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Abstract

The fine-tuning of open-source large language
models (LLMs) for machine translation has re-
cently received considerable attention, mark-
ing a shift towards data-centric research from
traditional neural machine translation. How-
ever, the area of data collection for instruction
fine-tuning in machine translation remains rela-
tively underexplored. In this paper, we present
LexMatcher, a simple yet effective method for
data curation, the design of which is driven
by the coverage of senses found in bilingual
dictionaries. The construction process com-
prises data retrieval from an existing corpus
and data augmentation that supplements the
infrequent senses of polysemous words. Utiliz-
ing LLaMA2 as our base model, our method
outperforms the established baselines on the
WMT2022 test sets and also exhibits remark-
able performance in tasks related to word sense
disambiguation and specialized terminology
translation. Our method is also applicable to
other pre-trained models, and complements the
method of continual pre-training using mono-
lingual data, demonstrating the effectiveness of
LexMatcher in enhancing LLM-based machine
translation.

1 Introduction

The emergence of large language models (LLMs)
(Brown et al., 2020; Touvron et al., 2023b; Ope-
nAI, 2023) has brought about new opportunities
for machine translation, and improving the trans-
lation performance of smaller-sized LLMs (7B or
13B) has attracted a lot of attention (Jiao et al.,
2023; Zeng et al., 2024; Zhang et al., 2023; Xu
et al., 2024). Unlike traditional neural machine
translation (NMT) which relies heavily on abun-
dant parallel data (Sennrich et al., 2016; Edunov
et al., 2018; Gordon et al., 2021; Fernandes et al.,
2023), LLMs have demonstrated less dependency
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on vast amounts of supervised data to achieve com-
petitive performance. Similar to other tasks by
LLMs (Zhou et al., 2023; Gunasekar et al., 2023),
the quality of fine-tuning data plays a more crucial
role in NMT (Zhang et al., 2023; Xu et al., 2024).

Current work primarily focuses on constructing
fine-tuning data by leveraging human-written de-
velopment sets, and creating refined instruction
data for special purposes such as contrastive trans-
lation pairs and interactive translation (Zeng et al.,
2024; Zhang et al., 2023). Despite these advance-
ments, these methods do not fully exploit the po-
tentially valuable information embedded within the
existing large parallel corpus. In fact, it has been
demonstrated that fine-tuning LLMs with extensive
parallel data can impair their inherent translation
capabilities (Xu et al., 2024). Furthermore, the
quality of data distributions has been emphasized
to have a more significant impact on the model
performance than quantity alone (Gunasekar et al.,
2023; Li et al., 2023), with more uniform data dis-
tributions contributing to improved generalization
for unseen compositions (Patel et al., 2022).

Motivated by the above observations, we investi-
gate a principled method, LexMatcher, for curating
supervised fine-tuning data for LLM-based transla-
tion. The objective is to collect a small yet carefully
selected dataset that follows a proper distribution
for maximizing translation quality. To this end,
we leverage a bilingual dictionary as a pivotal re-
source to ensure comprehensive coverage of word
or phrase senses in bilingual contexts. The con-
struction of the dataset involves two steps: data
retrieval and data augmentation. In the data re-
trieval step, we traverse commonly-used corpora
(e.g., WMT training data) and identify sentence
pairs that are guided by the coverage of dictionary
senses. Inevitably, however, there may be uncov-
ered senses of polysemous words, representing
long-tail knowledge essential for accurate trans-
lation. In the data augmentation step, we employ
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a commercial LLM (e.g., ChatGPT) to generate
precise and concise sentence pairs that contain the
uncovered senses. Finally, we fine-tune LLMs us-
ing a combination of the retrieved and generated
data.

We conduct extensive experiments on six lan-
guage directions including Zh⇔En, En⇔De, and
En⇔Ru. By employing LexMatcher, we extract
0.1% of the WMT data, totaling 1 million samples
across all six language directions. Results of fine-
tuned LLMs on the test sets show the superiority
of our method over the baselines in both standard
and zero-shot settings. The fine-tuned models also
achieve comparable or better performance in termi-
nology translation and translation disambiguation
compared to the dedicated or commercial systems.
Further analyses of different data collection meth-
ods and composition generalization underscore the
significance of high-quality data distributions, and
the experiment of fine-tuning ALMA indicates
the complementarity between our method and the
monolingual data curation. The code, data, and
models are available at https://github.com/ARIES-
LM/Lexmatcher-MT.git.

2 Related Work

Data Selection for NMT. For traditional neural
machine translation models, augmenting the vol-
ume of parallel data often leads to improvements in
performance (Sennrich et al., 2016; Edunov et al.,
2018; Gordon et al., 2021; Fernandes et al., 2023).
Conversely, there have also been studies explor-
ing data selection to reduce the size of the training
corpus. For instance, van der Wees et al. (2017)
gradually reduces the training data to a cleaner sub-
set, determined by external scorers. Wang et al.
(2018) introduce curriculum-based data selection
that employs a trusted clean dataset to assess the
noise level of each sample. Kumar et al. (2019)
employ reinforcement learning to simultaneously
learn a denoising curriculum and improve the NMT
model. Mohiuddin et al. (2022) initially train a
base NMT model on the entire available data and
subsequently fine-tune the base model using se-
lected subsets. Compared to traditional NMT, data
curation is more critical for LLM-based MT, for
which we make the first investigation by proposing
a simple and practical method.

LLMs for MT. The usage of LLM-based MT is
significantly different from the conventional NMT.
LLMs, particularly large ones like GPT-4, serve

as interfaces that can perform translation with sim-
ple translation instructions or in-context learning
(ICL) (Lin et al., 2022; Hendy et al., 2023; Zhu
et al., 2023; Agrawal et al., 2022). For ICL, the
influence of data selection methods on model per-
formance is not significantly noticeable (Zhu et al.,
2023; Agrawal et al., 2022; Lin et al., 2022). Fine-
tuning smaller-sized LLMs such as LLaMA (Tou-
vron et al., 2023a) for translation has garnered in-
creasing attention (Jiao et al., 2023; Zhang et al.,
2023), which has the potential to achieve an im-
proved trade-off between quality and efficiency.
TIM (Zeng et al., 2024) constructs translation pairs
for comparison and introduces an additional prefer-
ence loss. Bayling (Zhang et al., 2023) automati-
cally generates interactive translation instructions.
Mao and Yu (2024) construct an additional cross-
lingual discrimination task using word alignment
for low-resource languages. Yang et al. (2023) fine-
tune LLMs using more than 300 million parallel
instances while Xu et al. (2024) indicate that such
strategy could potentially impair the translation
capabilities of LLMs. Instead, they propose a two-
stage process that involves further post-training
LLMs using a substantial amount of mixed mono-
lingual data, followed by a subsequent step of fine-
tuning with human-written parallel data.

In line with the above efforts, we also aim to
improve the open-source LLMs. The difference
is that we propose specific parallel data collection
methods, following the principle of achieving uni-
form coverage of semantic units in the dictionary.
Moreover, our approach achieves a better balance
between efficiency and performance, and we can
obtain a high-quality translation model using fewer
computational resources compared to continual pre-
training.

Bilingual Dictionary for NMT. Bilingual dic-
tionaries have been employed to enhance transla-
tion quality, particularly for rare words or domain-
specific entities. One approach involves augment-
ing the training data with pseudo-parallel sentences
generated based on the dictionary. For example,
Zhao et al. (2020) enhance the parallel corpus with
the help of paired entities extracted from multilin-
gual knowledge graphs. Hu et al. (2022) propose
denoising entity pretraining for NMT using mono-
lingual data and paired entities. These methods
do not consult bilingual dictionaries for translation
candidates during the inference stage. Another ap-
proach involves leveraging bilingual alignments
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Figure 1: Illustration of our LexMatcher for instruction
fine-tuning smaller LLMs (e.g., LLaMA).

as lexical constraints (Li et al., 2022; Wang et al.,
2022; Zeng et al., 2023). For LLMs, bilingual dic-
tionaries have been used as a part of prompts (Lu
et al., 2023; Ghazvininejad et al., 2023) for the
LLMs of more than 100B. In contrast, we aim to
improve LLMs’ fine-tuning performance on trans-
lation tasks. The dictionaries serve as a pivot for
data collection and can also be added in prompts
when needed.

3 Method

The overview of LexMatcher is illustrated in Fig-
ure 1, which takes data retrieval (§3.1) and data
augmentation (§3.2) steps for curating a compact
parallel dataset for instruction fine-tuning.

3.1 Data Retrieval
Given a dictionary Φ = (s, t), where Φ =
{(s1, t1), (s2, t2), . . . , (sn, tn)} and each (si, ti)
represents a source-target segment pair, we aim to
ground each pair in parallel contexts by retrieving
data from a bilingual parallel dataset D = {(x, y)}.
The dictionary Φ shares the same source and target
languages with D. The segments can be words
(e.g., “country”), phrases (e.g., “take over”), or
named entities (e.g., “World Trade Organization”)
in the dictionary. Ideally, the objective is to find a
subset Sr ⊆ D such that:

∀(s, t) ∈ Φ, ∃(x, y) ∈ Sr : s ⊆ x ∧ t ⊆ y, (1)

where x = {x1, x2, ..., x|x|} and y =
{y1, y2, ..., y|y|}. In practice, however, it is not

Algorithm 1 Data retrieval in LexMatcher
1: Input: Parallel dataset D, dictionary Φ, thresh-

old K
2: Output: Subset Sr ⊆ D
3: Initialize Sr ← ∅，frequency count C ← {}
4: for each (x, y) ∈ D do
5: Found←false
6: for each segment x̂i in Lemmatize(x) do
7: for each tn in Φ[x̂i] do
8: if C[(x̂i, tn)] < K and
9: tn in Lemmatize(y) then

10: C[(x̂i, tn)]←C[(x̂i, tn)] + 1
11: Found←true
12: end if
13: end for
14: end for
15: if Found then
16: Add (x, y) to Sr

17: end if
18: end for
19: return Sr

guaranteed that the existing bilingual corpora can
cover all dictionary senses. Therefore, we extract a
subset that strives to fulfill this objective.

We traverse the corpus in sequential order and
search for potential matches with segment pairs
in the dictionary. To prioritize the extraction of
high-quality sentence pairs, we rank the corpus
with model-based translation quality metrics, e.g.,
COMET-KIWI (Rei et al., 2022). Specifically, for
each segment1 in a source sentence, we perform a
dictionary lookup for all the aligned target words.
If one of the aligned target segments exists in the
target sentence, we put the sentence pair into the
translation candidate subset Sr. We lemmatize
each word in the source and target sentence to alle-
viate the effect of morphological textual variations.
In addition, we introduce a threshold K to skip the
sentence if all the segment pairs in it have already
been matched K times. K enables convenient con-
trol over the size of the subset and is used to en-
courage even distribution of segment pairs. The
matching procedure is illustrated in Algorithm 1.

3.2 Data Augmentation

Using a partial set of open-source corpora can-
not cover all the senses in the dictionary, which
can be rare named entities or low-frequency oc-

1We use unigram and bigram excluding stopwords.
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currence of distinctive senses of certain words.
The translation of rare entities is generally unique
and can be solved effectively by prompting LLMs
during inference, and the lack of training data
for these cases may have minimal impact. How-
ever, the senses of polysemous words are context-
sensitive and may require specific training data to
strengthen the model’s understanding and trans-
lation of them. To compensate for the missing
senses, we leverage ChatGPT2 to construct trans-
lation demonstrations for each sense, thus creating
the subset Sc. Concretely, we prompt ChatGPT
with a sense expressed in source and target lan-
guages and the sense’s definition. The prompt is
shown in Figure 6 (Appendix B). Only nouns and
verbs with more than three senses are considered
due to their highly polysemous nature (Campol-
ungo et al., 2022). Note that the subset Sc only
takes up a neglectable portion of the whole dataset
(e.g., 225 sentence pairs for English-Germen, and
the specific numbers are reported in 5).

4 Instruction Fine-tuning LLM for MT

Instruction fine-tuning has become standard prac-
tice in LLM-based translation (Zeng et al., 2024;
Xu et al., 2024; Zhang et al., 2023). Our instruction-
following data is constructed based on S = Sr∪Sc

(§3). Generally, each instance comprises an “in-
struction” c describing the task the model should
perform (e.g., “Translate the sentences from En-
glish to Chinese.”), an “input” x indicating the
source sentence, and a corresponding output y indi-
cating the answer to the instruction, i.e., the target
sentence. The LLMs are optimized by minimizing
the negative log-likelihood of the output y:

L = −
∑

(x,y)∈S

1

|y|

|y|∑

i

log p(yi|c, x; θ), (2)

where θ is the trainable parameters.
We use two kinds of translation instructions: 1)

general translation instructions mainly used to in-
dicate translation directions (e.g., “Translate the
following sentence to English”), and 2) constrained
translation instructions that specify word transla-
tions from a given dictionary or based on specific
user requirements. (e.g., ‘Translate the following
sentence to English using the given reference trans-
lations.”) For the latter, we randomly sample a

2GPT-3.5-turbo-0314

Lang Raw Dev Retri AugK=1 K=2 K=3

Zh 33M 15k 75k 188k 281k 2.2k
De 278M 14k 93k 233k 351k 0.2k
Ru 227M 15k 98k 246k 367k 0.7k

Table 1: The number of parallel sentences of different
data sets. "Retri" and "Aug" are abbreviations for Re-
trieval and Augmentation, respectively.

small number of sentence pairs to incorporate spec-
ified word translations3. For each sample, we in-
troduce at most 3 segment pairs matched in the
dictionary and orgnize them with a template:

c = Template({(si, ti)}Ni=1), (3)

where si and ti denote the segment pair following
Section 3. We simply use “means” to connect si
and ti, and prepend the constraint to the translation
instruction. An example is shown in Figure 6(b)
(Appendix B). During inference, we can choose
whether to use the constrained translation instruc-
tions to incorporate translations from the dictionary
or terminology, depending on the situation.

5 Experiments

5.1 Setting

For parallel training data, we use the open-
source data from WMT224 in German⇔English,
Chinese⇔English, and Russian⇔English. The de-
tail of data preprocessing is shown in Appendix
C. We use bilingual dictionaries provided by Open
Multilingual WordNet (Bond et al., 2016)5. In addi-
tion, we take Wikititles6 as an entity dictionary. Ta-
ble 1 presents the number of sentence pairs for each
language pair in different subsets, including the
original training set, subsets extracted based on dif-
ferent K, and the ChatGPT-generated data. It can
be observed that our method achieves a high com-
pression rate. The subset K=3 is used for the main
experiment, and the extracted data for Chinese, Ger-
man, and Russian accounts for only 0.57%, 0.08%,
and 0.11% of the original data, respectively. The
development sets from the previous WMT compe-
titions are used as the basic fine-tuning data (Jiao
et al., 2023; Xu et al., 2024).

3The maximum number of sentences under the constrained
translation instructions for each direction is set to 10,000.

4https://www.statmt.org/wmt22/translation-task.html
5https://www.nltk.org/howto/wordnet.html
6https://data.statmt.org/wikititles/v3/
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Model Zh⇒En En⇒Zh De⇒En En⇒De Ru⇒En En⇒Ru
BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET

GPT-3.5† 26.60/82.90 44.90/87.00 33.10/85.50 34.40/87.00 42.40/86.10 34.40/87.00
GPT-4† 27.20/82.79 43.98/87.49 33.87/85.62 35.38/87.44 43.51/86.18 30.45/88.87
NLLB-54B† 16.56/70.70 27.38/78.91 26.89/78.94 34.50/86.45 26.89/78.94 30.96/87.92

LLaMA2-7B† 18.19/75.00 16.97/71.80 30.42/82.74 19.00/76.39 36.02/82.84 16.00/73.24
LLaMA2-7B 23.59/78.54 35.43/84.28 29.04/83.63 28.58/84.09 36.68/83.58 24.23/85.54
Parrot-7B (Jiao et al., 2023) 20.20/75.90 30.30/80.30 27.30/82.40 26.10/81.60 - -
TIM-7B (Zeng et al., 2024) 24.51/79.71 37.83/85.10 26.12/78.94 20.90/74.91 - -
ALMA-7B (Xu et al., 2024) 23.52/79.73 36.48/85.05 29.49/83.98 30.31/85.59 38.93/84.81 27.09/87.17
LexMatcher-7B 24.81/79.13 40.34/86.11 32.33/84.29 33.56/86.31 41.01/84.43 28.97/87.23

LLaMA2-13B† 21.81/78.10 30.00/79.70 31.06/83.01 13.69/75.55 36.50/82.91 0.59/63.84
LLaMA2-13B 24.10/79.29 38.10/85.32 29.73/84.03 30.07/84.65 37.21/83.98 25.64/86.21
DictPrompt-13B (Ghazvininejad et al., 2023) 17.55/74.12 33.75/83.46 30.36/83.31 25.24/80.89 37.70/81.95 21.98/81.00
BigTrans-13B (Yang et al., 2023) 14.16/74.26 28.56/81.31 23.35/80.68 21.48/78.81 26.81/77.80 17.66/78.21
Bayling-13B (Zhang et al., 2023) 20.12/77.72 37.92/84.62 27.34/83.02 25.62/82.69 33.95/82.07 12.77/71.01
ALMA-13B (Xu et al., 2024) 25.46/80.21 39.84/85.96 31.14/84.56 31.47/85.62 40.27/85.27 28.96/87.53
LexMatcher-13B 26.15/79.88 41.13/86.58 32.59/84.55 34.82/86.45 41.53/84.91 30.20/87.83

Table 2: Evaluation results on WMT22 test sets. Higher scores (BLEU and COMET) denote better translation
performance. Bold numbers indicate the best scores among models of the same sizes. The numbers with the dagger
symbol represent the results from (Xu et al., 2024). LexMatcher-7B outperforms Parrot-7B and ALMA-7B with
p-value<0.01, and LexMatcher-13B outperforms ALMA-13B with p-value<0.01.

We use LLaMA2-7B and LLaMA2-13B as the
backbones. We mix the data of the different lan-
guage pairs we have collected to fine-tune a unified
multilingual translation model. We fine tune all of
our models for 1 epoch with the collected multi-
lingual instruction data. The batch size is 128 and
the learning rate is 2e-5. The final checkpoint is
used for evaluation, and we use beam search with
a beam size of 4 during inference. For automatic
evaluations, we use BLEU (Papineni et al., 2002) 7

and COMET8.

5.2 Main Results
Seen Language Directions. Table 2 presents
the translation performance on the WMT22 test
sets. The LLaMA2 models fine-tuned on the in-
struction data collected by LexMatcher signifi-
cantly outperform their original zero-shot perfor-
mance, especially for the En⇒xx. Concretely,
LexMatcher-7B improves LLaMA2-7B by an av-
erage of 17.02 BLEU points and 12.68 COMET
points in En⇒xx, and by 4.45 BLEU points and
2.42 COMET points in xx⇒En. LLaMA2-13B per-
forms significantly worse than its 7B counterpart in
En⇒xx directions due to severe off-target issues,
while LexMatcher-13B improves this performance
significantly. We also consider an ICL method
DictPrompt (Ghazvininejad et al., 2023) which pro-
vides dictionary translations for each source word9,

7https://github.com/mjpost/sacrebleu
8https://huggingface.co/Unbabel/wmt22-comet-da
9They use Bloom-176B as the backbone and we re-

implement the method on LLaMA2-13B.

and the result shows that using dictionary trans-
lations as hints yields notable improvements in
En⇒xx. In contrast, LexMatcher-13B achieves
better performance and is more efficient due to a
much shorter context during inference.

LexMatcher demonstrates superior performance
compared to other instruction fine-tuned base-
lines. Specifically, LexMatcher-7B outperforms
Parrot-7B and TIM-7B, which construct additional
translation pairs and utilize specialized instruc-
tions. In the En⇒De translation task, LexMatcher-
7B surpasses TIM-7B by more than 10 BLEU
and COMET points. Moreover, LexMatcher
outperforms BigTrans and ALMA consistently
across the En⇒xx tasks, which incorporate a large
amount of data for continual pretraining. While
LexMatcher-7B still underperforms GPT-3.510 and
GPT-411, the COMET scores for LexMatcher-7B
are merely lower than GPT-3.5 within 2 points, and
LexMatcher-13B further narrows the gap.

Unseen Language Directions. To evaluate per-
formance in translation directions never seen
previously, i.e., zero-shot multilingual capabil-
ity, we further conduct experiments on Czech-
to-English (cs⇒en), Japanese-to-English (ja⇒en),
and Ukrainian-to-English (uk⇒en). As depicted
in Figure 2, LexMatcher-(*) exhibits superior zero-
shot multilingual capability over the LLM base-
lines, highlighting that better aligning training

10GPT-3.5-turbo-0301
11GPT-4-0314
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Model Zh De Ru

DeepL 58.42 76.64 67.53
Google-Translate 52.09 67.35 62.03
OPUS 25.94 27.04 28.71
NLLB-54B 48.02 67.97 67.88

LLaMA-7B-ICL(1) 30.61 57.41 60.65
LLaMA-7B-ICL(5) 27.92 55.26 56.83
LLaMA-65B-ICL(1) 44.73 62.05 65.71
LLaMA-65B-ICL(5) 42.49 62.98 66.31
Alpaca-7B 29.63 51.52 55.23

LexMatcher-7B 53.28 63.32 67.72
LexMatcher-13B 59.09 66.98 69.93

Table 3: Accuracies on the DiBiMT benchmark which
is dedicated for evaluating word disambiguation in MT.
The number following ICL denotes the number of trans-
lation demonstrations.

languages strengthens the alignment of other lan-
guages as a by-product.

Disambiguation. By comparing the different
senses of a word and multilingual expressions of
meaning, the model possibly learns more precise
word usage in translation. To investigate it, we
submit the models to a challenging disambiguation
leaderboard, DiBiMT (Campolungo et al., 2022). It
compares the performance of NMT systems when
translating sentences with ambiguous words and
the performance is evaluated by accuracy. For com-
parison, we display the performance of top-ranked
systems including DeepL12, Google Translate13,
and NLLB-54B. The results of LLMs are from Iyer
et al. (2023).

The result is shown in Table 3. For the LLaMA
models, increasing model size improves the perfor-
mance, and LLaMA-65B matches Google Trans-
late and NLLB-54B with few-shot prompting.
Alpaca-7B works well without demonstration (i.e.,
zero-shot prompting) and significantly outperforms

12https://www.deepl.com/en/translator
13https://translate.google.com

Model Zh⇒En De⇒En
ChrF/COMET Suc ChrF/COMET Suc

Lingua Custodia 32.6/60.9 74.7 61.8/73.5 62.2
VARCO 40.5/71.5 80.0 - -
UEDINLLM 41.2/75.7 75.3 60.0/81.3 58.8

LexMatcher-7B 38.2/73.2 84.5 64.3/81.9 80.8
LexMatcher-13B 39.1/73.6 85.6 64.5/82.0 81.5

Table 4: Performance on WMT23 terminology trans-
lation test sets. “Suc” indicates Terminology Success
Rate.

the supervised NMT system OPUS, which indi-
cates its potential for further improvement through
fine-tuning on translation data. LexMatcher-7B
significantly outperforms Alpaca-7B and surpasses
Google Translate in Chinese and Russian disam-
biguation. With a scale of 13B, it also outperforms
the best DEEPL system in Chinese and Russian,
achieving accuracy rates of 59.09% and 69.93%, re-
spectively. This result demonstrates the advantage
of our data construction principle.

Terminology. On the above experiments, we do
not use the instruction which uses dictionary in-
formation to guide inference. In this experiment,
we evaluate the effectiveness of the instruction on
the test sets from WMT23 Terminology Transla-
tion Competition14. The numbers of sentences on
Zh⇒En and De⇒En are 2640 and 2963, respec-
tively. The average numbers of terms per segment
on Zh⇒En and De⇒En are 3.8 and 1.1, respec-
tively. The result is shown in Table 4, and we only
present the systems achieving the best performance
on a specific metric (Semenov et al., 2023). Lingua
Custodia and VARCO are specialized Transformer
architectures to ensure the appearance of given ter-
minology in the translation, and UEDINLLM uses
ChatGPT with terminology translation prompts.
Compared to them, our models achieve signifi-
cantly higher terminology success rates, indicat-
ing a superior ability to accurately respond to the
given domain-specific terminology. On the quality
metrics, our models are inferior to UEDINLLM on
Zh⇒En, and achieve the best results on De⇒En.

6 Analysis

6.1 Effect of K

The maximal number of bilingual contexts of each
matched sense is influenced by K. We show the
performance of varying Ks across different model
sizes on the WMT22 test sets (Figure 3). Regard-

14https://wmt-terminology-task.github.io/
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Figure 3: BLEU and COMET on the WMT22 test sets
with varying K and model sizes.

less of the amount of training data used, the larger
models perform better and require less data for
fine-tuning. In addition, the model’s performance
improves as K increases from 1 to 3. With the
addition of more parallel data, the performance
gains begin to plateau or even slightly decrease,
which aligns with the conclusions of the previous
study (Xu et al., 2024). Thanks to the strong few-
shot learning capability of the backbones, we do
not need to provide as many training examples as
before when training the NMT model.

6.2 Alternative Data Selection Strategies

In this experiment, we investigate two intuitive data
collection methods: 1) random selection (RAND),
in which the training data are randomly sampled
from the corpus; and 2) quality-based selection
(TOP), in which the training samples are selected
based on the COMET-KIWI scores in descending
order. Specifically, we use these two methods to
extract the same sample quantity as LexMatcher
to mitigate the impact of sample quantity. We use
LLaMA2-7B as the backbone, and the result on
WMT test sets is shown in Figure 4. The perfor-
mance of RAND is inferior to the other two meth-
ods. Random selection ensures a certain degree
of diversity but the performance is uncontrollable
and non-reproducible. TOP performs better than
RAND, demonstrating the importance of data qual-
ity for instruction tuning. LexMatcher can simul-
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Figure 5: Word frequency distributions. The blue and
gray curves denote the distributions calculated on the
data selected by LexMatcher (K=1) and randomly se-
lected data, respectively.

taneously consider both quality and diversity and
achieve the best performance.

Word Frequency Distribution We are interested
in whether the collected data has a different word
frequency distribution from the general (randomly
selected) one. We use the English data of the
EN⇒ZH translation task with K=1, and plot the
word frequency distributions of the collected data
(blue curve) and the corresponding random data
(gray curve). As shown in Figure 5, the blue curve
tends to be smoother than the gray one, and the
blue curve has more flat segments. For words with
higher frequency rankings, the word frequency of
the data selected based on the dictionary is lower
than that of the random data. This phenomenon in-
dicates that the dictionary-based method has gener-
ated a less skewed data distribution, which could be

14773



Model xx⇒En En⇒xx DiBi-AccBLEU/COMET BLEU/COMET

Dev 29.77/82.05 29.41/84.63 55.51
+Augmentation 30.39/82.22 30.10/84.55 55.96
+Retrieval 32.86/82.71 34.13/86.27 59.98
LexMatcher(3) 32.71/82.61 34.29/86.55 61.44

Table 5: Ablation study on different data subsets.

Model xx⇒En En⇒xx
BLEU/COMET BLEU/COMET

ALMA 30.64/82.84 31.29/85.93
+LexMatcher(1) 32.34/83.11 33.50/86.42
+LexMatcher(2) 31.88/83.07 33.31/86.47
+LexMatcher(3) 33.37/83.32 35.30/87.09
LLaMA3-8B
+Dev 29.50/81.68 29.16/84.13
+LexMatcher(1) 33.15/83.26 34.20/86.58
+LexMatcher(2) 33.29/83.26 35.12/87.00
+LexMatcher(3) 33.74/83.29 35.38/86.97
Gemma-2B
+Dev 29.33/81.87 29.20/84.13
+LexMatcher(1) 31.68/82.42 31.01/84.83
+LexMatcher(2) 31.83/82.39 32.13/85.50
+LexMatcher(3) 31.93/82.43 32.33/85.66

Table 6: The performance of LexMatcher combined
with different LLMs.

the reason for better fine-tuning performance. Ad-
ditionally, the dictionary-based data contains 98k
unique words while the random data only includes
62k unique words, indicating that the dictionary-
based data covers more semantic units, thus dilut-
ing the word frequency.

6.3 Ablation Study

The ablation experiment of different data subsets
is presented in Table 5 (more detailed results are
reported in Table 8). We use LLaMA2-7B as the
backbone. Based on the development data, simply
incorporating the small amount of synthesized data
generated during the data augmentation phase does
not have a significant impact on the performance.
This is possible because the data is predominantly
focused on low-frequency senses, and the model is
unable to effectively leverage this knowledge. In
comparison, adding the retrieved data leads to a
significant performance improvement, and further
introducing the synthesized data helps the model
learn word disambiguation better, increasing the
disambiguation accuracy from 59.98 to 61.44.

6.4 Combination with Other LLMs

In this section, we investigate the performance
of our data curation on different LLMs including

Model BLEU Instance Aggregate

Transformer 59.5 28.4 62.9
Transformer+CReg 61.3 20.2 48.3

LLaMA2-ICL 38.9 68.6 87.4
LLaMA2-SFT 62.4 18.5 43.9
LexMatcher 63.5 15.6 37.3

Table 7: Compound translation error rates (CTERs) on
CoGnition. Instance and Aggregate denote the instance-
level and aggregate-level CTERs, respectively.

ALMA-7B (Xu et al., 2024), LLaMA3-8B, and
Gemma-2B (Mesnard et al., 2024), and the results
are shown in Table 6. ALMA (Xu et al., 2024)
is the post-trained LLaMA2 on a large amount of
monolingual data mixed by different languages.
We find that adding the parallel sentences con-
structed by LexMatcher further enhance its perfor-
mance, indicating the compatibility of monolingual
continual pretraining and supervised fine-tuning.
Although the use of monolingual data during pre-
training can reduce the dependency on bilingual
data, the direct application of bilingual data for fine-
tuning can be more resource-efficient. The size of
parallel data collected by LexMatcher is consider-
ably smaller than that of mixed monolingual data,
and the training process is only a single stage.

6.5 Compositional Generalization

We investiage the effect of a more balanced atom
distribution on CoGnition (Li et al., 2021). The
evaluation metrics include instance-level CTER
which denotes the translation accuracy of novel
compounds, and aggregate-level CTER which mea-
sures the translation consistency across different
contexts. We use the data retrieval of LexMatcher
to obtain 70,272 parallel sentences from the full
training data (196,246) with K=50. For LLM, we
apply ICL with 8 examples and fine-tune LLaMA2-
7B on the randomly sampled training data, of which
the size is similar to the retrieved data. The results
are shown in Table 7. ICL does not yield good
compositional generalization performance, while
the fine-tuned LLaMA2 outperforms the previous
NMT models significantly. LexMatcher achieves
lower compound translation error rates than SFT
with the same amount of training data, demonstrat-
ing the positive effect of the more balanced data
distribution.
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7 Conclusion

In this paper, we presented LexMatcher, a
dictionary-centric data curation method for super-
vised fine-tuning smaller-sized LLMs to better
translation models. We use the bilingual dictio-
nary as the pivot and try to collect limited parallel
sentence pairs to cover the senses uniformly. Ex-
periments and analyses validate the effectiveness of
LexMatcher from multiple perspectives including
zero-shot translation, disambiguation, and termi-
nology translation. One potential avenue for future
research involves extending LexMatcher to low-
resource scenarios, where the utilization of mono-
lingual data is crucial for achieving satisfactory
translation performance.
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8 Limitations

This work focuses solely on improving translation
performance for medium and high-resource lan-
guage pairs. For low-resource language pairs that
inherently lack parallel data, it is crucial to explore
how to optimize LLMs on such translation tasks by
integrating dictionaries, monolingual, and possible
bilingual data.
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A Computational Details

We conducted experiments using the Huggingface
Transformers. The experiments are performed on
NVIDIA A100 GPU, and all the results are run
once with the random seed 42. According to the
data license of WMT22, the data released for the
General MT task can be freely used for research
purposes.

B Prompts Used for Manipulating
ChatGPT and Terminology Translation

The prompt used to manipulate ChatGPT consists
of three parts (Figure 6 (a)). The first part is used
to describe the task: generate a pair of parallel
sentences, which can reflect the meaning of a given
segment pair accurately. The second part is an
example to demonstrate the format of the input and
output including a segment pair, a definition of the
sense, and a sentence pair. The third part is the
segment pair requires translation demonstration.

The prompt for terminology translation is shown
in Figure 6 (b).
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Given a pair of words that are of the same meaning but in different languages, and the definition of 

the meaning, please generate a pair of sentences in English and Chinese respectively, which can 

reflect the meaning most accurately.

Example:

Word Pair: English: “head” - Chinese: “负责人”

Definition: the person in charge of a group of people or an organization

Sentence pair:

English: She resigned as head of department.

Chinese: 她辞去了部门负责人的职务。

Now, please generate three sentence pairs for the below word pair:

Word Pair: English: “being” - Chinese: “生物”

Definition: a living thing that has (or can develop) the ability to act or function independently

Sentence Pairs:

“head” means “负责人”; “department” means “部门”.

Translate the following sentence from English to Chinese using the given reference translations.

English: She resigned as head of department.

Chinese: 

(a) 

(b) 

Figure 6: Prompts used for (a) manipulating ChatGPT to generate translation demonstrations and (b) terminology
translation.

Model Zh⇒En En⇒Zh De⇒En En⇒De Ru⇒En En⇒Ru
BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET

Dev 23.59/78.94 35.43/84.28 29.04/83.63 28.58/84.09 36.68/83.58 24.23/85.54
+Augmentation 23.69/79.05 36.50/84.20 29.45/83.82 28.67/83.98 38.03/83.80 25.14/85.49
+Retrieval 25.36/79.46 40.14/86.01 32.37/84.31 33.26/85.77 40.86/84.36 29.00/87.03
LexMatcher(3) 24.81/79.13 40.34/86.11 32.33/84.29 33.56/86.31 41.01/84.43 28.97/87.23

ALMA-7B
+LexMatcher(1) 24.27/79.82 31.77/84.52 41.00/85.01 38.61/85.83 33.12/86.19 28.77/87.25
+LexMatcher(2) 24.04/79.88 38.27/85.93 31.39/84.32 32.85/86.14 40.61/85.07 28.82/87.34
+LexMatcher(3) 25.20/80.21 41.40/86.59 32.49/84.49 34.44/86.66 42.42/85.28 30.07/88.02
LLaMA3-8B
+LexMatcher(1) 26.40/80.47 40.30/86.11 32.44/84.52 33.16/86.09 40.63/84.79 29.15/87.54
+LexMatcher(2) 26.33/80.31 42.34/86.94 32.36/84.54 33.68/86.37 41.19/84.93 29.36/87.69
+LexMatcher(3) 26.89/80.51 41.88/86.74 32.95/84.46 34.22/86.49 41.39/84.92 30.04/87.70
Gemma-2B
+LexMatcher(1) 24.88/79.75 37.89/85.01 31.35/83.77 29.27/83.95 38.81/83.75 25.87/85.53
+LexMatcher(2) 25.19/79.60 39.53/85.92 31.43/83.77 30.35/84.51 38.87/83.81 26.53/86.09
+LexMatcher(3) 24.84/79.55 39.19/85.98 31.77/83.80 30.81/85.04 39.18/83.95 27.00/85.98

Table 8: Detailed results of ablation study and combination with different LLMs.

C Corpus Preprocessing

Since the filtered data of Russian⇔English is sig-
nificantly less than the other language pairs, we
introduce the training set from Tatoeba translation
challenge 202115. We filter data with the com-
monly used rule-based methods and model-based
QE. The rules include the following categories: (1)

15https://github.com/Helsinki-NLP/Tatoeba-
Challenge/tree/v2021-08-07/data

sentence-level deduplication, (2) filter out the sen-
tences longer than 100 words or contain a single
word exceeding 40 characters, (3) remove sentence
pairs where the ratio of source sentence length to
target sentence length is significantly different, i.e.,
below 1/3 or above 3, (4) filter out the sentences
with high repeat ratio, i.e., the proportion of the
frequency of the most frequent word in a sentence
to the total word frequency greater than 0.3, and
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(5) filter out the sentences in which the proportion
of the content words is between 0.3 and 0.8. In
this way, low-quality data can be efficiently filtered
out, saving time and resources for the subsequent
model-based QE.

We utilize one of the state-of-the-art QE models,
COMET-KIWI16, to obtain sentence-level quality
scores. For every sentence pair in the training data,
we calculate the QE score for the translation from
English to the foreign language. These scores are
utilized for both translation directions, as evalu-
ating both directions of the training data can be
computationally expensive. We remove sentence
pairs with low data quality, e.g., those that have a
score below 40. We use spaCy17 for the lemmati-
zation.

16https://huggingface.co/Unbabel/wmt22-cometkiwi-da
17https://spacy.io/
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