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Abstract

Recent studies show that text-to-image (T2I)
models are vulnerable to adversarial attacks,
especially with noun perturbations in text
prompts. In this study, we investigate the im-
pact of adversarial attacks on different POS tags
within text prompts on the images generated by
T2I models. We create a high-quality dataset
for realistic POS tag token swapping and per-
form gradient-based attacks to find adversarial
suffixes that mislead T2I models into generat-
ing images with altered tokens. Our empirical
results show that the attack success rate (ASR)
varies significantly among different POS tag
categories, with nouns, proper nouns, and ad-
jectives being the easiest to attack. We explore
the mechanism behind the steering effect of ad-
versarial suffixes, finding that the number of
critical tokens and content fusion vary among
POS tags, while features like suffix transferabil-
ity are consistent across categories. We have
made our implementation publicly available at
- https://github.com/shahariar-shibli/
Adversarial-Attack-on-POS-Tags.

1 Introduction

Text-to-Image (T2I) generation models such as Sta-
ble Diffusion (Rombach et al., 2022; Podell et al.,
2023), DALL-E2 (Ramesh et al., 2022), Imagen
(Saharia et al., 2022), ediff-i (Balaji et al., 2022)
have made steady progress in the field of image gen-
eration by bridging the semantic gap between tex-
tual descriptions and visual representations. Unlike
traditional methods reliant solely on pixel manip-
ulation, these models leverage multi-model align-
ments in latent spaces to interpret and synthesize
complex visual content from textual prompts. Re-
cent studies, such as Tang et al. (2023), have inter-
preted how cross-alignment from texts to images is
transformed through text-image attribution analy-
sis, demonstrating that different POS tags are well
captured by cross-modal attention during synthesis.
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Figure 1: Examples of successful adversarial at-
tacks on Stable Diffusion covering different POS tags
drawn from our dataset. The POS tokens targeted by
adversarial suffixes are highlighted in red. In addition,

we observe that the attack success rate (ASR) varies
significantly across POS tag categories, with features
like the number of critical tokens (defined in §5, non-
critical tokens are highlighted in orange) being highly
associated with ASR.

On the other hand, recent research shows that
T2I models are vulnerable to adversarial perturba-
tions in text prompts, such as inserting nonsensical
words (Millière, 2022), phrases (Maus et al., 2023),
or irrelevant characters (Zhuang et al., 2023), which
can significantly bias the generated images (Chefer
et al., 2023; Salman et al., 2023). However, current
adversarial attacks on T2I generation models, ei-
ther manual heuristic-based methods (Zhuang et al.,
2023; Gao et al., 2023; Maus et al., 2023) or au-
tomatic gradient-based approaches (Zhuang et al.,
2023; Liang et al., 2023; Liu et al., 2023; Shahgir
et al., 2023; Yang et al., 2024a,b; Du et al., 2024;
Zhai et al., 2024), are specifically targeting entities
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Research Paper POS Tags to Attack Data Source

Zhuang et al. (2023) Noun ChatGPT
Liu et al. (2023) Noun ImageNet-1K

Shahgir et al. (2023) Noun
Manual

MS-COCO
Yang et al. (2024a) Noun MS-COCO
Yang et al. (2024b) Noun ChatGPT

Du et al. (2024) Noun ImageNet-1K

This work Noun, Proper Noun, Adjective,
Verb, Numeral, Adverb

MS-COCO

Table 1: Comparison of T2I adversarial attacks based
on targeting parts of speech.

or objects (i.e., nouns) in text prompts, neglecting
other parts of speech. In this paper, we aim to
answer the following two research questions:

• Q1: Do adversarial attacks, particularly
gradient-based attacks on T2I models, behave
similarly when targeting different POS tag cat-
egories?

• Q2: Are there common or distinct features
relevant to attack success rates (ASR) when
targeting different POS tag categories under
adversarial attacks?

To bridge the gap in analyzing attack mecha-
nisms across different POS tag categories beyond
nouns, we first created a dataset with realistic sce-
narios for swapping different POS tag categories
with adversarial attacks. Figure 1 provides a few
examples drawn from our dataset covering six POS
tags from Tang et al. (2023): noun, adjective, verb,
adverb, numeral, and proper noun, with adversarial
suffixes that successfully mislead T2I models into
generating images related to the targeted attribute.
Creating such a dataset is non-trivial, as Shahgir
et al. (2023) noted that ASR to T2I models might
be affected by internal bias rather than the attack
itself; we tried to minimize such biases when cre-
ating the dataset. To the best of our knowledge,
there is currently no dataset available for analyzing
adversarial attacks on POS tags other than nouns
(refer to Table 1).

We conduct targeted adversarial attacks over
POS tag categories with a gradient-based token
searching algorithm specifically designed for T2I
models to effectively navigate the larger vocabu-
lary size of the T2I text encoder (Shahgir et al.,
2023). The attack objective is to create an adver-
sarial prompt that causes a target POS token to
appear in the generated image while ensuring the
original POS token from the input prompt does

not. We observe that the ASR differs significantly
across different POS tag categories. Nouns, proper
nouns, and adjectives are the easiest to attack, with
increasing difficulties, while the other three cate-
gories, with the same gradient-based attack, offer
almost no success, whether in restricted (preventing
the target token’s POS tag attribute from appearing
in the adversarial suffix) or unrestricted settings.

This observation led us to further investigate
whether there are features associated with these dif-
ferences in ASR across POS categories. Through
extensive experiments, we discovered a correlation
between the number of critical tokens in adversarial
suffixes and the attack success rate across different
POS categories. Critical tokens are those whose re-
moval from the adversarial suffix renders the attack
unsuccessful.

Additionally, the results from our ablation study
reveal that adversarial suffixes, while steering the
generation of target attributes, often fail to com-
pletely remove the original attribute. For exam-
ple, when attempting to change a purple grape to
a green one using adversarial suffixes, the result-
ing image often shows a mixed color. In contrast,
with noun attacks, both objects can be generated,
whereas with verbs, it is difficult to mix or generate
both original and swapped tokens. This varying
ease of content fusion across POS categories may
also contribute to the differences in ASR.

Furthermore, we identified a general feature
shared across different POS categories: the trans-
ferability of the attack suffix. Similar to nouns, the
adversarial suffixes found are universally transfer-
able to other input prompts with the same attributes.
This means an adversarial suffix can transform mul-
tiple input prompts with different attributes into the
same target attributes in the generated images. For
instance, we found that the same adversarial suffix
targeting a ‘blue’ cup can steer the model to gen-
erate images of a blue cup across multiple input
prompts with different original colors (e.g., red,
yellow, orange).

2 Related Work

Text-to-Image Diffusion Models. Nichol et al.
(2021) formalized the initial text-to-image (T2I)
diffusion model (GLIDE) that substituted class la-
bels with text in class-conditioned diffusion mod-
els (i.e. Ablated Diffusion Models (Dhariwal and
Nichol, 2021)). The authors explored two types
of text conditioning methods: classifier guidance

12875



and classifier-free guidance (CFG). Saharia et al.
(2022) proposed Imagen by following the classifier-
free guidance (CFG) of GLIDE for T2I generation.
They utilized pre-trained large language models
(LLMs) as the text encoder and found that scaling
up language models is more efficient in improv-
ing sample fidelity and aligning images with text.
Ramesh et al. (2022) created DALL-E2, a T2I gen-
eration model capable of sequentially generating
images using text embeddings to guide the pro-
cess. They achieved this by training a generative
diffusion decoder to reverse the image encoding
process of CLIP (Radford et al., 2021). Rombach
et al. (2022) developed the Latent Diffusion Model
(LDM) by incorporating denoising methods within
the latent space of pre-trained autoencoders and
improving the U-Net architecture with the cross-
attention mechanism. Stability AI has utilized the
LDM framework to create and introduce a variety
of text-to-image diffusion models called the Stable
Diffusion series.
Adversarial Attacks on T2I Models. Existing
research on adversarial attacks on T2I models pri-
marily falls into two categories: query or heuristic-
based and gradient-based. Within the first category,
recent studies have explored the excessive sensitiv-
ity of T2I diffusion models to minor changes in text
prompts. Maus et al. (2023) introduced a query-
based attack that discovers prepended prompts ca-
pable of causing T2I diffusion models to generate
specific image categories. Zhuang et al. (2023)
targeted the text encoder of diffusion models by
appending extra nonsensical characters to the in-
put prompt using a genetic algorithm. Gao et al.
(2023) first identified keywords based on their im-
pact on the generation distribution and then applied
character-level substitutions, such as typos, glyphs,
and phonetic variations. In the second category,
there has been a recent increase in gradient-based
adversarial attacks targeting the text encoder of T2I
models. Liu et al. (2023) introduced a gradient-
guided optimization process to refine a continuous
token embedding, using gradients to navigate the
prompt space and identify failure cases. Yang et al.
(2024a) explored a focused targeted attack that adds
target objects while removing original ones, and
developed MMP-Attack, which incorporates multi-
modal features. Du et al. (2024) proposed Auto-
attack on Text-to-image Models (ATM), which au-
tomatically generates attack prompts that resem-
ble clean prompts by replacing or adding words.
Shahgir et al. (2023) applied gradient-based to-

ken perturbation methods to replace entities in the
prompt with adversarial suffix tokens. We adopt
the gradient attack proposed by (Shahgir et al.,
2023) because it aligns with our attack objectives
and demonstrates strong performance in targeting
nouns.

3 Dataset Creation

In this section, we outline the procedure for con-
structing our dataset. We first specify the dataset
source and then describe the steps involved in its
construction.
Data Collection. The first obstacle we encountered
in evaluating adversarial attacks across different
POS categories beyond nouns was that there was
no existing dataset for fair comparison. Table 1
compares existing adversarial attack datasets by
size, parts of speech covered, and data sources. To
construct our dataset, we chose MS-COCO (Lin
et al., 2014) as the data source for its diverse and
complex captions making it suitable for testing the
robustness of SD. In the train split of MS-COCO,
each image has five captions. We collected only
the first caption among the five resulting in 118,287
rows.
Input Prompts Selection. We identified the POS
tags in each caption from the initially collected
data using the NLTK library (Bird, 2006) and a pre-
trained POS tagging model (Sajjad et al., 2022).
We only focused on six parts of speech tags: noun,
verb, adverb, adjective, numeral, and proper noun.
For each POS tag, we then randomly selected 20
unique captions, each containing at least one word
from the corresponding POS tag, to be used as
input prompts.
Target Prompts Generation. For each input
prompt of every POS tag, we generated five target
prompts, resulting in 100 prompt pairs per POS tag.
Each input and target prompt differed by only one
word, with the target words chosen from a pool of
candidate words. The process of generating target
prompts starts by extracting the POS-tagged word
from the input prompt using the same NLTK library
and pre-trained POS tagging model employed dur-
ing the input prompt selection. Then, we compile
a set of candidate words by gathering other words
of the same POS category, identifying antonyms
to introduce variety, [MASK] prediction to acquire
the top-5 words, and exploring the CLIP token
embedding space to find the top-k distant neigh-
bors of the word. To extract antonyms, we use the
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NLTK library and the WordNet database (Fellbaum,
2010). For [MASK] prediction, we employ BERT
(Devlin et al., 2019) as a masked language model.
To identify the farthest neighbor tokens in the vo-
cabulary space, we calculate the cosine similarity
between the extracted input word embedding and
the embeddings of other tokens in the vocabulary,
selecting the top 100 tokens with the lowest cosine
similarity scores. These candidate words are then
filtered to ensure they retain the same POS while
removing synonyms, subwords, and substrings to
maintain relevance and avoid redundancy. Using
these filtered candidate words, we then generate ten
candidate prompts ranked highest through [MASK]
prediction probabilities. These prompts are sub-
sequently ranked based on their perplexity scores,
which measure the fluency and coherence of the
prompts. The perplexity score is calculated using
the GPT-2 model (Radford et al., 2019). Finally,
the five prompts with the lowest perplexity scores,
indicating the highest quality, are selected as the
final target prompts. We repeat this process for
each of the six POS tags, resulting in a total of 600
prompt pairs.
Annotator Recruitment. Our study involves two
annotation tasks: dataset annotation and attack suc-
cess evaluation. For these tasks, we chose two an-
notators with expertise and research experience in
vision and language-related tasks. We chose them
from a group of five candidates based on their trust-
worthiness scores (Price et al., 2020), which were
determined through an assessment. We presented
them with 30 image-text pairs and asked whether
the image accurately reflected the text description
(Yes/No). From our dataset, we randomly chose 20
text prompts and generated one image per prompt
using SD. In addition, we created 10 text prompts
with the help of ChatGPT using the prompt “Gen-
erate 10 simple scenes for text-to-image generative
model” and then using SD generated one image
per prompt. These 10 image-text pairs served as
control samples, which were unknown to the par-
ticipants in advance. Upon completion of the task,
we assessed the number of correctly labeled con-
trol samples for each candidate. Candidates who
achieved a trustworthiness score exceeding 90%
were selected as annotators.
Dataset Annotation. We assigned one annotator
the task of assessing the meaningfulness of the
generated target prompts. The annotator was pro-
vided with 600 prompt pairs. For each prompt, we
also presented the annotator with 10 candidate tar-

get words generated using ChatGPT. We used the
prompt “Replace [MASK] with the most probable 10
words in the following text: ” to generate candidate
target words by ChatGPT. If the target prompt gen-
erated from our pipeline appeared meaningful and
the annotator considered it visually representable,
we instruct the annotator to retain it; otherwise, we
ask to replace the corresponding word with an alter-
native from the pool of ChatGPT-generated words.
Out of the 600 prompt pairs, the annotator opted to
replace 97 target prompts.

4 Experiment

In this section, we outline the gradient-based ad-
versarial attack method, describe the experimental
setup, and report the results to assess the effective-
ness of the attack.

4.1 Attack Method

Gradient-based attacks on Stable Diffusion
(Zhuang et al., 2023; Shahgir et al., 2023; Yang
et al., 2024a,b; Du et al., 2024) utilize the gradi-
ent information to perturb the input prompt in a
way that maximizes the divergence from the in-
tended output, effectively manipulating the image
synthesis process. While previous studies have
predominantly focused on nouns, our analysis ex-
tends this approach to other parts of speech by
applying the gradient-based attack framework pro-
posed by (Shahgir et al., 2023). The process of
such an attack on T2I models generally starts with
an initial prompt, which is modified iteratively to
create an adversarial prompt that maximizes a pre-
defined score function. This involves embedding
the target prompt and the adversarial prompt us-
ing a token embedder and processing them through
a text encoder. The core mechanism focuses on
creating multiple candidate prompts by replacing
tokens and computing the top-k token candidates.
The best candidate prompt, which maximizes the
score function, is selected, and the gradient of the
loss function concerning the adversarial prompt
is used to iteratively refine the prompt. This iter-
ative optimization adjusts the adversarial prompt
to gradually increase the discrepancy between the
model’s output for the target prompt and the ad-
versarial prompt, effectively fooling the T2I gen-
eration model. Further details of the attack are
provided in Appendix B. We conducted the tar-
geted attack under two distinct settings: with and
without restrictions. In the unrestricted setting, we
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allow the adversarial prompt to include the target
token or its sub-tokens as suffix tokens. However,
in the restricted attack scenario, we confine the ap-
pearance of the target token within the adversarial
prompt by constraining all possible substrings of
the target token.

4.2 Experimental Setup
We followed the setup of Shahgir et al. (2023) and
conducted the attack five times for each pair, with
100 steps per run, employing 10 adversarial tokens.
For each step, we selected the top 256 tokens as
candidate tokens and generated 512 new prompts
by randomly substituting tokens using these candi-
dates. Subsequently, we generated seven images
per attack, resulting in the evaluation of a total of
21,000 generated images (600 pairs, 5 runs, and
7 images per run). During image generation, we
set the resolution to 512 × 512, the number of in-
ference steps to 50, and the scale of classifier-free
guidance to 7.5. As the victim model, we utilized
Stable Diffusion v1.5 (SD v15) for both image gen-
eration and performance assessment, leveraging a
pre-trained CLIP model trained on a dataset com-
prising text-image pairs. All experiments (attack
execution, evaluation, and image generation) were
conducted using a single Nvidia RTX 3090 GPU,
totaling approximately 600 GPU hours. The execu-
tion time to attack a single input-target prompt pair
is approximately 8 minutes.

4.3 Evaluation Metrics
Attack Success Rate. We consider an attack suc-
cessful if the image generated by the adversarial
prompt matches the target text; otherwise, we con-
sider it unsuccessful. Since we generate 7 images
per adversarial prompt, to measure the attack suc-
cess rate (ASR), we consider the attack as success-
ful if at least 4 images have a higher matching score
than a threshold. Following (Shahgir et al., 2023),
we set this threshold value at 3.41. We determine
the matching score by calculating the difference
between the CLIP score of the input prompt and
the generated image, and the CLIP score of the
target text and the generated image. CLIP score
measures the cosine similarity between the visual
CLIP embedding of an image and the textual CLIP
embedding of a text. For each input-target prompt
pair, we run the attack five times, generating five
adversarial prompts, and consider the attack suc-
cessful if at least one of them succeeds.
Semantic Shift Rate. For a quantitative measure

to evaluate the efficacy of adversarial suffix tokens,
we utilized SemSR (Semantic Shift Rate) (Zhai
et al., 2024) which measures the semantics between
a generated image and a text prompt. SemSR uti-
lizes CLIP’s multi-modal embedding space and
computes the similarity in semantics between a
generated image and a prompt using cosine simi-
larity. This metric quantifies the displacement in
the vector space of the generated image after ap-
pending adversarial suffix tokens compared to the
image generated using the input prompt. Since
the amount of deviation necessary to attain diverse
target semantics differs, it is adjusted by the maxi-
mum deviation. The SemSR equation is provided
below:

SemSR =
CS(EIa , EPa)− CS(EIi , EPi)

CS(EIt , EPt)− CS(EIi , EPi)
(1)

where CS denotes CLIP_Score, Ia represents
the generated image from the adversarial prompt
Pa, Ii denotes the generated image from the input
prompt Pi, and It denotes the generated image
from the target prompt Pt. For a single input-target
prompt pair, we measure the average of SemSR
scores over five runs.

4.4 Results

In Figure 11, we showcase a few examples of im-
ages generated through both the unrestricted and
restricted attack methods. Table 2 displays the aver-
age attack success rate (ASR) and average seman-
tic shift rate (SemSR) over all the prompt pairs for
each POS tag under both attack conditions. Below,
we present both quantitative analysis and human
evaluation of our experiments.

POS Tag Unrestricted Attack Restricted Attack

ASR SemSR ASR SemSR

Noun 0.65 1.4394 0.51 1.3884
Proper Noun 0.40 0.8955 0.31 0.8606
Adjective 0.29 2.0929 0.24 1.1181
Verb 0.15 1.5963 0.12 1.9121
Numeral 0.13 1.9246 0.11 1.5943
Adverb 0.03 0.9313 0.01 1.0077

Table 2: Average Attack Success Rate (ASR) and aver-
age Semantic Shift Rate (SemSR) of both unrestricted
and restricted attack on each POS Tag. The higher the
values, the better. The highest values are bold marked.

Quantitative Evaluation. Table 2 presents the
ASR and SemSR metrics, which are the average
values across 100 data points for each POS tag.
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POS Tag Unrestricted Attack Restricted Attack

Input Target Input Target

Noun 0.13 0.87 0.27 0.73
Proper Noun 0.47 0.53 0.53 0.47

Adjective 0.67 0.33 0.53 0.47
Verb 0.73 0.27 0.67 0.20

Numeral 0.20 0.13 0.20 0.13
Adverb 0.93 0.07 0.87 0

Table 3: Human evaluation results on the matching of
input and target text with the generated images for each
POS tag in both unrestricted and restricted settings.

Higher ASR and SemSR values indicate better
performance. From the table, we observe that in
the case of the unrestricted attack, both ASR and
SemSR surpass those of the restricted attack except
for verb and adverb POS tags. This suggests that
allowing the target token to be part of the concate-
nated adversarial suffix tokens leads to greater suc-
cess in adversarial attacks. Clearly, the unrestricted
attack excels in producing images containing the
target POS token instead of the input POS token.
We also observe that in both the restricted and un-
restricted attacks, nouns demonstrate higher ASR
values compared to other POS tags, implying their
greater vulnerability to adversarial attacks. Proper
nouns and adjectives show moderate success rates,
while verbs and numerals exhibit lower success
rates. Adverbs, on the other hand, have the lowest
success rates in both types of attacks, indicating
their higher resistance to adversarial manipulation.
SemSR values quantify the semantic disparity be-
tween a text and its corresponding generated image
caused by an adversarial attack. Higher SemSR
values signify substantial semantic shifts. By ana-
lyzing SemSR values, we find that attacking nouns
and adjectives is comparatively simpler, whereas
adverbs present greater difficulty. This suggests
that nouns and adjectives undergo more signifi-
cant semantic alterations, while adverbs experience
the least. Moreover, SemSR values remain rela-
tively stable across various POS tags for both un-
restricted and restricted attacks. However, with
unrestricted attack, adjectives exhibit the greatest
semantic shifts, which is not the case with restricted
attack. Numerals consistently show the second-
highest semantic changes across both attack types.

Human Evaluation. We evaluate the attack’s effec-
tiveness with the assistance of two annotators. We
randomly choose 15 prompt pairs for each POS tag,

amounting to a total of 90 prompt pairs for both
unrestricted and restricted attack settings. Each
prompt pair is presented with 7 images to the anno-
tators (as 7 images were generated per run in our
experiments), who then assess whether at least 4
images closely align with either the target prompt
or the input prompt (Yes/No). We collect evalu-
ations from the annotators using a Google Form
(Appendix J), which includes the generated image
and two checkboxes for the input text and target
text. We determine the score of an annotator by the
number of prompt pairs they classify as a match.
Since there are two evaluators, we calculate the
average of their scores and present the results in Ta-
ble 3. The table indicates that annotators agree that
verbs, adverbs, and numerals are more resistant to
adversarial attacks. In the case of numerals, the
annotators reported that the majority of the post-
attack generated images do not align with either
the target or the input prompts. We observe that un-
restricted attack tends to generate images that more
closely match the target prompt than the restricted
attack. We used Cohen’s Kappa (κ) metrics (Co-
hen, 1960) to measure annotator agreement on tar-
get text-image matching, obtaining scores of 0.796
for unrestricted and 0.745 for restricted settings,
which indicate a high degree of agreement.

From Table 2 and 3, we observe that the aver-
age ASR shows a strong positive correlation with
human evaluation of target text-image matching in
both the unrestricted setting (Pearson = 0.988 and
Spearman = 1.00) and the restricted setting (Pear-
son = 0.980 and Spearman = 0.986). On the other
hand, the average SemSR exhibits a very weak
negative correlation with human evaluation in both
unrestricted attack scenario (Pearson = -0.126 and
Spearman = -0.143), and restricted attack scenario
(Pearson = -0.176 and Spearman = -0.087). Given
that the average ASR has higher correlations with
human judgment in both settings, it is more reliable
than average SemSR for evaluating the success of
attacking POS tags. Therefore, we use ASR to
evaluate attack success in all subsequent sections.

5 Attack Success Mechanism

In this section, we explore the mechanism behind
the steering effect of adversarial suffixes. We iden-
tify (a) features that vary across POS categories and
explain differences in attack success rates (ASR),
such as the number of critical tokens and content
fusion, and (b) features that are consistent across
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POS
Tag

Unrestricted Restricted

Number of
Successful

Attack

Avg no. of
critical
tokens

Avg ASR
by removing

critical tokens

Number of
Successful

Attack

Avg no. of
critical
tokens

Avg ASR
by removing

critical tokens

Noun 65 7.800 0.195 51 8.902 0.136
Proper Noun 40 8.175 0.175 31 8.935 0.115

Adjective 29 7.862 0.173 24 8.960 0.111
Verb 15 8.200 0.166 12 9.000 0.076

Numeral 13 8.615 0.150 11 9.180 0.034
Adverb 3 9.000 0.078 1 10.000 0

Table 4: Comparison of the average attack success rates (ASR) by removing critical tokens across different POS
tags, under all unrestricted and restricted successful attack examples.

different POS categories and do not explain vari-
ations in ASR rates, but provide general insights
such as suffix transferability.

Correlation between the number of critical to-
kens in adversarial suffixes and ASR. A success-
ful attack demonstrates that appending an adversar-
ial suffix to an input prompt effectively shifts the
text embedding toward the target prompt, highlight-
ing the significant role of the suffix tokens. To in-
vestigate, we tokenized several adversarial suffixes,
generated an image for each token to isolate their
contributions, and found that some tokens generate
images associated with the target POS token. This
observation led us to identify the most contribut-
ing tokens within adversarial suffixes. We define
“critical tokens” as those whose removal causes
the attack to fail. To determine critical tokens in
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Figure 2: Average length of critical tokens across dif-
ferent POS tags in unrestricted and restricted settings.
Exponential trend lines are included for both settings to
highlight the general pattern.

a suffix, we generated all possible combinations
of replacing suffix tokens with <|endoftext|> to-
ken. For each combination, we generated an image
and queried the pre-trained vision-language model

BLIP1 (Li et al., 2022) to check if the generated
image matched the target prompt. We identified
the combination with the fewest tokens replaced
by <|endoftext|> and considered those tokens as
critical since their absence leads to an unsuccessful
attack. Tokens not replaced by <|endoftext|> were
considered non-critical.

We present the average number of critical tokens
across all POS tags in Table 4 and compare the
lengths of critical tokens in Figure 2. The number
of critical tokens is generally higher across POS
categories in both attack settings. However, the
restricted setting shows significantly higher num-
bers of critical tokens, as the absence of the target
word necessitates other tokens to compensate and
maintain the attack’s effectiveness. We find that
adverbs, numerals, and verbs are more resistant
to adversarial attacks due to their dependency on
the high number of critical tokens in the suffixes.
This prompted us to explore whether every critical
token within a suffix contributes equally to the at-
tack’s success. Therefore, removing some or all
critical tokens from the suffixes should notably de-
crease the ASR. To test this in both settings, we
removed critical tokens from the suffixes in all pos-
sible combinations while keeping the non-critical
tokens unchanged. We then calculated the ASR
for each combination by querying BLIP and took
the average. We find that the ASR significantly
decreases across POS categories. Table 4 shows
that adverbs, numerals, and verbs are the hardest
to attack due to their reliance on a higher number
of critical tokens, resulting in a significantly lower
ASR when these tokens are removed. However,
nouns, proper nouns, and adjectives are relatively

1https://huggingface.co/Salesforce/
blip-vqa-capfilt-large
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easier to attack. Despite having a substantial num-
ber of critical tokens, the ASR for these categories
remains moderately high when critical tokens are
removed but still shows a significant drop. For
instance, in the unrestricted setting, the attack suc-
cess rate drops from 65 (total successful attacks)
to around 13 (0.195 * 65) when critical tokens are
removed. Thus, we conclude that the number of
critical tokens in adversarial suffixes is highly as-
sociated with ASR. Some POS tags are harder to
attack because the attack algorithm must find ad-
versarial suffixes with a higher number of critical
tokens.
Ease of Content Fusion. We observe that while
adversarial suffixes steer the generation of target
attributes, they often fail to completely remove the
original token. This results in images generated
by the Stable Diffusion containing both the input
and target attributes, a phenomenon we refer to
as content fusion. We found that content fusion
across different POS categories decreases with de-
creasing ASR. For example, when attempting to
change a noun like “car” to “motorcycle”, the re-
sulting image often contains both the car and the
motorcycle. For a proper noun, changing a “Santa
costume” to a “Halloween costume” might result
in a Santa costume with Halloween-themed colors.
With adjectives, trying to change a “white swan” to
a “black swan” can lead to an image of a swan that
is both black and white. We showcase examples of
adjective fusion in Appendix I. In contrast, verbs
are harder to mix or generate together; for instance,
it is difficult to create an image where a person is
both standing and lying down. Similarly, in the case
of numerals, attempting to change “three apples” to
“five apples” often fails to produce an image with
both three and five apples. With adverbs, changing
“running quickly” to “running slowly” does not re-
sult in an image that simultaneously depicts both
quick and slow running. We posit that this vary-
ing ease of content fusion is due to the number of
critical tokens associated with ASR. In categories
like nouns, proper nouns, and adjectives, where the
number of critical tokens is relatively lower, fusion
is easier. However, in categories with a higher num-
ber of critical tokens, such as verbs, numerals, and
adverbs, fusion is not possible.
Suffix Transferability. We discovered a common
feature across different POS categories: the trans-
ferability of adversarial suffixes. We observed that
the identified adversarial suffixes can universally
transfer to other input prompts within the same

POS tag. This indicates that a single adversarial
suffix can convert various input prompts with dis-
tinct attributes into images with the same target
attributes. For example, an adversarial suffix target-
ing the noun “motorcycle” can prompt the model
to generate motorcycle images from diverse noun
prompts like “plane”, “car”, and “bird”. We present
some examples in Appendix G (Figure 10). Ad-
ditionally, to explain why such universal transfer-
ability works, we demonstrate by following the
approach of (Du et al., 2024) that the adversarial
suffix alone can dictate the output of the Stable
Diffusion by steering the generated image toward
the target prompt. At first, we divide a successful
adversarial prompt into two segments: the input
prompt and the adversarial suffix. Then we extract
text embeddings of both the input prompt and the
suffix separately. This step ensures that each seg-
ment is processed into its own embedding without
influence from the other segment. The embeddings
of the input prompt and the suffix are then con-
catenated. Concatenation (⊕) means joining these
two embeddings into a single combined embedding
that the Stable Diffusion will use for image genera-
tion. We observe that the final image generated by
Stable Diffusion using the concatenated text em-
bedding matches the target prompt. We repeat this
procedure for all successful attack examples and
find consistent results across all POS tags. Further
details can be found in Appendix G.

6 Conclusion

In this study, we evaluate a gradient-based adversar-
ial attack aimed at six POS tags within text prompts
in both unrestricted and restricted attack strategies.
We assess the impact of these attacks on the Sta-
ble Diffusion, revealing valuable insights into the
factors contributing to their success. Our findings
reveal that nouns, proper nouns, and adjectives are
particularly vulnerable to perturbation, resulting in
adversarial image generation. However, we see that
verbs, adverbs, and numerals exhibit a higher level
of resilience against adversarial attack, exerting
minimal influence on the visual output generated
by the Stable Diffusion. We hypothesize that the
number of critical tokens in an adversarial suffix
and the ease of content fusion are primarily respon-
sible for such resilience against attacks. We believe
these findings will be valuable for enhancing the
robustness of T2I generation systems.
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7 Limitations

We utilized the Stable Diffusion model for the
gradient-based attack. It is important to note that
the attack approach might not generalize effec-
tively to other closed-source T2I generation mod-
els like Imagen (Saharia et al., 2022) or DALL-E2
(Ramesh et al., 2022), owing to differences in ar-
chitecture, text encoder, and training data. More-
over, the metrics utilized in this study to assess
the attack may not fully capture the visual plau-
sibility or semantic accuracy of images after the
attack. We evaluated the attack only on six specific
POS tags, which may not encompass all possible
scenarios, such as prepositions, conjunctions, in-
terjections, articles, and determiners. Furthermore,
the approach relies on appending suffix tokens to
the original prompt, which may not always be the
most optimal method for manipulating the image
generation process, considering the T2I model’s
sensitivity to the order of tokens. As the appended
adversarial suffix tokens may lack meaning, the
resulting adversarial prompt found by the attack
methods exhibits reduced naturalness.
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Appendix

A Preliminaries of Stable Diffusion

Stable diffusion is a latent diffusion model com-
prising three key components: a Variational Au-
toencoder (VAE), a UNet, and a CLIP text en-
coder (Radford et al., 2021) for conditioning. The
VAE consists of an encoder E and a decoder D,
where the encoder compresses an image y into
a lower-dimensional latent space representation
E(y), while the decoder reconstructs the image
from the latent space ȳ = D(E(y)). During the
T2I generation process, at first CLIP tokenizer to-
kenizes a text prompt into a sequence of tokens
W = {w1, w2, ....wn}, ensuring uniform length by
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Initial
prompt

Target
prompt

Adversarial
prompt

Token Embedder

Text
Encoder

Compute Top-k token candidates

Create candidate prompts
using multiple token

replacement

Select candidate prompt that
maximizes score function

Figure 3: Schematic view of the POS-Attack pipeline.
At first, hidden state representations from the CLIP
text encoder using input and target token embeddings
are extracted. Then, we compute loss, take gradients,
and select the top-k candidate tokens for substitution.
Next, we create several candidate prompts by randomly
replacing multiple tokens from the pool. The candidate
prompt maximizing a score function is chosen for the
next optimization step.

padding or truncating sequences to 77 tokens for
computational ease. Each token is then converted
into a text representation Wemb using the text en-
coder of CLIP. CLIP comprises both an image en-
coder and a text encoder, each responsible for en-
coding an image and its corresponding text descrip-
tion into representations that closely align with one
another. As a result, the text representation Wemb

generated by CLIP’s text encoder for a given text
prompt is expected to contain relevant information
about the images described in the prompt. Next, a
random latent image representation I0, drawn from
a Gaussian distribution is created, and noise is grad-
ually eliminated to get a noise-free representation
E(y) = Iemb through a reverse diffusion process.
Guided by the latent text embedding Wemb, a UNet
neural network U(I0,Wemb, t) employs a cross-
attention mechanism to predict and eliminate noise
from the latent space E(y) at each time step t. The
level of noise reduction is regulated by a scheduler,
progressively refining image quality. Finally, the
VAE decoder D upscales the latent image E(y)
back into pixel space, resulting in a high-resolution
image ȳ.

B Details of Adversarial Attack

Adversarial Prompt Generation. We start the
process by considering the input prompt as the
adversarial prompt. Subsequently, we extract the
embeddings for both the adversarial prompt tokens
and the target prompt tokens. These embeddings

a bench that is beautifully
shaded by a tree

a bench that is partly
shaded by a tree

a photo of a bus with
CocaCola logo

a photo of a book cover
with Microsoft logo

(a)  (b) 

Figure 4: Examples of vulnerabilities revealed by SD
model with prompts containing adverbs and proper
nouns.

are then fed into the CLIP text encoder to obtain the
final hidden state representations. Following this,
we compute the loss using a loss function and calcu-
late gradients with respect to one hot token vector
to determine the top-k candidate tokens for substitu-
tion. Then, we generate several candidate prompts
by randomly replacing multiple tokens of the ini-
tial adversarial prompt from the pool of candidate
tokens. The candidate prompt that maximizes the
score function is chosen as the adversarial prompt
for the subsequent optimization step. This iterative
process continues for a set number of iterations un-
til a final adversarial prompt is obtained. Notably,
this attack method relies only on the text encoder
and does not necessitate access to the image gen-
eration model. An illustration of the adversarial
attack is depicted in Figure 3. From the adversary’s
viewpoint, the concatenated suffix tokens in the ad-
versarial prompt should be nonsensical to humans
yet encode specific semantics predetermined by the
adversary.
Loss Function. The attack focuses on manipu-
lating the CLIP embedding space to optimize a
score function, which quantifies how much the ad-
versarial token embeddings at an intermediate op-
timization stage deviate towards the target token
embeddings using cosine similarity. The objective
is to steer away from the embeddings of input to-
kens and progressively approach those of the target
tokens by discovering more effective adversarial
tokens. This process of maximizing the score func-
tion is similar to Shahgir et al. (2023). To compute
the loss, we adopt the negated score function. Max-
imizing the score is equivalent to minimizing the
loss.
Gradient-based Search. The attack employs an
effective greedy coordinated gradient-based search
algorithm (Zou et al., 2023), utilizing the loss func-
tion discussed above. At each optimization step,
the algorithm selects k tokens with the highest neg-
ative loss and computes gradients with respect to
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Figure 5: Examples of vulnerabilities revealed by SD model with numerals. Each row contains 10 images with
numerals one to ten from left to right sequentially. The first row contains ten images of the prompt “___ bears lying
in the field” where ___ is replaced by “one” to “ten” serially. Similarly, the second, third, and fourth rows contain
prompts “___ birds looking around while on the ground”, ”___ cows eating grass” and “___ sheep roaming in the
field”.

the one-hot token vectors to identify a promising
set of candidates for replacing adversarial suffix
token positions. New candidate prompts are gen-
erated by randomly replacing multiple token posi-
tions using the pool of token candidates, repeating
this process T times. Following the approach of
Shahgir et al. (2023), we initially replace all tokens
and then gradually reduce the replacement rate to
20%.

C Vulnerabilities Observed across POS
Tags

In this section, we present some vulnerabilities ob-
served on Stable Diffusion across a few POS tags.
We noticed that the SD model inherently faces diffi-
culty generating images from prompts that include
numerals. Specifically, the model struggles to pro-
duce images with a precise count of identical ob-
jects. For instance, if the prompt is to generate an
image of five birds, the SD model will fail to create
exactly five birds and instead produce images with
a random number of birds, such as three, four, or
more than five. Examples of this issue are shown
in Figure 5. Images generated by the model using
prompts where the adverb tokens have shared lin-
guistic structures, close semantic representation in
the feature space, and unrelated to emotions gen-
erally have minimal impact on visual output. We
show such an example in Figure 4(a). In this ex-
ample, substituting “beautifully” with “partly” in

the prompt “a bench that is beautifully shaded by
a tree” results in close perplexity2 scores for the
first (128.18) and second prompts (123.49). ex-
hibit little difference. Furthermore, we observed
that the SD model struggles to generate images in-
volving logos, such as those of Microsoft, Disney,
or Google. As shown in Figure 4(b), instead of
producing accurate images, the model generates
images with misspelled words as logos.

D Impact of Semantic Distance on Attack
Success

In this section, we examine why certain POS tags
are easier to attack by considering the impact of
semantic distance. To explore this, we plotted text
embeddings of all the data across six POS tags
from the dataset in Figure 6 using t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Van der
Maaten and Hinton, 2008). Nouns, proper nouns,
and adjectives show clear clustering with visible
distances between markers, indicating considerable
differences in their text embeddings. This distance
allows the gradient algorithm to minimize the gap
from input to target, making attacks on these POS
tags easier. However, for numerals, verbs, and ad-
verbs, the markers are very close or even overlap-
ping, indicating that the input and target prompts
have similar semantic representations. This prox-

2We utilized GPT-2 (Radford et al., 2019) for perplexity
score calculation.
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Noun Adjective

AdverbNumeralVerb

Proper Noun

Figure 6: Visual representation of text embeddings of all input-target prompt pairs across six POS tags in 2D space.
Blue marker is for input prompt, yellow indicates target prompt, green for inherent bias inducing prompt, and red
for prompt where the target word is removed.

imity hampers the algorithm’s ability to optimize
the distance gap, leading to lower attack success
rates.

a purple cup on a table.'7 6 i a a purple cup on a table. \\ 1 v 4 6

a purple cup on a table. m w d 4 6? y * < - #
\\ ( q 4 c o 2 > <

a purple cup on a table. r & g <! # & o j'1 5 > 8
v / s ) % y & / ·. 3 $ ; 4 x 8 l 8, d! $ 4, o ( m $ 8 y

· 5 7 x. ;

purple           yellow

Figure 7: Examples of adversarial attack on Adjective
using ASCII/non-alphabetic characters.

E Attack using ASCII/non-alphabetic
characters

We evaluated the adversarial attack by limiting it
to adding only ASCII or non-alphabetic characters
at the end of the input prompt. However, these

attempts were unsuccessful. We conducted experi-
ments by adding 5, 20, and 50 adversarial charac-
ters to a text prompt containing an adjective token,
yet there was no alteration in the resulting image.
In all three scenarios, we noticed that even with the
addition of characters, the SD continued to gener-
ate images identical to those generated from the
original input prompt. We present a few examples
in Figure 7.

F Attack Transferability

We employed Stable Diffusion v1-5, utilizing CLIP
ViT-L/14 (Radford et al., 2021) as the pre-trained
text encoder, for both unrestricted and restricted
attack methods. Our investigation reveals that ad-
versarial suffixes generated with this version of SD
are ineffective when applied to Stable Diffusion v2-
1, which uses a different pre-trained text encoder,
OpenCLIP-ViT/H (Cherti et al., 2023). However,
we note that the attacks successfully transfer to Sta-
ble Diffusion v1-4. Examples generated using SD
v1-4 are presented in Figure 8.
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pen           book

a young boy wearing a
batman costume while riding

a skateboard. packaged
uclashaggy drew superman

paired superman vous
explore selfcare

a black duck �oating in a
wavy pond. airborne
landing three novice

konrobin livery

�oating              �ying

a very cute teddy bear
holding a pen. ☀  brigitte

entire biblidar burden
goodreads muhinstructor

spinrilla

batman           superman 

white           black 

a white curly haired dog
standing in a hallway. 🐰

urged forestation
montyalistair maltese
hallebulldogs notices

generate

three birds are looking
around while on the

ground. partnership rivals 💙
moulin 🕊  angled exchanges

bharatscoring blueslyrix

three              two

a white swan on a lake.
black sements gaga tiazzle
shares zalbraving scratches

water

curly           thick 

Figure 8: Some examples of successful attack on Stable
Diffusion v1-4.

(a) Input prompt

(e) Input prompt

(b) suf�x (c) Image after concatenation

(g) Image after concatenation(f) suf�x

(d) DAAM heatmap on suf�x

(h) DAAM heatmap on suf�x

a white swan on a lake. 

a white swan on a lake. 

black sements gaga tiazzle shares
zalbraving scratches water

coz ravens kbs yourself
>>>> sportscenter ⤵ 

crow reminded ):

Figure 9: Examples demonstrating how the adversarial
suffix independently dictates the SD model’s output.

G Examples of Suffix Transferability

We provide a successful attack example in Figure
9 where the input and target prompts are “a white
swan on a lake.” and “a black swan on a lake.”
respectively. Figure 9(a - d) represents the unre-
stricted setting. Figure 9(a) and 9(b) represent the
images generated by the SD model using the text
embedding of the input prompt and the suffix re-
spectively while 9(c) is the final image generated

using the concatenated text embedding. As the suf-
fix tokens are largely nonsensical, we employed
DAAM (Tang et al., 2023) to generate word attri-
bution heatmap in order to delineate which suffix
words correspond to which portion of the suffix im-
age, as shown in Figure 9(d). Similarly, we repeat
the procedure for the restricted setting in Figure
9(e - g).

A big plane gets ready to take
off. motorcycle generating ur

according 🏅 bike
imaginefriday street cruiser

A cat napping inside of a large
planter. manish iness ة birthday

his courageous gazing )' studying
window

A big car gets ready to take
off. motorcycle generating ur

according 🏅 bike
imaginefriday street cruiser

A big bird gets ready to take
off. motorcycle generating ur

according 🏅 bike
imaginefriday street cruiser

A dog on a Santa hat on a pillow.
tbd halloween becomes rivals
grandstand helmets becomes

pumpkin aided xj

A dog on a Floppy hat on a
pillow. tbd halloween becomes

rivals grandstand helmets
becomes pumpkin aided xj

A dog on a Cowboy hat on a
pillow. tbd halloween becomes

rivals grandstand helmets
becomes pumpkin aided xj

A cat jumping inside of a large
planter. manish iness ة birthday

his courageous gazing )' studying
window

A cat running inside of a large
planter. manish iness ة birthday

his courageous gazing )' studying
window

A purple cup on a table.
manuscript potted oh

fortunes discusses turquoscreen
dell mods

A green cup on a table.
manuscript potted oh

fortunes discusses turquoscreen
dell mods

A yellow cup on a table.
manuscript potted oh

fortunes discusses turquoscreen
dell mods

Figure 10: Examples of adversarial suffix transferability.
The top two rows are the examples of noun and proper
noun POS tags in unrestricted settings where the target
words are “motorcycle” and “Halloween” respectively.
The last two rows correspond to the examples of verb
and adjective POS tags in restricted settings where the
target words are “watching” and “blue” respectively.

12887



H More Examples of Adversarial Attack

Noun

Verb

Adverb

Adjective

Numeral

Proper
Noun

a white swan on a lake.
mondaymotivaton boat
of -->> jaifundraising

dory lifts consul
sportscar

a white swan on a lake.
🌞 wrightdailysbuilt

vehicles mariners
glapresenting vessel

blurred

Input prompt

a white swan on a
lake.

Target Prompt

a white boat on a
lake.

Inherent Bias

a white <endoftext>
on a lake.

a golden retriever
playing fetch.

a golden retriever
sitting fetch.

a golden retriever
<endoftext> fetch.

a cat looking happily. a cat looking angrily. a cat looking
<endoftext>.

a purple grape cluster
on a vine.

a yellow grape cluster
on a vine.

a <endoftext> grape
cluster on a vine.

three cats standing
on a table.

a cats standing on a
table.

<endoftext> cats
standing on a table.

a scene from harry
potter movie.

a scene from frozen
movie.

a scene from
<endoftext> movie.

a scene from harry
potter movie. 💙
cryodude jd 💌

disneyworld elsa alsace
👇👇👇 nb

three cats standing on a
table. lanterns ulation
bronson appetforecast
precipitation rugged

quitting knuckpompeo

a purple grape cluster on a
vine. -' goldengelian
moschcited 💛💙

chardonnay highlights
cellar simply

a cat looking happily.
frioverwhelmingly
radioactive pissed
partial somos rory

ignatirisers mls

a golden retriever playing
fetch. seated colleen

re�eclending committed
bench lowell posture

accepted certi�ed

Adv prompt  (no restriction) Adv prompt (restriction)

a purple grape cluster
on a vine. yellowladies

exhilarating yellow
wyecounsel marvelous
oring unesco carrying

a scene from harry
potter movie. frozen

preventmoana accepts
bowser performing froze

elsa \ud83c\udfa8
convince

three cats standing on a
table. pesticide

counselling comfortable
bounds caregiver renewal

benedfertile \ud83d\udc91
teenager

a cat looking happily.
awesome angry

grumvedgraphy stures
[# clamre�ning ott

a golden retriever playing
fetch. �nds seat created srt
adolescent chill newsnow
historically photographed

positioning

Figure 11: Few examples of successful attacks on out-of-dataset instances for each POS tag.

12888



I Some Examples of Adjective Color Fusion

purple           blue (unrestricted)

Input prompt suf�x Image after concatenation

a purple cup on a table.

overcast blue nearing!😊
blue infectious spf posing

► clasico

Input prompt suf�x Image after concatenation

a purple cup on a table.
manuscript potted oh fortunes

discusses turquoscreen dell mods
sheds

purple           blue (restricted)

Input prompt suf�x Image after concatenation

a green cup on a table. cellar �oods thermostacquisitions...,
roadside yellow fantasia bumtorch

green           yellow (unrestricted)

Input prompt suf�x Image after concatenation

a white cup on a table. oppo violet cosy ✅ employed josh
assemble briefed gorgeous lilac

white           purple (restricted)

Figure 12: Examples of adversarial suffix found by the adversarial attack responsible for fusion of color adjectives.
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J Human Evaluation Template

Yes

No

Yes

No

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Match Text Description in Image
sshibli745@gmail.com Switch account

Not shared

* Indicates required question

Are there atleast 4 images that match the prompt = " A rose that is laying down
on a bed."?

*

Are there atleast 4 images that match the prompt = "A rose that is laying down on
a grave."?

*

Next Clear form

 Forms

Figure 13: An overview of the human evaluation template.
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