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Abstract

One of the main obstacles for deploying Active
Learning (AL) in practical NLP tasks is high
computational cost of modern deep learning
models. This issue can be partially mitigated
by applying lightweight models as an acquisi-
tion model, but it can lead to the acquisition-
successor mismatch (ASM) problem. Previous
works show that the ASM problem can be par-
tially alleviated by using distilled versions of
a successor models as acquisition ones. How-
ever, distilled versions of pretrained models are
not always available. Also, the exact pipeline
of model distillation that does not lead to the
ASM problem is not clear. To address these
issues, we propose to use adapters as an alter-
native to full fine-tuning for acquisition model
training. Since adapters are lightweight, this
approach reduces the training cost of the model.
We provide empirical evidence that it does not
cause the ASM problem and can help to deploy
active learning in practical NLP tasks.

1 Introduction

Recent progress in the natural language processing
(NLP) tasks has become possible due to an abun-
dant range of pre-trained language models. Data
annotation is a rather important process, since the
performance of model depends greatly on the qual-
ity of data it was trained on. Active learning (AL),
which is a technique used to annotate data and
train models efficiently, has been first introduced in
Cohn et al. (1996). This technique has been widely
used to train language models to solve such NLP
tasks as text classification Dor et al. (2020), named
entity recognition Chen et al. (2015) and sequence
labeling tasks Settles and Craven (2008a).

Active learning helps to reduce annotation costs
by employing a specifically designed query strat-
egy which works on sampling the data points that
would bring the most substantial information gains
for model training. One problem that has been

described by Tsvigun et al. (2022) is acquisition-
successor mismatch (ASM). This refers to employ-
ing models of different architectures for acquisi-
tion (evaluating which samples would be the most
beneficial) and successor (retraining with newly
acquired samples) negatively impacts the perfor-
mance. For some popular models, such as BERT,
distilled versions can be used as acquisitions to
save time and computational resources. We suggest
using parameter-efficient fine-tuning methods for
those models that do not have a distilled version.
The findings of this study indicate that utilizing
an adapter model with a successor of identical ar-
chitecture consistently yields superior outcomes
compared to a distilled model with a different ar-
chitecture.
Our main contributions are the following:

* We show that training an acquisition model
with adapters can speed up an AL loop (in
comparison with using the full model for ac-
quisition) and does not harm overall perfor-
mance of AL;

* Our method can be efficiently applied to per-
form AL in various textual domains of the
data;

* We experimentally show that our approach
can be used with various types of pretrained
encoder models that can be tuned with adapter
networks;

Total time of AL loop can be decreased by
20.84% on average.

2 Related work

In Shelmanov et al. (2021) it was proposed to ac-
celerate training and data selection steps for AL
by leveraging distilled versions of the successor
model during AL iterations. A similar approach
was introduced in Nguyen et al. (2022), where it
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was proposed to use on-the-fly knowledge distil-
lation of the successor model to the acquisition
model. However, model distillation is expensive
in terms of both time and computational resources.
Furthermore, this approach cannot always be di-
rectly used in practice due to the lack of distilled
models for several architectures.

In Tsvigun et al. (2022), it was proposed to use
pseudo labeling-based approach to mitigate the
ASM problem. However, this approach can also
suffer from the lack of distilled/teacher model pairs,
especially for some specific domains.

Furthermore, Juki¢ and Snajder (2023) explores
the application of adapters in active learning in
low-resource settings. The research concludes that
some adapter configurations provide performance
gains over full fine-tuning. The authors also in-
vestigate learning stability and compare layerwise
representations obtained from adapters and fully
fine-tuned models. They find that adapter models
are more similar to the base model in earlier lay-
ers which are considered to contain foundational
knowledge. In our work, we provide another kind
of analysis: we compare uncertainty scores of dif-
ferent kinds of models and conclude that adapters
can be applied in many areas of active learning,
since the they do not affect the uncertainty scores.
The research Juki¢ and Snajder (2023) also pro-
vides comparison of performance scores of full and
adapter models. However, there is no mention of
time taken to train the models. We close this gap
by measuring the speed of full and adapter models.
Finally, in Nguyen et al. (2022), adapters were used
to improve time efficiency of the successor model,
but their impact on the acquisition model was not
analysed. We explore how adapters affect the time
of the whole AL loop.

In our research, we bring empirical contribution
by testing and analyzing the adapter application in
active learning. We provide analysis of the uncer-
tainty scores of adapter models to demonstrate the
potential applicability of adapters in any domain
of AL. Time efficiency of adapters in the AL loop
is explored as well. It is also shown that adapters
can help solve the ASM problem in active learning.

2.1 Adapters

Adapter modules were first introduced in Houlsby
et al. (2019). These modules are a small set of new
layers introduced to the pre-trained model to be
further updated without affecting the weights of
the original model. Adapters offer a faster, more

lightweight alternative to full fine-tuning, while
maintaining the performance level of the latter.

As adapter training has proved to be a good
PEFT method, a convenient open-source frame-
work for adapters has been introduced in Pfeif-
fer et al. (2020). The Adapters library Poth et al.
(2023)! offers a seamless way of adding, training
and sharing a wide range of adapter modules for
transformer models. This framework is used in this
research to train and evaluate models with adapters.

3 Experiments

3.1 Experimental setup

The methodology we employ to set up our active
learning experiments is consistent with the schema
widely utilized in numerous prior studies Settles
and Craven (2008b); Shen et al. (2017); Siddhant
and Lipton (2018); Shelmanov et al. (2021). This
approach involves a simulated cycle of active learn-
ing, which consists of several distinct phases:

1. A small random sample (1% in our case) is
taken from the dataset to initialize the training
and annotation cycle.

2. An initital version of the acquisition model is
constructed using the random data sample.

3. Each iteration of the cycle is continued by
sampling a fraction of the data from the unla-
beled pool (also 1%) by a query strategy and
adding it to the training dataset that is used on
the subsequent iterations.

4. On each iteration, the successor model is
trained on the acquired data and evaluated
on the whole test set.

5. Several iterations (12 in our case) are run in
this way and a performance chart is built. Ac-
curacy is used as a performance metric for
the classification task investigated in this re-
search.

6. Each reported experiment is run on five fixed
random seeds to report standard deviation of
the scores.

We use four query strategies to evaluate unla-
beled samples in the active learning loop. For the
classification task we use least confidence (LC)
Lewis and Gale (1994) and breaking ties (BT)

"https://github.com/adapter-hub/adapters
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Luo et al. (2005). For NER, the strategy is Maxi-
mum Normalized Log-Probability (MNLP) Tjong
Kim Sang and De Meulder (2003). We also use ran-
dom sampling to verify all other strategies against
it. The strategies are described in detail in the sec-
tion A.1.

Our approach is evaluated on three popular
classification datasets that belong to different do-
mains: English AG News topic classification
dataset Zhang et al. (2015), Banking77, a single-
domain intent classification dataset Casanueva et al.
(2020) and the English language part of the Ama-
zon MASSIVE dataset FitzGerald et al. (2022),
which contains utterances that belong to 18 dif-
ferent domains. We also evaluate on the CoNLL-
2003 dataset, which is used for the NER task Tjong
Kim Sang and De Meulder (2003). The datasets
statistics can be found in the the section A.3.

3.2 Uncertainty scores

In order to verify that the adapters do not tam-
per with the output probability distributions when
attached to a model and trained, we perform an
analysis of the distributions of full models and
adapter models. Since the query strategies used
in this research rely on uncertainty scores, we eval-
uate the scores obtained from the models with
adapters and compare them to the those from the
full models. To perform the analysis, we utilize
the uncertainty estimation framework presented in
Vazhentsev et al. (2022). We have applied the fol-
lowing statistical methods for scores evaluation:
Wasserstein distance (WD) Rubner et al. (1998)
and Kullback-Leibler (KL) divergence Kullback
and Leibler (1951).

The uncertainty score we evaluate is Bayesian
Active Learning by Disagreement (BALD)
Houlsby et al. (2011). This metric of uncertainty
assigns scores to data points according to the
extent to which their labels would enhance our
understanding of the actual distribution of model
parameters.

All values of WD and KL divergence between
the scores of full models and the scores of adapter
models are presented in the Table 4.

The analysis of the scores and conclusions drawn
from it can be found in the section 5.

3.3 Models

We conduct the experiments with pre-trained Trans-
formers. In particular, ELECTRA-base (110M
parameters) Clark et al. (2020) and DistilBERT

(66M parameters) Sanh et al. (2019) models are
fine-tuned on the three classification datasets. We
have picked ELECTRA for the closest inspec-
tion. This decision is motivated by an assumption
that we make: we theorize that in active learning,
adapters perform more efficiently than small under-
parameterized (distilled) models. For example, a
combination of DistilBERT as an acquisition model
and full ELECTRA as a successor perform worse
than adapter ELECTRA model as acquisition and
full ELECTRA as successor. Thus, we propose to
use adapters to solve the ASM problem by match-
ing the model architectures in acquisition and suc-
cession stages while reducing memory and time
consumption. See the Results section for details.

3.4 Adapters for acquisition model

The acquisition model is equipped with a bottle-
neck adapter which consists of feed-forward layers
after the multi-head attention block of each layer.
The parameters are kept default as they are defined
in the BnConfig base class of the Adapters library.
The performance of this acquisition model with an
adapter is then compared to the same kind of model
but with no adapter attached.

4 Analysis

Figure 1 represents an accuracy curve of the full
and adapter ELECTRA models, as well as Dis-
tilBERT trained on the Amazon Massive dataset.
Additionally, Figures 2, 3 and 4 can be found in
the Appendix A.7. These figures represent accu-
racy curves of three combinations of models and
strategies, trained on classification and NER data.
Across all figures, each curve represents metrics
averaged out over five seeds.

For both classification (Figures 1, 2, 3) and
NER (Figure 4) tasks, it is obvious that ELECTRA
with an adapter performs better than DistilBERT,
which means that the acquisition-successor mis-
match problem can be solved with adapters. In
addition, adapters save training time while preserv-
ing the performance scores at the same level as full
models.

In order to measure the speedup that adapter
modules provide in the active learning loop, we
train full ELECTRA and adapter ELECTRA on
the four datasets. We measure the time it takes to
train on 2, 6 and 12% of the data and report it in
the Table 1. As it is seen from the Table 1, adapter
modules benefit from shorter training times in all
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Figure 1: Text classification on Amazon Massive.

cases. The average speedup adapters provide is
20.84%.

Dataset 2% | 6% | 12%
AG NEWS - full 367 | 1098 | 2201
AG NEWS - adapter 285 | 860 | 1730
BANKING 77 - full 30 89 178
BANKING 77 - adapter 23 71 140
MASSIVE (EN) - full 34 | 103 | 207
MASSIVE (EN) - adapter | 27 82 164
CONLL - full 11 32 67

CONLL - adapter 9 25 55

Table 1: Time in seconds taken to train a full ELEC-
TRA model and an ELECTRA model with a bottleneck
adapter on four different datasets with 2, 6 and 12% of
the data.

5 Results

As it is observed from Table 4, both distance met-
rics that have been measured between adapter and
full ELECTRA models are close to zero, which
means that the distributions of uncertainty scores
of those models are quite close to each other. Since
active learning strategies rely on uncertainty scores,
it means that in the active learning settings, training

a model with an adapter speeds up the training time
and consumes less memory without influencing the
model’s predictions compared to the full model
fine-tuning.

Our experiments on four datasets show that mod-
els with the bottleneck adapter demonstrate a com-
parable performance on each active learning itera-
tion with full models. We have also included experi-
ments with DistilBERT as an acquisition model and
this setup performs worse in comparison with all
other setups due to the ASM problem discussed ear-
lier. In addition, we have concluded that the adapter
helps speed up the active learning process when
added to the acquisition model. All this makes the
adapter models more efficient for classification in
active learning.

6 Conclusion
The findings of this study include the following:

1. Statistical tests of uncertainty scores (BALD,
in particular) obtained from full models and
adapter models have concluded that the pre-
dictions of the two types of models are similar
enough to use the adapter models in active
learning with no significant perturbation of
predictions.
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2. Adapter models require shorter training time,
which may be utilized to accelerate the cycles
of active learning.

3. In active learning settings, adapter models can
be used to overcome the ASM problem caused
by different architectures of acquisition and
successor models.

7 Limitations

Although we have demonstrated that adapters can
be useful in the active learning settings, our exper-
iments only include the task of text classification
and named entity recognition on four particular
open source datasets. For further research, adapters
may be tested on different tasks and datasets.

In addition, this research is only focused on one
particular model and investigates the behavior of
ELECTRA in the active learning settings. It would
be interesting to apply the same approach to models
of different architectures as well.
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A Appendix
A.1 Query strategies

In the experiments, the following query strategies are used to evaluate the queries from the pool of the
unlabeled data and add them to the labeled pool:

Random sampling is used as a baseline for all experiments. It simply picks data from a dataset randomly
from a uniform distribution.

Least Confidence (LC) strategy is applied in most of the experiments. LC is a popular measure of
uncertainty which is defined as follows:

LC=1- max (P(y|z))

where x is an instance of the unlabeled data and y is a class that was predicted for this data instance.
Lewis and Gale (1994)

Breaking Ties (BT) strategy inspects two maximal probabilities and picks instances with the minimum
margin between them. Luo et al. (2005)

BT = min(P(y o) — P(3))
where y; and y2 are the first and second most likely labels respectively.

Maximum Normalized Log-Probability (MNLP) is a strategy proposed specifically for the NER task
Tjong Kim Sang and De Meulder (2003). It is based on sampling the instances with the lowest log
probability, which has been normalized by sequence length.

A.2 Statistical methods for comparing UE scores

¢ Wasserstein distance (WD), also known as the earth mover distance Rubner et al. (1998), shows
how much “work” needs to be applied to transform one probability distribution into another. It can
be assumed that a low numerical value of WD means that two distrubutions are similar.

* Kullback-Leibler (KL) divergence Kullback and Leibler (1951) is a general measure of how
different one probability distribution is in reference to another. A low value of KL divergence means
the two distributions are identical in the context of the information they convey.

A.3 Datasets

We evaluate our approach on the classificaton task. We utilize three popular datasets: English AG News
topic classification dataset Zhang et al. (2015), Banking77, a single-domain intent classification dataset
Casanueva et al. (2020) and the English language part of the Amazon MASSIVE dataset FitzGerald et al.
(2022). We also evaluate our approach on NER task. For this task, we utilize the CoNLL-2003 dataset
Tjong Kim Sang and De Meulder (2003).

The statistics on the datasets are presented in the Table 2.

Dataset Train | Test | C

AG NEWS 120K | 7.6K | 4
BANKING 77 10K 3K | 77
MASSIVE (EN) | 11.5K | 29K | 60
CONLL-2003 14K 34 | 9

Table 2: Datasets statistics on the number of samples in the train, validation and test sets. C' stands for the number
of classes or labels.

Amazon Massive dataset and Banking 77 dataset are distributed under Creative Commons Attribution
4.0 International Public License.
All models used in this research are distributed under Apache License 2.0.
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A.4 Datasets and active learning strategies

As it can be observed from the Table 2, the AG News dataset contains much more samples and much less
classes than any other dataset explored in this research. So the accuracy gains in the experiments on AG
News can be explained by the fact that this information is quite easy to learn.

While experimenting with active learning on these datasets, we pointed out several observations. In
some cases, randomly picking data samples demonstrates very similar performance metrics to those setups
that use a query strategy but never outperforms them, as it is seen in Figure 2 for the Banking77 dataset.
However, in the cases of a more balanced and structured data with less classes random sampling performs
much worse (for example, AG News in Figure 3).

Two query strategies (LC and BT) have been analyzed for different classification datasets and it has
been found that BT, which is based on selecting the samples with almost identical predictions for most
probable classes, demonstrates a better performance on the AG News dataset than LC. At the same time,
LC strategy, which simply queries the samples that the classifier is the least certain about, is more effective
on Banking77 and Amazon Massive. We conclude that exploring a variety of strategies is important
particularly when faced with a singular task accompanied by multiple datasets of diverse structures.

A.5 Computing infrastructure

Experiments were conducted using one NVIDIA GeForce RTX 3090 GPU with 24 GB of memory,
hosted on a server with 2 Intel Xeon Silver 4216 CPUs at 2.10GHz with 60GB of RAM running
Ubuntu 22.04.2 LTS. Our models were implemented using PyTorch 2.1.2. We ensured reproducibility by
setting five random seeds for all experiments. Hyperparameter tuning was not performed, a fixed set of
hyperparameters was used instead, which is listed in the Table 3. The average training time for each seed
of our models was approximately 1.5 hours.

Hyperparameter | Value
Learning Rate 2e-5
Batch Size 16
Epochs 15
Dropout Rate 0

Table 3: Hyperparameter setup for all models used in the experiments. For adapter models the value of the learning
rate is le-4.

A.6 Tables
Dataset WD | KL divergence
AG NEWS 0.0004 0.0469
BANKING 77 | 0.0007 0.0071
MASSIVE (EN) | 0.0006 0.01
CONLL 0.0007 0.0034

Table 4: Distance metrics computed over BALD scores obtained from full ELECTRA model and adapter ELECTRA
model. The two configurations of the models have been fine-tuned on four different datasets.
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Figure 2: Text classification on Banking77.
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Figure 3: Text classification on AG News.
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Performance, F1

0.91

Figure 4:

— = strategy: MNLP, acquisition model: DistilBERT, successor model: ELECTRA
=== strategy: MNLP, acquisition model: ELECTRA, successor model: ELECTRA
= = strategy: MNLP, acquisition model: ELECTRA_ADAPTER, successor model: ELECTRA

strategy: random, acquisition model: ELECTRA, successor model: ELECTRA
6 8 10 12
Labeled Data, %

Named entity recognition on CoNLL 2003.
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