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Abstract

Large Language Models (LLMs) internally
store repositories of knowledge. However, their
access to this repository is imprecise and they
frequently hallucinate information that is not
true or does not exist. A paradigm called Re-
trieval Augmented Generation (RAG) promises
to fix these issues. Dense passage retrieval
(DPR) is the first step in this paradigm. In
this paper, we analyze the role of DPR fine-
tuning and how it affects the model being
trained. DPR fine-tunes pre-trained networks
to enhance the alignment of the embeddings
between queries and relevant textual data. We
explore DPR-trained models mechanistically
by using a combination of probing, layer acti-
vation analysis, and model editing. Our exper-
iments show that DPR training decentralizes
how knowledge is stored in the network, creat-
ing multiple access pathways to the same in-
formation. We also uncover a limitation in this
training style: the internal knowledge of the
pre-trained model bounds what the retrieval
model can retrieve. These findings suggest
a few possible directions for dense retrieval:
(1) expose the DPR training process to more
knowledge so more can be decentralized, (2)
inject facts as decentralized representations, (3)
model and incorporate knowledge uncertainty
in the retrieval process, and (4) directly map
internal model knowledge to a knowledge base.

1 Introduction

In just a few years, Large Language Models
(LLMs) have emerged from research labs to be-
come a tool utilized daily by hundreds of millions
of people and integrated into a wide variety of busi-
nesses. Despite their popularity, these models have
been critiqued for frequently hallucinating, confi-
dently outputting incorrect information (Bang et al.,
2023). Such inaccuracies not only mislead people
but also erode trust in LLMs. Trust in these systems
is crucial to their success and rate of adoption.
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The retrieval augmented generation (RAG)
paradigm is an approach to address hallucina-
tions (Lewis et al., 2020). Unlike traditional LLM
interactions where a query directly prompts an out-
put from the model, an intermediary step is in-
troduced. Initially, a "retrieval” model processes
the query to gather additional information from a
knowledge base, such as Wikipedia or the broader
internet. This additional information alongside the
original query is fed to the LLM, increasing the
accuracy of the answers that the LLM generates.

For this paradigm to be effective, the underly-
ing retrieval model has to excel at finding accurate
and relevant information. Typically, model perfor-
mance is evaluated based on metrics that consider
the top-5, top-20, top-50, and top-100 retrieved
passages. However, recent studies indicate that
LLMs predominantly use information from the top-
1 to top-5 passages, underscoring the importance in
RAG of not only high recall in retrieval but also pre-
cision in ranking (Liu et al., 2023a; Xu et al., 2024).
One approach to achieve both high recall and pre-
cision involves integrating a "reranking" model,
which adjusts the order of retrieved passages to
improve the relevance of the top-ranked passages
(Nogueira et al., 2019, 2020). However, this ap-
proach adds the computational and maintenance
cost of an additional model to the pipeline and can
also introduce errors. The alternative option is to
improve retrieval models to directly retrieve and
rank passages well.

Retrieval methods can be broadly categorized
into two types: sparse and dense (Zhao et al.,
2024). Sparse methods encode queries and pas-
sages into sparse vectors, usually based on terms
that appear in the queries and passages (Robertson
and Zaragoza, 2009; Sparck Jones, 1972). Dense
methods employ language models to encode the
semantic information in queries and passages into
dense vectors (Karpukhin et al., 2020; Huang et al.,
2013). Dense methods often share two common
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Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer

Task | Model 0o 1 2 3 4 5 6 7 8 9 10 11 12
Prg‘“al.“edBERT 050 050 051 048 050 052 051 051 050 049 050 054 0.50
— Untrained Probe
2-Passage| Pre-trained BERT 0.5 0.69 074 074 077 079 081 081 081 082 083 084 0.4
Probing | DPR-BERT 051 068 074 077 079 080 081 083 082 083 083 082 082
Query Model
DPR-BERT Con- 51 n63 074 077 079 080 081 083 082 083 083 082 082
text Model
3-Passage| Pre-tramed BERT 034 053 059 059 065 064 067 067 068 060 060 073 0.3
Probing | DPR-BERT 034 054 060 063 066 066 066 070 071 069 073 072 071
J-Passage| Pre-trained BERT 026 043 047 049 053 057 061 060 056 062 064 066 066
Probing | DPR-BERT 026 046 051 054 057 058 060 063 0.64 063 065 063 0.63
5-Passage| Pre-trained BERT 021 035 042 043 043 050 053 053 054 056 057 060 061
Probing | DPR-BERT 021 036 042 048 049 051 054 056 058 058 060 0.56 056

Table 1: This table presents the outcomes of linear probing, where probes classify 2 to 5 passages to determine
the best match for a given query. Due to identical performance metrics, DPR-BERT Query and Context model
results are consolidated and displayed only for the 2-Passage Probe. Given that probes without training achieved
performance at random chance levels across all passage counts, their results are reported solely for the 2-Passage

Probe for comparison.

properties: (a) the joint training of two or more
encoding models — one for embedding a query and
the other for embedding a knowledge base, and
(b) contrastive training. These commonalities were
introduced in the DPR method, inspiring many sub-
sequent methods in the literature.

In this paper, we analyze the original DPR
method using the BERT-base backbone. Through
the experiments in each section, we analyze DPR
from multiple perspectives to understand what is
changing in the backbone model during the training
process. We find that:

1. BERT’s ability to discriminate between pas-
sages remains unchanged (Section 2).

2. The way that knowledge is structured in BERT
changes to be more decentralized after DPR
training (Section 3).

3. The knowledge that BERT can retrieve over
is an extension of the knowledge contained
within it (Section 4).

2 Knowledge Consistency Between
Untrained and Trained Model

Language models are known to store a vast amount
of knowledge, with the feedforward layers of the
transformer architecture acting as a key-value mem-
ory store of knowledge (Geva et al., 2021). This
section details experiments conducted to under-
stand the impact of DPR-style training from a
model-knowledge perspective.

Linear probing, a method to characterize model
features, involves training a linear classifier on the

internal activations of a frozen network to execute
a simple task (Alain and Bengio, 2017). This re-
veals the mutual information shared between the
model’s primary training task and the probing task
(Belinkov, 2022). A high degree of probe accuracy
indicates that the model’s features possess suffi-
cient information to accomplish the probing task.

To evaluate whether DPR training improved
BERT’s discriminative features, linear probing was
employed on both pre-trained and DPR-trained
BERT. A probe

aiN (figs fups finnt, finn2s - - -)

was trained to classify which passage (between
two, three, four, or five passages) is most relevant
to a query. The Natural Questions dataset was
used in this experiment, which provides labels for
which passages are hard-negatives. The probe g;
at layer [ received BERT features for the query,
true positive passage, and /N hard negative pas-
sages. fj, represents the features at layer [ for the
query, fi;p represents the features for the true posi-
tive paragraph at layer [, and fj,, x represents the
features for the Nth hard negative passage at the
same layer. A distinct probe g;y was trained for
each layer of BERT to examine how performance
fluctuates across layers and with different numbers
of hard-negative passages, thereby assessing how
performance is impacted as the task’s difficulty in-
creases.

The difference between a true positive passage
and a hard-negative passage is usually the pres-
ence of 1-2 key distinct facts in the passage. The
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Figure 1: Layerwise activations for pre-trained and DPR-trained BERT. The parenthetical numbers indicate the
number of neurons in the layer that are above the attribution threshold for any number of examples.

ability to discriminate between 2-5 of these pas-
sages indicates that the model likely has enough
knowledge to know which facts are relevant to
the query. This awareness is likely driven by the
model’s knowledge of the subject (as discussed
in later sections of this paper). Rather than test-
ing overall retrieval ability, this experiment aims to
find how aware/knowledgeable pre-trained BERT s
features are compared to DPR-trained BERT when
the difference of knowing or not knowing 1-2 facts
can impact the final matching prediction.

Table 1 shows the result of this experiment.
The performance disparity between probes for pre-
trained BERT and DPR-trained BERT is relatively
minor in the two-passage scenario (1.8%) and in-
terestingly, it is the pre-trained BERT that exhibits
a slight advantage. As the number of passages
increases, the performance gap widens to approx-
imately 6%, and overall probe efficacy declines.
These findings suggest that the inherent capabil-
ity to discern relevant from irrelevant passages,
when they are directly presented to the model,
are likely already present in pre-trained BERT,
and DPR-style training does not substantially
enhance these discriminative features.

3 Knowledge Decentralization in
DPR-Trained Models

The next perspective examined neuron activation
patterns for the pre-trained and DPR-trained mod-
els. The knowledge attribution method from (Dai
et al., 2022) was employed which was inspired
by the pruning literature (Hao et al., 2021; Sun-

dararajan et al., 2017). Our analysis targeted linear
layers, as this is where the model stores knowledge
according to prior research (Geva et al., 2021).

To calculate an individual neuron’s contribution
to the output, we varied its weight wZ@ from 0 to
its original value. This can be calculated by:

1 O]
At () = w® / an(ag)}i ) dar
a=0  Jw,

The Riemann approximation was used due to
the intractability of calculating a continuous inte-
gral. Following (Dai et al., 2022), a threshold of
0.1+ max(Attr) was applied to identify a coarse set
of knowledge neurons!. In contrast to (Dai et al.,
2022), the coarse set of knowledge neurons was
not refined to a fine set of knowledge neurons, as
our interest is in the broader activation patterns.
When the model is processing inputs, both "true-
positive" and "false-positive" knowledge neurons
are activated indiscriminately with the activation
strength corresponding to their attribution scores.
The primary interest lies in how DPR training in-
fluences these activation patterns, rather than the
role of specific neurons.

Figure 1 illustrates the impact of DPR training
on BERT’s neuron activations, charting the attri-
bution score of every neuron across both the inter-
mediate and output linear layers within each trans-
former block for the query model®>. DPR-trained

! Appendix A.2 demonstrates that our observations are con-
sistent across a spectrum of thresholds.

2Appendix A.1 shows that the observations made in this
section also hold for the context model.
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Answer in Top-1?

# Strongly Activated Neurons

Title of Top-5 Retrieval

Pre- Pre-
Query trained gEPRR’I“ trained ]];EPRR’I" Pre-trained BERT DPR BERT
BERT BERT
. Circle of latitude, | Robinson projection,
where is the . . . .
most distortion Scale-invariant feature | Robinson projection,
. X X 220 1323 transform, Line moiré, | Arthur H. Robinson,
on a robinson . . . Lo
roiection Theil-Sen  estimator, | Robinson projection,
proj Pole splitting Arthur H. Robinson
Jimly Asshiddigie, Ju- | Attorney General of In-
who is the chicf dicial system of Iran, | dia, Attorney general,
legal advisor to | X X 65 831 Comptroller Gen.er_al of A_ttorney General of In-
the sovernment the State Administra- | dia, K. K. Venugopal,
& tion, Jimly Asshiddiqie, | Attorney General of In-
Law of Kosovo dia
Government of Kenya,
Abundant Nigeria Re-
Government of Kenya,
what type of newal Party, 2007-08 Politics of K
overnment Kenyan crisis, Inde- olitics of Kenya, Gov-
g v X 74 287 i ernment of Kenya, Gov-
does kenya pendent Electoral and
. . ernment of Kenya, Gov-
have 2018 Boundaries Commis-
. . ernment of Kenya
sion, Kingdom of
Kongo
Properties of metals,
metalloids and non-
are pure metals Alloy, Common metals. Properties of
made of atoms | v X 69 1268 attributes, Metal, Reso- - perties
or ions nance ionization, Alloy metals, metall_o ids and
’ nonmetals, Solid, Metal,
Metal
who is the bad ls\d“tgreélglfuﬁaf;g; E;Z Saruman, Saruman,
ﬁ-?eyrigl S10rd of | X v 100 533 of Ra, The Enchanted i:;uron, Morgoth, Lego-
£ Apples of Oz, Ys I & II
Manatee conservation,
Ivory trade, Namib | Endangered Species Act
when were man- Desert Horse, Endan- | of 1973, Endangered
atees puton the | X v 42 1522 gered Species Act of | Species Act of 1973,
endangered list 1973, Iriomote cat, Bile | Manatee conservation,
bear Endangered Species Act
of 1973
when did wes- Gordon Wharmby, Gor-
lev leave last Naif (band), Aiden, | don Wharmby, Brian
ofy the summer v v 38 1024 Queensryche, Josef | Wilde, Cory Monteith,
. Brown, Matthew Stocke | Last of the Summer
wine .
Wine
Wolfgang  Amadeus | Wolfgang = Amadeus
when did Mozart, Der Messias, | Mozart, Wolfgang
mozart  com- Life of Franz Liszt, Die | Amadeus Mozart,
v v 74 364 Entfithrung aus dem | Leopold Mozart, Wolf-

pose his first
piece of music

Serail, Quattro versioni
originali della Ritirata
notturna di Madrid”

gang Amadeus Mozart,
Wolfgang  Amadeus
Mozart

Table 2: This table presents example queries alongside the corresponding model retrievals and the count of strongly
activated neurons for both pre-trained and DPR-trained BERT. Notably, DPR training consistently increases the
number of strongly activated neurons. Additionally, the retrievals, even when DPR does not retrieve the correct
passage in the top-1 retrieval, are much more focused and targeted to the asked query. In contrast, pre-trained
BERT’s retrievals are much more varied and sporadic. This is likely because in pre-trained BERT each neuron
that is activated is responsible for more information and the model has no fine-grained path to follow for specific
information like it does after DPR training.
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BERT has more activated neurons in the interme-
diate layer of each block. The output layer, on
the other hand, maintains a consistent number of
activations at each transformer block compared to
pre-trained BERT, and in the earlier layers DPR-
trained BERT activates fewer neurons in the output
layers. Previous studies have conceptualized inter-
mediate layers as "keys" and the output layer as
the "value" (Geva et al., 2021). This suggests that
DPR training expands the set of ''keys'' avail-
able to access a given volume of semantic knowl-
edge while decreasing the accessible volume of
syntactic knowledge, embodying a decentraliza-
tion strategy for semantic knowledge. Rather
than relying on a single, highly precise key to un-
lock some knowledge, DPR allows for the use of
multiple, somewhat less precise keys. This under-
scores DPR training’s primary goal: to modify the
model’s method of knowledge access without
altering the stored knowledge itself. These mul-
tiple pathways enable morphologically distinct
but semantically related text to trigger the same
knowledge or collections of facts, thus making
retrieval possible.

Table 2 demonstrates the effects of DPR training
through performing retrieval with various queries
and the full corpus of 21M Wikipedia passages.
Across all instances, DPR training increases the
number of strongly activated neurons indicating
the existence of more pathways in the network al-
lowing for better access to the information needed
to perform retrieval. When examining the titles of
the retrieved passages, a marked difference is re-
vealed between pre-trained BERT and DPR BERT.
Pre-trained BERT’s retrievals are often disparate,
aligning with the query in some instances while
seemingly unrelated in others. This inconsistency
indicates that successful retrievals by pre-trained
BERT may hinge on the activation pattern pre-
cisely aligning with the relevant article. On the
other hand, DPR-BERT, consistently retrieves pas-
sages that are topically related to the query, even
if they are not the exact best match, reflecting a
better ability to hone in on pertinent information.
By having more neurons responsible for each
query the model has more fine-grained control
to find relevant passages, even if what is found
is not the most relevant possible passage. In the
cases where it was not able to navigate to the exact
correct passage it is possible that the knowledge
needed to discern between the correct and incorrect
passage is not in the model.

4 Knowledge Editing Experiments

If DPR rearranges knowledge in the pre-trained
BERT model, are these facts discoverable in DPR-
BERT? We employed model editing techniques to
remove facts from pre-trained BERT to investigate
this.

Currently, models struggle to learn and update
the knowledge within them. Model editing is a
class of techniques that minimizes pre-trained mod-
els to add or remove knowledge without disturb-
ing the overall network. The types of methods
generally used for model editing can be broadly
categorized as fine-tuning with regularization, di-
rect model editing, meta-learning, and architectural
(Mazzia et al., 2023).

Owing to the emerging state of this subfield
and the variability in results, we employed vari-
ous model editing techniques. In selecting tech-
niques, we prioritized locality-preserving methods
that minimally altered the model. This was to fa-
cilitate clearer attributions of our findings to DPR
training rather than to potential architectural modi-
fications. This led to TransformerPatch, MalMen,
and Mend being chosen to perform the model edit-
ing (Huang et al., 2023; Tan et al., 2024; Mitchell
et al., 2022). TransformerPatch is an architecture-
modifying technique that introduces a single pa-
rameter to the last layer for each fact added. The
experiments involving TransformerPatch used a
learning rate of 3e-5. MalMen and Mend, on the
other hand, are meta-learning techniques. They uti-
lize hypernetworks, a type of network that learns to
generate parameters or parameter shifts for another
model (Ha et al., 2016). These hypernetworks were
trained using a learning rate of le-6 and to only
modify the last three layers of the BERT network.

4.1 Knowledge Removal

To select the facts for removal, we identified ques-
tions from the NQ dataset that both DPR-BERT and
the probed pre-trained BERT correctly answered.
For each of the identified questions, we removed
one fact from BERT, synthesized by transforming
each query-answer pair from the NQ dataset into a
cohesive sentence with GPT-4. Furthermore, when
necessitated by the editing methodology, GPT-4
was employed to generate 10-12 rephrasings of
each sentence.

A total of 284 queries, which both DPR-BERT
and the linear probes had accurately matched with
their corresponding passages, were randomly se-
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Knowledge Editing Technique = DPR Removed
Transformer-Patch 0.87
MalMen 0.81
Mend 1.00

Table 3: Outcomes of the knowledge removal experi-
ments. Of the facts successfully removed from BERT,
the "DPR Removed" column is the percentage of the
facts that were also absent after DPR training.

lected. Given that the chosen model editing tech-
niques did not provide a direct method to explicitly
remove facts from BERT, we employed previously
described techniques to "overwrite" BERT’s knowl-
edge. To generate factually incorrect statements,
the factually correct query-answer pairs were pro-
vided to GPT-4, which was prompted to generate
new factually incorrect sentences. These new sen-
tences were used by the model editing techniques
to overwrite existing knowledge.

Fact removal success was determined by using
the linear probing task from Section 2 on the edited
pretrained model. If the probe was able to still
pick out the correct passage after fact removal, that
indicated that the fact or its associative network
was not fully removed. If the network’s features
(and hence its internal knowledge) were no longer
sensitive enough to complete the task, then the fact
was likely removed.

Of the facts successfully removed from the pre-
trained BERT model by the knowledge editing tech-
niques, Table 3 shows that 81% — 100% were also
absent in DPR-BERT. When a fact is removed it
and likely part of its associative network is fully
removed. As DPR training primarily functions to
decentralize knowledge in a network, if the fact
does not exist in the network there is nothing to
decentralize in the network. DPR training does
not appear to add knowledge to the network, once
a fact is removed, it cannot be recovered through
DPR training.

The knowledge removal experiment demon-
strates that DPR training primarily refines how
pre-existing knowledge within BERT is ren-
dered more ''retrievable'. Thus, it appears that
DPR training does not alter the model’s inherent
knowledge base; instead, it modifies the repre-
sentation and accessibility of this knowledge.

5 Related Works

DPR addresses the challenge of matching a query
with the most relevant passages from a knowledge

base (Karpukhin et al., 2020). This approach em-
ploys dual encoders—one encoder for the passages
and another for the query—and utilizes a distance
metric, such as the inner product, to identify the
passages closest to the query. Inspired by Siamese
networks (Bromley et al., 1993), DPR represents
the first fully neural architecture to outperform the
BM25 algorithm (Robertson and Zaragoza, 2009).
Since then, there have been quite a few improve-
ments in how to train DPR-style models. Methods
like RocketQA improve DPR by employing cross-
batch negatives and training the network on more
difficult hard negatives (Qu et al., 2021). Dragon fo-
cuses on novel data augmentation and supervision
strategies (Lin et al., 2023). Contriever also em-
ploys a greater number of hard-negatives and data-
augmentation methods in addition to pre-training
the model on the inverse cloze task (Izacard et al.,
2022). MVR generates multiple views for each doc-
ument to allow for multiple diverse representations
of each of them (Zhang et al., 2022). ColBERT
employs token embeddings for more fine-grained
matching (Khattab and Zaharia, 2020). REALM
leverages feedback from the reader component to
jointly train the retriever with the reader (Guu et al.,
2020). Other methods distill knowledge from the
reader to the retriever (Izacard and Grave, 2020;
Reichman and Heck, 2023). Additionally, efforts
in query augmentation or generation aim to better
synchronize the query with the document encoder
(Ma et al., 2023; Wang et al., 2023; Shao et al.,
2023; Gao et al., 2023). Despite these different
enhancements, each method builds upon the DPR
framework discussed in this paper.

Distinctly, RetroMAE and CoT-MAE pre-train a
model using a masked auto-encoder strategy, which
they show enhances downstream retrieval perfor-
mance (Xiao et al., 2022; Wu et al., 2023a; Liu
et al., 2023b; Wu et al., 2023b). Following this pre-
training phase, both methods subsequently adopt
DPR fine-tuning to further refine their models for
improved task performance.

Only a few studies have delved into analyzing
DPR models. One such study took a holistic look
at RAG to see where the pipeline made errors
(BehnamGhader et al., 2023). The study found that
a similarity-based search during retrieval biased
the result in favor of passages similar to the query,
even when more relevant but dissimilar passages
were available. Another study employed probing
techniques to analyze ranking models (MacAvaney
et al., 2022). The authors adopted a probing method
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akin to ours, categorizing passages by specific prop-
erties for analysis, in contrast to our approach of
random selection among hard negatives. This study
explored how query and document characteristics
affect ranking outcomes. Another study analyzed
the embeddings produced by retrieval models in
the vocabulary space (Ram et al., 2023). To do
this, they used pre-trained BERT’s MLM head on
the DPR-trained embeddings’ [CLS] token. It was
found that DPR implicitly learns the importance
of lexical overlap between the query and passage.
DPR training causes BERT to retrieve passages
that share more tokens with the query as compared
to pre-trained BERT. This ties in with our finding
where the number of output layer activations in
the early part of the model post-DPR training de-
creased. This may function as a sort of syntactic
filter, where many keys can access fewer, but more
pertinent, lexical features. However, this filtering
can also induce what the author’s term “token am-
nesia”. This condition occurs when an encoder
fails to correctly retrieve relevant passages because
it does not properly encode the relevant token, usu-
ally related to a named entity. Unlike previous
research, our study adopts a holistic approach, ex-
amining model knowledge, activation patterns, and
capabilities across different model stages. This
analysis approach integrates and makes sense of
the different insights from prior works.

6 Conclusion

This paper analyzes the effect of DPR fine-tuning
using different analysis methods. Through these
analyses, we find that:

1. DPR training alters how knowledge is stored
in the model (Section 3).

2. DPR likely does not change how much knowl-
edge is contained in the model (Section 2).

3. DPR’s ability to retrieve knowledge is an ex-
tension of the knowledge contained in the
model (Section 4)

DPR training refines and restructures how the
model stores information in the network transition-
ing from a centralized pattern of storage to a de-
centralized pattern. This decentralization makes it
so that each fact/memory has a lot more pathways
to get triggered, which in turn allows for more po-
tential inputs to trigger the same set of memories.
By engaging more neurons, more robustly for each

fact, the model diminishes the uniform reliance on
a specific neuron for a specific fact. This allows
the model to embed different semantic forms of a
query into a vector that will still map to a similar
set of relevant passages, instead of requiring a spe-
cific ordering of words to trigger a specific neuron
in order to get the relevant passage.

Additionally, we find that BERT does not acquire
new knowledge through DPR fine-tuning. Knowl-
edge can be removed before DPR fine-tuning to en-
hance the model, but the training process does not
seem to change the knowledge content of a model.
Facts that are removed stay removed and are un-
reachable. Being able to discriminate between two
pieces of text, like in the linear probing experiment
of Section 2, in a classification task is about using
the knowledge contained in the network to tell two
pieces of text apart. The knowledge to understand
the one to two fact difference in pairs (or more) of
text is apparent in the features of both pre-trained
and DPR-trained BERT. This piece of evidence in-
dicates that DPR’s aim is not to learn new facts,
but to align disparate pieces of text in a common
embedding space and restructure how knowledge
is accessed to facilitate that.

If DPR does not add facts, then we should be
able to remove relevant facts that pre-trained BERT
knows and not find them again in DPR-trained
BERT. Section 4 indicates that this statement is true,
suggesting from another perspective, that DPR is
dependent on the knowledge already contained in
the model to produce satisfactory retrievals. If a
fact is removed, it will likely not be added back dur-
ing DPR training. Thus the existence or absence
of necessary facts or webs of knowledge within
a model can aid or hamper its ability to retrieve
information.

In the most fundamental sense, DPR achieves
its namesake function—it retrieves, locating and
returning relevant context to the user given a query.
Yet, as our evidence suggests, DPR models appear
constrained to retrieving information based on the
knowledge that preexists within their parameters,
either innately or through augmentation. This op-
erational boundary delineates a significant caveat:
facts must already be encoded within the model for
useful context to be accessible by retrieval. Absent
these facts or their associative networks, retrieval
seems to falter. Thus, if retrieval is understood
as the capacity to recall or recognize knowledge
already familiar to the model or on the periphery
of what is familiar, then indeed, DPR models ful-
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fill this criterion. However, if we extend our def-
inition of retrieval to also encompass the ability
to navigate and elucidate concepts previously un-
known or unencountered by the model—a capacity
akin to how humans research and retrieve infor-
mation—our findings imply that the current DPR
model fall short of this mark.

Our findings suggest several areas of focus for
future work including (1) accelerate knowledge rep-
resentation decentralization with new unsupervised
training methods (2) develop new methods to inject
facts in a decentralized manner into the network (3)
optimize retrieval methods that operate with uncer-
tainty, and (4) map the model’s internal knowledge
directly to the set of best documents to retrieve.

Current work in optimizing the inverse cloze
pre-training task and various data augmentation
methods such as (Lin et al., 2023) begin to address
(1) by increasing the amount of knowledge that the
model is exposed to during fine-tuning and thus
the amount that can be decentralized. With the
knowledge of the purpose of DPR-training more
targeted methods can be developed. (3) requires
more detailed analysis to determine how a model
processes a query when it is missing key knowl-
edge needed for retrieval. Being aware of when a
model is uncertain in its retrieval is crucial. The
analysis should reveal methods to more robustly
and gracefully handle increased levels of uncer-
tainty. One direction to better leverage a model’s
knowledge as suggested in (4) is shown in (Tay
et al., 2022; Pradeep et al., 2023; Wang et al., 2022;
Bevilacqua et al., 2022; Ziems et al., 2023).

7 Limitations

This paper presents a detailed analysis of the DPR
formula, specifically focusing on the original DPR
training formula utilizing a BERT backbone. We
anticipate that our findings will exhibit a degree of
generalizability across various DPR implementa-
tions, given the underlying commonalities of the
core training approach. It is important to recog-
nize that modifications—such as improving hard
negatives, different data augmentation techniques,
different transformer-based backbones, or leverag-
ing multiple views/vectors from models—while
serving to refine and enhance the DPR framework,
build upon and amplify the mechanisms of the DPR
method. These enhancements, though significant
in optimizing performance, are not expected to fun-
damentally change this analysis. However, it is still

a limitation of this paper that we did not repeat our
analysis on more DPR-based methods and datasets.

8 Ethics Statements

This work presents an analysis of DPR-style train-
ing. Improving DPR-style training would improve
RAG pipelines, increasing the factuality of LLMs
and decreasing the rate which they hallucinate.

References

Guillaume Alain and Yoshua Bengio. 2017. Under-
standing intermediate layers using linear classifier
probes.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V.
Do, Yan Xu, and Pascale Fung. 2023. A multi-
task, multilingual, multimodal evaluation of Chat-
GPT on reasoning, hallucination, and interactiv-
ity. In Proceedings of the 13th International Joint
Conference on Natural Language Processing and the
3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 675-718, Nusa Dua, Bali.
Association for Computational Linguistics.

Parishad BehnamGhader, Santiago Miret, and Siva
Reddy. 2023. Can retriever-augmented language
models reason? the blame game between the re-
triever and the language model. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 15492-15509, Singapore. Association
for Computational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational
Linguistics, 48(1):207-219.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,
Scott Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generating
substrings as document identifiers. Advances in
Neural Information Processing Systems, 35:31668—
31683.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Sickinger, and Roopak Shah. 1993. Signature verifi-
cation using a" siamese" time delay neural network.
Advances in neural information processing systems,
6.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neu-
rons in pretrained transformers. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 8493-8502, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

13547


https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://aclanthology.org/2023.ijcnlp-main.45
https://aclanthology.org/2023.ijcnlp-main.45
https://aclanthology.org/2023.ijcnlp-main.45
https://aclanthology.org/2023.ijcnlp-main.45
https://doi.org/10.18653/v1/2023.findings-emnlp.1036
https://doi.org/10.18653/v1/2023.findings-emnlp.1036
https://doi.org/10.18653/v1/2023.findings-emnlp.1036
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1762—
1777, Toronto, Canada. Association for Computa-
tional Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In EMNLP, pages 5484-5495,
Online and Punta Cana, Dominican Republic. ACL.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiyv,
abs/2002.08909.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information interac-
tions inside transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 12963-12971.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning
deep structured semantic models for web search
using clickthrough data. In Proceedings of the
22nd ACM International Conference on Information
& Knowledge Management, CIKM °13, page
2333-2338, New York, NY, USA. Association for
Computing Machinery.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Gautier Izacard and Edouard Grave. 2020. Distilling
knowledge from reader to retriever for question an-
swering.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

O. Khattab and Matei A. Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tiaschel, et al. 2020. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances
in Neural Information Processing Systems, 33:9459—
9474.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and Xilun
Chen. 2023. How to train your dragon: Diverse
augmentation towards generalizable dense retrieval.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 6385-6400, Sin-
gapore. Association for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023a. Lost in the middle: How language
models use long contexts. ArXiv, abs/2307.03172.

Zheng Liu, Shitao Xiao, Yingxia Shao, and Zhao Cao.
2023b. RetroMAE-2: Duplex masked auto-encoder
for pre-training retrieval-oriented language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2635-2648, Toronto, Canada.
Association for Computational Linguistics.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 5303-5315,
Singapore. Association for Computational Linguis-
tics.

Sean MacAvaney, Sergey Feldman, Nazli Goharian,
Doug Downey, and Arman Cohan. 2022. AB-
NIRML: Analyzing the behavior of neural IR models.
Transactions of the Association for Computational
Linguistics, 10:224-239.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai,
Kay Rottmann, and Davide Bernardi. 2023. A sur-
vey on knowledge editing of neural networks. arXiv
preprint arXiv:2310.19704.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022. Fast model
editing at scale. In International Conference on
Learning Representations.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708—718, Online. Association
for Computational Linguistics.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424.

Ronak Pradeep, Kai Hui, Jai Gupta, Adam Lelkes, Hon-
glei Zhuang, Jimmy Lin, Donald Metzler, and Vinh

13548


https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://doi.org/10.18653/v1/2023.findings-emnlp.423
https://doi.org/10.18653/v1/2023.findings-emnlp.423
https://api.semanticscholar.org/CorpusID:259360665
https://api.semanticscholar.org/CorpusID:259360665
https://doi.org/10.18653/v1/2023.acl-long.148
https://doi.org/10.18653/v1/2023.acl-long.148
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.1162/tacl_a_00457
https://doi.org/10.1162/tacl_a_00457
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63

Tran. 2023. How does generative retrieval scale
to millions of passages? In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 1305-1321, Singapore.
Association for Computational Linguistics.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 5835-5847,
Online. Association for Computational Linguistics.

Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Be-
linkov, Jonathan Berant, and Amir Globerson. 2023.
What are you token about? dense retrieval as dis-
tributions over the vocabulary. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2481-2498, Toronto, Canada. Associ-
ation for Computational Linguistics.

Benjamin Reichman and Larry Heck. 2023. Cross-
modal dense passage retrieval for outside knowledge
visual question answering. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 2837-2842.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 9248-9274, Singapore. Associ-
ation for Computational Linguistics.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks. In
International conference on machine learning, pages
3319-3328. PMLR.

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Mas-
sive editing for large language models via meta
learning. In International Conference on Learning

Representations.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Gupta, et al. 2022. Transformer memory as
a differentiable search index. Advances in Neural
Information Processing Systems, 35:21831-21843.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing,
pages 9414-9423, Singapore. Association for Com-
putational Linguistics.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, et al. 2022. A neural
corpus indexer for document retrieval. Advances in
Neural Information Processing Systems, 35:25600-
25614.

Xing Wu, Guangyuan Ma, Meng Lin, Zijia Lin,
Zhongyuan Wang, and Songlin Hu. 2023a. Con-
textual masked auto-encoder for dense passage re-
trieval. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 4738—4746.

Xing Wu, Guangyuan Ma, Peng Wang, Meng Lin, Zi-
jia Lin, Fuzheng Zhang, and Songlin Hu. 2023b.
Cot-mae v2: Contextual masked auto-encoder with
multi-view modeling for passage retrieval. ArXiv,
abs/2304.03158.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao.
2022. RetroMAE: Pre-training retrieval-oriented
language models via masked auto-encoder. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
538548, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2024. Retrieval meets long context large
language models. In The Twelfth International
Conference on Learning Representations.

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022. Multi-view document repre-
sentation learning for open-domain dense retrieval.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5990-6000, Dublin, Ireland.
Association for Computational Linguistics.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2024. Dense text retrieval based on pretrained
language models: A survey. ACM Trans. Inf. Syst.,
42(4).

Noah Ziems, Wenhao Yu, et al. 2023. Large language
models are built-in autoregressive search engines.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 2666-2678, Toronto,
Canada. ACL.

A Appendix

A.1 Context Model Activations

Figure 2 depicts the activation patterns observed in
the context model, mirroring the trends outlined in
Section 3. The only exception occurs in the first
intermediate layer of the pre-trained BERT model,
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where a larger number of neurons are activated as
compared to DPR-trained BERT.

A.2 Model Activations at different thresholds

Figures 3, 4, 5, 6, and 7 illustrate neuron activation
patterns across varying activation thresholds set
at 0.005 * max(Attr), 0.01 x max(Attr), 0.05 x
max(Attr), 0.2«xmax(Attr), and 0.3xmax(Attr),
respectively. As the threshold increases from 0.005
to 0.3, the visualization narrows down to neurons
with stronger activations. This observation rein-
forces the findings discussed in Section 3: pre-
trained BERT shows a trend of fewer but more
consistently activated neurons, in contrast to DPR-
trained BERT, which exhibits a broader array of
neurons activated less frequently.
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Figure 5: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.05. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of

examples.
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Figure 6: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.2. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 7: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.3. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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