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Abstract

Text classification is one of the essential top-
ics in natural language processing, and each
text is often associated with multiple labels.
Recently, the number of labels has become
larger and larger, especially in the applica-
tions of e-commerce, so handling text-related
e-commerce problems further requires a large
memory space in many existing multi-label
learning methods. To address the space con-
cern, utilizing a distributed system to share
that large memory requirement is a possible
solution. We propose “random label forests,”
a distributed ensemble method with label sub-
sampling, for handling extremely large-scale
labels. Random label forests can reduce mem-
ory usage per computer while keeping compet-
itive performances over real-world data sets.

1 Introduction

Text classification is one of the essential topics in
natural language processing fields. There are many
valuable applications, such as product categoriza-
tion for e-commerce (Shen et al., 2011; Agrawal
et al., 2013; McAuley and Leskovec, 2013), cod-
ing diagnosis and procedures in medical records
(Nuthakki et al., 2019), and document tagging (Zu-
biaga, 2009). Usually, the prediction in the text
classification can be multi-labeled. Hence, a text
classification problem falls into the category of
multi-label classification, which is used to find the
relevant labels of a data instance. For example, we
can set the document content and tags in the docu-
ment tagging problem as the feature and labels in a
multi-label problem.

Recently, the number of labels has become
larger and larger, especially in the applications
of e-commerce. Thus, an emerging topic is ex-
treme multi-label learning (XML), which focuses
on large-scale candidate labels, input instances, and
input features. Because of these three large-scale
components, an XML method should further con-

sider the model training time and memory usage in
addition to the performance.

A simple and classic way to solve a multi-label
classification problem is by the one-versus-rest
(OVR) method with linear models. However, the
time complexity and model size directly depend on
the number of labels and features. To handle prob-
lems with many labels, two existing extensions of
OVR are developed:
• DiSMEC (Babbar and Schölkopf, 2017) splits

the label set into several subsets and lets each ma-
chine in a distributed system handle one subset.
This way, the training time and model size per
machine are reduced.

• Tree-based linear methods (Tsoumakas et al.;
Prabhu et al., 2018; Khandagale et al., 2020;
Yu et al., 2022) utilize the divide-and-conquer
paradigm on labels via clustering methods such
as K-means and then apply the OVR method to
train the smaller problems on the clusters. We
discuss the details in Section 2.2.

Besides the linear methods, we can also use low-
rank embedding on features and labels to re-
duce the training time and memory usage, e.g.,
(Bhatia et al., 2015; Yu et al., 2014). However,
some works (Khandagale et al., 2020; Babbar and
Schölkopf, 2017) report that the distribution of
positive instances over labels is long-tail in most
XML data sets, so the label space cannot be well-
approximated to a low-rank embedding space. For
the deep-learning methods, some earlier works
(Kim, 2014; Liu et al., 2017) only show competi-
tive performance on short-text XML problems (Yu
et al., 2022, Section 5.2). However, several tree-
based deep-learning methods (You et al., 2019;
Jiang et al., 2021; Zhang et al., 2021) can rank
better on the public XML benchmark (Bhatia et al.,
2016). Nevertheless, although neural network mod-
els perform better in many fields, Lin et al. (2023)
point out that the linear model is still a strong base-
line for certain multi-label classification data. Fur-
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thermore, the linear models are easy to understand
and more explainable, so we focus on linear models
in this work.

Let us go back to discussing the linear methods.
Although DiSMEC and tree-based linear methods
are reasonable solutions for XML problems, each
method still has disadvantages. DiSMEC can only
handle a small number of labels, but not large-scale
labels, on each machine. Tree-based linear methods
require large memory space to handle all the labels
during the training. Hence, we hope a method can
take the advantages of DiSMEC and tree-based
methods without having their disadvantages.

Label subsampling is another way to divide
an XML problem into more minor subproblems.
RAKEL (Tsoumakas and Vlahavas, 2007) is a pio-
neer in using label subsampling with the ensemble
method. After the label subsampling, RAKEL con-
verts each small-scale multi-label subproblem to a
multi-class one by considering every label combi-
nation as a new class label. This setting, referred to
as “label powerset” in multi-label learning, is not
scalable to XML because covering the predictions
of highly large-scale labels by the powerset method
is almost impossible.

In this work, we utilize label subsampling and
the distributed system to reduce the impact of the
large-scale labels. Specifically, each computer can
solve a smaller XML subproblem via some existing
XML methods, such as tree-based linear methods.
Hence, handling XML problems with billions of
labels or more becomes practical. Since we use the
label subsampling technique with the tree-based
linear method, we call this method “random label
forests.” Let us list our contributions as follows.
• We propose a natively parallel framework, ran-

dom label forests, which is an ensemble method
with label subsampling for the XML problem.

• Our experiments show that random label forests
are competitive with the standard tree-based
methods applied to all labels.

• We analyze the model size of tree-based meth-
ods and explain why random label forests can
reduce memory usage in each computer of the
distributed system.

• We also analyze the time complexity of tree-
based methods. The training time of random
label forests is shorter than the tree-based meth-
ods with all labels.
Section 2 discusses OVR and tree-based meth-

ods for XML problems and explains why we only
consider linear methods in this work. Section 3

focuses on distributing a tree-based model and then
presents random label forests, including discus-
sions on the data processing, time complexity, and
model size. Section 4 shows comparison results on
performance, training time, and model size.

2 Multi-Label Problems

A multi-label classification problem aims to find
a function f with the parameter θ that can pre-
dict whether a given instance x, which is a fea-
ture vector in Rn, is associated with the label-j
for j = 1, . . . ,m, where n and m are the feature
dimension and the number of labels. We use 0/1 to
indicate if an instance is associated without/with
a label. Hence, we can denote y ∈ {0, 1}m as the
label vector of the instance x ∈ Rn so that the
predictions f(x;θ) can be as close to y as pos-
sible. Based on the definition above, past works
(Babbar and Schölkopf, 2017; Prabhu et al., 2018;
Khandagale et al., 2020; Yu et al., 2022) utilize lin-
ear models to handle the multi-label classification
problem, and other works (Kim, 2014; Liu et al.,
2017; You et al., 2019; Jiang et al., 2021; Zhang
et al., 2021) use the different architectures of neural
networks. Although neural network models per-
form better in many fields, Lin et al. (2023) point
out that the linear model is still a strong baseline for
certain multi-label classification data. Furthermore,
the linear models are easy to understand and more
explainable, so we focus on linear models in this
work.

2.1 One-Versus-Rest Method
The OVR method involves training a single model
per label, with the instances of that label as pos-
itives and all other instances as negatives. Thus,
when training an OVR linear model on a multi-
label classification problem with the training set

D = {(yi,xi) ∈ ({0, 1}m,Rn) | i = 1, . . . , l},

where l is the number of the training instances, we
solve m subproblems

min
wj∈Rn

λ

2
wT

j wj +

l∑

i=1

ξ(wT
j xi, [yi]j), (1)

for j = 1, . . . ,m. In each subproblem, λ is
the hyper-parameter, [a]j denotes the jth com-
ponent of the vector a, and ξ is the loss func-
tion for binary classification. Moreover, subprob-
lems in (1) can be easily handled by some ma-
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ture binary classification libraries such as LIBLIN-
EAR (Fan et al., 2008). After the training pro-
cedure, we can use the OVR model to get the
scores

[
wT

1 x · · · wT
mx
]

for any given instance
x. Moreover, a 0-1 function δ can map the scores
to a label vector

[
δ(wT

1 x) · · · δ(wT
mx)

]
∈ {0, 1}m

as the prediction.
Many works (Babbar and Schölkopf, 2017; Lin

et al., 2023) show that OVR linear models are use-
ful, but

(i) the space requirement for the model parame-
ter θ = (w1 · · ·wm) and

(ii) the training time of (1)
increase asm becomes larger. For large XML prob-
lems, the issues above become essential.

2.2 Tree-Based Methods

To overcome the training time issue (ii), past works
(e.g., Prabhu et al., 2018; Khandagale et al., 2020;
Yu et al., 2022) utilize the tree structure to reduce
the training time. The structure is constructed
based on recursively clustering labels by methods
such as K-means. For clustering, we need label in-
formation. If such information is not directly avail-
able, some works (Prabhu et al., 2018; Khandagale
et al., 2020; Yu et al., 2022) construct the label rep-
resentations by averaging all instances of label-j:

∑
i[yi]jxi

‖∑i[yi]jxi‖2
. (2)

Next, we discuss a two-level tree as an example.
The K-means procedure divides the index set of
labels {1, . . . ,m} into K partitions I1, . . . , IK .
Then, we can train a smaller OVR model of K
weight vectors by solving

min
w̃j̃∈Rn

λ

2
w̃T

j̃
w̃j̃ +

l∑

i=1

ξ(w̃T
j̃
xi, [zi]j̃), (3)

for j̃ = 1, . . . ,K. For any x, the model can de-
termine if x has pseudo-label-j̃, where the pseudo-
label vector z is defined by

[z]j̃ =

{
1 x has any label in the partition Ij̃ ,
0 otherwise,

for all j̃ = 1, . . . ,K. Prabhu et al. (2018); Yu et al.
(2022) point out that the model trained by (3) can
estimate the probabilities

P (x has pseudo-label-j̃ | x, w̃j̃), (4)

{1, 2, . . . ,m}

I1

· · · · · ·

· · · Ij̃

· · · j · · ·

· · · IK

· · · · · ·

Figure 1: A two-level tree-based model.

for j̃ = 1, . . . ,K, via the transform function

σ(w̃T
j̃
x) = exp

(
−max(1− w̃T

j̃
x, 0)2

)
(5)

if ξ is the square-hinge loss. However, we are
interested in

P (x has label-j | x,θ), ∀j = 1, . . . ,m,

where θ includes all the parameters (i.e., w̃j̃ , wj ,
∀ j̃, j) in the model. Therefore, Prabhu et al. (2018)
utilize the property that

P (x has label-j | x,θ)

= P (x has label-j, j ∈ Ij̃
| x,wj ,x has pseudo-label-j̃ ) · (4), (6)

so we can rely on a data subset

Dj̃ = {(yi,xi) | xi has any label in Ij̃} (7)

to train another OVR model

min
wj∈Rn

λ

2
wT

j wj +
∑

(yi,xi)∈Dj̃

ξ(wT
j xi, [yi]j),

(8)
for estimating

P (x has label-j , j ∈ Ij̃
| x,wj ,x has pseudo-label-j̃ ),

(9)

for all j ∈ Ij̃ . The estimation of (9) corresponds to
the training process at node Ij̃ in Figure 1. Specif-
ically, at node Ij̃ , we have a smaller multi-label
problem with labels in Ij̃ and data points in Dj̃ .
We still use the OVR setting for training. Thus, we
have K linear models trained by the full data set D
in level-1 of the tree and m linear models trained
by K smaller data subsets D1, . . . , DK in level-2
of the tree. Furthermore, the transform function (5)
and the property (6) estimate

P (x has label-j | x,θ)

≈σ(w̃T
j̃
x) · σ(wT

j x), ∀j ∈ Ij̃ ,
(10)
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for all j̃ = 1, . . . ,K, for predicting all labels with
a given x. Note that for simplicity, we only show
a two-level example here for describing the tree-
based model.

For the training time of linear models, a pop-
ular method (Hsieh et al., 2008) costs O(ṅl) per
iteration, where ṅ is the average non-zeros over
all instances. Because the number of iterations is
usually not large, we can treat it as a constant in
the time complexity analysis. Therefore, training
the standard OVR that involves m binary problems
costs O(mṅl). For a two-level tree-based model,
in Appendix C, we derive the training time as

O
(
Kmc̃ṅR+ (K +

cm

K
)ṅl
)
, (11)

in which the first term corresponds to the cost of
K-means. In (11), c̃ṅ with c̃ > 1 is the average
number of non-zeros in each label representation,
c ≥ 1 is a constant upper-bounded by the maximal
label number of an instance, and R is the average
number of K-means iterations. For data with many
instances, we generally have

l� KRc̃,

so the second part in (11) is the dominant term. If
we compare it with theO(mṅl) cost of OVR, when
m is enormous, a tree-based model costs much less.

We have discussed a tree-based model to solve
the training time issue (ii). Let us check the model
size. To begin, we assume that zero features have
been removed before training any binary problem.
Due to the use of l2 regularization (i.e., wT

j wj in
(1)), the resultingwj is generally a dense vector, in-
cluding many non-zero components. For the OVR
method, we need O(mn) space to store m linear
models. On the other hand, the two-level tree-based
model has (K + m) linear models, so the model
size isO(Kn+mn), which is larger than the OVR
model. Fortunately, while we use a training data
subset (7) to train the model for estimating (8),
many instances may be removed. Thus, some fea-
tures may not be used by any instance of the train-
ing data subset so we can reduce the dimensionality
of the feature space. Assume the reduced dimen-
sions are n1, . . . , nK that correspond to the training
subsets D1, . . . , DK , and take n̄ ≤ n as the aver-
age dimension of the feature space in the level-2
models. Thus, the two-level tree-based model size
becomes O(Kn + mn̄), less than OVR’s model
size O(mn) if n̄ is small enough. A detailed study
on the size of tree-based models is in (Lin et al.,
2024).

Data set Max. labels Ratio of total labels
eur-lex-4k 422 0.11
wiki10-31k 3289 0.11
amazoncat-13k 2854 0.21
amazon-670k 106963 0.16
amazon-3m 352094 0.13
wiki-500k 88769 0.18

Table 1: The maximal label number of K-means parti-
tions over six data sets as K = 100.

3 Distributed Settings to Address the
Memory Issue

Using multiple computers to store a model can
reduce the memory usage in each computer. In
the past, DiSMEC distributed the training and the
storage of an OVR model to multiple computers.
However, the setting is still not scalable to data with
extremely many labels. Hence, separating a tree-
based model into several computers is a possible
solution because of the faster training and smaller
model size than the OVR setting. Therefore, we dis-
cuss the distributed training of a tree-based model
in the following subsections.

3.1 Distributing a Tree-Based Model
We discussed in Section 2.2 that a tree-based model
separates the labels to the partitions I1, . . . , IK , so
distributing the sub-tree construction of these par-
titions is possible. Assume we have K machines.
For the machine-j̃, to simulate the task at node Ij̃
in Figure 1, we must train a binary classifier on

data with labels in Ij̃ versus without. (12)

To this end, the machine-j̃ must have the whole
training set. After that, the machine-j̃ continues to
construct the sub-tree. Therefore, the performance
will be the same as the serial setting. However,
there are two issues:

(i) Unless we implement distributed K-means,
theK-means procedure must be done on one
computer to get the partitions.

(ii) The partitions are imbalanced. Table 1 shows
that the largest partition among the 100 clus-
ters I1, . . . , I100 contains 10% or more of the
whole data set. Thus, the model sizes of the
partitions are hard to estimate, so the specifi-
cations of each computer are challenging to
decide.

3.2 Random Label Forests
One possible solution to overcome these two is-
sues is to omit K-means, uniformly split labels to
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(a) Without negative sampling. (b) Negative sampling by instances. (c) Negative sampling by labels.

Figure 2: An example of different negative samplings.

the partitions I1, . . . , IK in level-1, and everything
else is the same. However, our experiment in Sec-
tion 4.1 shows that the performance of a tree-based
model using K-means partitions is better than us-
ing random partitions. The inferior performance
seems to be from the poor estimations of level-1
probabilities in (4). We know that each label subset
should contain instances with similar or even iden-
tical feature values. For a random split of labels,
these similar instances may end up being on both
positive and negative sides of the problem (12),
an ambiguous situation that may result in a poor
model. In contrast, K-means helps to put these
labels into the same partition, so the issue may not
occur. From the discussion so far, the question
becomes how to alleviate the performance issue
while controlling the model size per computer. We
propose the following settings.
• We let each machine handle a random label sub-

set. This way allows us to control the model
size.

• We propose bypassing the level-1 probability es-
timate. Instead, we run the standard tree-based
method on the label subset, applying K-means
on every level.

For the random label subset in each computer, in-
stead of one partition from splitting the whole la-
bel space, we can be general so that label subsets
overlap. The remaining task is to let each ma-
chine produce a suitable probability estimate and
ensemble results from different machines. Because
each label subset corresponds to an independent
tree, our method is an ensemble method with label
subsampling. We call our method “random label
forests” due to the similar idea from random forests
(Breiman, 2001).

Let us formally discuss random label forests
in detail. Suppose we have N computers and
use the sample rate r on subsampling the labels
{1, . . . ,m} to the subsets Ît, for all t = 1, . . . , N .

Without loss of generality, let us focus on t = 1 as
an example. Since the label part of the data set has
been subsampled, the label space is modified from
{0, 1}m to {0, 1}|Î1|, where we use a function φ1
to describe this label mapping. Our training data
subset becomes

D̂1 = {(φ1(yi),xi) | i = 1, . . . , l}

in the computer-1. We mention that the smaller
the sample rate r we set, the more instances are
empty-labeled in D̂1, i.e.,

φ1(y) = 0 ∈ {0, 1}|Î1|.

Thus, it seems that we have a choice of removing
empty-labeled instances.

The training time of the models can be reduced if
we remove the empty-labeled instances. However,
the probability estimates from (4) may become in-
accurate. Let us explain this issue by an example.
• Consider a multi-class problem, a particular case

of multi-label problems, with three labels {red
circle, green triangle, blue cross} in Figure 2a. If
the red circle is the positive label and the others
are negative labels, a linear model can be trained
as the dark blue line in Figure 2a.

• If we uniformly sample the negative instances
in Figure 2b, the linear model may not be af-
fected. However, suppose we sample the nega-
tive instances by the labels in Figure 2c. In that
case, the linear model can be impacted incor-
rectly. The reason is that we completely remove
the data from some labels.

• Thus, a non-uniform negative sampling can af-
fect (4) because the model does not estimate the
probability well anymore.

The example above shows a critical point in a tree-
based model training on a subset of labels. If
we train a two-level tree-based model on the data
subset D̂1, the training problem in level-1 will be
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Algorithm 1 Training random label forests.
Require: Training set D, # of submodels N , sample rate r

distributed for t = 1, . . . , N do
Ît ← subsample the label indices with the rate r on the

full index set {1, . . . ,m}.
D̂t ← update the label part of D with Ît.
θt ← train a tree-based submodel with the subset D̂t.

end distributed for

changed from (3) to

min
w̃j̃∈Rn

λ

2
w̃T

j̃
w̃j̃ +

l∑

i=1

ξ̂(w̃T
j̃
xi, [ẑi]j̃), (13)

for j̃ = 1, . . . ,K. In contrast to z in (3), a pseudo-
label vector ẑ of the data subset D̂1 is defined as

[ẑ]j̃ =

{
1 x has any label in Ij̃ of D̂1,

0 otherwise.

Many ẑi = 0 if xi’s labels do not appear in the set
Î1. If these xi are removed, it is similar to doing
a non-uniform negative sampling, as in Figure 2c.
The model trained by (13) may not estimate the
probability (4) reasonably. Therefore, we should
not remove those empty-labeled instances in D̂1.
Besides this crucial point, all other details in the
tree construction are the same as those shown in
Section 2.2 for the tree using all labels.

With the label subsets Î1, . . . , ÎN and the train-
ing subsets D̂1, . . . , D̂N , we can parallelly train
the submodels θ1, . . . ,θN in N computers. Algo-
rithm 1 shows the whole training procedure.

Next, let us discuss the prediction procedure. We
still assume that two-level trees are used. Since the
prediction probabilities can be estimated by (10),
we can estimate P (x has label-j | x,θt) for all
label-j in the subsampled subset Ît by the tth tree-
based submodel θt. Because label-j may appear in
several label subsets, a natural setting is to average
the several probability estimations.

P (x has label-j | x,θ1, . . . ,θN )

=

∑
t:j∈Ît P (x has label-j | x,θt)
|{t | j ∈ Ît, ∀t = 1, . . . , N}|

.
(14)

Nevertheless, an issue exists because a tree-based
submodel θt can only predict labels in the subsam-
pled subset Ît. Hence, if some labels are never
subsampled, our model can never predict those la-
bels. This situation occurs for some rare labels, so
the performance may not be affected much. Our
competitive performance, as shown in Section 4.2,

seems to support this point. However, other ways
of label subsampling can be a future study to miti-
gate the issue.

3.3 The Benefits of Random Label Forests

Section 2.2 discusses the time complexity and
model size of a two-level tree-based model. Now,
let us check the complexities in a computer when
applying random label forests with two-level tree-
based submodels in the distributed system.
• Space complexity. Since we set the sample rate

as r, the number of a subsampled label set be-
comes rm. Therefore, the model size changes
from O(Kn+mn̄) to O(Kn+ rmn̄).

• Time complexity. Similarly, the time complexity
changes from (11) to

O
(
Krmc̃ṅR+ (K +

crm

K
)ṅl
)
.

Therefore, we can roughly control the model size
and training time by the rate r in random label
forests if each computer handles a tree-based sub-
model. The experiments for comparing a tree-
based model with all labels and a tree-based sub-
model of random label forests are discussed in Sec-
tion 4.3 and Section 4.4. We note that Yu et al.
(2022) try to parallelize the training of a single tree
with all labels, but the implementation is compli-
cated. Moreover, the time complexity of K-means
cannot be reduced in that scenario.

4 Experiments

Section 3.2 discusses different distributed settings
on tree-based models, so we first analyze which
setting is the better choice over four smaller XML
data sets in Section 4.1. After deciding on the
distributed setting, we compare three linear mod-
els: OVR, a tree-based model with all labels, and
random label forests on six XML data sets in Sec-
tion 4.2.

Throughout this section, the label number m is
shown after the name in each data set.

We leave the details of data sets in Appendix A
and discuss the hyper-parameters in Appendix B.
To measure the performance of an XML model, we
follow the works (Prabhu et al., 2018; Khandagale
et al., 2020; Yu et al., 2022; You et al., 2019; Jiang
et al., 2021) to use precision at 1, 3, and 5 as the
metrics of the predictions.

We discuss the model size in Section 4.3, and the
comparison of the training time is in Section 4.4.
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Random partitions/selection Random label forests
level-1 data with Ij̃ versus without nothing
level-2 data with Iĵ versus those with Ij̃ but not Iĵ data with Iĵ versus without

Table 2: Comparison between random partitions/selection and random label forests.

4.1 Analysis of Different Distributed Settings

Section 3.2 discusses that using a uniform split of
labels is a possible solution for avoiding the im-
balanced K-means clusters under the distributed
setting. Now, we check the performance between
these two partition methods. They follow the stan-
dard setting of tree-based models but intend to con-
tinue the tree construction after level-1 in paral-
lel. On the other hand, we have the proposed ran-
dom label forests, which independently generate
tree-based submodels on label subsets. Thus, we
compare these three methods with the following
settings.

• Tree with all labels. The standard tree-based
method. Note that we set K = 100.

• Random 100 partitions. The tree-based method
that replaces K-means in level-1 with a uniform
split of labels.

• Random 10 partitions and Random 10
partitions×10. In the previous setting, we con-
sider 100 random partitions because of following
the K = 100 in K-means. While K-means may
require a careful selection of K, when using ran-
dom splits, we can instead control each cluster’s
size according to the capacity of a machine. Thus,
we try 10 partitions of the data set. Another rea-
son for doing so is that later, for the proposed
random label forests, we let each machine handle
10% of labels. Thus, we need the setting of 10
random partitions as a comparison.
In Section 3.2, we discussed how to ensemble
the prediction results of various trees. Therefore,
an extension is to run the label partition several
times to generate more trees. Here, we run the
random 10 partitions 10 times to generate 100
label subsets. We call this setting “random 10
partitions×10.”

• Random label forests-10P and Random label
forests-10P×10. We consider label subsets gen-
erated in the previous setting to run the proposed
label forests. Note that the current setting has
some subtle differences from the previous one.
To illustrate the differences, we extend Figure 1
to a tree with more than two levels.

{1, 2, . . . ,m}

I1

· · · · · ·

· · · Ij̃

· · · Iĵ

· · · · · · · · ·

· · ·

· · · IK

· · · · · ·

Now, I1, . . . , IK correspond to the 10 subsets
from a random partition. We can use Table 2
to show the different binary problems solved at
each level. Note that “random label forests-10P”
is the standard setting for training a tree model,
though we run the procedure related to Ij̃ on one
particular computer. In the prediction of random
10 partitions, we use the model obtained in level-
1 to estimate the probability in (4). In contrast,
for “random label forests-10P,” we can say that
there is no level-1. Using Ij̃ and all data, we con-
struct an independent tree. It is important to note
that, as explained in Section 3.2, for the binary
problem involving those with Ij̃ as positive, we
need all other data as negative. We cannot just
consider those in Ij̃ but not Iĵ ; see the row “level-
2” in Table 2. In prediction, each tree obtains its
own probability estimation, and we calculate the
average in (14).

• Random label forests-100U and Random
selection-100. The discussion in Table 2 shows
that for any label subset Ij̃ considered, there are
two ways to continually obtain a sub-tree model.
In the previous setting, Ij̃ is one partition of a
random split, but we can uniformly sample la-
bels from {1, . . . ,m} to have label subsets. We
randomly draw labels with replacements to ob-
tain 100 label subsets, each of which has 10% of
the labels. Thus, these subsets overlap with each
other. Random label forests-100U is then the pro-
posed method applied to these 100 subsets. The
approach differs from random 10 partitions×10
only on how label subsets are generated. Specif-
ically, earlier, for random 10 partitions×10, we
run label split 10 times, each of which partitions
the label set to 10 subsets. On the other hand,
for the same 100 label subsets, we can apply the
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Method P@1 P@3 P@5 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5
eur-lex-4k wiki10-31k amazoncat-13k amazon-670k

Tree with all labels 82.29 69.35 57.91 74.72 65.86 93.19 79.55 64.61 44.58 39.44 35.64
Random 100 partitions 80.52 67.56 56.30 73.02 63.82 92.56 77.90 62.76 38.52 32.49 27.90
Random 10 partitions 79.82 66.60 55.84 73.61 64.55 92.36 78.06 63.11 41.76 36.43 32.30

Random label forests-10P 77.52 65.08 54.87 73.35 64.56 81.06 71.91 60.35 42.62 37.63 34.01
Random 10 partitions×10 81.99 69.13 58.19 74.21 65.21 94.01 79.96 65.09 44.82 39.92 36.25

Random label forests-10P×10 81.22 68.15 57.29 74.13 65.36 93.08 79.59 64.78 45.23 40.28 36.70
Random selection-100 80.51 67.93 57.37 74.22 65.65 89.41 77.82 63.97 43.76 39.35 35.86

Random label forests-100U 83.08 69.90 58.69 74.35 65.70 94.11 80.17 65.18 45.19 40.24 36.65

Table 3: Comparison of different distributed settings in precisions. For wiki10-31k, since half of the instances are
associated with a unique label, precision at 1 is not a discriminable metric on this data set. Therefore, we do not
show the precision at 1 results in wiki10-31k for the space limitation.

Method P@1 P@3 P@5 P@1 P@3 P@5
eur-lex-4k amazon-670k

One-versus-rest 83.47 70.62 59.05 45.41 40.41 36.97
Tree with all labels 82.29 ± 0.30 69.35 ± 0.09 57.91 ± 0.12 44.58 ± 0.07 39.44 ± 0.04 35.64 ± 0.03

Random label forests 83.08 ± 0.15 69.90 ± 0.08 58.69 ± 0.06 45.19 ± 0.05 40.24 ± 0.03 36.65 ± 0.01
wiki10-31k amazon-3m

One-versus-rest 85.23 75.80 67.11 - - -
Tree with all labels 84.72 ± 0.08 74.72 ± 0.17 65.86 ± 0.09 47.48 44.74 42.63

Random label forests 84.78 ± 0.14 74.35 ± 0.17 65.70 ± 0.08 48.69 45.67 43.49
amazoncat-13k wiki-500k

One-versus-rest 94.14 79.71 64.69 - - -
Tree with all labels 93.19 ± 0.03 79.55 ± 0.04 64.61 ± 0.03 68.39 48.90 38.00

Random label forests 94.11 ± 0.04 80.17 ± 0.02 65.18 ± 0.02 64.37 45.83 36.09

Table 4: Comparison of random label forests and other linear methods in precision at 1, 3, and 5 over six data sets.
OVR results on “amazon-3m” and “wiki-500k” are unavailable due to lengthy running time.

same strategy as “random label forests-100” in
Table 2. We call this setting as “random selection-
100.”

We have the following observations from Table 3.

• A comparison between “tree with all labels” and
“random 100 partitions” shows that using K-
means for the label partitions is better than using
random partitions. We explained this observation
at the beginning of Section 3.2.

• The ensemble method enhances the performance.
This result can be seen by comparing
– “random 10 partitions” and “random 10

partitions×10,” and
– “random label forests-10P” and “random label

forests-10P×10.”
• In Table 2, we illustrated an important difference

between random partitions/selections and the pro-
posed random label forests. We organize Table 3
in a way so that, except for the first two rows,
every two rows serve as a comparison between
the two settings. Unfortunately, results do not
clearly show which way is better. We can see that
“random label forests-10P” is significantly worse
than “random 10 partitions.” However, once we
have more trees, random label forests become
comparable or better.

• Regarding the generation of label subsets, we
mentioned two ways: random partitions and ran-
dom selections. To see which way is more effec-
tive, we should compare
– “random 10 partitions×10” and “random

selection-100,” and
– “random label forests-10P×10” and “random

label forests-100U.”
Results seem to indicate that, if one calculates
the level-1 probabilities as explained in Table 2,
random partitions are better than random selec-
tion. However, opposite results occur for random
label forests.
Experiments in this section fully show that dis-

tributing a tree-based method is not trivial because
of different considerations and options. Because
the setting “random label forests-100U” gives the
best performance, we use it as our distributed solu-
tion in subsequent experiments.

4.2 Performance Comparison with Existing
Multi-Label Methods

To mitigate randomization issues in tree-based
methods due to K-means, we execute training and
prediction procedures ten times on the data sets
“eur-lex-4k,” “wiki10-31k,” “amazoncat-13k,” and
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Data set Tree with all labels Random label forests
eur-lex-4k 561.02 MB 49.25 MB
amazoncat-13k 1.72 GB 193.13 MB
wiki10-31k 6.38 GB 749.07 MB
amazon-670k 20.56 GB 2.92 GB
amazon-3m 135.89 GB 12.69 GB
wiki-500k 161.37 GB 13.65 GB

Table 5: The model size comparison between a tree
with all labels and a tree of random label forests.

“amazon-670k.” We only execute the procedures
once for the data sets “amazon-3m” and “wiki-
500k” because the training time is too long. We
compare the following methods in the rest of this
section.
• OVR: The standard one-vs-rest method. This

method, though not scalable even in a distributed
setting, its performance on small data sets serves
as the target to be achieved by tree-based meth-
ods.

• Tree with all labels: This standard tree-based
method was evaluated in Section 4.1. Before our
distributed extensions studied in Section 4.1, this
method was mainly run on a single computer.
Thus, we compare this method to see the effec-
tiveness of our proposed distributed setting.

• Random label forests: This is the “random label
forests-100U” setting in Section 4.1.

Table 4 shows the comparison results, and we have
the following observations.
• OVR is slightly better than tree-based methods.

This result is reasonable because tree-based meth-
ods are a kind of “hierarchical approximation” of
OVR to address the scalability issue.

• The proposed random label forests are consis-
tently better than the tree-based method with all
labels except for “wiki-500k.” The performance
is close to that of OVR.
The worse results on “wiki-500k” are an exam-

ple of our method’s limitations, and we discuss this
issue in Section 6.1.

4.3 Comparison in Model Size

In Section 3.3, we have analyzed the model size of
random label forests that use two-level tree-based
submodels. However, because
• the sparsity of data points can affect n̄, and
• a tree-based model has more than two layers,
we conduct experiments to check the model size in
practice. Table 5 compares
• the model size of a tree-based method with all

labels in a single computer, and

Data set Tree with all labels Random label forests
eur-lex-4k 224.42 s 32.18 s
wiki10-31k 4220.77 s 543.33 s
amazoncat-13k 5311.23 s 910.06 s
amazon-670k 32068.89 s 2120.25 s
wiki-500k 202261.66 s 22987.20 s
amazon-3m 503575.79 s 23023.76 s

Table 6: Training time comparison between a tree with
all labels and a tree of random label forests.

• the model size of a tree in random label forests,
which corresponds to the needed space in each
computer of the distributed environment.

We can see that the ratio of space reduction is
approximately close to the sample rate r = 0.1.
Hence, random label forests can reduce the model
size in each computer of the distributed system,
even though the whole model may be larger than
that of a tree-based model with all labels. There-
fore, random label forests are effective in address-
ing the memory difficulty of extreme multi-label
classification.

4.4 Comparison in Training Time

Table 6 shows the training time comparison be-
tween a tree-based model with all labels and a tree
of random label forests. If, for the random label
forests,
• each machine handles one tree-based submodel,

and
• all machines used have similar configurations,
then Table 6 gives the comparison of total running
time between the standard tree-based method run
in one computer and the proposed random label
forests run in a distributed environment. We ob-
serve significant time reduction by random label
forests, especially for problems with a large num-
ber of labels.

5 Conclusion

This work proposes random label forests, a dis-
tributed ensemble method with label subsampling,
and tree-based linear models as the backbone. Ran-
dom label forests give competitive performances
using much less training time and memory usage
in a machine. Hence, handling a problem with
extremely many labels becomes practical. For all
methods considered and evaluated in this work,
the backbone is a linear classifier. In the future,
we plan to consider more sophisticated techniques,
such as neural networks.
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6 Limitations

6.1 Breaking Label Relationships
In Section 4.2, the performance of random label
forests is worse than that of a tree-based method
with all labels over “wiki-500k” data set. After the
investigation, we think the hierarchy correlation
between the labels in “wiki-500k” may be higher
than other data sets because the labels are the tags
of the documents in Wikipedia. For example, the
labels of the 14th instance in the raw data of “wiki-
500k” are

‘Apollo,’ ‘Arts gods,’ ‘Deities in the Iliad,’
‘Dragonslayers,’ ‘Health gods,’ ‘Knowledge
gods,’ ‘LGBT history in Greece,’ ‘LGBT
themes in mythology,’ ‘Muses,’ ‘Mythological
Greek archers,’ ‘Mythological rapists,’ ‘Oracu-
lar gods,’ ‘Roman gods,’ ‘Solar gods,’ ‘Temples
of Apollo,’

and there are many hierarchy relationships:

Roman gods→ Apollo,

Solar gods→ Apollo, . . . , etc.

Thus, uniform sampling in labels breaks the re-
lations, so the performance may be hurt. If we
increase the sample rate from 0.1 to 0.15, the per-
formance of “wiki-500k” will become better to

P@1 P@3 P@5

65.45 46.84 36.92

However, that performance is still much lower
than the tree-based model with all labels. There-
fore, the label subsampling technique seems unsuit-
able for the data sets that include many hierarchy-
correlation labels.

6.2 Requiring Distributed Resourse
In Section 4.2 and Section 4.4, we show that a tree
of random label forests can use much less memory
and training time than a tree-based model with
all labels. However, random label forests require
N tree-based submodels as an ensemble method.
Hence, those benefits will be discounted if we do
not have N machines.

6.3 The Applications of Distributed
Ensembles Method with Label
Subsampling

We only show an example, random label forests,
of distributed ensemble methods with label sub-
sampling and analyze the time complexity and

model size. However, the conclusion may be differ-
ent when using neural networks as the submodel.
Hence, searching for more applications is vital if
distributed ensemble methods with label subsam-
pling are a general solution for reducing the mem-
ory usage of an XML method in a computer.
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l n m
Data Set instances features labels
eur-lex-4k 15,449 186,104 3,956
wiki10-31k 14,146 104,374 30,938
amazoncat-13k 1,186,239 203,882 13,330
amazon-670k 490,449 135,909 670,091
amazon-3m 1,717,899 337,067 2,812,281
wiki-500k 1,779,881 2,381,304 501,070

Table 7: Statistics of data sets

A Data Sets

We show the statistics of data sets in Table 7. The
sets “eur-lex-4k,” “wiki10-31k,” and “amazoncat-
13k” are downloaded from “LIBSVM Data: Multi-
label Classification1”. The sets “amazon-670k,”
“amazon-3m,” and “wiki-500k” are downloaded
from the link that is supported by You et al. (2019).
Note that those data sets have already been prepro-
cessed from documents to a popular sparse feature
representation, “TF-IDF.” Moreover, every data set
has further been split into training and test parts.

B Hyper-Parameter Setting

In an XML problem, many works (Prabhu et al.,
2018; Khandagale et al., 2020; Yu et al., 2022; You
et al., 2019; Jiang et al., 2021; Zhang et al., 2021)
only fix a group of reasonable hyper-parameters on
their models because splitting a validation set from
a training set is a complex issue. The main reason
comes from the long-tail distribution of data over
the labels. If we uniformly split a validation set
from a training set, the distribution of the valida-
tion set is usually much different from the training
set in most rare labels, implying that tuning the
hyper-parameters in this validation set is unsuit-
able. Hence, we follow those works (Prabhu et al.,
2018; Khandagale et al., 2020; Yu et al., 2022; You
et al., 2019; Jiang et al., 2021; Zhang et al., 2021)
to set the commonly used hyper-parameters to keep
our results be credible.

In our experiments, we utilize the library Lib-
MultiLabel2 to handle all of the model training
and evaluation. Moreover, the linear classifiers are
trained by LIBLINEAR (Fan et al., 2008) in Lib-
MultiLabel. For the detail settings in LIBLINEAR,
we consider the settings from the works (Khanda-
gale et al., 2020; Yu et al., 2022):
• using squared hinge loss (L2-SVM) and

1https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html

2https://www.csie.ntu.edu.tw/~cjlin/
libmultilabel

• taking λ = 1 in the training problems.
In the implementations of (Khandagale et al., 2020;
Yu et al., 2022), they decided to stop the training
process early in each linear model training. How-
ever, we chose to spend more time in the model
training to get a tight solution that is closer to the
optimal solution of the training problem. The tree-
based methods in LibMultiLabel follow the imple-
mentation3 in Khandagale et al. (2020), and we
consider the following hyper-parameters
• K = 100 for K-means and the max depth is 10.
For the random label forests, we consider uniform
sampling with the rate of 0.1 on the labels because
reducing the model size by around 90% is a practi-
cal scenario. Moreover, we consider the default set-
ting of random forests from scikit-learn (Pedregosa
et al., 2011):

training 100 tree-based submodels

for our ensemble method.

C Time Complexity of Two-Level
Tree-Based Models

Because the level-1 of a two-level tree-based model
is a smaller OVR model, the level-1 only costs
O(Kṅl). For the level-2, since the instances can
belong to several label partitions, we assume that
the average number of instances in each of the
subsets D1, . . . , DK is

cl

K
,

where c ≥ 1 is a small positive number. Moreover,
c is bounded by the maximal label number of an in-
stance4. Hence, taking the training cost of a subset
in level-2 as

O

(
ṅcl

K

)

is a reasonable assumption in the linear model set-
ting, and the two-level tree-based model then costs

O
(

(K +
cm

K
)ṅl
)
,

which is different from the complexity of OVR
O(mṅl). Besides the training time of linear mod-
els, we must check the cost of running K-means.
The process involves several iterations, in each of

3The work (Khandagale et al., 2020) ensembles the pre-
dictions of three tree-based models in their experiments, but
LibMultiLabel only considers the single tree-based model.

4Prabhu et al. (2018) assume O(log(m)) is the maximal
label number of an instance, so c is bounded by O(log(m)).
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which we calculate the distance between each la-
bel representation (2) and K centers of the current
clusters. If the label representations are still sparse
and the average number of non-zeros is c̃ṅ, where
c̃ > 1 is a positive constant, checking the distance
requires

O(c̃ṅ).

Thereby, one iteration of K-means requires

O(Kmc̃ṅ).

We usually set a constant R as the maximum itera-
tion, so the time complexity of K-means is

O(Kmc̃ṅR).

Hence, the total training time of a two-level tree-
based model is

O
(
Kmc̃ṅR+ (K +

cm

K
)ṅl
)
.
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