoder-only models, we use GPT2LARGE
(Liu et al., 2019) and LLaMA-7B (Touvron
et al., 2023). GPT2LARGE has about 774 million
parameters, renowned for its deep understanding
of language context and generation capabilities.
LLaMA-7B boasting about 7 billion parameters, is
designed to offer a compelling balance between
model size and performance and represents the
cutting edge in language model efficiency and
scalability. For every model, we only access the
word embedding, and add soft prompt to the word
embedding, leaving the rest structure as a total
black-box.

Few-shot Setting In reality, the accessible data
may often be scarce. Leveraging the inherent few-
shot learning capabilities of the pre-trained foun-
dation model (Brown et al., 2020), we adopt a set-
ting tailored for a few-shot scenario. We follow
Zhang et al. (2020); Gao et al. (2020); Gu et al.
(2021), selecting a constrained number of exam-
ples from each category within the datasets. Specif-

ically, we randomly select k samples from each
class to form the k-shot training set, denoted as
Dtrain. The parameter k represents the number of
instances per class, effectively limiting the scope
of our training data. We construct a development
set Ddev by randomly selecting k samples for each
class from the remaining dataset. As suggested
by Perez et al. (2021), let |Dtrain| = |Ddev|. For
evaluation purposes, the original development set
is utilized as the test set. In cases where a de-
velopment set is not available, the standard test
set is used, ensuring a significantly larger test set
(|Dtest| ≫ |Dtrain| = |Ddev|). For systematically
evaluating few-shot performance, we randomly
sample 3 different splits of Dtrain and Ddev and
measure the average performance of these 3 splits.

Hyper-parameter We adopt a batch size of 64
for training; however, if the training dataset com-
prises fewer than 64 samples, we utilize the entire
dataset. Consistent with most datasets, the prompt
is trained for 2000 steps to achieve optimal perfor-
mance. Specifically for DBPedia, in line with rec-
ommendations from (Sun et al., 2024), we extend
the training to 8000 steps to ensure convergence.
The perturbation scale of zeroth-order gradient is
searched within {0.1, 0.2}. We do the grid search
of learning rate on {0.01, 0.03, 0.1, 0.3, 1, 3},
clipping rate on {8, 10, 15, 50, 100}, momentum
decay rate on {0.8, 0.9, 0.93, 0.96}. We test the
momentum on both settings: with bias correction
and without bias correction. We use Cosine An-
nealing scheduler with minimal learning rate equal
to a ratio times learning rate. We test the ratio by
grid search on {0.1, 0.2, 0.3, 0.5}. Without loss of
generality, we set the number of soft prompts to
50. The statistics of all the hyper-parameter can be
summarized in Table 1.

Hyper-parameter Default
# Training steps 2000
Batch size 64
Learning rate {0.01, 0.03, 0.1, 0.3, 1, 3}
Clipping rate {8, 10, 15, 50, 100}
Momentum decay rate {0, 0.8, 0.9, 0.93, 0.96}
Scheduler eta_min lr*{0.1, 0.2, 0.3, 0.5, 1}

Table 1: Default configuration of hyper-parameter.

3.2 Results
Comparison of Performance Table 2 presents
the performance on the RoBERTaLARGE and
GPT2LARGE. Compared to manual prompting,
ZOT achieves significant improvements across all
9 datasets, demonstrating its ability of adapting
model to specific tasks. Compared to BBT, which
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tunes the soft prompt using CMA-ES, ZOT demon-
strates better performance on 7 out of 9 datasets.

For LLaMA-7B, we choose 4 different kinds of
tasks: sentiment analysis (SST-2 and Yelp P.), con-
tent classification (AG’s News), paraphrase iden-
tification (MRPC) and natural language inference
(SNLI and RTE). Table 3 displays the results on
LLaMA-7B, which shows great improvements in
the cutting edge model. ZOT can make more im-
provements than BBT. ZOT gains substantial im-
provement compared to manual prompts and BBT
on RoBERTaLARGE, GPT2LARGE and LLaMA-7B.

Comparison of Efficiency We evaluate the
training efficiency of ZOT versus BBT on the
RoBERTaLARGE model, examining their perfor-
mance across datasets with varying numbers of
classes. Specifically, SST-2 comprises two classes,
AG’s News consists of four classes, and DBPedia
includes fourteen classes. For each dataset, we se-
lect k samples from each class and perform updates
for an identical number of total steps. As illustrated
in Table 4, ZOT does not only outperform BBT in
terms of speed but also shows a greater advantage
as the number of classes increases. For the SST-2
dataset, ZOT is at least twice as fast as BBT, while
for DBPedia, the improvement is even more pro-
nounced, with ZOT being at least four times faster
than BBT.

BBT employs projection to map high-
dimensional soft prompts into a lower-dimensional
space, aiming to reduce the complexity of the
optimization problem. This dimensionality
reduction can aid algorithms like CMA-ES, which
may struggle with the original high-dimensional
space of soft prompts but potentially compromises
the representational capacity of the soft prompts.
In contrast, our method bypasses the need for
projection by directly optimizing the soft prompts.
This approach not only preserves the full repre-
sentational power of the soft prompts but also
ensures efficiency, thereby resulting in superior
performance.

3.3 Ablation Study

In this section, we test the contribution of learn-
ing rate, clipping, momentum, bias, and scheduler.
To explore the effect of each mechanism while
avoiding the influence of hyper-parameters, we test
the performance by running the grid search on the
default configuration suggested by Table 1. The

results are shown in Table 5. We can see that ZOT
can achieve better results.

4 Discussion

In this section, we aim to explain why the zeroth-
order method is effective in prompt tuning. In
particular, we focus on how it can mitigate the
curse of dimensionality.

4.1 Effective Dimension

The classical optimization theory suggests that
the convergence rate of zeroth-order optimization
methods depends on the dimension of the opti-
mization variable (Duchi et al., 2015; Nesterov and
Spokoiny, 2017). In particular, the convergence be-
comes slow for high-dimensional problems. This
is the famous curse of dimensionality. To verify
the problem of the curse of dimensionality, we in-
troduce a new computable concept called effective
dimension:

Definition 4.1 (Effective Dimension). The effec-
tive dimension of f is

De(f) =
supx∈e

∑
i λi(∇2f(x))

L
, (4)

where e is the variable space, λi are the i-th largest
eigenvalue of the Hessian matrix ∇2f(x), and L is
the Lipschitz continuous parameter, i.e.,

||∇f(x)−∇f(y)|| ≤ L||x−y||,∀x, y ∈ Rd. (5)

We will later argue that the convergence rate of
zero-order optimization actually depends on the
effective dimension, which could be much smaller
than the original problem dimension. As such, we
can explain the observed superior results in the
previous section.

The eigenvalues of Hessian matrix can measure
the local changes of gradients. Therefore, if De is
large, there exists at least one region, gradient will
change in plenty of dimensions; if De is small, the
gradient only change in a small number of dimen-
sion among the whole space. Hence, De charac-
terizes the geometric properties of f . A small De

means a good loss landscape, which can bring ben-
efits to optimization. Motivated by (Malladi et al.,
2024), we prove the convergence of zeroth-order
gradient descent with effective dimension and show
that our bound is tighter than that of (Malladi et al.,
2024).
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Method SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE COPA CoLA Avg.
acc acc acc acc F1 acc acc acc acc

Results on RoBERTaLARGE

Manual Prompt 79.82 89.65 76.96 41.33 67.40 31.11 51.62 44.00 30.87 56.97
BBT 89.560.25 91.500.16 81.510.79 87.801.53 61.564.34 46.581.33 52.592.21 45.002.65 46.567.07 66.96
ZOT 88.591.90 91.760.76 83.630.01 90.250.44 79.110.03 43.704.12 53.191.92 52.333.06 48.965.43 70.17

Results on GPT2LARGE

Manual Prompt 51.03 68.44 72.00 22.75 5.41 33.70 46.21 45.00 30.87 41.71
BBT 75.531.98 84.553.48 77.631.89 73.519.56 73.483.87 43.253.44 51.861.11 46.001.73 54.756.07 64.51
ZOT 78.780.75 87.312.55 78.241.52 82.292.51 71.320.02 41.563.23 54.273.89 54.674.16 65.451.44 68.21

Table 2: Comparison of results on RoBERTaLARGE and GPT2LARGE. We report the mean and standard deviation of
performance on 3 data splits. All experiments are on the 16-shot setting. We see that in both RoBERTaLARGE and
GPT2LARGE, ZOT makes improvements on average across seven datasets.

Method SST-2 Yelp P. AG’s News MRPC SNLI RTE Avg.
acc acc acc f1 acc acc

Results on LLaMA-7B
Manual Prompt 52.18 55.11 27.71 15.58 32.23 48.38 38.53

BBT 53.782.76 74.313.32 60.3818.59 65.8112.10 34.800.83 49.462.53 56.42
ZOT 69.424.81 85.143.26 74.222.15 69.171.84 32.500.50 50.424.31 63.48

Table 3: Experiments on LLaMA-7B. We test the performance on 4 different kinds of tasks: sentiment analysis
(SST-2 and Yelp P.), content classification (AG’s News), paraphrase identification (MRPC) and natural language
inference (SNLI and RTE).

SST-2 AG’s News DBPedia
(2 classes) (4 classes) (14 classes)

BBT 19.83 mins 59.53 mins 602.49 mins
ZOT 8.96 mins 23.84 mins 142.51 mins

Table 4: Training time comparison for black-box
method. We select datasets have different number of
classes: 2 classes (SST-2), 4 classes (AG’s News) and
14 classes (DBPedia).

SST-2 AG’s News RTE
(acc) (acc) (acc)

ZO-SGD 85.820.26 82.471.51 51.860.42
ZO-SGD(Clipping) 85.890.12 83.340.01 51.870.00
ZO-SGD(Mom) 85.930.02 83.520.01 52.350.02
ZO-SGD(Mom+bias) 87.000.01 83.630.01 51.870.00
ZO-SGD(Scheduler) 85.780.22 82.300.01 52.710.01
ZOT 88.591.90 83.630.01 53.191.92

Table 5: Results of ablation study on clipping, momen-
tum, bias and scheduler. Mom: momentum without bias
correction; Mom+bias: momentum with bias correction;
Scheduler: cosine annealing learning rate scheduler

4.2 Convergent Order Determined by
Effective Dimension

We first introduce PL-Inequality (Polyak, 1963),
which is usually considered in the optimization
theory to prove the global convergence.

Definition 4.2 (PL-Inequality). Let f∗ =
minx f(x), we say a function f satisfies PL-
Inequality if the following holds for some µ > 0:

1

2
||∇f(x)||2 ≥ µ(f(x)− f∗). (6)

Now we show that under the PL-Inequality, the

Zeroth-Order gradient descent can converge with
an order proportional to De:

Theorem 4.3 (Convergence). Let f satisfies PL-
Inequality with µ < L, and {xt}∞t=1 is generated by
ZO-SGD. Then for a learning rate γ = n

(De+n+1)L ,

e = Rd, after t steps we will have:

E[f(xt)]−f∗ ≤ (1− n

De + n+ 1

µ

L
)t(f(x0)−f∗),

(7)
which suggests that after iterations in the order of

O((1 +
De + 1

n
)

L

µ
log(

1

ϵ
)

︸ ︷︷ ︸
First Order GD

) (8)

ZO-GD can achieve ϵ-optimization accuracy.

The proof can be found in A.1. The effectiveness
of the zeroth-order method in the prompt spaces
of large language models is not straightforward.
Studies such as (Duchi et al., 2015; Wibisono et al.,
2012) have shown that, in the absence of additional
structures, the convergence rate of the zeroth-order
method linearly depends on the dimension d, im-
plying that, in the worst-case scenario, it would
require d times more iterations to achieve the same
accuracy as the first-order method. Considering
the large dimensions of prompt spaces in LLMs,
often exceeding 105, the application of the zeroth-
order method seems impractical. However, our
results indicate that the zeroth-order method can
converge with a dimension-independent order of
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O((1 + De+1
n )Lµ log(

1
ϵ )). This suggests that, in the

worst case, the method needs only 1 + De+1
n times

more iterations than the first-order method, making
it less dependent on the dimension. Our experi-
ments have found that 1 + De+1

n is significantly
smaller than d, indicating that applying the zeroth-
order method for prompt tuning may be more fea-
sible than previously thought.

Proposition 4.4 (Local Effective Dimension). For
a sequence {xt}∞t=1, we define the local effective
dimension by setting

e =
∞⋃

t=1

{x | ||x− xt|| ≤ γd||∇f(xt)||}. (9)

(Malladi et al., 2024) presents the concept of “local
r-effective rank”, they showed that zeroth-order
methods can be effective when this measure is small.
We demonstrate that the "local effective dimension"
provides a tighter metric than the “local r-effective
rank”. Proof can be found in Appendix A.4.

4.3 Verification of Convergence Order with
Effective Dimension

We assess whether the convergence order delin-
eated in Theorem 4.3 aligns with empirical observa-
tions. Initially, our evaluation focuses on quadratic
functions. We generate several quadratic functions,
ensuring that their De remains on the same scale,
while progressively increasing the dimensionality
of the variables. Our comparison encompasses first-
order gradient descent and zeroth-order gradient
descent methods, considering n = 1, De

2 , De and d
dimensions. As shown by Figure 1, although the
dimension of variable becomes larger and larger,
the zeroth-order gradient with n = De

2 , De, d can
still catch up the speed of first order method, which
demonstrate that the convergent speed of zeroth-
order descent can be dimension-free, the effective
dimension can characterize it convergent speed.

Secondly, our verification extends to
RoBERTaBASE, a transformer-based model
equipped with approximately 125 million param-
eters, featuring a soft prompt dimensionality of
38,400. To facilitate our analysis, we initially
sample 500 points along the trajectory of the
first-order gradient, subsequently estimating
the effective dimension De, based on these
points. In this context, our experimental findings
indicate an estimated De of 131. We proceed
to implement both first-order gradient descent
and zeroth-order gradient descent methodologies,

with the zeroth-order gradient descent executed
under two distinct settings: n = 1 and n = 200.
The outcomes reveal that, within the parameter
space where d = 38, 400 ≫ n = 200 > De, the
zeroth-order gradient descent method demonstrates
a capability to nearly match the convergence speed
of first-order gradient descent. This comparative
performance is illustrated in Figure 2, showcasing
the loss trajectories for each method.

These experiments demonstrate that the bounds
established by Theorem 4.3 are tight enough to re-
flect the disparity in convergence speeds between
zeroth-order and first-order gradient descent meth-
ods. Furthermore, the results reveal that the effec-
tive dimension within the prompt space of the lan-
guage model is significantly smaller than d (specif-
ically, 131 ≪ 38, 400 in this instance), suggesting
that the efficiency of zeroth-order gradient descent
may have been underestimated previously, high-
lighting its potential for prompt tuning in language
models with high-dimensional parameter spaces.

5 Related Work

Prompt tuning is an effective method for adapting
Large Language Models (LLMs) to downstream
tasks and aligning them with human intentions.
Prompts can be manually designed (Brown et al.,
2020; Schick et al., 2020; Schick and Schütze,
2020a), automatically generated (Gao et al., 2020),
or tuned by gradients (Shin et al., 2020; Li and
Liang, 2021; Wang et al., 2023; Jiang et al., 2023).
A popular approach involves tuning a set of em-
beddings as soft prompts (Lester et al., 2021; Li
and Liang, 2021; Vu et al., 2021; Gu et al., 2021;
Liu et al., 2023b; Mokady et al., 2021; Qian et al.,
2022; An et al., 2022), leveraging their advanta-
geous optimization properties.

Recently, a new line of methods has emerged,
which discovers soft prompts without accessing
model weights. To address the challenges posed by
high-dimensional space in black-box optimization,
BBT (Sun et al., 2022b) projects the soft prompt
into a lower-dimensional space and optimizes it
using a black-box solver like CMA-ES. However,
the convergence speed of BBT is relatively slow.
An advanced version, BBTv2 (Sun et al., 2022a),
optimizes multiple vectors in the middle layers of
LLMs and uses a CMA-ES solver for each layer,
thereby speeding up convergence. Nonetheless,
BBTv2 requires interaction with the middle layers
of the model. There are also some works (Diao
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Figure 1: Experiment results on quadratic function. The horizontal axis and longitudinal axis stand for training steps
and loss value respectively. Throughout these experiments, the effective dimension De is held constant at 5, while
the overall dimension d of the problem space is varied, specifically, d = 10, 50, 100, 500. The results demonstrate
that Zeroth-Order Gradient Descent (ZO-GD), with n = De

2 , De, d, successfully matches the convergence speed of
traditional Gradient Descent (GD). This parity in convergence speed is observed consistently, irrespective of the
variations in d.

Figure 2: Experiments of SST-2 on RoBERTa-base.

et al., 2022; Deng et al., 2022; Cheng et al., 2023)
discover hard prompts in black-box setting, but
the discrete nature of hard prompts will cost more
resources.

Black-box optimization methods have a long-
standing history. Most of these methods, however,
struggle with the challenges brought by high di-
mensionality. For instance, it has been shown in
various studies that zeroth-order gradient methods
have a dimensional-dependent convergence rate
(Jamieson et al., 2012; Braun et al., 2017; Ragin-
sky and Rakhlin, 2011; Duchi et al., 2015; Shamir,
2017; Nemirovskij and Yudin, 1983). Some works
like (Wibisono et al., 2012; Duchi et al., 2015)
suggest that without a more specific structure of
the problem, the rate is at least proportional to the

dimensionality d. (Malladi et al., 2024) applied
zeroth-order methods to fine-tune LLMs with low
memory requirements and demonstrated that the
convergence rate of ZO-SGD depends on the “lo-
cal r-effective rank”. Our work introduces a metric
called "effective dimension" and demonstrates that
soft-prompt tuning tends to have a small effective
dimension. This implies that zeroth-order optimiza-
tion for soft-prompt tuning can also achieve rapid
convergence.

6 Conclusion

In this study, we have introduced Zeroth-Order
Tuning (ZOT), a black-box optimization method
for efficiently tuning the LLM prompts. ZOT is
designed to operate without direct gradient access,
facilitating prompt tuning through model inference
APIs alone. Our experimental analyses across di-
verse models and datasets have demonstrated that
ZOT not only improves accuracy by an average
of 3.23% but also doubles the convergence speed
compared to existing black-box tuning methods.

Such performance is unexpected given the con-
ventional theories which suggest that the efficiency
of zeroth-order methods may be significantly ham-
pered by the curse of dimensionality. Through a
refinement of classical proofs, we have identified
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that the presence of a low effective dimension can
substantially alleviate the anticipated slow conver-
gence rates of zeroth-order methods. Further empir-
ical investigation validates the connection between
the low effective dimension of prompt spaces and
the unexpectedly fast convergence of zeroth-order
methods in prompt tuning.

Limitations

In comparison with manual prompt engineering:
the training phase of black-box prompt tuning
involves numerous API calls to large language
model (LLM) service providers, incurring further
expenses.

In comparison with white-box prompt tuning
methods: In scenarios where full model tuning
is feasible (the model weights are accessible for
user modifications), white-box tuning methods may
offer superior outcomes compared to ZOT.
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A Appendix

A.1 Proof of Theorem

Lemma A.1. Let ∇̂f(x) be the estimated zeroth-
order gradient, we have:

E[∇̂f(x)∇̂f(x)⊤]

= (1 +
1

n
)∇f(x)∇f(x)⊤ +

1

n
||∇f(x)||2I

(10)
Proof:

∇̂f(x)∇̂f(x)⊤

=

∑
ziz

⊤
i

n
∇f(x)∇̂f(x)⊤

∑
zjz

⊤
j

n
,

(11)

where zi, zj ∼ N (0, I) are all i.i.d.
If i ̸= j,

E[ziz⊤i ∇f(x)∇f(x)⊤zjz⊤j ]

=∇f(x)∇f(x)⊤.
(12)

If i = j,

E[ziz⊤i ∇f(x)∇f(x)⊤ziz⊤i ]

=E[z⊗4](∇f(x),∇f(x))

=||∇f(x)||2I + 2∇f(x)∇f(x)⊤
(13)

Therefore, we have:

E[∇̂f(x)∇̂f(x)⊤]

=E[
∑

ziz
⊤
i

n
∇f(x)∇̂f(x)⊤

∑
zjz

⊤
j

n
]

=
1

n2
E[(

∑
ziz

⊤
i )∇f(x)∇̂f(x)⊤(

∑
zjz

⊤
j )]

=
1

n2
[n(||∇f(x)||I+ 2∇f(x)∇f(x)⊤)

+ (n2 − n)∇f(x)∇f(x)⊤]

=(1 +
1

n
)∇f(x)∇f(x)⊤ +

1

n
||∇f(x)||2I

(14)

Lemma A.2 (Descent Lemma). Let f be L-
Lipschitz, {xt}∞t=0 is generated by unbiased ran-
domized gradient with learning rate γ, we have:

E[f(xt+1)|xt]− f(xt)

≤ (−γ +
1

2
γ2(

∑
i λi(∇2f(xt0))

nL

+ (1 +
1

n
))L)||∇f(xt)||2,

(15)

Proof: By Taylor expansion, for a k ∈ [0, 1], we
have:

f(xt+1) = f(xt) +∇f(xt)
⊤(xt+1 − xt)

+

∫ 1

0
k(xt+1 − xt)

⊤∇2f(kxt+1

+ (1− k)xt)(xt+1 − xt)dk

(16)

We know xt is update by

xt+1 = xt − γ∇̂f(xt). (17)

Written ∇2f(kxt+1 + (1− k)xt) as

∇2f(kxt+1 + (1− k)xt) =
∑

i

λiviv
⊤
i , (18)

where λi is the eigenvalue of ∇2f(kxt+1 + (1−
k)xt), vi is its corresponding eigenvalue. For any
integer t, we have:

E
∫ 1

0
k(xt+1 − xt)

⊤

∇2f(kxt+1 + (1− k)xt)(xt+1 − xt)dk

=E
∫ 1

0
k(−γ∇̂f(xt))

⊤

(
∑

i

λiviv
⊤
i )(−γ∇̂f(xt))dk

=E
∫ 1

0
kγ2∇̂f(xt)

⊤(
∑

i

λiviv
⊤
i )∇̂f(xt)dk

=E
∫ 1

0
kγ2

∑

i

λi∇̂f(xt)
⊤viv⊤i ∇̂f(xt)dk

=E
∫ 1

0
kγ2

∑

i

λiv
⊤
i ∇̂f(xt)∇̂f(xt)

⊤vidk

=

∫ 1

0
kγ2

∑

i

λiv
⊤
i E[∇̂f(xt)∇̂f(xt)

⊤]vidk

=

∫ 1

0
kγ2

∑

i

λiv
⊤
i [(1 +

1

n
)∇f(xt)∇f(xt)

⊤

(19)
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+
1

n
||∇f(xt)||2I]vidk
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0
kγ2[(1 +

1

n
)∇f(xt)

⊤
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∑

i

λiviv
⊤
i )∇f(xt)
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1

n
||∇f(xt)||2(

∑

i
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=

∫ 1

0
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n
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1

n
||∇f(xt)||2(

∑

i
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0
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)L||∇f(xt)||2
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1

n
||∇f(xt)||2(
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i
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1
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γ2[(1 +

1

n
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1

n
(
∑

i

λi)]||∇f(xt)||2.

(20)

Plugging in 16 and take expectation, we have:

E[f(xt+1)|xt)]

=f(xt) + E[∇f(xt)
⊤(xt+1 − xt)]

+ E[
∫ 1

0
k(xt+1 − xt)

⊤

∇2f(kxt+1 + (1− k)xt)(xt+1 − xt)dk]
(21)

≤f(xt)− γE[∇f(xt)
⊤zz⊤∇f(xt)]

+
1

2
γ2[(1 +

1

n
)L+

1

n
(
∑

i

λi)]||∇f(xt)||2

(22)
=f(xt)− γ||∇f(xt)||2

+
1

2
γ2[(1 +

1

n
)L+

1

n
(
∑

i

λi)]||∇f(xt)||2

=f(xt)

+ (−γ +
1

2
γ2[(1 +

1

n
)L

+
1

n
(
∑

i

λi)])||∇f(xt)||2,

(23)
i.e., we have

E[f(xt+1)|xt)]− f(xt)

≤ (−γ +
1

2
γ2[

(
∑

i λi)

nL
+ (1 +

1

n
)]L)||∇f(xt)||2

(24)

Theorem A.3 (Convergence). Let f satisfies PL-
Inequality with µ < L, {xi}∞i=1 is generated by

ZO-GD. Then for a learning rate γ = n
(De+n+1)L ,

after t steps we will have:

E[f(xt)]− f∗

≤ (1− n

De + n+ 1

µ

L
)t(f(x0)− f∗),

(25)

which suggest that after

O((1 +
De + 1

n
)

L

µ
log(

1

ϵ
)

︸ ︷︷ ︸
First Order GD

) (26)

iterations ZO-GD can achieve ϵ-optimization accu-
racy.

Proof: By lemma A.2, we have

E[f(xt+1)|xt)]− f(xt)

≤ [−γ +
1

2
γ2(1 +

De + 1

n
)L]||∇f(xt)||2.

(27)
Assume f satisfy the PL-Inequality, when γ <

n
(De+n+1)L , we have

E[f(xt+1)|xt)]

≤ f(xt)

+ 2µ[−γ +
1

2
γ2(1 +

De + 1

n
)L](f(xt)− f∗),

(28)
i.e.,

E[f(xt+1)|xt)]− f(x0)

≤(f(xt)− f(x0))

+ 2µ[−γ +
1

2
γ2(1 +

De + 1

n
)L]

(f(xt)− f(x0))

=(1 + 2µ[−γ +
1

2
γ2(1 +

De + 1

n
)L])

(f(xt)− f∗).

(29)

Therefore, in expectation we have

E[f(xt+1)]− f∗

≤(1 + 2µ[−γ +
1

2
γ2(1 +

De + 1

n
)L])t

(f(x0)− f∗).

(30)

Let γ = n
(De+n+1)L , we have:

E[f(xt)]− f∗

≤ (1− n

De + n+ 1

µ

L
)t(f(x0)− f∗).

(31)
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which suggest that after

O((1 +
De + 1

n
)

L

µ
log(

1

ϵ
)

︸ ︷︷ ︸
First Order GD

) (32)

iterations ZO-GD can achieve ϵ-optimization accu-
racy.

Lemma A.4. Let e =
⋃∞

t=1{x|||x − xt|| ≤
γd||∇f(xt)||}, assume for every t, there exist
H(xt) s.t. ∇2f(xt) ⪯ H(xt) ⪯ LId on {x|||x −
xt|| ≤ γd||∇f(xt)||}, then the local effective di-
mension De is smaller than local r-effective rank
on H(xt).

Proof: By definition, we have ||H(xt)||op ≤ L
and

∑
i λi(∇2f(xt)) ≤ tr(H(xt)), therefore

De(f) =
supx∈e

∑
i λi(∇2f(x))

L

≤ tr(H(xt))

||H(xt)||op
≤ r.

(33)

End of the proof.
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