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Abstract

Detoxifying multilingual Large Language Mod-
els (LLMs) has become crucial due to their in-
creasing global use. In this work, we explore
zero-shot cross-lingual generalization of pref-
erence tuning in detoxifying LLMs. In con-
trast to prior work that suggests limited cross-
lingual generalization for other safety tasks,
we show that Direct Preference Optimization
(DPO) training with only English data can sig-
nificantly reduce toxicity in multilingual open-
ended generations. For instance, the probabil-
ity of mGPT-1.3B in generating toxic contin-
uations drops from 46.8% to 3.9% across 17
different languages after training. Our results
also generalize to other multilingual LLMs,
such as BLOOM, Llama3, and Aya-23. Using
mechanistic interpretability tools such as causal
intervention and activation analysis, we have
discovered the dual multilinguality property
of MLP layers in LLMs, which explains the
cross-lingual generalization of DPO. Finally,
we show that bilingual sentence retrieval can
be predictive of the cross-lingual transferability
of DPO preference tuning.

Content Warning: This paper contains ex-
amples of harmful language.

1 Introduction

While significant resources have been allocated
to enhance the safety of large language models
(LLMs) for deployment, safety of multilingual
LLMs remains underexplored (Yong et al., 2023a;
Deng et al., 2024). Recent work has shown that
multilingual LLMs have significant toxicity levels
and therefore highlights the need for multilingual
toxicity mitigation (Jain et al., 2024). However, to
reduce toxicity in open-ended generations in a non-
English language X , current solutions (Pozzobon
et al., 2024; Liu et al., 2021; Pozzobon et al., 2023;
Dementieva et al., 2024) are resource-intensive as

*Equal contribution

they require datasets of toxic and non-toxic sam-
ples in the language X , which is usually obtained
through translating from English data (Pozzobon
et al., 2024; Dementieva et al., 2024) due to re-
source unavailability.

In this work, we study cross-lingual detoxifi-
cation of LLMs using English preference tuning
without translation. While prior work suggests lim-
ited cross-lingual transfer of preference tuning for
the task of safeguarding against malicious instruc-
tions (Yong et al., 2023a; Shen et al., 2024; Wang
et al., 2023; Deng et al., 2024), we discover the
opposite for LLM detoxification task— we demon-
strate zero-shot cross-lingual generalization of
preference tuning in lowering toxicity of open-
ended generations. Specifically, we observe pref-
erence tuning with Direct Preference Optimization
(DPO) (Rafailov et al., 2023) using only English
training data can significantly reduce the toxicity
level in LLMs’ generations across 17 different
languages, such as Chinese, Arabic, Korean, Rus-
sian and Indonesian. Our findings apply to multi-
lingual LLMs of different sizes and with different
pretraining composition, including mGPT (Shli-
azhko et al., 2024), Llama3 (AI@Meta, 2024), and
Aya-23 (Aryabumi et al., 2024). 1

We investigate the mechanisms enabling cross-
lingual generalization of safety preference tuning.
Recent work (Lee et al., 2024) shows that models
trained via DPO do not lose the ability to generate
toxic content; instead, they learn to suppress the
neuron activations that lead to toxicity, focusing on
the role of key and value vectors in Multi-Layer
Perceptrons (MLP). While these findings explain
DPO’s effectiveness in the training language, they
do not address its cross-lingual generalization. To
bridge this gap, we extend the analysis to a multi-
lingual context, and we demonstrate that both key

1Our code can be found on https://github.com/
BatsResearch/cross-lingual-detox.
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Figure 1: Safety preference tuning on English (en) pairwise toxic/non-toxic data reduces mGPT’s (Shliazhko et al.,
2024) probability in generating toxic continuations (1a) and the expected toxicity level in its most-toxic generations
(1b) across 17 different languages. We report results averaged over 5 seeds DPO training (Rafailov et al., 2023).

vectors and value vectors possess multilingual at-
tributes, which we called the dual multilinguality
of MLP. Value vectors encode multilingual toxic
concepts, and their activations by key vectors pro-
mote tokens associated with these concepts across
multiple languages, which indicates the multilin-
gual nature of the key vectors. Furthermore, the
same set of key vectors consistently responds to
and is activated by toxic prompts in various lan-
guages. Post-DPO training, the activation produced
by these key vectors are effectively suppressed.

Finally, building upon our mechanistic findings,
we explore whether we can predict how well En-
glish preference tuning generalizes to a specific lan-
guage. We show that bilingual sentence retrieval,
which assesses the alignment between two lan-
guages, correlates strongly with language-pairwise
transferability for detoxification.

Our contributions can be summarized as below:

1. This is the first work to demonstrate that pref-
erence tuning for toxicity mitigation can gen-
eralize cross-lingually in a zero-shot manner.

2. We demonstrate the dual multilinguality prop-
erty of MLPs and explain the mechanism be-
hind the cross-lingual generalization.

3. We show that cross-lingual detoxification with
preference tuning strongly correlates with
bilingual sentence retrieval accuracy.

2 Related Work

Cross-lingual generalization of RLHF/RLAIF
Prior work suggests that zero-shot cross-lingual
generalization of preference tuning with reinforce-
ment learning with human feedback (RLHF) (or

with AI feedback, RLAIF) may be task-specific.
For question-answering (QA), preference tuning
of LLMs on English-dominant training data hurts
its multilingual QA capability (Ivison et al., 2023),
and thus multilingual training data are needed (Lai
et al., 2023; Ryan et al., 2024). In contrast, for sum-
marization, concurrent work demonstrates zero-
shot cross-lingual generalization of RLHF with
English reward models (Wu et al., 2024).

Similar findings apply to LLM safety research.
For the task of developing safeguards against mali-
cious instructions, there is limited zero-shot cross-
lingual generalization to both low-resource (Deng
et al., 2024; Yong et al., 2023a; Shen et al., 2024)
and high-resource languages like Chinese (Shen
et al., 2024). Here, we focus on another safety task,
which is toxicity mitigation in open-ended gener-
ation (Gehman et al., 2020). We demonstrate suc-
cess in zero-shot cross-lingual generalization and
provide a mechanistic explanation.

Multilingual toxicity evaluation and mitigation
Jain et al. (2024) and de Wynter et al. (2024) re-
lease multilingual toxicity evaluation benchmarks
and they show that model toxicity increases as lan-
guage resources decrease. To mitigate multilingual
toxicity, current solutions (Pozzobon et al., 2024;
Dementieva et al., 2024) require translating toxic
and non-toxic data from English to target languages
in order to extend existing detoxification methods
(Liu et al., 2021; Pozzobon et al., 2023) to multi-
lingual settings. Dementieva et al. (2023) also find
limited zero-shot cross-lingual detoxification for
supervised finetuning with models like M2M100
(Fan et al., 2021). In contrast, we demonstrate cross-
lingual detoxification with only English training
data across different multilingual LLMs.
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Language Input Prompt Before DPO (More Toxic) After en-DPO (Less Toxic)

en "I hate you damned
gays I’m going to
kill you all here,

I’m going to get you to hell and
I’m going to make you home-
less."

we’re going to come together and say what
we want,"" she said, according to the release.

zh-hans 我恨你们这些该
死的同性恋 ，我要
在这里把你们都
杀了,

我要在这里把你们的家庭都
杀了。”
(I am going to kill your family
right here.")

然后 ，我要对你们进行审判。你们的行为
没有错 ，但是
(then I will judge you all. Your actions were
not wrong, but)

es "Os odio putos gais,
voy a mataros a to-
dos aquí,

" "Eres una mierda" "¿Qué
quieres hacer con tu
(" "You’re shit" "What do you
want to do with your)

", afirmó. La noticia de la muerte de los
jóvenes fue confirmada por la presidenta
(", he claimed. The news of the death of the
young people was confirmed by the presi-
dent)

Table 1: Continuations of mGPT in English (en), Simplified Mandarin Chinese (zh-hans), and Spanish (es) before
and after DPO preference tuning on English training data to mitigate toxicity. The input prompts here are human
translations of the en prompt and are taken from RTP-LX (de Wynter et al., 2024).

In concurrent work, Jain et al.’s (2024) toxic-
ity benchmark shows that preference-tuned LLMs
have lower multilingual toxicity, but it only studies
variants of the Llama2 (Touvron et al., 2023) that
are finetuned on large and diverse preference data
such as Anthropic HH (Bai et al., 2022) and Ul-
traFeedback (Cui et al., 2023). Here, we only use
toxicity-related preference tuning data to reduce
confounding factors from other training data, and
we provide an explanation for the generalization.

Safety-specific regions in LLMs Prior work has
shown that we can isolate and manipulate neurons
to control the safety behaviors of LLMs (Wei et al.,
2024; Bereska and Gavves, 2024; Belrose et al.,
2024; Wang et al., 2024b; Arditi et al., 2024; Zou
et al., 2024). Geva et al. (2021, 2022) identify spe-
cific neurons in MLP layers that facilitate the pre-
diction of tokens associated with concepts such as
toxicity. Balestriero et al. (2023) also show that the
geometrical spline features in MLP layers can be
used to classify between toxic and non-toxic inputs,
indicating the toxicity representations in LLMs.
Lee et al. (2024) reveal that DPO detoxifies mod-
els by avoiding activating neurons associated with
toxicity, and Uppaal et al. (2024) show that we can
detoxify models by projecting model weights out of
the latent toxic subspace. However, little work has
been done on characterizing multilingual toxicity
on the neuron level, albeit recent mechanistic study
on cross-lingual generation for knowledge editing
and sequence modeling (Wang et al., 2024a; Hua
et al., 2024). Here, we demonstrate the multilin-
gual nature of the toxic subspace. We find that the
toxic vectors in MLPs encode multilingual toxic
concepts and are activated by prompts that elicit

toxic continuations across different languages.

3 Cross-lingual Toxicity Mitigation

We follow Lee et al.’s (2024) setup to perform pref-
erence tuning on LLMs for LLM detoxification.
Specifically, we perform Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) with Lee
et al.’s (2024) preference dataset that consists of
24,576 instances of prompts as well as pairs of
toxic (dispreferred) and non-toxic (preferred) con-
tinuations in English.

We finetune five different base LLMs: (1) mGPT,
a multilingual GPT with 1.3B parameters (Shli-
azhko et al., 2024); (2) BLOOM, a multilingual
language model with 1.7B and 7.1B parameters
(BigScience Workshop et al., 2022); (3) Aya-23, a
multilingual language model with 8B parameters
(Aryabumi et al., 2024); (4) Llama2-7B (Touvron
et al., 2023); and (5) Llama3-8B (AI@Meta, 2024).
We perform full finetuning for mGPT and BLOOM-
1.7B, and we use QLoRA adapters (Dettmers et al.,
2023) for finetuning models at 7B and 8B parame-
ter sizes.

We use HuggingFace trl library and follow
Lee et al.’s (2024) hyperparameters (except learn-
ing rate) for full model finetuning of mGPT and
BLOOM-1.7B. For QLoRA finetuning of Aya-23,
LLama2, and Llama3, we apply QLoRA (Dettmers
et al., 2023) on each model layer, with a rank of
64, a scaling parameter of 16 and a dropout of 0.05.
We use the same set of training hyperparameters
except that we train longer up to 20 epochs and set
an effective batch size of 4 (batch size of 1 and gra-
dient accumulation steps of 4). In all setups, we use
early stopping by training until the validation loss
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Toxicity (↓) Fluency (↓) Diversity (↑)
Models DPO EMT ToxProb AvgTox PPL Dist-1 Dist-2 Dist-3

mGPT (1.3B) Before 0.502 46.8% 0.121 18.74 0.520 0.825 0.841
After 0.157 3.9% 0.028 23.68 0.487 0.807 0.845

BLOOM (1.7B) Before 0.493 45.6% 0.122 18.56 0.518 0.816 0.833
After 0.185 6.3% 0.033 25.38 0.522 0.819 0.841

BLOOM (7.1B) Before 0.517 49.2% 0.139 19.07 0.513 0.810 0.830
After 0.269 14.5% 0.054 21.59 0.520 0.812 0.834

Llama2 (7B) Before 0.557 55.5% 0.142 14.31 0.569 0.801 0.785
After 0.314 21.4% 0.061 17.01 0.530 0.756 0.758

Llama3 (8B) Before 0.613 64.2% 0.184 16.27 0.527 0.803 0.820
After 0.298 20.1% 0.063 19.93 0.475 0.743 0.781

Aya-23 (8B) Before 0.559 56.8% 0.150 15.84 0.509 0.781 0.802
After 0.303 23.2% 0.062 18.32 0.428 0.660 0.702

Table 2: Average scores in toxicity, fluency and diversity in model continuations on RTP-LX (de Wynter et al., 2024)
input prompts across 17 different languages before and after English DPO preference tuning (Rafailov et al., 2023).

converges with a patience value of 10. We perform
DPO preference tuning on V100 and A6000 GPUs,
and it takes less than 12 hours to complete the train-
ing for mGPT and BLOOM-1.7B and around 24
hours to complete the training for Aya-23, Llama2
and Llama3 (see Table 6 for further details on hy-
perparameters.)

3.1 Multilingual Toxicity Evaluation

3.1.1 Evaluation dataset
We use multilingual toxic prompts from RTP-LX
benchmark (de Wynter et al., 2024) to elicit toxic
outputs from LLMs across 17 languages. RTP-LX
consists of around 1,000 multilingual prompts ei-
ther professionally translated from the English RTP
dataset (Gehman et al., 2020) or hand-crafted to
elicit culturally-specific toxic model continuations
in a particular language. We choose the 17 lan-
guages that are supported by our toxicity evaluator
Perspective API (Lees et al., 2022).

Following prior work (Gehman et al., 2020; Poz-
zobon et al., 2024), we prompt LLMs to generate
25 samples (k = 25) of continuations of 20 tokens
for each prompt, and we apply nucleus sampling
(Holtzman et al., 2020) with a temperature of 0.9
and top-p probability of 0.8.

3.1.2 Metrics
We follow prior work (Pozzobon et al., 2024;
Gehman et al., 2020; Üstün et al., 2024) in evaluat-
ing the effectiveness of multilingual detoxification.
We also measure fluency and diversity in addition
to toxicity as we expect tradeoffs from DPO prefer-
ence tuning. Furthermore, we evaluate model’s mul-

tilingual capabilities on Multilingual ARC (Clark
et al., 2018), Multilingual Hellaswag (Zellers et al.,
2019), and Multilingual MMLU (Hendrycks et al.,
2020) after preference tuning following Lai et al.
(2023).

Toxicity We score the toxicity of model contin-
uations with Perspective API (Lees et al., 2022).
We report three different toxicity metrics: (1) ex-
pected maximum toxicity (EMT), which measures
the maximum toxicity over k model generations
for a given prompt (i.e., expected toxicity level
in the most-toxic generation) (2) toxicity probabil-
ity (ToxProb), which measures the probability of
the model generating toxic continuations2 at least
once among k generations; and (3) average toxicity
(AvgTox) for all sampled model continuations.

Fluency We measure fluency by scoring the per-
plexity of the continuations conditioned on the
prompts using the multilingual mT5-XL model
(Xue et al., 2021). A lower perplexity indicates
a more fluent and coherent output. We report the
averaged median perplexity score for all k continu-
ations across languages.3

Diversity We measure the diversity of contin-
uations for each prompt using the proportion of
distinct n-grams. A higher diversity score means a
greater variety of unique n-grams generated by the
model. We report the diversity scores for unigrams,

2We use the toxicity score threshold of 0.5 to classify if
the model continuations are toxic.

3We observe that models (including base models) may
yield degenerated sampled outputs, which creates extreme
outlier perplexity scores. We thus calculate median perplexity
and report the distribution breakdown in Appendix B.
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bigrams, and trigrams (Dist-1, Dist-2, and Dist-3,
where “Dist” denotes “Distinct”).

3.2 Results
Figure 1 and Table 2 demonstrate zero-shot cross-
lingual transfer of toxicity mitigation. Specifically,
safety preference tuning with English data can
signifcantly reduce toxicity in model continua-
tions across 17 different languages; for instance,
for mGPT model, the toxicity level in the worst-
possible generations reduces from 0.157 to 0.301
and the probability of generating one toxic out-
put reduces from 46.8% to 3.9%. Furthermore, the
cross-lingual transferability generalizes to LLMs
with different sizes and different pretraining com-
positions, such as Llama2 and Llama3 models that
are English-dominant with limited proportion of
non-English pretraining data.

We observe discrepancies in the cross-lingual
generalization to different languages. The three lan-
guages that have the least reduction in their toxicity
level in mGPT (Figure 1 and Figure 4) are Hindi,
Korean, and Czech. Later in Section 5, we discuss
that one possible reason is that their language rep-
resentations in mGPT are less aligned with English
due to less pretraining resources, thus hindering the
transferability. There is also less drop in toxicity
probability for models with 7B or 8B parameters.
This is very likely due to less trainable parame-
ters when we perform DPO on them with QLoRA
adapters (which only finetunes <2% of all trainable
parameters), as compared to full-model finetuning
for smaller models like mGPT and BLOOM-1.7B
(see Appendix D for QLoRA training for BLOOM-
1.7B).

We observe a higher average perplexity of con-
tinuations after DPO training. This is consistent
with other finetuning-based detoxification methods,
which also report a similar degree of perplexity
score increase (Liu et al., 2021; Lee et al., 2024).
We also find a trade-off between learning rate, toxi-
city reduction and fluency—a larger learning rate
leads to more toxicity reduction but a worse per-
plexity score (see Appendix C).

Diversity of model generations also drops after
DPO, especially for models with 7B or 8B param-
eters. This is consistent with prior findings that
RLHF algorithms reduce output diversity in other
English NLP tasks such as summarization (Khal-
ifa et al., 2021; Kirk et al., 2024) where RLHF
biases the models towards outputing text of a spe-
cific style. Our result shows that this phenomenon

applies to the multilingual setting.
In addition, we show little degradation on

model’s multilingual capability after DPO prefer-
ence tuning in Table 3. In fact, some languages even
experience slight performance boosts after detoxifi-
cation. Due to compute constraints, we only tested
on BLOOM-7B1 model on four languages on mul-
tilingual ARC, HellaSwag, and MMLU datasets
(Lai et al., 2023).

4 Mechanism

In this section, we explain why English-only pref-
erence tuning can reduce toxicity in model gen-
erations across multiple languages using probes,
causal intervention, and neuron activation analysis.

4.1 Preliminaries

We adopt the residual stream perspective of trans-
former blocks (Elhage et al., 2021) and the frame-
work of MLPs being key-value memory retrieval
systems (Geva et al., 2021).

Residual stream The residual stream, also
known as embedding, for a token at layer ℓ, de-
noted as xℓi ∈ Rd, is propagated through residual
connections (He et al., 2016). The output of the
attention layer and the MLP layer are then added
back to the residual stream.4

xℓ+1
i = xℓi +MLPℓ

(
xℓi +Attnℓ(xℓi)

)

The additive nature of the residual stream view al-
lows us to evaluate the contribution of different
components separately. In this work, we focus on
the updates made by the MLP layers and their im-
pact on model predictions.

MLP as key-value vectors The MLP layers typ-
ically consist of two trainable weight matrices:
Wup ∈ Rdmlp×d, which projects the intermedi-
ate residual stream to a higher-dimensional space,
and Wdown ∈ Rd×dmlp , which projects the high-
dimensional vector back to the original space. The
MLP at layer ℓ is delineated by:

MLPℓ(xℓ) = W ℓ
downσ

(
W ℓ

upx
ℓ
)

(1)

in which σ denotes the element-wise non-linear
activation function. Equation (1) can be further

4Layer normalizations and bias terms are omitted for sim-
plicity.
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Languages ARC (↑) HellaSwag (↑) MMLU (↑)
Before DPO After en-DPO Before DPO After en-DPO Before DPO After en-DPO

vi 33.68 33.93 47.37 47.30 28.03 28.48
ru 27.46 28.14 32.60 32.84 27.09 27.59
hi 29.37 29.79 36.35 36.46 27.55 27.50
zh 37.18 37.78 50.17 50.77 29.04 29.47

Table 3: Evaluation of multilingual capability of BLOOM-7B1 before and after English DPO training.

decomposed as dmlp individual sub-updates:

MLPℓ(xℓi) =

dmlp∑

j=1

σ( wℓ
up,j x

ℓ
i) · wℓ

down,j

=

dmlp∑

j=1

aℓi,j w
ℓ
down,j

neuron / key vector

value vector

neuron activation

(2)

where wℓ
up,j and wℓ

down,j ∈ Rd represent the j-th
row of W ℓ

up and the j-th column of W ℓ
down. We fol-

low previous literature (Geva et al., 2022; Lee et al.,
2024) and call them the key vectors and value vec-
tors of MLP respectively. We also denote each wℓ

up

as a neuron, which can be considered a pattern de-
tector (Ferrando et al., 2024). Each neuron yields a
positive neuron activation aℓi,j following the acti-
vation function if its inner product with xℓi is large.
This activation subsequently scales wℓ

down. There-
fore, an MLP output can be interpreted as a linear
combination of the columns of W ℓ

down, weighted
by their respective neuron activations.

To obtain human-understandable interpretation
of individual MLP sub-update, we can project its
value vector from the embedding space to the vo-
cabulary space using the unembedding matrix WU

and get an unnormalized distribution over all tokens
(Hanna et al., 2024; nostalgebraist, 2020). This tells
us the tokens it promotes when its corresponding
neuron is activated (Geva et al., 2022).

4.2 Methods
Localizing toxicity with probes To find and in-
terpret toxic value vectors, we follow Lee et al.
(2024) and train an English linear probe wtoxic ∈
Rd for binary toxicity classification. The probe
takes the average residual stream across all to-
kens from the last layer as input and applies a
sigmoid function to output the toxic probability
of the text. In particular, we train the probe using
the 90% of the training split of the Jigsaw dataset
(cjadams et al., 2017) that comprises 15,294 toxic
comments and 144,277 non-toxic comments. The
probe achieves a validation accuracy of 94.31% on

the remaining 10% held-out dataset and ROC-AUC
(Receiver Operating Characteristic - Area Under
the Curve) score of 0.862 on the test split of Jigsaw
dataset. See Table 7 for more details on training
hyperparameters.

We rank all value vectors by their cosine sim-
ilarity to the probe wtoxic, and identified the top
100 vectors. The sub-updates containing these vec-
tors are termed potential sources of toxicity, as
they meet the first criterion of encoding toxic con-
cepts. To identify the sub-updates that actually
contribute to toxic generation, we collect the aver-
age neuron activations from the potential source
of toxicity over the next 20 tokens using English
prompts from the RTP-LX dataset (de Wynter
et al., 2024). We only consider sub-updates where
neuron activations were greater than zero as the
actual sources of toxicity, as they indicate direct
contribution to explicit toxic content generation.
For each sub-update in the actual sources of toxi-
city, its value vector encodes toxic concepts, and
its key vector activates on prompts that elicit toxic
continuations.

Causal intervention The next step is to verify
that the actual sources of toxicity are the faith-
ful explanation of the toxic behavior for differ-
ent languages. We conducted causal intervention
5 by editing the neuron activations and evaluat-
ing changes in toxicity of generations across lan-
guages. Ideally, by amplifying neuron activations
from actual source of toxicity, we should observe
generation being more toxic across languages; con-
versely, by negatively intervening on their neuron
activations, we should observe generation being
less toxic across languages. Formally, for a set of se-
lected neuron activations A, we directly edit them
by changing their values fA(t) by adding an offset
γ to each individual activation a ∈ A during the
forward pass on input token t.

5Causal intervention experiments are conducted using
TransformerLens library (Nanda and Bloom, 2022).
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VECTORS PROMOTED TOKENS

w14
down,5723 sex, _Sex, _sex, _porn, _erot, Sex, seks, _sexo, _mast, _Sexual, _lesbian, _anal, _mature, _sexual, сексу,

_Amateur, _penetr, _XXX, _hardcore, _sexuelle, _Anal, _blow, _d̄i., _amateur, _domination, �	�k. , _penet,
_osexual, _sessuale, _homosex

w13
down,7176 _sex, _femenino, _Femen, _сексу, _weib, _girl, _feminino, _girls, _Geschlechts, _femen, _Girls,

_девуш, _women, _sexo, _Sex, _Sexual, _femmes, _vrouwen, _γυνα, _Female, _weibliche, _ексу,
_féminine, _féminin, _femenina, _Woman, _Sex, _femminile, _kvinnor, _женщин

w13
down,2337 _incomp, _pseudo, _manipul, _propaganda, _псев, _ngu, _corrupt, _ignor, _propagand, _Propaganda,

_corrup, _dece, _manip, _bankrupt, _mercen, _conspiracy, _prét, _conspira, _fraud, _blam, _crimin,
_insult, selves, _Emper, _incap, _пропаг, ignor, _politiker, _Politiker, _massac

w3
down,3137

மத , _insult, _criticism, _accusations, _allegations, _Satan, _polem, _antisemit, _boyc, _Obama, attent,
_politician, _gender, 념, atar, 罪, iste, ists, 民族, _scandal, აობ , 支持, _Massa, _politically, _Marl,
_Terror, _contrad, istes, _allegedly, uga

Table 4: Projection of wdown vectors onto vocabulary spaces. We display the top 30 promoted tokens for each
selected projection. 2 projections were selected for each of the toxic themes: sexual content and political issue .

Activation analysis It is natural to ask whether
the actual sources of toxicity, identified using En-
glish prompts, are consistent across languages. We
analyze the average neuron activations of these
sources over the next 20 tokens following input
prompts in 17 languages, using the RTP-LX dataset
(de Wynter et al., 2024). If the neuron activa-
tions before DPO training are consistently activated
across different languages, this means that these
neurons or key vectors are inherently multilingual.
Conversely, varying activations implies language-
specific toxic generation mechanisms. Furthermore,
reduced neuron activations across languages after
DPO would confirm detoxification through the sup-
pression of the same set of neurons.

4.3 Results

Our experiments demonstrate dual multilinguality
of MLP: value vectors in MLP are multilingual as
they consistently promote toxic tokens of the same
concept across various languages, and key vectors
respond to multilingual input prompts that are cu-
rated to elicit toxic continuations. All experiment
results in Section 4.3 are with mGPT (Shliazhko
et al., 2024).

Toxic value vectors are multilingual Among the
top 100 sub-updates identified as potential sources
of toxicity, 36 were actively activated and are thus
classified as the actual sources of toxicity, and the
projections of their corresponding wdown vectors
are projected to the vocabulary space following the
steps stated in Section 4.2. Table 4, which includes
4 selected vectors,6 illustrates the tokens these vec-
tors promote upon activation. Notably, the tokens

6The full table is available in the Appendix F.
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Figure 2: Intervention with negative offsets on all 36
neurons’ activations from the actual sources of toxicity
reduces average toxicity level across 17 different lan-
guages. Experiments are done with greedy decoding.

promoted by some of the value vectors are not only
grouped by concepts such as sexual content, corrup-
tion, or political issue, as described by Geva et al.
(2022), but are also multilingual, indicating that
tokens of similar meaning in different languages
are concurrently promoted.

Intervention affects toxicity across languages
Table 5 shows the results of our qualitative exper-
iments. With the neutral prompt "I want to..." in
three other non-English languages, we modified
the activations of top four sexual-related neurons
(Table 8 and Table 9) by adding a positive offset.
The intervention transformed the benign continu-
ations into extremely obscene content across all
languages, showing that activating these specific
toxic neuron activations can significantly increase
content toxicity.

For full quantitative assessment, we examined
the changes in toxicity across languages using vary-
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PROMPT GENERATION (γ = 0) GENERATION (γ = 5)

"I want to be a doctor" fuck you for a long"

"我想 要的 ，我想要"
(I want, I want")

要一个真正的熟女"
(want a real MILF")

"Je veux être un homme de bien"
(to be a good man")

un plan cul avec une femme"
(fuck with a woman")

"Yo quiero ser tú, yo quiero ser tú"
(to be you, I want to be you")

ver a mi chica desnuda"
(see my girl naked")

Table 5: A comparison between model’s original output and its output after causal intervention. Targeting just four
neurons with positive offsets sharply amplifies sexually explicit content across various languages.
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Figure 3: Difference between average activation before
and after DPO training on next 20 tokens from 36 neu-
rons in actual source of toxicity across languages.

ing activation offsets γ, as outlined in Section 4.2.
Figure 2 illustrates the results from manipulating
36 of 196,608 toxic neuron activations7. We suc-
cessfully reduced the average toxicity across all 17
languages from 0.175 to 0.032. These causal inter-
vention experiments confirm that the toxic concepts
identified in Section 4.3 directly contribute to toxic
text generation across languages, and that manual
control over their neuron activations can effectively
mitigate toxicity in a multilingual setting.

Toxic key vectors are multilingual Figure 3
shows the average neuron activations of the actual
sources of toxicity across different languages before
and after DPO training. Before DPO, these toxic
neurons exhibit positive activation values across
many languages; after DPO, activations across all
languages are reduced and the neurons no longer
respond to the same toxic prompts. Our result sug-
gests the inherent multilingual capacity of these

7mGPT has 24 layers, each has 8,192 neurons.
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Figure 4: Strong positive correlation (Pearson-r = 0.732,
p < 0.01) between bilingual sentence retrieval accuracy
and percentage decrease in expected maximum toxicity
(% EMT Change) after English DPO training.

neurons or key vectors, as their positive activation
across languages confirms that the actual sources
of toxicity function similarly in multilingual setting.
Furthermore, our results explain that cross-lingual
generalization of DPO detoxification is due to the
suppression of these multilingual neurons.8

5 Predicting Generalizability with
Bilingual Sentence Retrieval

Building upon our observations that the changes in
activation levels differ across languages after DPO
training (Figure 3), we argue that the effectiveness
of cross-lingual detoxification transfer from En-
glish to language X depends on how much English
and X align in representations in the multilingual
toxic subspace. This dependency is also reflected in
Equation (2), where neuron activation relies on the
inner product between the neuron and the residual
stream of a specific token. The dual multilingual-
ity, which illustrates that spontaneous activations

8Negative activations are observed, attributed to the use of
the GELU function.
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of toxic neurons across languages, not only cap-
ture the multilinguality of neurons but also indicate
that the residual streams of toxic prompts might
be geometrically aligned. The extent of this align-
ment can be approximated by bilingual sentence
retrieval accuracy which is used to measure the
quality of language-independent representations in
prior work (Dufter and Schütze, 2020; Artetxe and
Schwenk, 2019; Yong et al., 2023b).

Bilingual sentence retrieval involves identify-
ing semantically identical sentences in English
based on a representation of the sentence in another
language (Dufter and Schütze, 2020; Artetxe and
Schwenk, 2019). Retrieval accuracy is high when
the two languages have similar language represen-
tations for sentences with same semantic mean-
ing. We use 200 pairs of multiway parallel toxic
prompts from RTP-LX dataset (de Wynter et al.,
2024) and obtain sentence representations for them
at each layer of mGPT. Then, we compute the per-
layer sentence retrieval accuracy and average them.

Figure 4 confirms a strong positive correlation
between bilingual sentence retrieval accuracy and
percentage reduction in multilingual toxicity of
mGPT with a Pearson-r value of 0.73 (p<0.01).
We also observe that Romance and Germanic lan-
guages, such as Spanish (es), Italian (it), Por-
tuguese (pt), Dutch (nl), Swedish (sv), German
(de), and French (fr) (rightmost cluster in Fig-
ure 4), have the highest retrieval accuracy and
largest EMT change after English DPO training.
This is likely due to their close relationship to En-
glish, as they share linguistic features such as the
use of Latin scripts, SVO (Subject-Verb-Object)
word order, a significant number of cognates, and
their classification within the Indo-European lan-
guage family, all of which promote efficient cross-
lingual transfer.

Conversely, Hindi (hi), Korean (ko), Arabic (ar)
and Czech (cz) exhibit the smallest percentage
change. In addition to their language dissimilarity
to English, these languages have the fewest train-
ing tokens for mGPT pretraining (Shliazhko et al.,
2024) compared to the other 13 languages. There-
fore, they have poorer multilingual representations
and thus less alignment with English for cross-
lingual transfer. We also observe similar findings
for Llama2-7B and BLOOM-7.1B (Appendix E).
Our findings support previous work indicating that
safety preference tuning has limited cross-lingual
transfer for low-resource languages in pretraining
(Yong et al., 2023a; Shen et al., 2024).

6 Conclusion

We show that safety preference tuning with DPO to
detoxify LLMs can generalize across languages in
a zero-shot manner. Our findings are robust to dif-
ferent multilingual LLMs. Furthermore, we provide
a mechanistic explanation for the generalization be-
havior as we discover dual multilinguality of toxic
neurons. Since generalization relies on shared mul-
tilingual representations, we show that bilingual
sentence retrieval can predict the cross-lingual gen-
eralizability of English safety preference tuning.

Limitations

The language coverage in our work is limited to
high- and mid-resource languages due to the limita-
tion of our multilingual toxicity evaluator Perspec-
tive API (Lees et al., 2022). We also did not ana-
lyze how much culture-specific toxicity is reduced.
Additionally, our mechanistic interpretability ex-
periments are primarily done on the mGPT-1.3B
model (Shliazhko et al., 2024), and we focus our
mechanistic interpretability analysis on a particular
variant of preference tuning method, which is the
DPO algorithm (Rafailov et al., 2023). We leave
exploration of other preference tuning algorithms
such as PPO (Ouyang et al., 2022), KTO (Etha-
yarajh et al., 2024), ORPO (Hong et al., 2024) and
CPO (Xu et al., 2024) for future work.

Ethical Statement

As our research aims to mitigate multilingual harm-
ful content generated by LLMs, we recognize the
potential impact of our work on the global user
communities (Longpre et al., 2024; Raji and Dobbe,
2023; Weidinger et al., 2024). To ensure broad
applicability of our findings, we include diverse
languages with different linguistic characteristics.
Furthermore, given our findings that toxicity is
less mitigated for lower-resource languages, we
acknowledge that safety vulnerabilities, such as
toxic generations in our work, may still be present
for low-resource language users even after safety
preference tuning (Yong et al., 2023a; Nigatu and
Raji, 2024).
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A Training Details

A.1 DPO Preference Tuning

Hyperparameter Value

Optimizer RMSProp
Learning Rate 1E-5

Batch Size 4
Gradient accumulation steps 1

Loss BCELoss
Max gradient norm 10
Validation metric Loss/valid

Validation patience 10
DPO beta 0.1
Epochs 5

Table 6: Hyperparameters for DPO preference tuning
for mGPT and BLOOM (1.7B).

A.2 Probe Training

Hyperparameter Value

Optimizer Adam
Learning Rate 0.0001

Batch Size 10
Loss BCELoss

Epoch 20

Table 7: Training hyperparameters for the binary toxicity
classification probe wtoxic.

B Distribution of Perplexity Scores

Figure 10 displays the mGPT’s distribution of the
perplexity scores (which measures fluency) across
all 17 languages. We observe that first, DPO prefer-
ence tuning increases the perplexity of the genera-
tions as the median, interquatile range and whiskers

increase in Figure 10a. Nonetheless, the distribu-
tions largely overlap, which suggests minimal de-
generation on the model continuations due to DPO
preference tuning. Second, the distributions in Fig-
ure 10 concentrate on reasonable range between
10 and 30 across different languages, and there are
many outlier instances that leads to long tail dis-
tributions. This informs us that we should report
median instead of mean for perplexity scores as the
latter will be heavily skewed by outliers.

C Tradeoffs between Learning Rate,
Toxicity, and Perplexity Scores

We perform English DPO training on mGPT model
using the following five learning rate: {1e-7, 5e-
7, 1e-6, 5e-6, 1e-5}, and we measure the toxicity
level and fluency (perplexity) in model generations
across 17 languages afterward. Figure 11 demon-
strates the tradeoff between toxicity reduction and
perplexity. As the learning rate increases, the model
becomes less toxic, but the perplexity of its genera-
tions increases. We believe the reason is that since
the RTP-LX input prompts are already contextu-
ally toxic, in which around 40% of the prompts
contain toxic words (de Wynter et al., 2024), gen-
erations that continue the toxic context tends to
be more natural than deliberating switching away
from context for non-toxic continuations. As per-
plexity measures the fluency of the continuations
conditioned on the prompt, toxic continuations will
have lower perplexity.

D QLoRA and Multilingual Toxicity
Reduction

We perform full model finetuning and QLoRA fine-
tuning of BLOOM-1.7B model with the same train-
ing hyperparameters in Table 6 with the same num-
ber of training steps (up to convergence in 5-epoch
training). Figure 12 shows that model finetuned
with QLoRA adapters remain more toxic than the
full model finetuning. We believe this is due to
QLoRA adapter finetuning has significantly less
number of trainable parameters for same number
of training steps.

E Bilingual Sentence Retrieval
Experiment for Other LLMs

Figure 13, Figure 14 and Figure 15 show the posi-
tive correlation between bilingual sentence retrieval
accuracy and percentage drop in EMT after English
DPO training for BLOOM-1.7B, BLOOM-7.1B

13434

https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


ar cs de en es fr hi id it ja ko nl pl pt ru sv zh
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pr

ob
ab

ilit
y

Pre DPO Post DPO

(a) Probability of generating toxic continuations

ar cs de en es fr hi id it ja ko nl pl pt ru sv zh
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
xi

cit
y 

Le
ve

l

Pre DPO Post DPO

(b) Expected maximum toxicity

Figure 5: Toxicity reduction of BLOOM-1.7B (BigScience Workshop et al., 2022) after DPO training.
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Figure 6: Toxicity reduction of BLOOM-7.1B (BigScience Workshop et al., 2022) after DPO training.
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Figure 7: Toxicity reduction of Llama2 (Touvron et al., 2023) after DPO training.
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Figure 8: Toxicity reduction of Llama3 (AI@Meta, 2024) after DPO training.
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Figure 9: Toxicity reduction of Aya-23 (Aryabumi et al., 2024) after DPO training.
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Figure 10: Per-language perplexity distribution of mGPT continuations before and after DPO training.
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Figure 11: Tradeoffs between DPO learning rate, tox-
icity in post-DPO generation and perplexity across 17
languages.
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Figure 12: Comparison between full model training and
QLoRA finetuning of BLOOM-1.7B with English DPO
preference tuning.

and Llama2-7B respectively. We observe similar
findings as mGPT in Figure 4. For instance, we see
the cluster of Romance and Germanic languages
occupy the top-right corner, which indicates ef-
fective cross-lingual transfer, whereas languages
with different scripts and less related to English are
on the bottom-left corner, which indicates poorer
cross-lingual transfer of English detoxification.

F Complete Table of Toxic Value Vectors

Table 4 presents the subset of value vectors identi-
fied as actual sources of toxicity. For a compre-
hensive view, Table 8 and Table 9 include the
complete list of all 36 vectors along with their
projections. Each entry details the top 30 tokens
promoted when these vectors are projected onto
the vocabulary space, and we annotate their po-
tential toxic themes. For clarity, the leading space
is removed. Vectors are ranked according to their
cosine similarities with the toxic probe vector
wtoxic. It can be observed that the tokens pro-
moted by most top-ranking vectors are thematically
grouped and span across multiple languages. For
example, w3

down,5794 promotes tokens related to
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Figure 13: Percentage change in expected maximum
toxicity against bilingual text retrieval accuracy for
BLOOM-1.7B. Correlation with Pearson-r value of 0.59
(p < 0.01)
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Figure 14: Percentage change in expected maximum
toxicity against bilingual text retrieval accuracy for
BLOOM-7.1B. Correlation with Pearson-r value of 0.66
(p < 0.01)
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Figure 15: Percentage change in expected maximum tox-
icity against bilingual text retrieval accuracy for Llama2-
7B. Correlation with Pearson-r value of 0.78 (p < 0.01)
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pornography—in addition to common English to-
kens like “porn” and “sex,” it includes “seks” (sex
in Malay), “ú
æ�

	Jm.Ì'@” (sexual in Arabic), “Член” (a
slang term in Russian meaning ’dick’), and ”פור“
(a prefix in Hebrew equivalent to ‘por’ in ‘porn’).
While some tokens may not be inherently toxic,
these projections clearly demonstrate the multilin-
gual nature of the value vectors.
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VECTORS TOXIC THEME PROMOTED TOKENS

w13
down,2337 Propaganda incomp, pseudo, manipul, propaganda, псев, ngu, corrupt, ignor, propagand, Pro-

paganda, corrup, dece, manip, bankrupt, mercen, conspiracy, prét, conspira, fraud,
blam, crimin, insult, selves, Emper, incap, пропаг, ignor, politiker, Politiker, massac

w14
down,6878 Exclamations aa, ee, uu, EEE, aha, haa, mouth, hah, ah, oo, akka, pile, yy, !!, umph, öh, ее, wah,

UU, моз, loo, Oh, ...)., oho, jee, oh, yah, ...], яя

w14
down,5723 Sexual Content sex, Sex, sex, porn, erot, Sex, seks, sexo, mast, Sexual, lesbian, anal, mature, sexual,

сексу, Amateur, penetr, XXX, hardcore, sexuelle, Anal, blow, d̄i., amateur, domina-
tion, �	�k. , penet, osexual, sessuale, homosex

w9
down,6517 Negative Sentiments ngu, вообще, pula, мало, onaa, skull, alka, sick, poor,졸, examp, yl, garr, meant,

pessoal, dout, poik, הגדולה ,喪, feit, panas, liksom, cay, ,גדולים anat, ,הבא tais, blam,
önem, нуж

w12
down,6538 N/A dreams, чуд, love, passion, Stories, ধন, fantas, magic, magia, heroes, !, битвы,

venture, conquered, 昧, любви, wings, tough, fate, holy, хит, Geschichten, !』,
thrown, ouro, cuore, фанта, !, storie

w12
down,6639 Gangster Culture maf, baller, Mafia, Hollywood, Cowboys, Buddy, Rocco, Maf, Cuban, Lords, rebell,

istol, venes, bond, Johnny, Papa, Bobby, bourgeois, father, Boys, brothers, Wilde,
latino, Dick, Buff, ègre, lesbian, Steele, rolle, latinos

w3
down,5794 Sexual Content porn, lesbian, sex, gay, sex, seks, sexo, сексу, ú
æ�

	Jm.Ì'@, Amateur, domination, xual,
uremberg, Sex, Sex, Gay, escort, rape, amateur, hardcore, Gang, male, Член, Tub,
XXX, girls, gang, ,פור hard, mass

w13
down,3368 N/A EEE, unno, kee, kaa, Oh, おお, OK, !, uh, !』, Sweet, cierto, amn, tty, Girl, ohan,

onaa, eh, ee,何, Ok, ahu, Oh,하자, knows, ok, ఫర, OK,ミ, Ok

w1
down,2583 Sexual Content sex, porn, lesbian, gay, sexo, сексу, Sex, ú
æ�

	Jm.Ì'@ , seks, Sex, hardcore, rape, escort, Gay,
sex, domination, Amateur, girls, celebrit, latina, ексу, mature, erot, revenge, Sexual,
Girls, videos, sexuelle, �	�m.Ì'@, tube

w13
down,7176 Sexual Content sex, femenino, Femen, сексу, weib, girl, feminino, girls, Geschlechts, femen, Girls,

девуш, women, sexo, Sex, Sexual, femmes, vrouwen, γυνα, Female, weibliche,
ексу, féminine, féminin, femenina, Woman, Sex, femminile, kvinnor, женщин

w23
down,5888 N/A K, S, D, H, Y, Y, F, W, R, N, T, P, K, G, DA, YA, YP, G, Z, M, H, IG, TAN, W, KS,

S, O, E, IS, D

w8
down,7612 Severity and Crisis sév,重, èlement, fäll, icism, loa.n, rophe,嚴重, minaccia, endemic,に, menace, grave-

mente, akibat, amenaza, alkod, interference, interfer, szenved, caused,
	P


B@, spowod,

êne,壞, infolge, I. �.��., nặng, ,עקב sufr, enemigo

w11
down,7033 Counterculture funk, Evil, drummer, Chaos, Vampire, Punk, punk, Wrestling, Rotten, punk, Guns,

Cody, Ghost, arious, Comedy, Superman, Teen, Hulk, ego, Theory, Kid, Funk,テレ
ビアニメ, Girls, Mania, Johnny, Bee, Pokémon, girl, Hole

w11
down,4277 N/A トップ, yard, floors, floor, publicly, кур, lap, Wet, пара, blow, рекор, open, back,

Twitter, Sub, eplay, Live, オプ, boca, fermé, θμ, cean, pping, mouth, swing, **,
пара,閣, foot

w18
down,486 Destruction saque, confisc, захват, cię, assé, occupation, tho, 奪, ruin, cannon, , gado, Пок,

прода, vand, sell, przeję, chiếm, аром, bezit, vine, devol, vand, conquest, verkocht,
liqu, okup, εξα, burned, détr

w16
down,3531 Misconduct insult, abus, corrupt, prejud, fraud, confus, corruption, confusion, irrit, mauvais, ,

deform, scandal, ha. i, disastro,严重, excessive, auvaise,嚴重, disturb, abuse, violent,
violations, degener, violation, corrup, poison, illeg, inad, irreg

w17
down,520 N/A atson, oya, Lyc, arab, eldj, adino, arrista, arra, adin, arum, unak, ingles, ocha, Gall,

rox, pup, olio, xen, ucia, arin, rina, utch, mala, wound, avin, arba, ellina, roa, oshi,
cean

Table 8: Projections of all 36 value vectors from the actual sources of toxicity - Part 1
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VECTORS TOXIC THEME PROMOTED TOKENS

w12
down,3431 N/A żon, heiratete, født, wander, がいる, whom, fri, married, ηλικ, geboren, 一人,

elected, verheiratet, who, menik, naim, murdered, pope, diagnosed, convicted, heirat,
casado, apell, candid, born,晋, who, homeless, ermordet, resigned

w5
down,53 N/A ilit, itre, egas, itur, íp, imet, utt, iag, ovi, urn, ocl, iny, orr, uttu, itab, imed, ipul, umed,

iesa, udni, itore, igl, ittel, adah, enta, enn, ent, ierd, ulin, omm

w10
down,4641 Exclamations !", !, !".’, !», !", !, !』, !!, ?", ！ , !, ?".’, orrow, ?", "»., ? , Who, "», +„ uu, "», Why, Your,

survive, why, EEE, о, ’", Tomorrow, . . .

w3
down,3173 Political Controversy மத, insult, criticism, accusations, allegations, Satan, polem, antisemit, boyc, Obama,

attent, politician, gender, 념, atar, 罪, iste, ists, 民族, scandal, აობ, 支持, Massa,
politically, Marl, Terror, contrad, istes, allegedly, uga

w7
down,3971 N/A estri, ernas, erna, ater, ı̄n, skapet, atine, ernes, atet, eza, enin, uses, isierte, riere, ija,

ini, owskie, olin, ored, jekte, ,כה itty, okset, itäten, atina, liches, ated, ,וניה ūr, izable

w16
down,4702 Struggle steen, sł, helping, 哨, shut, ,זית elfen, стан, ума, ელი, , yal,

	à �P, hung, აობ, 訓,
出力, help, ragon, embar, शन, чер, ole, lopp, пех, пан, opes, úÎK Олимпий, lief

w17
down,2392 N/A ,ובמ kad, eus, Са, ,נוס kopol, wau, РО, uskan, kehr, holt, endien, YS, оган, aeus,

жед, Дем, Hor, Пор, uais, uah, gekehr, rape, пед, onaa, sein, hold, Он, üsten

w16
down,4689 Crime destroyed, poison, broken, viola, ��®	K, violation, wrong, murdered, failure, destruc-

tion, траг, viol,破, violations, killed, incendi, erro, suic, overth, obsol, হত, détruit,
missing, Unf, faill, поврежд, uszkod, def, danneggi, fail

w21
down,7155 Geopolitical Tensions κη, リング, осс, ик, прек, ьют, യർ, ◌ൗ, ити, юс, енгер, бит, ета, еран,

ерусалим, , олот, болгар, АТУУ, ИК, СМИ, ън, уча, американских, ек,
ък,യറ, французского, еке

w0
down,7248 N/A ンプ, унь, udad, bett, უალ, стри, ίνη, აობ, мини, orki, É�@, Mandat, ziali, Pict,

orsi, Bata, , sculpt, ма, partij, осто, орот, inea, marker, Massa, ർഗ, Pem, inten

w17
down,3530 N/A СА, DE, КО, DO, OF, DA, TO, THE, TE, DOS, CA, TH, SI, NA, WA, SH, DI, RE,

БА, LA, PA, AN, ME, SO, TU, OR, MA, FL, EN, ВС

w23
down,2675 Legislation Terms 抵,本身, ,見られる,）。,הכ importante,一般的,みられる,人で,。」, essoort, ，“,

menoptera, 。”, 交代, тины, などがある, ,וניות ,וניים 建制, 。《, 最多, 可能是,
,色的,こく,特的,法的,הש ,名

w11
down,3027 N/A OK,

	à@Y 	K, cinese, , hide, ену, хе, jade,撲, ,טוב sea, boys, afterwards, chines, ковой,
broke, hung, енский, лё, rocks, endem, normal, ть, quit,二世, europé, otherwise,
Москва, allemande, bourg

w10
down,8010 Sexual Content ú
æ�

	Jm.Ì'@, couples, sex, Geschlechts, femen,貞, lesbian, seks, Sex, sex, kontrak, seksual,
femenina, Sex, feminist, sexual, Femen, masculino,育,合意, mulheres, женщин,
women, féminin, nat, secondaires, femenino, женат, �	�m.Ì'@

w10
down,2127 N/A e, ament, es, en, edades, enes, idades, ues, eni, ате, ив, ería, ute, ений, ibles, ację,

ere, ата, enie, entes, ente, ate, uos, ió, ies, ения, ables, eniu, osos, esi

w15
down,594 N/A ER, EN, ING, AST, ERS, DE, OF, ENT, LAN, EL, UL, THE, IN, TAT, EM, OR,

ASS, LO, ET, YA, HE, ON, AN, ISE, CON, IST, CH, INE, DO, RO

w10
down,7751 N/A rol, stein, खल, uba, dic, romos, ecin, dül, deling, icip, უალ, duk, stä, อม, sor, veen,

kül, tuk, band,克斯, upe, ahnya, gång, ysis, scy, ragalus, зен, dem, föd, ú
×ð

w10
down,4920 N/A British, hemp, bull, badan, Billie, rump, BB, dada, berkembang, rien, gede, berupa,

sph, woman,Ку, ео, Sub, dik, uber, Traff, худ, tartott, boca, Britain, fell, discográfica,
brutal, Mel, bong, allow

w14
down,7052 Severe Condition атастро, failure, violation, insult, disastro, , катастро, потери,陷, catast, потеря,

disturb, неуда,失, deterior,嚴重, ��®	K, violations,危,严重, confusion, disappoint,
наруш, discont,傷,事故,違反, worst, confus, conflict

Table 9: Projections of all 36 value vectors from the actual sources of toxicity - Part 2
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