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Abstract

To enhance the performance of large language
models (LLM) on downstream tasks, one so-
lution is to fine-tune certain LLM parameters
and make it better align with the characteristics
of the training dataset. This process is com-
monly known as parameter-efficient fine-tuning
(PEFT). Due to the scale of LLM, PEFT opera-
tions are usually executed in the public environ-
ment (e.g., cloud server). This necessitates the
sharing of sensitive user data across public envi-
ronments, thereby raising potential privacy con-
cerns. To tackle these challenges, we propose
a distributed PEFT framework called DLoRA.
DLoRA enables scalable PEFT operations to
be performed collaboratively between the cloud
and user devices. Coupled with the proposed
Halt and Proceed algorithm, the evaluation re-
sults demonstrate that DLoRA can significantly
reduce the computation and communication
workload over user devices while achieving
superior accuracy and privacy protection. The
source code can be accessed through the pro-
vided link.

1 Introduction

Large Language Models (LLMs) have recently in-
cited substantial public interest. Their ability to
grasp context and nuance enables them to handle
natural language processing (NLP) tasks such as
text generation (Brown et al., 2020; Zhuang et al.,
2023), translation (Zhu et al., 2023; Hadi et al.,
2023) and summarization (Zhang et al., 2023b)
with remarkable proficiency. Because of the ex-
tensive number of parameters in LLMs and the
substantial computational workload during their
operations, LLMs are usually implemented on
nodes with rich compute resources such as cloud
servers (OpenAI and Microsoft; Badr, 2023). Dur-
ing operation, users send their data to the cloud
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server for LLM processing, after which the LLM
results are transmitted back to the user devices.

Previous studies (Brown et al., 2020) has shown
that LLMs can extend their learned knowledge to
novel tasks not seen during the training phase, a
phenomenon commonly referred to as zero-shot
capability. However, fine-tuning still remains es-
sential to enhance LLM performance on unseen
user datasets and tasks. Due to its scale, a widely
adopted strategy for fine-tuning LLMs involves
adjusting a limited number of LLM parameters
while keeping the remainder unchanged. This
approach, termed parameter-efficient-fine-tuning
(PEFT), adds small modules of parameters to pre-
defined positions of the pre-trained LLM and only
fine-tunes these modules (Houlsby et al., 2019;
Guo et al., 2020; Mao et al., 2021; Karimi Ma-
habadi et al., 2021a) over the downstream tasks to
better adapt to the user data.

While PEFT presents an efficient approach for
improving LLM performance, it also poses signifi-
cant challenges for system deployment. To deploy
PEFT, one potential solution involves transferring
user input to the cloud, and the entire PEFT process
is performed over the cloud servers. This scheme
is referred to as Cloud-only solution (Figure 1 (a)).
However, this approach comes with several draw-
backs. On one hand, keeping private user data
in a shared cloud environment raises immediate
privacy concerns. On the other hand, in order to
deliver a personalized LLM service, it is necessary
to create and fine-tune a separate set of personal
LLM parameters using the training dataset from
each user. This can result in significant scalabil-
ity challenges as the user group expands in size.
By contrast, another option is to offload the LLM
fine-tuning process completely to the user device,
presented as Edge-only solution in Figure 1 (b), Un-
fortunately, this approach is often impractical due
to the limited computational resources available on
user devices.
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Figure 1: (a) Cloud-only solution. (b) Edge-only so-
lution. (c) DLoRA scheme. The frozen and learnable
parameters are shown in orange and red, respectively.

To mitigate the aforementioned system problems,
in this work we propose a distributed PEFT solu-
tion named DLoRA (Figure 1 (c)) for collabora-
tive PEFT operations between a cloud server and
user device. DLoRA eliminates the need to de-
liver private user data for LLM fine-tuning in the
cloud thereby ensuring the personal LLM param-
eters are stored completely within the user device,
thereby minimizing the risk of privacy leakage. Ad-
ditionally, DLoRA offloads partial computational
workload for LLM fine-tuning to user devices, ef-
fectively mitigating the scalability issues.

Beyond that, our preliminary studies on conven-
tional PEFT algorithms suggests that the majority
of trainable parameters within LLM remain fairly
constant throughout the fine-tuning process, with
only a small subset of parameters undergoing ac-
tive changes. This group of changing parameters
varies with the training dataset and downstream
tasks. Motivated by this observation, we introduced
a Halt and Proceed (HP) algorithm for DLoRA
that dynamically identifies and fine-tunes the set
of LLM parameters most responsive to the training
data, resulting in a substantial reduction in compu-
tation and communication workloads on the user
derives.

Overall, our contribution can be summarized as
follows:

• We introduce DLoRA, an PEFT framework
capable of executing LLM fine-tuning seam-
lessly between cloud and edge devices.
DLoRA ensures the user data and personal
parameters to store on user devices through-
out the PEFT operation, eliminating the risk
of privacy leakage while enabling scalability.

• We introduce the Halt and Proceed (HP) algo-
rithm for DLoRA, which dynamically identi-
fies and fine-tunes the subset of LLM parame-

ters that are most sensitive to the training data.
This approach results in a notable decrease
in computational and communication burdens
on user devices.

• We evaluated and performed an assessment
involving three LLM models across eight
datasets. The evaluation results indicate that
the HP algorithm can deliver a significant re-
duction of computational load and communi-
cation between the user device and the cloud,
while still achieving comparable or even better
results than the baseline solutions.

2 Background and Related Work

In this section, we introduce LLM computations in
Section 2.1. We then describe the computational
flow of PEFT operations in Section 2.2. Subse-
quently, we introduce two well-known privacy-
preserving mechanisms, Federated Learning 2.3
and on-device machine learning, and compare our
methods against them.

2.1 LLM Computation
To analyze the computations in LLM execution,
we examine LLaMA (Touvron et al., 2023), a
renowned LLM known for its superior performance
across various NLP tasks (Cui et al., 2023; Roziere
et al., 2023; Zhang et al., 2023a). As depicted in
Figure 2 (a), LLaMA comprises three main com-
ponents: an embedding layer, a stack of decoder
blocks, and a linear layer. It processes text by
transforming user-inputted tokens into numerical
vectors via the embedding layer, which are then
processed by the decoder layers. The output of the
last decoder layer, which generates a probability
distribution over the entire vocabulary, predicts the
next token in the sequence. This token is concate-
nated with previous tokens for subsequent process-
ing rounds in an auto-regressive manner, producing
a full sequence or completion as shown in Figure 2
(b). The training process mirrors inference but with
sentences compared directly to the ground truth to
compute training loss and gradients to minimize
loss across the LLM’s weights.

2.2 Parameter Efficient Fine-Tuning
Fine-tuning is crucial for adapting LLMs to new
tasks. However, it also introduces several chal-
lenges, including overfitting and high computa-
tional expenses (Houlsby et al., 2019; Guo et al.,
2020; Mao et al., 2021; Karimi Mahabadi et al.,
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Figure 2: (a) LLaMA architecture. (b) LLaMA auto-regressive pattern. (c) LoRA operation. All the learnable
components are highlighted in red, while the frozen components are highlighted in grey. LoRA is applied on all the
query, key, and value blocks, we only show one of them for illustration simplicity.

2021a; He et al., 2021; Zaken et al., 2021; Valipour
et al., 2022; Han et al., 2024). PEFT mitigates these
issues by selectively updating a subset of param-
eters, exemplified by LoRA (Hu et al., 2021) and
Adapter techniques (Rücklé et al., 2020; Pfeiffer
et al., 2020; Karimi Mahabadi et al., 2021b; Wang
et al., 2022; Zhang et al., 2023d; Gao et al., 2023;
He et al., 2022). LoRA introduces trainable mod-
ules within the SA blocks of LLMs, enhancing the
query, key, and value generation with equations:

Q = (W⊤
Q + αW⊤

up,QWdown,Q)hin (1)

K = (W⊤
K + αW⊤

up,KWdown,K)hin (2)

V = (W⊤
V + αW⊤

up,V Wdown,V )hin (3)

where Wup and Wdown are LoRA’s weight matri-
ces, hin is the input, and α is a scalar hyperpa-
rameter. Adapters insert additional blocks within
each decoder’s MLP block, featuring a residual con-
nection to mitigate overfitting and computational
challenges.

LoRA can be seamlessly integrated into the orig-
inal model, with the fused weights forming high-
rank matrices in contrast to the original LoRA mod-
ule. Even when these weights are incorporated into
the main model, attackers cannot reconstruct the
weight matrices due to the complexity of the high-
rank LoRA weights.

For clarity, we term a block of tunable LLM
parameters as a PEFT module. For example, the
PEFT module for LoRA involves all the learnable
parameters within a transformer block. A collec-
tion of PEFT modules within a LLM is called PEFT
module pool. This work configures the PEFT mod-
ule pool to include the LoRA parameters. How-
ever, our approach is compatible with other PEFT
schemes (e.g., Adapter).

2.3 Privacy Preserving Solution

As fine-tuning downstream tasks is always asso-
ciated with personalized data, privacy issues have
been a problem that has raised attention; federated
learning and on-device machine learning are two
commonly used mechanisms.

Federated Learning (FL) (McMahan et al., 2017;
Zhao et al., 2018; Li et al., 2020; Deng et al., 2020;
Zhang et al., 2022a, 2024; Dong et al., 2022) has
emerged as a groundbreaking machine learning ap-
proach, enabling powerful models to be created by
leveraging decentralized data sources while respect-
ing user privacy. FL aims to collect data from dif-
ferent users without revealing their data to develop
a super-model. In contrast to FL, which conducts
model training exclusively within edge devices,
DLoRA introduces a collaborative distributed train-
ing framework between a single edge device and
cloud servers.

Additionally, DLoRA can also integrate with FL,
facilitating fine-tuning processes across multiple
edge devices. In our DLoRA system, the inter-
mediate results are the only data transferred from
personal devices and the centralized cloud. The
embedding layer results are located in the user de-
vice and can not be recovered unless the attacker
steals the tokenizer and embedding layer weights.

Several studies (Rakin et al., 2022; Zhu et al.,
2021) explore utilizing activation recovery to ex-
tract data. However, attacks targeting intermediate
results can be mitigated by employing Fully Homo-
morphic Encryption (FHE), as proposed in (Zhang,
2022; Zhang et al., 2023c). By leveraging FHE,
users can perform computations on cloud servers
without exposing their intermediate results, ensur-
ing the security of their data. This approach offers
a reliable safeguard under this assumption.
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Another approach is to deploy a machine-
learning model exclusively on a personalized de-
vice. A pre-trained large-scale model is first com-
pressed and then deployed to a computationally
constrained device to prevent the exposure of per-
sonal data to the public cloud. While the com-
pressed model may experience reduced accuracy
and fine-tuning quality across general tasks, we
also evaluate our DLoRA system against an on-
device privacy-aware solution in Section 2.3.

Privacy risk during text encoding transmission
DLoRA excels in both performance and privacy
by maintaining user data and partial LLM model
weights on edge devices. Studies on text inver-
sion (Morris et al., 2023a; Pan et al., 2020) typically
need access to text embedding parameters or the
model, which is impractical in our case since the
model is hosted on user devices, blocking external
queries.

Compared to other frameworks like FL, which
face potential privacy breaches from various inver-
sion attacks, DLoRA provides superior security.
We are considering integrating encryption methods
like homomorphic encryption to enhance privacy
protection during text embedding transmission.

Limitation The incorporation of FHE into
DLoRA improves data security but also introduces
higher computational overhead. This increased
demand for computation consumes significant re-
sources and time on both user devices and cloud
servers, potentially degrading the efficiency bene-
fits gained from DLoRA.

3 Halt and Proceed Mechanism

In this section, we describe Halt and Proceed (HP)
algorithm in detail, which aims to minimize both
computational and communication burdens on user
devices during PEFT computations. We will begin
by discussing the Early-halt mechanism in Sec-
tion 3.2, which is a simple yet effective approach to
search for a minimal set of tunable parameters and
eliminate redundant fine-tuning operations with
negligible impact on accuracy. Following that, we
will introduce the parameter proceeding mecha-
nism in Section 3.3, which selects and reactivates
a subset of previously frozen parameters, further
enhancing the LLM accuracy.

3.1 Computation Pattern for DLoRA
To begin with, we first illustrate the computational
pattern for a single round of DLoRA operation. As

depicted in Figure 4, this procedure can be divided
into two phases: forward propagation and back-
ward propagation, which are highlighted in grey
and blue in Figure 4, respectively. Initially, the
user data is first processed by the embedding layer,
with the outputs of the embedding layer sent to
the cloud for forward propagation across the rest
of the layers. This approach inherently mitigates
privacy risks by keeping user data local during the
PEFT operation, with only the text embeddings be-
ing transmitted to the cloud server for subsequent
processing. While recent research attempts have
been made to reverse text embedding to retrieve
the original text (Pan et al., 2020; Morris et al.,
2023b), these efforts predominantly operate under
the assumption that attackers have unlimited ac-
cess to query the text embedding model. However,
in our scenario, this assumption is unrealistic be-
cause the text embedding model is implemented
within user devices, and will deny all the exter-
nal query attempts. Subsequently, the results from
the frozen LLM blocks are sent back to the user
devices for forward propagation across the PEFT
modules, whose weights are stored on the user de-
vices. This process continues until the final LLM
output is generated. Consequently, the computa-
tion and communication overhead on user devices
scales proportionally with the number of PEFT
modules.

Likewise, the backward propagation begins by
comparing the LLM output with the ground truth
output, which further produces the gradient for the
last LLM layer. These gradients are subsequently
employed to compute output gradients for earlier
layers, progressing until a PEFT module is reached.
The gradients are then transmitted back to the user
device for backward propagation and weight up-
dates. This process continues until all the weights
within the PEFT module have been updated. Like-
wise, as in the forward propagation scenario, the
computational and communication overhead dur-
ing backward propagation also scales in proportion
to the number of PEFT modules. The entire pro-
cess will bypass all weight update steps to reduce
the hardware load on the user’s end.

3.2 Early Halt Mechanism
Considering the computation pattern outlined in
Section 3.1, a simple strategy for reducing train-
ing cost over the user device is to simply reduce
the amount of the PEFT modules. To achieve this
while preserving accuracy, DLoRA dynamically
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Figure 3: l2-norm variation of selected PEFT modules across training iterations over multiple downstream tasks
including (a) Arc-Challenge, (b) Social-QA.
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Figure 4: DLoRA computation pattern for one iteration.

identifies the most relevant and significant PEFT
modules that contribute most to downstream task
accuracy and only finetunes these modules. To
investigate the significance of PEFT modules to-
wards training accuracy, we conduct experiments
to evaluate the importance of each PEFT module
using multiple training datasets. Specifically, we
configure the PEFT module pool to comprise all
the learnable parameters outlined in LoRA (Sec-
tion 2.2), and make all the PEFT modules in the
pool learnable. We then record the weights changes
for different PEFT modules during the finetuning
process. Figure 3 presents the variation on PEFT
module magnitudes during the PEFT process over
two downstream tasks. We notice a great variation
on the PEFT module magnitudes across the finetun-
ing iterations. For instance, in Figure 3 (a), PEFT
module 6 (highlighted in red) exhibits an l2-Norm
value exceeding 16× the average l2-norm. This
observation suggests that the parameters within
this module undergo substantial changes during the
PEFT process. We refer to the PEFT modules with
substantial changes as active PEFT modules. On
the contrary, PEFT module 29 (marked as purple)
in Figure 3 (a) has a low l2 norm value through the
whole tuning process, which shows it exhibits no
noticeable changes. We refer to blocks like that
as idle PEFT modules. The Early Halt (EH) mech-
anism is designed to dynamically detect and freeze
the idle PEFT modules to reduce hardware cost on

Algorithm 1 HP Algorithm (simplified version)

1: Inputs: LLM module pool F; Total number of
layer L; Selection criteria ϵ. Total finetuning
epoch E;

2: � Pre-tuning phase
3: Tune all PEFT modules within F for several

iterations to collect statistics.
4: Record the changes on l2 norms for each mod-

ule, define the selection criteria.
5: � Main tuning phase
6: for 0 ≤ e ≤ E − 1 do
7: for l ∈ L do
8: if l2 norm change on l− th PEFT mod-

ule less than ϵ then
9: Frozen the PEFT module at layer l.

10: else
11: Activate l-th PEFT module.
12: Finetune all active PEFT modules.
13: Recalculate ϵ.

user devices. The EH mechanism comprises two
phases, which are explained in detail below:

Pre-tuning Phase: In this phase, all the PEFT
modules within the PEFT module pool are con-
figured to be learnable. A short preliminary fine-
tuning (one epoch) is performed and the changes
on the weight magnitudes for each PEFT module
are recorded. This change naturally reflects the
degree of activities of each PEFT module.

Main tuning phase: We rank all the PEFT mod-
ules base on the magnitude differences recorded
during the Pre-tuning phase. PEFT modules with
magnitude change smaller than a predefined thresh-
old are identified as idle PEFT modules, which are
then frozen (‘halted’) to enhance the computing
efficiency of the user device. We can also assume
that the frozen LoRA module can be fused as an en-
crypted high-rank module on the cloud side, further
lowering communication costs for the user while
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preserving their privacy.

3.3 Parameter Proceeding Mechanism

The EH technique, detailed in Section 3.2, enables
us to selectively update only the active PEFT mod-
ules, resulting in substantial reductions in computa-
tion and communication for user devices. However,
our evaluation results indicate a noticeable LLM
accuracy drop when EH mechanism is applied.
To better understand the reason, we analyze the
magnitude variation across all the PEFT modules
in LLaMA-7B model (Touvron et al., 2023) over
social-qa (Sap et al., 2019) dataset. As depicted
in Figure 3 (b), the PEFT module 26 (marked as
purple) changes greatly in the 4th epoch while its
parameters stay steady in the first three epochs. The
PEFT module 4 (marked as blue) changes greatly in
the first epoch and becomes stable after that. This
phenomenon indicates that the active PEFT mod-
ules in the previous epoch may no longer be active
in the later epochs, while the idle PEFT modules
can become active in the later epochs.

The fluctuations in the weight magnitude pre-
sented in Figure 3 (b) indicate the need for regu-
larly reviving the PEFT modules that were halted
previously, as they could have a significant im-
pact on LLM accuracy in the later stage of the
finetuning process. Based on this observation, we
propose a Halt and Proceeding (HP) Algorithm
(Algorithm 1). Specifically, at the end of each
epoch of fine-tuning, we rank all PEFT modules
according to their magnitude changes within the
epoch and halt the idle PEFT modules (Line 9 in
Algorithm 1). In addition, we also pick a subset
of halted PEFT modules and reactivate them (de-
scribed in algorithm 1 line 13). The selection crite-
ria for PEFT modules proceeding are determined
by their l2 norm changes during the last epoch in
which they were active.

While alternative criteria are feasible, we have
noticed that employing the l2 distance in the HP
algorithm produces outstanding performance. We
maintain a constant number of active PEFT mod-
ules to restrict the computation cost across the en-
tire finetuning process. By adhering to this com-
putation budget, we ensure that the computation
and communication costs of the user device remain
consistent throughout the PEFT operation.

4 Evaluation

In this section, we provide a comprehensive eval-
uation of the HP algorithm and DLoRA System.
We begin by describing the evaluation setup in Sec-
tion 4.1. Next, we assess the accuracy and system
performance of the HP algorithm across multiple
tasks and LLMs in Section 4.2. Subsequently, we
perform multiple ablation studies in Section 4.3.

4.1 Experiment Setup

Datasets and models: We evaluate our HP al-
gorithm on three popular LLMs, including OPT-
6.7B (Zhang et al., 2022b), BLOOM-7B (Scao
et al., 2022), and LLaMA-7B (Touvron et al., 2023).
Additionally, we conduct evaluations of the HP al-
gorithm across a range of tasks, including Ques-
tion and Answering tasks such as OpenBookQA
(OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), Social IQa (SIQA) (Sap et al., 2019) and
BoolQ (Clark, 2019), problem compilation and
concluding tasks including Winograde (ai2, 2019)
and HellaSwag (Zellers et al., 2019) and multi-
choice science questions such as ARC-easy and
ARC-challenge (Clark et al., 2018).

PEFT Settings: Experiments utilized the HUG-
GINGFACE library (Huggingface, 2016) with the
AdamW optimizer (Pytorch, 2023) and a cosine
learning rate scheduler. Evaluations of backbone
model were conducted on an Nvidia A100-SMX4
with 40GB memory (NVIDIA, 2021), using CUDA
version 11.6. Fine-tuning spanned five epochs
across downstream tasks, maintaining 16 active
PEFT modules (B = 16) per Algorithm 1. All data
were processed in floating-point precision, with
plans to investigate the impact of quantization.

DLoRA System Configuration: To measure the
system performance of DLoRA in a practical en-
vironment, we have built a testbed with an Nvidia
Jetson Xavier (NVIDIA, 2022) device and a cloud
server to simulate the cloud and edge environment.
We then measure the processing latency of the
DLoRA system across various tasks.

Baselines: To fairly evaluate the accuracy perfor-
mance of the HP algorithm, we compare it with
a baseline algorithm termed the Fully-tune (FT)
algorithm, which keeps all the PEFT modules ac-
tive throughout the entire fine-tuning process. In
comparison, the HP algorithm applies the Early
Halt mechanism described in Section 3.2 with the
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LLM Methods BoolQ PIQA SIQA WinoGrande OBQA ARC-easy ARC-challenge

BloomZ
FT 64.6% 71.0% 75.4% % 60.8% 72.2% 75.4% 45.9%

DLoRA 64.6% (+0.0%)↑ 73.7% (+2.7%)↑ 73.2% (+2.2%)↑ 65.0% (+4.2%)↑ 72.1% (-0.1%)↓ 75.1% (-0.3%)↓ 44.6% (-1.3%)↓

LLaMA-7B
FT 70.7% 80.9% 75.6% 66.5% 70.0% 65.5% 47.9%

DLoRA 74.3% (+3.6%)↑ 79.7% (-1.2%)↓ 77.0% (+1.4%)↑ 65.7% (-1.8%)↓ 73.8% (+3.8%)↑ 71.6% (+6.1%)↑ 46.7% (-1.2%)↓

OPT
FT 66.6% 74.4% 72.2% 50.4% 33.8% 46.0% 26.2%

DLoRA 64.8% (-1.2%)↓ 78.0% (+3.6%)↑ 72.6% (+0.4%)↑ 48.0% (-2.4%)↓ 35.4% (+1.6%)↑ 46.0% (+0.0%)↑ 28.8% (+2.6%)↑

Table 1: Accuracy performance evaluation of FT and DLoRA across all the tasks over different LLMs. The changes
in accuracies are also highlighted in green or red. We choose the optimal performance based on outcomes with or
without module proceeding.

LLM Budgets BoolQ PIQA SIQA HellaSwag WinoGrande OBQA ARC-easy ARC-challenge

Bloom-Z
16 (baseline) 64.6% 70.5% 73.2% 67.5% 65.0% 72.1% 75.1% 44.6%

8 +7.7%↑ +4.3%↑ +0.8%↑ -4.5%↓ -1.4%↓ -3.3%↓ -1.5%↓ -6.2%↓
4 -8.2%↓ +3.7%↑ -4.6%↓ -3.7%↓ +8.0%↑ +0.9%↑ -0.1%↓ -3.8%↓

LLaMA
16 (baseline) 74.3% 79.7% 77.0% 73.6% 65.7% 73.8% 71.6% 46.7%

8 -6.0%↓ -0.4%↓ +1.1%↑ +2.5%↑ +5.6%↑ -2.6%↓ -6.0%↓ +0.5%↑
4 -8.2%↓ +0.0% +1.7%↑ +3.8%↑ -6.4%↓ -3.8%↓ -0.6%↓ +0.5%↑

OPT
16 (baseline) 64.8% 78.0% 72.6% 45.0% 48.0% 35.4% 46.0% 28.8%

8 -1.6%↓ -2.0%↓ +0.0% +0.6%↑ +3.6%↑ -1.4%↓ -0.8%↓ +1.0%↑
4 -3.0%↓ -1.6%↓ -5.4%↓ -0.4%↓ +1.4%↑ -3.4%↓ -2.4%↓ -0.8%↓

Table 2: Accuracy performance under different compute budget. For each dataset, we use the accuracy of HP with a
compute budget of 16 as the baseline and describe the changes in accuracy relative to it.

Dataset/Method DLoRA SparseGPT Wanda

PIQA 79.7% 73.1% 73.0%
HellaSwag 73.6% 44.8% 43.6%

OBQA 73.8% 62.6% 63.6%
ARC-E 71.6% 30.2% 30.3%
ARC-C 46.7% 24.4% 25.0%

# learnable param. 1.1M 10.41B 10.69B
Peak memory cost 4.2MB 38.74GB 39.82 GB

Table 3: Accuracy performance and learnable parame-
ters compared to different LLM pruning mechanisms.
DLoRA outperforms SparseGPT and Wanda in terms
of both accuracy and peak memory utilization.

parameter-proceeding mechanism discussed in Sec-
tion 3.3. The purpose of this baseline is to evaluate
the importance of the parameter proceeding mecha-
nism over the accuracy performance. We configure
the PEFT module pool for the HP algorithm to in-
clude all the LoRA parameters. To be noted here,
our question-answering experiments are without
any promotion.

4.2 Evaluation Results

Table 1 presents the accuracy results for FT and
HP across different LLMs and datasets. HP of-
ten achieves similar or even superior performance
compared to FT. For instance, in the SIQA task,
HP consistently outperforms FT across all LLMs.

HP matches or exceeds FT’s performance for other
datasets while notably reducing compute and com-
munication workloads, as detailed in Figure 5.

The findings indicate that HP significantly en-
hances training efficiency, substantially reducing
computing costs. Additionally, considerable com-
putational savings are observed when applying HP
with an Adapter scheme. This efficiency is due to
HP’s dynamic selection and management of a min-
imal set of active modules, significantly lowering
computational load.

Moreover, Figure 5 shows the total communica-
tion during one epoch of the PEFT process for both
FT and HP across various tasks. In summary, HP
substantially reduces computation and communica-
tion while maintaining comparable accuracy levels
to FT.

4.3 Ablation Studies

Impact on computation budget To better un-
derstand the impact of the computation budget on
the accuracy performance, we change the compu-
tation budget B from 16 to 8 and 4 and evaluate
the accuracy performance. As shown in Table 2,
there is a general trend of accuracy degradation as
the computation budget decreases, primarily due to
the reduction in the number of learnable parame-
ters in the LLM. Interestingly, accuracy improves
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Figure 5: Computation costs of HP and FT over different LLMs, the measurement denotes the computation cost in
TFLOPs. The communication costs for HP and FT are measured in Gigabytes (GB).This part is carried out when
only 4 LoRA modules are active.

for specific tasks even when computation budgets
are reduced. For example, training Bloom-Z with
the PIQA and Boolq datasets outperforms the per-
formance of HP with a computation budget of 16.
This suggests that only a smaller subset of PEFT
modules are responsive to the downstream tasks
specified by the Bloom-Z dataset.

Comparison With LLM compression In ad-
dition to fine-tuning (FT), we explore alterna-
tive baselines using pruning techniques, specifi-
cally SparseGPT (Frantar and Alistarh, 2023) and
Wanda (Sun et al., 2023), to enhance computational
efficiency for PEFT operations on edge devices.
These methods implement efficient post-training
pruning, each proposing unique selection criteria
to optimize sparse LLM accuracy. Our evaluation
of Wanda and SparseGPT on a single A100 GPU,
as shown in Table 3, reveals that DLoRA surpasses
accuracy, peak memory usage, and computational
costs.

Compare with FL We also compare our ap-
proach with a privacy-preserving distributed sys-
tem offsite-tuning (Xiao et al., 2023) that utilizes
model distillation to facilitate personalized fine-
tuning of LLMs. As table 4 demonstrates, our
Bloom-Z model outperforms this system in four of
five datasets.

Table 4: Performance compared to privacy-preserving
system

Method\Dataset OpenQA PIQA ARC-E ARC-C HellaSwag
DLoRA 72.1% 73.7% 69.8% 45.8% 67.5%
Offsite-Tuning 29.6% 74.6% 66.8% 36.8% 48.3%

System Latency Measurement Next, we mea-
sure the processing latency required to complete

one epoch of PEFT for DLoRA over the actual edge
device. The measurement reveals that with LoRA
finetuned using FT, a single epoch of PEFT over
Bloom-Z on OpenbookQA will consume 200.72s.
This latency includes the processing time on both
the cloud server and the user device. In contrast,
with the DLoRA, a single epoch of PEFT only takes
182.59 seconds. This is attributed to the fact that
DLoRA greatly reduces the computational work-
load on the user device, resulting in a decrease in
overall processing latency. Table 3 shows that our
DLoRA system outperforms other baseline algo-
rithms in accuracy and peak memory usage.

DLoRA on Adapter We evaluate DLoRA per-
formance with Serial Adapter (Hu et al., 2023)
over different downstream tasks and LLMs. All the
settings are kept the same as those described in Sec-
tion 4.1. The evaluation on accuracies are presented
in Table 6. We notice that DLoRA also outperforms
FT over multiple tasks and LLMs, demonstrating
the generalizability of DLoRA across various fine-
tuning schemes. The adapter can’t be fused into the
original module safely, so it cannot save as many
resources as possible (the adapter can save around
30% of the whole compute budge).

Impact of Quantization Precision By default,
the activation and gradient matrices exchanged be-
tween the cloud and the user device are encoded as
a 32-bit floating-point number. To further reduce
communication costs, we implement low-precision
quantization on the model, mapping the original
full-precision numbers to their nearest quantized
values. To demonstrate the impact of quantization
precision, we employ 8-bit precision to quantize all
models during the PEFT process, compared with
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LLM Bidwidth BoolQ PIQA SIQA HellaSwag WinoGrande OBQA ARC-easy ARC-challenge

Bloom-Z
FP32 (baseline) 64.6% 70.5% 73.2% 67.5% 65.0% 72.1% 75.1% 44.6%

8 bits +1.8% ↑ +5.1% ↑ +1.6% ↑ -15.5% ↓ -1.8% ↓ -12.9% ↓ -20.7% ↓ -5.6% ↓

LLaMA
FP32 (baseline) 74.3% 79.7% 77.0% 73.6% 65.7% 73.8% 71.6% 46.7%

8 bits -6.7% ↓ +2.7% ↑ -3.2% ↓ -6.8% ↓ -3.3% ↓ +0.0% -0.8% ↓ -1.9% ↓

OPT
FP32 (baseline) 64.8% 78.0% 72.6% 45.0% 48.0% 35.4% 46.0% 28.8%

8 bits -2.8% ↓ +1.0% ↑ -2.4% ↓ -13.8% ↓ -0.2% ↓ -1.2% ↓ -17.4% ↓ +0.6% ↑

Table 5: Accuracies under different budget (B) and quantization bitwidth (Q). We present the accuracy variations
relative to the baseline setting (B=16, Q=32).

LLM Budgets BoolQ PIQA SIQA HellaSwag WinoGrande OBQA ARC-easy ARC-challenge

Bloom-Z
16 (baseline) 70.0% 76.2% 72.4% 68.0% 63.4% 72.0% 69.8% 45.8%

8 -1.4% ↓ +1.0% ↑ 0.0% +4.0% ↑ -1.2% ↓ +1.0% ↑ +1.8% ↑ -3.3% ↓
4 -3.0% ↓ +0.8% ↑ -1.6% ↓ +3.4% ↑ -4.0% ↓ -8.2% ↓ -3.8% ↓ -4.6% ↓

LLaMA
16 (baseline) 66.4% 79.4% 72.4% 75.4% 73.1% 73.1% 63.6% 44.0%

8 -0.7% ↓ +1.2% ↑ -6.0% ↓ +5.6% ↑ -1.7% ↓ +1.3% ↑ -1.1% ↓ +6.6% ↑
4 -3.8% ↓ +1.1% ↑ -8.0% ↓ -0.7% ↓ -1.8% ↓ +0.7% ↑ -11.6% ↓ +0.6% ↑

OPT
16 (baseline) 67.74% 74.40% 72.20% 47.8% 50.4% 33.8% 46.0% 26.2%

8 +4.4% ↑ +5.2% ↑ +0.4% ↑ +1.6% ↑ +2.6% ↑ +8.8% ↑ +3.4% ↑ -3.2% ↓
4 +4.0% ↑ +1.6% ↑ +0.2% ↑ +2.0% ↑ +2.2% ↑ +8.2% ↑ +1.0% ↑ -2.0% ↓

Table 6: Accuracy performance evaluation with Adapter across all the tasks over different LLMs.

floating-point precision; this will further lead to 4×
saving on communication overhead. The results
across various datasets under different computer
budgets are presented in Table 5. It is observed that
the accuracies experience a modest decrease.

5 Conclusion

The paper introduces DLoRA, a novel distributed
solution tailored for efficient PEFT operations span-
ning cloud and edge devices. DLoRA utilizes the
Halt and Proceed algorithm to enhance efficiency
during the fine-tuning process, resulting in substan-
tial reductions in computational and communica-
tion workloads. Experimental findings illustrate
that compared to both cloud-only and edge-only
solutions, our DLoRA system notably minimizes
computation and communication while upholding
accuracy and privacy.
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