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Abstract

We uncover a surprising multilingual bias oc-
curring in a popular class of multimodal vision-
language models (VLMs). Including an image
in the query to a LLaVA-style VLM signifi-
cantly increases the likelihood of the model
returning an English response, regardless of the
language of the query. This paper investigates
the causes of this loss with a two-pronged ap-
proach that combines extensive ablation of the
design space with a mechanistic analysis of the
models’ internal representations of image and
text inputs. Both approaches indicate that the is-
sue stems in the language modeling component
of the LLaVA model. Statistically, we find that
switching the language backbone for a bilin-
gual language model has the strongest effect
on reducing this error. Mechanistically, we pro-
vide compelling evidence that visual inputs are
not mapped to a similar space as text ones, and
that intervening on intermediary attention lay-
ers can reduce this bias. Our findings provide
important insights to researchers and engineers
seeking to understand the crossover between
multimodal and multilingual spaces, and con-
tribute to the goal of developing capable and
inclusive VLMs for non-English contexts.

1 Introduction

Language fidelity in large language models (LLMs)
refers to whether the model replies in the same
language as it was queried in. While seemingly
a simple task for humans, models with multilin-
gual capabilities will often bias towards English
replies, especially for queries in low-resource lan-
guages (Holtermann et al., 2024). In this work, we
identify a surprising parallel pathology in LLaVA-
style VLMs (Liu et al., 2023): when prompted
with a multimodal query that includes an image,
the model is more likely to reply in an incorrect

*First author.
†Equal contribution, ordered alphabetically.

language with respect to the query language. We
term this Image-induced Fidelity Loss (IFL).

In the first part of the paper, we define this
phenomenon and demonstrate the extent of this
problem in existing LLaVA-style models. Using
a collection of 7740 evaluation tasks drawn from
three VQA benchmarks and spanning fourteen lan-
guages, we show empirically that adding an image
to the query to a LLaVA model causes the proba-
bility of the response being in the correct language
to decrease between 6% and 53%.

We analyze the cause of IFL through two com-
plementary approaches. First we conduct a macro-
level analysis by training numerous LLaVA-style
models by systematically ablating the design space.
This allows us to statistically estimate the impact
of each design choice on the model’s propensity
for generating linguistically misaligned responses.
Second, we provide a micro-level investigation
of the model’s intermediary representations. By
studying the clustering patterns of vision tokens
in relation to tokens from different languages, and
directly intervening on hidden states within the lan-
guage transformer layers, we gain insights into the
internal dynamics that give rise to the observed
phenomenon. The synthesis of these two levels of
analysis – exploring the design space at a statistical
level and probing the model’s internal representa-
tions – provides a comprehensive characterization
of the factors influencing cross-lingual response
generation in multimodal models.

We find strong evidence that IFL occurs due to
the language modelling component of the LLaVA
model. Our statistical analysis indicates that chang-
ing the language backbone from an English-main
LLM to a bilingual LLM has the strongest effect on
reducing IFL. In our mechanistic analysis we find
that visual inputs are not mapped to a similar space
as text inputs, and that intervening on intermediary
attention layers can reduce IFL.

In sum, our contributions are as follows:
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• We systematically demonstrate IFL on multi-
ple tasks over a wide range of languages for
modern VLMs.

• We conduct a large scale analysis of the de-
sign choices in training VLMs, enabling ro-
bust statistical results for interpreting training
architecture decisions.

• We perform detailed representation analysis
to find the IFL problem is localized within the
language model.

• We provide evidence that the key to reduc-
ing IFL for LLaVA-style models is in the lan-
guage backbone of LLaVA.

2 Related Work

2.1 Global Inclusion via Multilingual Models
Aiming towards globally inclusive language tech-
nologies, much of natural language processing
research has focused on multilingual and cross-
lingual models (Conneau et al., 2018). Starting
from static embedding models (cf., Ruder et al.,
2019) and smaller multilingual pretrained trans-
former models like mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020), much of mul-
tilingual NLP has shifted to multilinguality in
instruction-tuned LLMs. Here, researchers either
focus on training multilingual LLMs (Lai et al.,
2023), or, given that explicitly open multilingual
chat models are still rare, aim towards understand-
ing multilinguality of models intended for English
use only (Blevins and Zettlemoyer, 2022). More-
over, the vast adoption of instruction-tuned models
has transitioned their focus from task-specific re-
sponses to generating more natural language out-
puts. This allows models to answer more flexibly,
unbound by rigid response frameworks, and au-
tonomously choose the language of their responses.
Despite this advancement, existing benchmarks pri-
marily evaluate the accuracy of answers without
adequately assessing the models’ fidelity to the lan-
guage used (Holtermann et al., 2024). However,
given the multilingual use of these models (Zhao
et al., 2024), it is crucial to ensure they can respond
accurately in the appropriate language to foster in-
clusivity.

2.2 Efficient Integration for Multimodal
Understanding

Humans interact with the world through multiple
channels. Accordingly, many AI researchers ex-

plored how to integrate multiple modalities, particu-
larly vision and language, into a single model (e.g.,
Kim et al., 2021; Wang et al., 2022). As an alterna-
tive to efforts that focused on models specific to par-
ticular tasks (Brooks et al., 2023), general-purpose
vision-language models emerged. Given that pre-
training larger models (as in Kim et al., 2021; Rad-
ford et al., 2021, inter alia) became prohibitively
expensive, researchers moved to employing readily
available encoders, keeping those (partially) frozen,
and mapping them through learned projections (Li
et al., 2023; Merullo et al., 2023). For instance,
Mañas et al. (2023) employ a transformer map-
ping network, and Eichenberg et al. (2022) rely
on adapters. In this work, we focus on efficient
and thus, accessible methods for the integration of
instruction-tuned LLMs, with LLaVA as a popular
representative (Liu et al., 2023).

2.3 Multimodal Understanding and
Multilinguality

Our research shares motivations with existing re-
search in multimodal multilingual models; extend-
ing advances in multimodality to other languages
(Elliott et al., 2016) and increasing global inclu-
sivity through a broader geographical lens on lan-
guage and vision (Liu et al., 2021). The cross-
modal, cross-lingual setting brings its own set of
challenges for researchers and engineers, such as
the suitability of machine translation for training
data (Qiu et al., 2022).

In the present moment, the popularity and re-
source efficiency of LLaVA provides an opportu-
nity to conduct research on training decisions that is
both comprehensive and widely relevant. Already
several researchers have used LLaVA to extend
vision-language capability to multilingual settings
(Andersland, 2024; Shin et al., 2024; Song et al.,
2024). In this context, our research aims to ex-
tend the field’s understanding of the links between
multilinguality and multimodality, and to draw at-
tention to the specific challenges that emerge in
this setting.

3 Image-induced Fidelity Loss

The phenomenon of interest in this study is the
change in fidelity seen when adding an image to the
input to a VLM. We refer to this as image-induced
fidelity loss. We argue that this phenomenon is sur-
prising, given that visual inputs should be language-
agnostic (barring the cultural-linguistic context as-
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sociated with the image) and therefore orthogonal
to the language of the response.

3.1 Experimental Design

Given an input x (text and/or image), we define the
function L(x) as returning the (natural) language
of the input.

The fidelity of a given langauge model θ(·) and
input x is defined as a binary indicator of whether
the language of the input L(x) equals the language
of the output L(θ(x)):

F (x) =

{
1 if L(x) = L(θ(x)),

0 otherwise

In our experiments, we investigate the impact of
including an image on fidelity. We compare inputs
containing an image (ximage) against inputs where
the image is replaced with a textual description of
the image’s content, xdescription. The rationale for
substituting the image with a textual description
of the image’s content is to maintain the semantic
value of the input constant.

Thus, for each document (consisting of image
and text pair) in our evaluation dataset, we define
the Image Fidelity Loss (IFL) as:

IFL = F (xdescription)− F (ximage)

representing the fidelity loss incurred by substitut-
ing a text description of an image with the actual
image.

3.2 Datasets

These image-text pairs are drawn from the three
multilingual VQA benchmarks: MaXM (Chang-
pinyo et al., 2023), PALO-LLaVAW (Maaz et al.,
2024, hereafter LLaVAW) and ViSIT (Bitton et al.,
2023), and summarized in Table 1.1 These datasets
all include a textual query referring to an image,
plus a textual description of the image. In the case
of ViSIT this description is generated conditional
on the task instruction and verified by human anno-
tators.

In total, for each model we collect 15480 re-
sponses spanning fourteen languages (7740 with
an image plus 7740 with the description instead;
see Table 2).

1Detailed dataset descriptions are included in the SI.

Dataset MM #Langs. Size

PALO-LLaVAW yes 10 600
MaXM yes 7 2142
ViSIT yes 10 5740
MultiQ no 119 27400

Table 1: Overview of the employed datasets, indicating
multimodality (MM), number of languages (#Langs.),
and total number of observations (including parallel
tasks repeated between languages).

Language N Language N

Chinese (zh) 862 Japanese (ja) 585
Hindi (hi) 845 Spanish (es) 585
English (en) 842 German (de) 525
Hebrew (he) 805 French (fr) 324
Thai (th) 793 Romanian (ro) 284
Arabic (ar) 585 Russian (ru) 60
Bengali (bn) 585 Urdu (ur) 60

Table 2: Number of tasks per language in the datasets
we study. ISO 639 language codes are provided in
parentheses.

3.3 Measuring Language

We use the GlotLID model (Kargaran et al., 2023)
to predict the language of the model output.2 Dur-
ing the process, we observed non-random errors
in the GlotLID predictions, such as having a lower
accuracy on shorter texts. We correct for this
bias in our downstream statistical analyses using
the design-based supervised learning framework
(Egami et al., 2023, DSL). DSL leverages a small
number of randomly sampled expert annotations to
correct for bias in downstream estimators caused
by imperfect proxy measures. We manually label
a stratified random sample of 1000 examples to
use as our gold standard. The debiased results can
be interpreted as being the results that would have
been obtained if we had used expert annotation for
all datasets. We provide details of the sampling
weights and annotation method in the supplemen-
tary materials.

3.4 Prevalence of IFL

In order to motivate our research, we first assess
the prevalence of IFL in existing LLaVA models.
We apply the experimental design outline above to

2See supplementary materials for notes on manual post-
processing of GlotLID outputs.
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Figure 1: IFL prevalence among existing LLaVA
models. Figure shows the effect of adding image to
query on response fidelity (IFL) with 95% confidence
intervals. All estimates are changes in probability, ag-
gregated over languages within the benchmark and de-
biased using the DSL framework.

four popular LLaVA-style VLMs: LLaVA-v1.5-7b,
LLaVA-v1.5-13b (Liu et al., 2023), BakLLaVA
(SkunkworksAI, 2023) and LLaVA-Gemma-2B
(Hinck et al., 2024).3

Figure 1 shows the debiased estimated effect
and 95% confidence interval of adding an image on
fidelity for each model and benchmark, aggregated
across languages.

The magnitude varies by model and benchmark.
The single largest drop is by LLaVA-Gemma-2b
on ViSIT, where the response is 52.9 percentage
points more likely to be in a different language
than the query when an image is included in the
input. With the exception of BakLLaVA on ViSIT,
all effects are statistically significant at an alpha
of 0.95. Because we use the DSL framework for
estimation, these claims are statistically robust to
errors from the language identification model.

Collectively, these results provide concrete ev-
idence of a systematic issue: LLaVA models are
more likely to reply in the wrong language when
the user includes an image in the query. The re-
mainder of this paper explores the source of this
issue.

3We limit our scope to LLaVA-v1.5 models because the
exact data mixture and training architecture for the newer v1.6
models has not been made public at the time of writing. Given
our stated aim to explore the effects of the training decisions,
we cannot provide insights into the newer models.

4 Effects of Design Choices

The LLaVA architecture combines a pretrained vi-
sion encoder and language model by using a small
multi-layer perceptron (MLP) to project the penul-
timate hidden states of the vision encoder into the
input embedding space of the language model (Liu
et al., 2023). This architecture is then fine-tuned
with two stages of training. In the first, the vision
and language models are frozen and the projection
MLP is trained on 558k image-caption pairs. In the
second, the vision encoder is kept frozen and the
projection MLP and language model are trained
on 665k visual instruction-following and examples
(Liu et al., 2023).4

4.1 Design Space
In constrast to related works that study the effect
of architectural decisions in the VLM design space
(Karamcheti et al., 2024), we focus our analysis
on the effect of the choice of pretrained models
and training data while holding the architecture
constant.

LLaVA uses Vicuna-v1.5-7b (Zheng et al., 2023)
as the language model, CLIP (Radford et al., 2021)
as the vision encoder and English for more than
99% its training examples.

There are a priori reasons to think that any
of these decisions could induce an “English
bias” in the model. Vicuna is published as
an English-language LLM trained primarily on
English-language examples. The captions used to
train the CLIP vision encoder are filtered for non-
English texts (Radford et al., 2021, p.3), meaning
that the representations produced by CLIP may be
“biased” towards English language representations
of visual data. Finetuning the model with primarily
English data may “teach” the language model to
reply to visual inputs from the vision encoder/MLP
in English.

We ablate each of these design choices individu-
ally while holding architectural features constant to
disentangle their effects. For our experiments, we
focus on Chinese and German because these are
languages for which there is an LLM at a similar
size and architecture to Vicuna-7b that is not di-
rectly finetuned from Vicuna-7b. For Chinese, we
use the Yi-6b-chat, a 6B-parameter LLM trained
from scratch on a bilingual Chinese-English data
mixture (AI et al., 2024). For German, we use
LeoLM-7b-chat, a 7B-parameter LLM finetuned

4A technical primer on LLaVA is included in the SI.
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Axis Options

LLM Vicuna-v1.5-7b (Zheng et al., 2023)
Yi-6b-chat (AI et al., 2024)
Leo-7b-chat (Plüster, 2023)

Vision CLIP (Radford et al., 2021)
DINOv2 (Oquab et al., 2024)

Data English (Liu et al., 2023)
Chinese (MT)
German (MT)

Table 3: Summary of design space. Note that Yi is
only combined with English and Chinese, and Leo with
English and German.

from Llama-2 (Touvron et al., 2023) on 65B Ger-
man tokens (Plüster, 2023). For the vision encoder,
we test the effect of substituting CLIP for DINOv2
(Oquab et al., 2024) because the latter is trained
using a self-supervised training objective that does
not incorporate language, while still using a Vision
Transformer architecture (Dosovitskiy et al., 2021).

We use NLLB-1.7-distilled (Team et al., 2022) to
machine translate all ∼1.2M training observations
used in the LLaVA training data into Chinese and
German. We provide estimates of the machine
translation quality following techniques in (Qiu
et al., 2022) in the supplement.

This design yields a total of fourteen combina-
tions (Table 3), which we trained on using 8 ×
A6000 Nvidia GPU nodes on an internal cluster.
All designs used the same training parameters as
the original LLaVA-v1.5-7B model. We provide
further training details in the supplementary mate-
rials.

4.2 Design Effects

For each set of experiments (Yi/Chinese and
Leo/German), we measure the effect of training
choices on IFL using the following regression
model with first-order interactions:

Fidelity = β0 + β1Image

+ β2Image × Lang. Model

+ β3Image × Vision Model

+ β4Image × Data Lang. + ϵ

(1)

where:
• Fidelity is a binary indicator for whether a

completion to a query in the target language
(Chinese or German) is in the correct language

Model IFL Accuracy

Chinese
LLM 0.17 [0.15, 0.19] 0.21 [-0.07, 0.50]
VE -0.20 [-0.22, -0.18] 0.15 [-0.13, 0.43]

Data -0.16 [-0.17, -0.14] 0.01 [-0.27, 0.30]

German
LLM 0.07 [0.04, 0.10] 0.28 [-0.35, 0.91]
VE -0.11 [-0.15, -0.08] -0.10 [-0.73, 0.53]

Data -0.37 [-0.40, -0.33] -0.24 [-0.87, 0.40]

Table 4: Design Effects on IFL. Each cell represents the
point estimate and 95% confidence interval of the effect
of changing the design feature (LLM, vision encoder
or training data language) on IFL (left-hand column)
and accuracy (right-hand column). The top half reports
values for Chinese (LLM: Vicuna → Yi; Data: English
→ Chinese) and the bottom half reports values for Ger-
man (LLM: Vicuna → Leo; Data: English → German).
These are equivalent to β2, β3 and β4 in Equation 1.

• β0 is a constant intercept term that captures
the average fidelity of the reference class
(LLaVA-v1.5-7b)

• β1Image measures IFL; the change in fidelity
when an image is added to the query

• β2Image × Lang. Model captures how IFL
changes when the LLM backbone is changed
from from Vicuna to Yi or Leo

• β3Image × Vision Model captures how IFL
changes when the vision backbone is changed
from CLIP to DINOv2

• β4Image × Data Lang. captures how IFL
changes when the training language is
changed from English to Chinese or German

• ϵ is an error term
Coefficients β2, β3 and β4 with the correspond-

ing 95% confidence interval are reported in the
left-hand side of Table 4. We see similar patterns
for both languages. Changing the language model
from Vicuna to Yi/Leo improved the performance
of the model, reducing IFL by 17 and 7 pp for Chi-
nese and German respectively. Changing the vision
encoder from CLIP to DinoV2 worsened IFL, in-
creasing it by 20 and 11 pp respectively. Changing
the training data language worsened IFL consider-
ably, increasing it by 16 and 37 pp respectively.

4.3 Effect on Accuracy

Although the above section provides insights into
reducing IFL, how do these design decisions af-
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fect the factual accuracy of responses? To measure
this, we used GPT-4o (OpenAI, 2024) to generate
zero-shot predictions of the accuracy. Our GPT-
4o prompt gave the question, dataset ground truth
(where available) and model completion and asked
if the completion is correct given the question and
ground truth label. We then used the DSL pro-
cedure to debias these evaluations, whereby the
authors manually annotated 1000 observations to
provide a gold standard.

We use the same regression setup as Equation 1,
substituting the outcome Fidelity for Accuracy, a
binary variable indicating whether a given response
is correct given the question and dataset ground
truth. The right-hand column of table 4 displays
the effect of each design decision on the accuracy
of responses in the target language.

We find no evidence for a systematic effect of
any of the design decisions on accuracy. All esti-
mated coefficients are statistically indistinguishable
from 0, meaning our data does not support the hy-
pothesis that changing the LLM, vision encoder or
training data in the way described has a systematic
effect on the accuracy of the response.

5 Locating the Cause of IFL

5.1 UMAP Analysis of Embedding Spaces

The previous experiments provide macro-level ev-
idence that the LLM influences IFL based on the
inputs and outputs of the models, but does not shed
any light on what happens inside the model. In
this section, we explore whether IFL is primarily
attributable to any one component, and find the
problem to reside in the LLM. We additionally find
that a remarkably simple training-free mechanistic
intervention in the LLM can reduce IFL.

To gain a qualitative understanding for how im-
age embeddings interact with text embeddings in
the input space, we employ Uniform Manifold Ap-
proximation and Projection (UMAP) for dimen-
sionality reduction (McInnes et al., 2018). UMAP
is a non-linear dimensionality reduction technique
that preserves global data structure, making it ideal
for visualizing high-dimensional data.

In our experiment, embeddings from text in-
puts and image tokens are jointly visualized using
UMAP. Figure 2 (Left) illustrates that image em-
beddings cluster distinctly from text, demonstrating
a demarcated separation in the latent space. This
segregation suggests image embeddings predom-
inantly occupy a unique region of the embedding

space, indicating they are not directly embedding
in the same area as any particular language.

5.2 CKA Analysis of Vision Embeddings
To further understand what is happening with the
image embeddings, we use Centered Kernel Align-
ment (CKA) to measure the similarity of internal
representations across differently trained models
(Kornblith et al., 2019). CKA measures the similar-
ity between two sets of data by comparing ker-
nel matrices, which transform data into a high-
dimensional space. A CKA score close to 1 in-
dicates high similarity between datasets, while a
score near 0 suggests low similarity. We use CKA
in order to measure how the vision embeddings
compare between two seperately trained VLMs:
LLaVA-Yi trained in Chinese and LLaVA-Leo
trained in German.

Figure 2 (center and right) shows a surprising
result that vision embeddings maintain a consistent
structure in the latent space across various mod-
els, regardless of the language backbone or the
training data specifics. This consistency supports
the finding in the UMAP visualization that image
embeddings are in their own region of the input
space. Additionally, it is the language model’s re-
sponsibility to interpret these out-of-distribution
embeddings in the language it determines best; it is
not the case that the MLP adaptor model is placing
the image embeddings near a particular language.
Next, we explore how to encourage the LLM to
remedy the IFL problem.

5.3 Mechanistic Intervention: Experiment
An exciting nascent field in LLM research is mech-
anistic interpretability, in which the ability to ex-
plicitly steer LLMs has recently been shown. This
field shows great promise in modifying language
model outputs, as demonstrated in recent studies
that ablate refusals from tuned LLMs (Arditi et al.,
2024) and the isolation of interpretable attributes
(Gao et al., 2024; Templeton et al., 2024).

Given this ability to manually modify an LLM
without training nor modifying the weight, we pro-
pose an intervention approach to reduce IFL by
directly modifying the model’s intermediate repre-
sentations at runtime. We use a strikingly simple
steering mechanism, using just one text example
per language, and achieve significant reduction in
IFL.

Our steering mechanism works by computing a
language attribute alang in an intermediate layer,

13407



Leo/EN Leo/DE Yi/ZH Yi/EN

Le
o/

EN
Le

o/
DE

Yi
/Z

H
Yi

/E
N

(L
in

ea
r k

er
ne

l)

0.96

0.89 0.83

0.83 0.75 0.99

0.98 0.98 0.98

0.99 0.99

1.00

1.00

1.00

1.00

1.00

(RBF kernel)
Vision Encoder: CLIP

Language Model / Training Language
Leo/EN Leo/DE Yi/ZH Yi/EN

Le
o/

EN
Le

o/
DE

Yi
/Z

H
Yi

/E
N

(L
in

ea
r k

er
ne

l)

0.95

0.99 0.97

1.00 0.94 1.00

0.85 0.80 0.79

0.82 0.82

0.89

1.00

1.00

1.00

1.00

(RBF kernel)
Vision Encoder: DINOv2

Language Model / Training Language

Figure 2: (Left): UMAP visualization of image and text embeddings from a multimodal language model. Image
embeddings are shown clustering distinctly from text embeddings, indicating a unique separation in the latent
space. This segregation highlights potential areas of focus for addressing fidelity loss in multimodal communication.
(Center and Right): Centered Kernel Alignment (CKA) heatmap showing the similarity of vision embeddings
across two differently trained language models. CKA based on a linear kernel is shown in the lower triangle; CKA
based on an RBF kernel is shown in the upper triangle. The heatmap reveals a high degree of similarity in how
vision data is embedded, regardless of the language model’s architecture or training data specifics. This uniformity
suggests that the method of integrating visual data into language models is a critical factor affecting fidelity.

then applying that attribute to every generated to-
ken. The attribute is computed as follows:

alang = LLMl(xlang)− LLMl(xen)

where LLMl represents the output at layer l, xen
is the sentence “Describe this image in detail.”, and
xlang is the translated version of that sentence.

During inference, this direction is added to the
output of layer l, effectively steering the model’s
behavior towards the desired language:

LLM∗l = LLMl(ol−1) + alang

where ol−1 is the output of the previous layer and
LLM∗l is the new, intervened layer. For our ex-
periments layer l is selected to be partway through
computation at one third depth (e.g., layer 10 out
of 30).

5.4 Mechanistic Intervention: Results
The application of this mechanistic intervention
has shown significant improvements in the fidelity
of the model’s responses across various languages.
The quantitative improvements are displayed in Ta-
ble 5, which presents a comparative analysis of fi-
delity metrics before and after the intervention. We
find large relative improvements in performance
across pretrained VLMs. Furthermore, we observe
an improvement of IFL over the base LLM without
image input.

Model IFL IFL +
Remedy Diff. Relative

Increase

llava7b -0.085 -0.030 0.055 65%
llava13b -0.175 -0.103 0.073 42%
bakllava -0.073 0.098 0.170 233%
llava-
gemma2b

-0.681 -0.513 0.168 25%

Table 5: Fidelity improvements by using mechanistic
intervention (Remedy). Across all pretrained models,
we find significant reduction in IFL by interventing on
the LLM’s intermediate layer. A full breakdown is
available in the supplement.

While this experiment does require knowledge
about which language attribute to select, it pro-
vides strong supporting evidence for the hypothesis
that the LLM is responsible for IFL. Moreover, the
successful application of a targeted mechanistic in-
tervention highlights the potential of this approach
to effectively address and resolve issues related to
IFL, a future area of research we are interested in
exploring further.

6 Implications

6.1 Multilingual Multimodal Understanding

Our results provide strong evidence in favor of the
hypothesis that LLaVA models do not treat visual
inputs orthogonally with respect to multilinguality,
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and this bias occurs in the language backbone of
the VLM.

In the first part of our analysis, we demonstrate
the prevalence of IFL across different LLaVA mod-
els and languages. The second part of our analysis
provides a controlled comparison of the effects of
changing the linguality of the language backbone,
the pretraining objective of the vision encoder, and
the language of the training data.

We find that substituting the monolingual Vi-
cuna language backbone for a bilingual Yi or Leo
backbone reduces IFL in Chinese and German. In
their exploration of the latent representations of
multilingual inputs in Llama-2 models, Wendler
et al. (2024) find that the abstract “concept space”
of these LLMs lies closer to English than other lan-
guages. Correspondingly, if we think of LLaVA
as instructing LLMs to map visual inputs to latent
linguistic representations, an explanation for the
positive effect of using a bilingual backbone may
be that the higher proportion of the target language
in the training data mix may reduce the extent to
which visual concepts are mapped to spaces closer
to English.

This interpretation is supported by our investiga-
tions of the intermediate representations of visual
and text inputs to our suite of ablated LLaVA mod-
els. The UMAP and CKA results show that visual
inputs are located in a separate space to textual in-
puts, and that this is remarkably consistent across
training configurations. This indicates that LLaVA
“instructs” the language backbone to interpret vi-
sual inputs, instead of learning to map visual inputs
to a linguistic semantic space. Further evidence of
the multimodal fusion occurring at an intermediary
layer of the language model is shown in our mecha-
nistic intervention analysis, where we show that the
bias can be partially corrected through intervention
on these layers.

Surprisingly, machine translating the training
data language and changing the vision encoder to a
language-agnostic one do not mitigate IFL. These
null results should not necessarily be interpreted
as negative ones; alternative explanations include
limitations in performance stemming from the qual-
ity of the machine translated data, or there being a
specific incompatibility between DINOv2 and the
language backbones used.

On accuracy, we likewise find null results for
a systematic effect of our ablations on accuracy.
This is less surprising, given that our ablations were
designed to affect IFL and not accuracy. Additional

analyses on accuracy provide further evidence for
the lack of a trade-off between accuracy and IFL for
the models, languages and benchmarks explored.5

6.2 Building Robust Multilingual Multimodal
Models

In terms of implications for the design of multilin-
gual multimodal models, our research suggests that
focus on improving the multilinguality of LLMs
provides a productive way forward for building
more robust multilingual VLMs. This finding is
largely in line with the recent work on multimodal
models, where progress has been fuelled by the
increased availability of permissively licensed and
capable pretrained LLMs. The mechanistic inter-
vention results also suggest that effective and low-
cost corrections to particular forms of bias (such as
IFL) are a fruitful research direction.

7 Future Work

As the adoption of generative models proliferates,
multilingual multimodal models that can service
multiple regions will become an attractive solu-
tion. However, further efforts can be made to cre-
ate more effective multilingual VLMs. One pos-
sible approach is the consideration of language
fidelity (image-induced or not) during the training
process through a mix of multilingual data and/or
language-controlling instructions for in-context
learning. Other in-depth approaches may include
the design of better model architectures that in-
tegrate multitmodal representations at a suitable
semantic level to prevent language bias. The phe-
nomenon of IFL may also serve as a motivation
to better understand the semantic role of visual
representations within VLMs and how they are in-
terpreted by the base language model.

We are particularly interested in understanding
and improving the mechanistic intervention. We
think this is a promising area of research, and that
our simple approach could be improved either by
automatic attribute selection conditioned on inter-
nal representation or better construction of the at-
tribute. We also would like to study the broad class
of fidelity loss in single modality models and to
what extent mechanistic interventions are useful in
those scenarios.

5These are located in the supplement because we wish to
emphasize that a goal of this work is to motivate fidelity as an
objective to maximize in its own respect.
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8 Conclusion

In this work, we systematically examined the phe-
nomenon of Image-induced Fidelity Loss in multi-
modal language models. Our analyses reveal that
the addition of visual content to queries can unex-
pectedly bias the language output of these models,
often resulting in responses in an incorrect lan-
guage. Through a combination of empirical evalu-
ations and introspective techniques, we quantified
the extent of IFL across various VLM architec-
tures and explored how different design choices
impact language fidelity. Our findings are further
substantiated by micro analyses within the mod-
els, illustrating the intricate interactions between
image and text embeddings. Our introduction of a
targeted mechanistic intervention demonstrates a
potential method to mitigate IFL, indicating IFL is
localized within the LLM itself, and suggesting a
pathway for future enhancements to VLMs. Our
work contributes to the broader understanding of
multimodal systems and offers actionable insights
for developing more robust and linguistically accu-
rate AI technologies.

9 Limitations

9.1 Assumptions and Scope
When we debias our results with DSL, we assume
that the expert annotated gold standard is in correct.
Nevertheless, it is possible that the authors made
mistakes during the data annotations, especially
when identifying languages in unfamiliar scripts.
The implication of this is that the bias-corrected
results should be interpreted as “the answer we
would get if we had manually annotated all of the
examples” instead of “the truth”.

The analyses in Section 5 in Section 6 contain
a degree of speculation that we want to communi-
cate clearly. The visible separation between image
and text embeddings seen in the UMAP visualiza-
tions do not definitively prove that the inputs are
mapped to distinct “semantic” spaces, and are not
interpreted as such. Rather our takeaway is the
lack of clustering between the visual tokens and a
particular language that would be suggestive the
projection layer learns to map images to a particular
language.

The focus of this paper – IFL – could be framed
as a form of model bias, and we sometimes de-
scribe it as such. We believe our definition of IFL
is clearly articulated and operationalized: the de-
crease in linguistic fidelity in a VLM caused by

adding an image to the input. We think that this
constitutes a form of bias in the sense that it is a
deviation from an intended/desirable output (i.e.
replying in the same language as the query).

9.2 Risks and Ethics

A shortcoming of this work is the lack of focus
on second- and third-order interactions, especially
those looking at the differences in IFL between
languages. The reason choosing to aggregate re-
sults in a setting where we expect heterogeneity is
the focus of the paper: to define and demonstrate
IFL as a problem that is not idiosyncratic to sin-
gle languages. In future work we hope to better
understand the heterogeneous patterns of IFL and
how it relates both to structural differences between
languages and their relative representation in LLM
training corpora.

We do not foresee harm stemming from use of
the models and data generated for this research. In
particular, the models were trained for the purpose
of assessing training decisions, and are unlikely to
be competitive with other publicly available models
engineered for optimal performance. Nevertheless,
the model releases will be accompanied with clear
caveats for safety.

While this paper has stressed the importance of
research on multilingual VLMs for creating glob-
ally inclusive technology, we also want to stress
the ethical risks of a mode of research that external-
izes the contextualization and nuance necessary to
achieve truly inclusive goals. Although the authors
of this paper come from a broad constituency of cul-
tures and languages, several of the language used
in this study are not spoken by any of the authors.
We take seriously the challenge of contributing to a
global academic ideal while not appropriating lan-
guages or cultures, and will do our best to address
any oversights in this respect.
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Appendix

A Computational Experiments

Computational Budget The training experi-
ments for this paper were conducted on an internal
cluster using nodes with 8 × A6000 Nvidia 48GB
GPUs. In total, we trained 32 distinct configura-
tions (not all of which were ultimately used). A
single end-to-end training run with a 7-billion pa-
rameter LLM backbone takes 25 hours, meaning
roughly 800 GPU hours were used for training.
Inference experiments were run on a mixture of
RTX3090 24GB cards, A6000 24GB cards and
A6000 48GB cards. These required roughly an
additional 900 GPU hours. Data analysis utilized
CPU. The only sizable compute consisted of ap-
plying the DSL estimator to large datasets, which
required on the order of ∼ 500 CPU hours. Finally,
the GPT-4o annotation for the roughly 730k com-
pletions in our experiments required roughly USD
2k worth of completion calls.

B Expert Annotation

Sampling Weights We stratified on evaluation
benchmark (i.e. we weighted the probability by the
inverse proportion of the originating benchmark to
the full dataset) and then upweighted German by
a factor of 4, Chinese and Hindi by 2, and down-
weighted Romanian, Russian and Urdu by a factor
of 2. We sampled a total of 1000 observations
(without replacement) using these weights.

Annotation Procedure The 1000 observations
were uploaded into spreadsheets for the authors to
manually annotate. Where possible, annotations
were matched to authors who could read the lan-
guage used in the query. The annotation consisted
of three questions: what language is the answer,
does the model completion match the gold stan-
dard, and is the answer correct. The latter two
questions were restricted to three categories: true,
false and NA. NA was used where the model did
not provide coherent output.

C Automated Evaluation

GlotLID We use the GlotLID v3 (Kargaran et al.,
2023) model for automated language identification.
We take the most-likely language as predicted by
GlotLID, and then manually process the label to
collapse what we thought were common misclas-
sifications by the model, such as classifying Man-
darin Chinese into various languages and dialects

using the simplfied Chinese script when the out-
puts contained a mix of non-Chinese punctuation
characters and Chinese glyphs.

The full parsing rule is as follows:

def parse_glotlid(lang: str) -> str:
iso, script = tuple(lang.split("_"))
match script:

case "Hani":
return "chinese"

case "Jpan":
return "japanese"

case "Deva":
return "hindi"

case "Beng":
return "bengali"

case "Hebr":
return "hebrew"

case "Thai":
return "thai"

case "Cyrl":
return "russian"

case "Zzzz":
return "none"

case "Arab":
match iso:

case "urd":
return "urdu"

case _:
return "arabic"

case "Latn":
match iso:

case "deu":
return "german"

case "eng":
return "english"

case "spa":
return "spanish"

case "ron":
return "romanian"

case "fra":
return "french"

case _:
return "other_latin"

case _:
return "other"

D Datasets Used

Here we provide an overview on the datasets we
employ in our study.

MaXM was introduced by Changpinyo et al.
(2023) and is a VQA dataset comprising seven lan-
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guages in five scripts. In MaXM, the questions and
their respective answers are in the same language.
Moreover, in MaXM, the images are a subset of
the XM3600 (Thapliyal et al., 2022) dataset and
are chosen to match a region where the language of
the question-answer pair is spoken. To increase the
cultural diversity, the images selected to match the
region where the language of the question-answer
pair is spoken.

VisIT-Bench stands for Visual Instruction
Tuning Benchmark (Bitton et al., 2023). The
dataset consists of 592 vision-language tasks writ-
ten by human researchers, with GPT-4-generated
responses and dense instruction-conditioned
captions of the image that are rated by human
coders. The 562 images are taken from the
OpenImages (Kuznetsova et al., 2020) v7 dataset.
In this work we use 525 examples where the
GPT-4 generated responses are rated as correct
by human annotators. We machine translate these
examples into Arabic, Bengali, Chinese, German,
Hebrew, Hindi, Japanese, Spanish and Thai using
the Azure Translation API.

To check the translation quality, we inspected 25
randomly sampled translations in Chinese, Hindi,
Hebrew, German, Japanese and Spanish (languages
where the authors had access to native speakers).
Among these, the majority (19 out of 25) of trans-
lations were deemed to not significantly change
the meaning of the original. In the remainder, is-
sues observed included omitting details (such as
not mentioning an object or descriptor), or con-
structing words that were understandable but not
“natural” in the target language. In general the ques-
tion/instruction was correctly translated, but the
translation of the gold standard varied in quality.
This presents a limitation for this research, but one
that cannot be overcome without greater resources
for expert/higher quality translation.

PALO-LLaVA-Bench-In-The-Wild dataset is
a multilingual VQA dataset created by the PALO
authors (Maaz et al., 2024) by machine translating
the original LLaVA-Bench-In-The-Wild (Liu et al.,
2023) in 10 languages using a fine-tuned GPT-3.5
instance. The dataset comprises of 60 questions
per language considering 24 diverse images with a
caption describing the visual content.

MultiQ is an evaluation dataset for open-ended
question answering covering 137 typologically di-
verse languages. It is specifically constructed to

only contain questions that are simple, factual, and
target common knowledge to only test the mul-
tilingual capabilities of language models, and no
complex reasoning (Holtermann et al., 2024).

D.1 Machine Translation of Training Data

As noted in the main body, we machine translate
(MT) the LLaVA training data into Chinese and
German using the NLLB-1.7-distilled model (Team
et al., 2022). The choice of this model was primar-
ily motivated by resource availability for translating
1.2M texts into two languages.

We apply two automated translation quality
checks for the training data based on the MT checks
in Qiu et al. (2022). The first is the token-type-ratio
(TTR) of each of the languages. A value close to
0 indicates a high degree of repetition, which is
an observed pathology of neural MT models. The
second is the BLEU score between the source and
MT texts. A BLEU score close to 1 indicates the
presence of copied English text.

The highest BLEU score for source to target
across all translated examples is 1.6e− 231, indi-
cating that copying did not occur. Figure 3 shows
the values for the TTR check. We find that in both
cases our MT data has a higher cumulative TTR
curve than the English data; this indicates less to-
ken repetition. It is hard to directly interpret this
value, given that baseline TTR should vary between
languages, but the lack of an obvious negative pat-
tern is reassuring.

E Models Used

Here we provide an overview of the models we
employed in our study.

OpenAI/CLIP is a jointly optimized vision and
text feature extractor trained using large-scale
image-caption pairs (Radford et al., 2021). CLIP
is focused on learning image representations from
scratch that are trivially transferable to many down-
stream tasks without the need for domain specific
training.

DINOv2 is a series of image encoders trained on
curated data using unsupervised learning (Oquab
et al., 2024). Through an improved training recipe
and larger dataset, followed by a distillation process
of larger to smaller models, DINOv2 is positioned
as a ViT-based general-purpose image encoder that
surpasses OpenAI/CLIP on most benchmarks.
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Figure 3: Token-type ratio (TTR) for pretraining (left) and finetuning training datasets.

LLaVA-v1.5 is a large multimodal model trained
end-to-end with visual instruction following (Liu
et al., 2023). The model combines a vision model
— OpenAI/CLIP — with a large language model
— Vicuna-v1.5 — achieving impressive visual and
language understanding results that were state-of-
the-art at its release. In this work we used the 7b
and 13b variants of the model.

BakLLaVA is a large multimodal model based
on the LLaVA-v1.5 architecture using Mistral-7b as
the base LLM (SkunkworksAI, 2023). The model
utilizes training data from LLaVA-v1.5 as well as
additional sources including ShareGPT and private
data with a permissive license.

Yi-6b-chat is a large language model trained
from scratch on English and Chinese corpora (AI
et al., 2024). In this work, we use the 6b variant
that has been extended with chat-style training.

Leo-7b-chat is a large language model that ex-
tends Llama-2 into German through continued
training on a large German corpus (Plüster, 2023).

GlotLID v3 is a language identification model
that coveres 2102 languages. The data used to train
this model was sourced from Wikipedia, news sites,
translation corpora, religious text, and storybooks.

NLLB-1.7-distilled is translation model that sup-
port direct translation between 200 languages, in-
cluding many low-resource languages (Team et al.,
2022). The datasets used to train NLLB (No Lan-
guage Left Behind) were sourced from profes-
sionally translated sentences in the Wikipedia do-
main in addition to publicly available translation
datasets.

GPT-4o is a commercial large language model
provided from OpenAI.

F Technical Explainers

F.1 Primer on LLaVA

What is LLaVA? Our study analyzes LLaVA,
a multimodal model (VLM) that integrates a pre-
trained vision encoder, denoted as EV , with a large
language model (LLM), using a connecting multi-
layer perceptron (MLP). The process is defined in
two main training stages: pretraining of the MLP
and joint finetuning of the MLP with the LLM.

Model Architecture The VLM comprises the
following components:

Vision Encoder: The vision encoder EV pro-
cesses the visual input Xv to produce a set of em-
beddings EV (Xv).

MLP Connector: A connecting MLP, defined
as F , transforms the output of EV into the dimen-
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stionality of the LLM. This transformation is repre-
sented as F (EV (Xv)).

LLM: The LLM processes both textual query Xq

and the transformed vision embeddings. The com-
bined input to the LLM is given by concatenating
the embeddings from the MLP with text embed-
dings, i.e., LLM([F (EV (Xv));EL(Xq)]), where
EL denotes

The VLM is defined as a function that takes an
image input Xv and a textual question Xq, and
processes these through the vision encoder, MLP
connector F , and LLM to produce an output Xa,
which is the model’s answer to the question based
on the visual context. Formally, the VLM can be
expressed as:

V LM(Xv, Xq) = LLM ([F(EV (Xv));EL(Xq)]) ,
(2)

where EV (Xv) is the output of the vision en-
coder for the input image, F(EV (Xv)) is the trans-
formed visual embedding suitable for the LLM,
and EL(Xq) represents the embedded form of the
textual question. The final output Xa is generated
by the LLM, which synthesizes and integrates both
the visual and textual information to produce a con-
textually appropriate answer.

Training Procedure The training of the VLM is
structured into two distinct stages: pretraining and
finetuning. During the pretraining stage, the MLP
is trained while keeping EV and the LLM frozen.
The objective is to optimize the MLP to map the
vision encoder outputs to a representation that is
effectively integrable with the LLM. The training
uses a custom dataset of 595k samples filtered from
CC3M (Sharma et al., 2018):

LMLP =
∑

(Xv ,Xc)∈D
LCE(V LM(Xv, Xq)), (3)

where Xc represents the captions associated with
Xv, and D denotes the dataset.

Finetuning In the finetuning stage, the MLP and
the LLM are jointly trained with a larger, diverse
dataset of 665k multimodal instruction tuning ex-
amples, integrating both synthetic and established
vision-language training sets. The entire conver-
sation C = (Xq, Xa) is fed into the LLM, with
autoregressive masking applied to focus training
on the answers using supervised cross-entropy loss
LCE :

LVLM =
∑

C∈C
LCE(V LM(Xv, Xq)), (4)

llava7b

dataset Lang. IFL
IFL +

Remedy
Diff.

llavaw ar -0.250 -0.083 0.167
bn -0.117 -0.050 0.067
zh -0.233 -0.017 0.217
fr -0.183 0.000 0.183
hi -0.133 -0.033 0.100
ja -0.117 -0.050 0.067
ru -0.233 -0.017 0.217
es -0.200 -0.050 0.150
ur -0.050 0.083 0.133

maxm zh 0.004 0.000 -0.004
fr 0.004 -0.011 -0.015
he -0.132 -0.125 0.007
hi -0.042 -0.035 0.008
ro 0.000 -0.014 -0.014
th -0.007 -0.011 -0.004

visitazure ar -0.038 -0.047 -0.009
bn -0.084 -0.038 0.045
zh -0.026 -0.047 -0.021
de -0.054 -0.037 0.017
he -0.038 -0.037 0.002
hi -0.026 -0.009 0.017
ja -0.021 -0.051 -0.030
es -0.024 -0.042 -0.017
th -0.045 -0.010 0.035

average - -0.085 -0.030 0.055

Table 6: mechint raw llava7b scores.

where C represents the conversation dataset, and
training focuses exclusively on the answer parts
Xa, leveraging the context provided by the entire
conversation but training only through the answer
segments.

G Training

G.1 Hyperparameters

All models were trained using the same hyperpa-
rameters as the original LLaVA-v1.5-7b model.
This training takes place in two stages, as described
above.

In the first (“pretraining”) stage, we trained with
a global batch size of 256 and a learning rate of
1e− 3. In the second (“finetuning”) stage, we used
a global batch size of 128 and a learning rate of
2e − 5. For both stages we trained for a single
epoch, with a warmup ratio of 0.03 and a cosine
annealed learning rate scheduler.
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Figure 4: Average fidelity by model and eval for query with and without Images

G.2 Convergence

In order to ensure comparability across experi-
ments, we trained every model the same amount
(one epoch). However, as a hedge against random
failures during training, we monitored the training
loss curves. All checkpoints saw similar propor-
tional decrease in training loss from their tenth to
final training step, ranging from a 38.9% to 65.8%
decrease in training loss. Figure 5 shows the loss
curves for each model.

H Accuracy

H.1 Accuracy of Baseline LLaVA Models

The accuracy of the base LLaVA models is not very
high for the languages and benchmarks considered.
Table 10 provides a breakdown of accuracy by each
of the languages in the benchmarks. We see that
the 7B and 13B models fail to exceed even 40 and
50 percent accuracy respectively. These results are
consistent with concurrent findings in Schneider
and Sitaram (2024). We do not see these results as
problematic for our research, as we want to empha-
size the goals of fidelity and (factual) accuracy as
being independently pursuable.

H.2 Accuracy-Fidelity Trade-off

In addition to the findings in the main body of this
paper, further experiments indicate weak evidence
in support of there being a trade-off between opti-

mizing accuracy and fidelity. Table 11 provides the
Pearson correlation coefficient between accuracy
and fidelity for each of the models included in our
analysis. We find that for only five out of 26 mod-
els is there a significant correlation, with the value
ranging from −0.514 to 0.541. We do not find any
pattern from these results to suggest a systematic
finding for a trade-off.

I Use of AI Tools

The authors of this paper used Github Co-pilot for
coding assistance for this research.

13418



0 1000 2000 3000 4000 5000
Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

leo-7b-chat-clip-de
leo-7b-chat-clip-en
leo-7b-chat-dinov2-de
leo-7b-chat-dinov2-en
vicuna-13b-v1_5-clip-de
vicuna-13b-v1_5-clip-zh
vicuna-13b-v1_5-dinov2-de
vicuna-13b-v1_5-dinov2-en
vicuna-13b-v1_5-dinov2-zh

vicuna-7b-v1_5-clip-de
vicuna-7b-v1_5-clip-zh
vicuna-7b-v1_5-dinov2-de
vicuna-7b-v1_5-dinov2-en
vicuna-7b-v1_5-dinov2-zh
yi-6b-chat-clip-en
yi-6b-chat-clip-zh
yi-6b-chat-dinov2-en
yi-6b-chat-dinov2-zh

Training Loss Curves

Figure 5: Training loss curves for finetuning. Legend indicates language backbone, vision encoder and training
language as two-letter code.

13419



llava13b

dataset Lang. IFL
IFL +

Remedy
Diff.

llavaw ar -0.183 -0.033 0.150
bn -0.233 -0.083 0.150
zh -0.133 -0.033 0.100
fr -0.200 -0.100 0.100
hi -0.317 -0.200 0.117
ja -0.183 -0.117 0.067
ru -0.433 -0.317 0.117
es -0.233 -0.183 0.050
ur -0.550 -0.267 0.283

maxm zh -0.025 -0.007 0.018
fr -0.008 -0.045 -0.038
he -0.175 -0.121 0.054
hi -0.042 -0.035 0.008
ro -0.106 -0.085 0.021
th -0.157 -0.093 0.063

visitazure ar -0.174 -0.066 0.108
bn -0.244 -0.136 0.108
zh -0.071 -0.031 0.040
de -0.105 -0.094 0.010
he -0.125 -0.082 0.044
hi -0.136 -0.096 0.040
ja -0.056 -0.044 0.012
es -0.057 -0.042 0.016
th -0.258 -0.155 0.103

average - -0.175 -0.103 0.073

Table 7: Mechanistic intervention complete llava13b
scores.

bakllava

dataset Lang. IFL
IFL +

Remedy
Diff.

llavaw ar 0.000 0.350 0.350
bn -0.050 0.217 0.267
zh -0.033 -0.067 -0.033
fr -0.117 0.000 0.117
hi 0.000 0.050 0.050
ja -0.017 -0.067 -0.050
ru 0.000 0.000 0.000
es -0.117 0.217 0.333
ur -0.017 0.183 0.200

maxm zh -0.018 0.014 0.032
fr -0.318 -0.223 0.095
he 0.000 0.029 0.029
hi 0.000 0.135 0.135
ro -0.567 -0.299 0.268
th -0.119 -0.078 0.041

visitazure ar -0.010 0.608 0.618
bn -0.012 0.557 0.570
zh -0.007 0.019 0.026
de -0.136 -0.108 0.028
he 0.000 0.078 0.078
hi -0.007 0.113 0.120
ja -0.014 0.026 0.040
es -0.183 0.291 0.474
th -0.007 0.294 0.301

average - -0.073 0.098 0.170

Table 8: Mechanistic intervention complete bakllava
scores.
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llavagemma2b

dataset Lang. IFL
IFL +

Remedy
Diff.

llavaw ar -0.583 -0.533 0.050
bn -0.483 -0.483 0.000
zh -0.733 -0.567 0.167
fr -0.800 -0.433 0.367
hi -0.500 -0.317 0.183
ja -0.600 -0.650 -0.050
ru -0.883 -0.650 0.233
es -0.900 -0.700 0.200
ur -0.517 -0.483 0.033

maxm zh -0.852 -0.762 0.090
fr -0.905 -0.652 0.254
he -0.768 -0.482 0.286
hi -0.731 -0.546 0.185
ro -0.810 -0.637 0.173
th -0.646 -0.455 0.190

visitazure ar -0.718 -0.578 0.139
bn -0.483 -0.420 0.063
zh -0.672 -0.552 0.120
de -0.688 -0.258 0.430
he -0.617 -0.280 0.336
hi -0.589 -0.375 0.214
ja -0.526 -0.509 0.017
es -0.793 -0.608 0.185
th -0.538 -0.373 0.166

average - -0.681 -0.513 0.168

Table 9: Mechanistic intervention complete LLaVA-
Gemma-2b scores.

Query Language LLaVA 7B LLaVA 13B

English 0.372 0.392
French 0.340 0.417
Urdu 0.317 0.317
Russian 0.183 0.233
Bengali 0.161 0.222
Spanish 0.099 0.162
Japanese 0.115 0.130
Chinese 0.129 0.160
German 0.107 0.154
Romanian 0.025 0.271
Hindi 0.099 0.128
Thai 0.108 0.091
Arabic 0.080 0.087
Hebrew 0.063 0.080

Table 10: Performance of LLaVA Models Across Dif-
ferent Languages

LM VE Data Corr p-val

vicuna13b dino en -0.514 0.006
yi6b dino en -0.432 0.025
yi6b clip en -0.413 0.032
yi6b dino en -0.413 0.032
yi6b clip en -0.386 0.047
leo dino en -0.284 0.151
leo dino de -0.239 0.231
leo dino en -0.218 0.274
vicuna13b clip zh -0.175 0.382
leo clip en -0.152 0.448
leo clip de -0.131 0.515
vicuna13b clip de -0.112 0.579
vicuna13b dino zh -0.060 0.768
yi6b dino zh -0.057 0.776
yi6b dino zh -0.054 0.788
yi6b clip zh -0.050 0.804
vicuna7b dino zh -0.035 0.862
vicuna7b dino en -0.034 0.865
leo7b clip en -0.029 0.885
yi6b clip zh -0.023 0.908
vicuna13b dino de 0.023 0.909
vicuna7b clip zh 0.069 0.731
vicuna7b clip de 0.088 0.664
vicuna7b dino de 0.099 0.624
leo dino de 0.192 0.338
leo clip de 0.225 0.258

Table 11: Correlation between accuracy and fidelity by
model.

13421


