Robust Text Classification: Analyzing Prototype-Based Networks

Zhivar Sourati’?, Darshan Deshpande'?, Filip Ilievski'*,
Kiril Gashteovski*® and Sascha Saralajew*
nformation Sciences Institute, University of Southern California, Marina del Rey, CA, USA
2Department of Computer Science, University of Southern California, Los Angeles, CA, USA
3Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
4NEC Laboratories Europe, Heidelberg, Germany
°CAIR, Ss. Cyril and Methodius University, Skopje, North Macedonia

Abstract

Downstream applications often require text
classification models to be accurate and ro-
bust. While the accuracy of state-of-the-art
Language Models (LMs) approximates human
performance, they often exhibit a drop in per-
formance on real-world noisy data. This lack of
robustness can be concerning, as even small per-
turbations in text, irrelevant to the target task,
can cause classifiers to incorrectly change their
predictions. A potential solution can be the
family of Prototype-Based Networks (PBN5s)
that classifies examples based on their simi-
larity to prototypical examples of a class (pro-
totypes) and has been shown to be robust to
noise for computer vision tasks. In this paper,
we study whether the robustness properties of
PBNSs transfer to text classification tasks under
both targeted and static adversarial attack set-
tings. Our results show that PBNs, as a mere ar-
chitectural variation of vanilla LMs, offer more
robustness compared to vanilla LMs under both
targeted and static settings. We showcase how
PBNs’ interpretability can help us understand
PBNs’ robustness properties. Finally, our ab-
lation studies reveal the sensitivity of PBNs’
robustness to the strictness of clustering and
the number of prototypes in the training phase,
as tighter clustering and a low number of proto-
types result in less robust PBNs.

1 Introduction

Language models (LMs) are widely used in vari-
ous NLP tasks and exhibit exceptional performance
(Chowdhery et al., 2022; Zoph et al., 2022). In light
of the need for real-world applications of these
models, the requirements for robustness and inter-
pretability have become urgent for both founda-
tional Large Language Models (LLMs) and fine-
tuned LMs. More fundamentally, robustness and in-
terpretability are essential components of develop-
ing trustworthy technology that can be adopted by
experts in any domain (Wagstaff, 2012; Slack et al.,

2022). However, LMs have limited interpretabil-
ity by design (Zhao et al., 2023; Gholizadeh and
Zhou, 2021), which cannot be fully mitigated by
posthoc explainability techniques (Zini and Awad,
2022). Moreover, LMs lack robustness when ex-
posed to text perturbations, noisy data, or distribu-
tion shifts (Jin et al., 2020; Moradi and Samwald,
2021). Reportedly, even LLMs lack robustness
when faced with out-of-distribution data and noisy
inputs (Wang et al., 2023), a finding that is sup-
ported by the empirical findings of this paper, too.

On this ground, NLP research has increasingly
focused on benchmarks, methods, and studies that
emphasize robustness and interpretability (e.g.,
Zhou et al., 2020; Jang et al., 2022; Liu et al., 2021).
This has also been accompanied by the surge of
focus on models that are inherently and architec-
turally interpretable and robust (e.g., Koh et al.,
2020; Papernot and McDaniel, 2018; Keane and
Kenny, 2019). An example of such models is the
family of Prototype-Based Networks (PBNs) that
is designed for robustness and interpretability (Li
et al., 2018b). PBNs are based on the theory of
categorization in cognitive science (Rosch, 1973),
where categorization is governed by the graded
degree of possessing prototypical features of dif-
ferent categories, with some members being more
central (prototypical) than others. Consider, for
example, classifying different types of birds. Then,
pelican classification can be done through their pro-
totypical tall necks and similarity to a prototypical
pelican (Nauta et al., 2021a). Computationally, this
idea is implemented by finding prototypical points
or examples in the shared embedding space of data
points and using the distance between prototypes
and data points to accomplish the classification task.
As noted by Linzen (2020), human-like classifica-
tion approaches also rely on distances to proto-
typical examples, which PBNs leverage to achieve
robustness levels similar to humans. The use of pro-
totypes allows PBNs to compare input points to pro-

12736

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 12736-12757
November 12-16, 2024 ©2024 Association for Computational Linguistics

4+)\c.
i [* 2
i [Gosne] | e

Inference

Training

.........

Figure 1: Classification by a PBN. The model computes distances between the new point and prototypes, d(e;, Py),
and distances within prototypes, d(Py, P;), for both inference and training. During training, the model minimizes the
loss term, £, consisting of L, AcLc, A\iL;, AsLs, controlling the importance of accuracy, clustering, interpretability,
and separation of prototypes, based on all the computed distances; during inference, distances between the new
point and prototypes are used for classification by a fully connected layer.

totypical examples, making them resilient to small
perturbations in the input (e.g., changes in phrases
or words) without losing the overall semantic mean-
ing. This is because the classification task in PBNs
utilizes multiple prototypes and their correspond-
ing distances, which represent different semantic
aspects of the data, thereby enhancing robustness
against noise and adversarial attacks (Yang et al.,
2018). Furthermore, prototypes implicitly maxi-
mize the margin between classes as shown in cer-
tain adversarially robust architectures (Voracek and
Hein, 2022).

PBNs have been popular in Computer Vision
(CV) tasks, including image classification (An-
gelov and Soares, 2020) and novel class detec-
tion (Hase et al., 2019). Inspired by PBNs in CV,
NLP researchers have also developed PBN mod-
els for text classification, in particular, for senti-
ment classification (Plucinski et al., 2021; Ming
et al., 2019; Hong et al., 2021), few-shot relation
extraction (Han et al., 2021; Meng et al., 2023),
and propaganda detection (Das et al., 2022). Yet,
while competitive performance and interpretability
of PBNs have been studied in both NLP (Das et al.,
2022; Hase and Bansal, 2020) and CV (Gu and
Ding, 2019; van Aken et al., 2022), their robust-
ness advantages over vanilla models have only been
investigated in CV (Yang et al., 2018; Saralajew
et al., 2020; Voracek and Hein, 2022).

In this study, we investigate whether the robust-
ness properties of PBNs transfer to NLP classifica-
tion tasks. In particular, our contributions are: (1)
We adopt a modular and comprehensive approach
to evaluate PBNs’ robustness properties against
various well-known black-box adversarial attacks
under both targeted and static adversarial settings;
(2) We conduct a comprehensive analysis of the

sensitivity of PBNs’ robustness with respect to dif-
ferent hyperparameters.

Our experiments show that PBNs improve the
robustness of language models in text classification
tasks by effectively handling realistic perturbations
under both targeted and static adversarial settings.
We note that the robustness boost that adversarial
augmented training brings to LMs with access to
additional pieces of relevant data is higher than
the boost caused by PBNs’ architecture. Never-
theless, considering that the robustness boost in
PBNs is only caused by their architecture without
any additional resources, and this architecture is
interpretable by design, the merits of such models
can contribute to the field. Finally, benefiting from
inherent interpretability, we showcase how PBN
interpretability properties help to explain PBNs’
robust behavior. We release our code to support
future research.

2 Prototype-Based Networks

PBNs classify data points based on their similarity
to a set of prototypes learned during training. These
prototypes summarize prominent semantic patterns
of the dataset through two mechanisms: (1) proto-
types are defined in the same embedding space as
input examples, which makes them interpretable
by leveraging input examples in their proximity;
and (2) prototypes are designed to cluster semanti-
cally similar training examples, which makes them
representative of the prominent patterns embed-
ded in the data and input examples. The PBN’s
decisions, based on quantifiable similarity to proto-
types, are robust as noise and perturbations are bet-
ter reflected in the computed similarity to familiar

1https://github.com/zhpinkman/
robust-prototype-learning

12737

https://github.com/zhpinkman/robust-prototype-learning
https://github.com/zhpinkman/robust-prototype-learning

prototypical patterns (Hong et al., 2020). Addition-
ally, prototypes can provide insight during infer-
ence by helping users explain the model’s behavior
on input examples through the prototypes utilized
for the model’s prediction (Das et al., 2022).

Inference. Classification in PBNs is done via
a fully connected layer applied on the measured
distances between embedded data points and pro-
totypes. As shown in Figure 1, given a set of
data points x;,7 € {1,..., N} with labels y; €
{1,...,C}, and Q prototypes, PBNs first encode
examples with a backbone F, resulting in the em-
bedding e; = E(x;). Next, PBNs compute the
distances between prototypes and e; using the func-
tion d. These distances get fed into a fully con-
nected layer to compute class-wise logits, incorpo-
rating the similarities to each prototype. Applying
a softmax on top, the final outputs are . (x;): prob-
ability that x; belongs to class ¢ € {1,...,C}.

Training. The model is trained using objectives
that simultaneously tweak the backbone param-
eters and the (randomly initialized) prototypes,
thus promoting high performance and meaning-
ful prototypes. To compute a total loss term
L, PBNs use the computed distances within pro-
totypes d(Py, P)r, distances between all @
prototypes and N training examples given by
d(ej, Pr)jeqi,....N}ikefl,...Q}» and the computed
probabilities .. The prototypes and the weights in
the backbone are adjusted according to £. The to-
tal loss L consists of different inner loss terms that
ensure high accuracy, clustering, interpretability,
and low redundancy among prototypes; i.e., the
classification loss L., the clustering loss £, (Li
et al., 2018b), the interpretability loss £; (Li et al.,
2018b), and separation loss L5 (Hong et al., 2020):

L= Ece +)\cﬁc +)\zﬁz -)\sﬁm (1)

where A., \;, A\s > 0 are regularization factors to

adjust the contribution of the auxiliary loss terms.
Classification loss L., is defined as the cross-

entropy loss between predicted and true labels:

N
Lee =~ log(ily,(z;)). 2)
j=1

Clustering loss L. ensures that the training ex-
amples close to each prototype form a cluster of
similar examples. In practice, L. keeps all the
training examples as close as possible to at least
one prototype and minimizes the distance between
training examples and their closest prototypes:

Original text | Perturbed text

A gentle breeze rustled the leaves. | A géntle wind rustled the 1Eaves.

rescue Engineer Company | Res©ue operation Company

embarrassingly foolish | embarrassingly foOlish

Table 1: Examples of adversarial perturbations, with the
perturbed tokens highlighted.

1 N

L.=— min

d(Py,e;). 3
Nj:1 ke{l,...Q) (P, €))

Interpretability loss L; ensures that the proto-
types are interpretable by minimizing the distance
to their closest training sample:
Q

min

jegm d(Py, e;). 4)

k=1

Keeping the prototypes close to training samples
allows PBNs to represent a prototype by its closest
training samples that are domain-independent and
enable analysis by task experts.

Separation loss Ls; maximizes the inter-
prototype distance to reduce the probability of re-
dundant prototypes:

2
- Q@-1) 2

kle{l,...Q} kAL

d(Py, 7). (5)

3 Robustness Evaluation

We assess PBNs’ robustness against adversarial per-
turbations of original input text that are intended
to preserve the text’s original meaning. The per-
turbations change the classification of the target
model upon confronting these perturbed examples
from the correct behavior to an incorrect one in
an effective and efficient way (Dalvi et al., 2004;
Kurakin et al., 2017a,b; Li et al., 2023). Strategies
for finding these perturbations vary (Zhang et al.,
2020): perturbations can be focused on different
granularities, i.e., character-level, word-level, or
sentence-level; their generation can be done in dif-
ferent ways, e.g., replacing, inserting, deleting,
swapping tokens; they can have different searching
strategies for their manipulations, such as context-
aware or isolated approaches; and also various
salient token identification strategies to maximize
their adversarial effect.

Orthogonally, adversarial perturbations are di-
vided into targeted and static. In the targeted set-
ting, the attacker aims to mislead a specific model

12738

toward incorrect predictions (Si et al., 2021). How-
ever, in the static setting, adversarial examples are
crafted without targeting any particular model. In-
stead, the same perturbations are generated by at-
tacking external models that the attacker has access
to, referred to as source models. These successful
perturbations are then applied to a different model,
the target model, which is the one being evalu-
ated for robustness. The performance of the target
model against these pre-collected perturbations is
used to assess its robustness (Wang et al., 2022a).

Additionally, adversarial attacks can be catego-
rized as white-box or black-box (Zhang et al.,
2020). A white-box attack occurs when the attacker
has knowledge of the target model’s architecture
and parameters. This access allows for a more
precise generation of adversarial examples explic-
itly tailored to exploit vulnerabilities in the target
model. In contrast, a black-box attack is performed
without access to the target model’s internal details;
instead, the attacker generates adversarial examples
by querying the model or using outputs from other
accessible models to infer information about the tar-
get model’s behavior. The robustness of the target
model is then evaluated based on how effectively it
withstands generated adversarial examples. In this
study, we specifically focus on black-box attacks
under both targeted and static settings.

With numerous adversarial perturbation strate-
gies in the literature (Zhang et al., 2020; Wang et al.,
2022c), each with unique advantages (e.g., effec-
tiveness vs. efficiency), we use a wide range of
existing perturbation strategies in this study. These
cover the aforementioned granularities, generation
strategies, searching strategies, and salient token
identification strategies under both targeted and
static settings. See examples of adversarial pertur-
bations covered in our study in Table 1.

4 Experimental Setup
4.1 Datasets

PBNss classify instances based on their similarity to
prototypes learned during training that summarize
prominent semantic patterns in a dataset. Thus,
with more classes, we might need more prototypes
to govern the more complex system between in-
stances and prototypes (Yang et al., 2018). To study
the interplay between the number of classes and
robustness, we employ three datasets: (1) IMDB
reviews (Maas et al., 2011): a binary sentiment
classification dataset; (2) AG_NEWS (Gulli): a col-
lection of news articles that can be associated with

four categories; (3) DBPedia:* a dataset with taxo-
nomic, hierarchical categories for Wikipedia arti-
cles (Lehmann et al., 2015), with nine classes. We
use these three datasets to study the robustness of
PBNss under both targeted and static adversarial set-
tings. As an additional source of static adversarial
perturbations, we adopt the SST-2 binary classifi-
cation split from the existing Adversarial GLUE
(AdvGLUE) dataset (Wang et al., 2022a), consist-
ing of perturbed examples of different granularities,
filtered both automatically and by human evalua-
tion for more effectiveness. For statistics of the
datasets and their perturbations, see Appendix A.

4.2 Perturbations

As mentioned before, we will focus on black-box
adversarial perturbations under both targeted and
static settings. However, there are various strate-
gies to produce perturbations given original input
examples. In the following, we will elaborate on
the strategies we used as well as how they were
utilized in the targeted and static settings.

Attacking strategies. To produce perturbations
given original inputs, we selected five well-
established adversarial attack strategies: BAE
(Garg and Ramakrishnan, 2020), TextFooler (Jin
et al., 2020), TextBugger (Li et al., 2018a), Deep-
WordBug (Gao et al., 2018), and PWWS (Ren
et al., 2019).3 As mentioned in Section 3, these
attacks cover a wide range of granularities (e.g.,
character-based in DeepWordBug and word-based
in PWWS), generation strategies (e.g., word sub-
stitution in PWWS and TextFooler and deletion
in TextBugger), searching strategies (e.g., context-
aware in BAE and isolated synonym-based in
TextFooler), and salient token identification strate-
gies (e.g., finding the important sentences first and
then words in TextBugger and finding the impor-
tant words to change in BAE). For details of how
each attack strategy works to produce perturbations
given original input examples, refer to Section B.4.

Targeted perturbations. In this setting, the ad-
versarial attacks are directly conducted against
PBNs and vanilla LMs trained on original datasets.
For each attack strategy, we aim for 800 successful
perturbations and report the robustness of PBNs

Zhttps://bit.1ly/3RgX41H

3We also employed paraphrased-based perturbations (Lei
et al., 2019), generated by GPT3.5 (OpenAl, 2022). However,
both our baselines and PBNs were robust to these perturba-
tions, and we include them in the Appendix in Table 8.

12739

https://bit.ly/3RgX41H

against adversarial attacks by Attack Success Rate
(ASR; Wu et al., 2021) and Average Percentage of
Words Perturbed (APWP; Yoo et al., 2020) to reach
the observed ASR. Successful perturbations are
those that change the prediction of a target model
already fine-tuned on that dataset from the correct
prediction to the wrong prediction.

Static perturbations. In this setting, the adver-
sarial attacks are conducted on external models:
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and DistilBERT (Sanh et al., 2019), which
are trained on the original datasets, and a compila-
tion of the successful perturbations on those models
is used to assess the robustness of PBNs against the
studied adversarial attacks by their accuracy on the
perturbations, similar to the study by Wang et al.
(2022a). To obtain the perturbations, each model
is fine-tuned on each dataset, and 800 successful
perturbations for each attack strategy are obtained.
We focus on examples whose perturbations are pre-
dicted incorrectly by all three models to maximize
the generalizability of this static set of perturbations
to a wider range of unseen target models. In princi-
ple, the perturbations for each model are different,
yielding three variations per original example for
a dataset-perturbation pair. For instance, focusing
on DBPedia and BAE attack strategy, after 800
successful perturbations for each of the three target
models, the perturbations of 347 original examples
could change all models’ predictions, resulting in a
total of 1401 (3 x 347) perturbations compiled for
BAE attack strategy and DBPedia dataset.

4.3 PBNs’ Hyperparameters

Backbone (E). Prototype alignment and training
are highly dependent on the quality of the latent
space created by the backbone encoder E, which
in turn affects the performance, robustness, and
interpretability of PBNs. We consolidate previous
methods for text classification using PBNs (Plu-
cinski et al., 2021; Das et al., 2022; Ming et al.,
2019; Hong et al., 2020) and consider three back-
bone architectures: BERT (Devlin et al., 2018),
BART encoder (Lewis et al., 2019), and Electra
(Clark et al., 2020). Based on our empirical evi-
dence, fine-tuning all the layers of the backbone
was causing the PBNs’ training not to converge.
Hence, we freeze all the layers of the backbones
except for the last layer when training.

Distance function (d). The pairwise distance cal-
culation quantifies how closely the prototypes are

aligned with the training examples (Figure 1). In
recent work, Euclidean distance has been shown
to be better than Cosine distance for similarity cal-
culation (van Aken et al., 2022; Snell et al., 2017)
as it helps to align prototypes closer to the training
examples in the encoder’s latent space. However,
with some utilizing Cosine distance (Chen et al.,
2019) while others prioritizing Euclidean distance
(Mettes et al., 2019), and the two having incompa-
rable experimental setups, conclusive arguments
about the superiority of one over the other cannot
be justified, and the choice of distance function
is usually treated as a hyperparameter. Accord-
ingly, we hypothesize that the impact of d will be
significant in our study of robustness, and hence,
we consider both Cosine and Euclidean distance
functions when training PBNs.

Number of prototypes ((J). Number of proto-
types in PBNs is a key factor for mapping difficult
data distributions (Yang et al., 2018; Sourati et al.,
2023). Hence, to cover a wide range, we consider
five values for Q = {2,4,8,16,64}.

Objective functions (£). Given the partly com-
plementary goals of loss terms, we investigate the
effect of interpretability, clustering, and separation
loss on PBNs’ robustness, keeping the accuracy
constraint (L) intact. To do so, we consider three
values, {0,0.9, 10} for \;, A., and As. O value rep-
resents the condition where the corresponding loss
function is not being utilized in the training process.
0.9 value was empirically found to offer good accu-
racy, clustering, and interpretability, across datasets
and was also motivated by prior works (Das et al.,
2022). 10 value was chosen as an upper bound
dominating the corresponding loss objective (e.g.,
interpretability) in the training process.

4.4 Baselines

Since PBNs are architectural enhancements of
vanilla LMs using learned prototypes for classi-
fication instead of a traditional softmax layer used
in vanilla LMs, vanilla LMs employed as PBNs’
backbones serve as a baseline for comparing the
robustness of PBNs. We also employ adversar-
ial augmented training (Goyal et al., 2023) on
top of the vanilla LMs as another baseline. Note
that the same layers frozen for PBNs’ training are
also frozen for the baselines. As we need addi-
tional data for adversarial augmented training, we
use this baseline under static perturbations, where
the set of perturbations has already been compiled

12740

Targeted Attacks; Attack Success Rate (ASR %) reported

AG_News
BAE DWB PWWS TB TF | BAE

DBPedia
DWB PWWS TB TF

IMDB
BAE DWB PWWS TB TF

BART 148 532 536 31.8 765 | 189 283
+PBN 111 323 41.3 231 622 | 152 147

43.1 21.1 719 | 741 747 99.3 78.5 100.0
28.7 12.6 455 | 361 41.0 759 413 731

BERT 17.0 78.0 69.8 457 888 | 139 248
+PBN 7.7 426 47.0 304 705 | 98 173

31.6 220 613 825 797 99.9 839 999
21.6 13.0 41.0 | 428 41.0 79.7 57.7 79.8

ELEC. 248 895 69.1 87.8 879 | 145 428
+PBN 14.0 349 429 518 702 | 78 115

45.6 423 753 | 525 492 953 67.8 993
17.8 191 35.6 | 289 274 66.6 36.8 78.0

Static Attacks; Accuracy (%) reported

AG_News
BAE DWB PWWS TB TF | BAE

DBPedia
DWB PWWS TB TF

SST2
GLUE

IMDB

BAE DWB PWWS TB TF

BART 532 767 832 715 858 555 686
+PBN 57.6 80.6 848 792 888 | 65.0 7L6
+Aug. 717 784 855 77.6 90.1 | 840 79.6

584 725 713 | 741 805 83.6 85.8 87.6 29.8
65.7 784 748 | 804 813 86.3 89.3 904 50.4
89.7 88.8 94.0 | 85.7 86.7 929 899 96.5 -

BERT 478 640 759 694 80.7| 623 614
+PBN 529 704 785 738 843 | 669 66.6
+Aug. 583 716 783 712 854|755 709

754 784 820 751 771 850 834 89| 420
80.3 820 858|776 791 853 850 86.5| S5L1
841 905 91.0| 832 77.6 917 90.8 892

ELEC. 504 650 735 639 778 19 669
+PBN 646 741 851 772 89.0| 787 69.8
+Aug. 550 595 717 616 795 | 862 73.8

800 814 844 | 897 903 94.6 945 956| 443
793 825 858 90.0 90.8 946 955 963 | 65.6
88.1 845 92.8| 894 937 953 949 958

GPT40 57.1 733 73.0 765 799 | 66.0 634
Llama3 57.6 564 550 659 628 | 44.0 537

61.0 69.0 44.0| 87.0 895 912 937 942 59.8
37.8 450 444 | 82.0 86.0 932 89.0 915 56.0

Table 2: Comparison of PBNs and vanilla LMs (+ vanilla LMs with adversarial augmented training under static
attack setting) under both targeted and static adversarial attack perturbations, using the best hyperparameters for
PBNs, on IMBD, AG_News, DBPedia (+ SST-2 from AdvGLUE under static attack setting) datasets, under BAE,
DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF). The highest accuracy and lowest ASR showing
the superior model for each architecture is boldfaced, and the second best model is underlined for static attacks.

beforehand. Finally, we compare PBNs with two
LLMs, namely, GPT4o0 (Al, 2024) and Llama3
(Al@Meta, 2024). Although we note that LLMs
are more appropriate choices for generic chat and
text generation due to their decoder-only architec-
ture, and fine-tuned LMs might still be superior to
LLMs when it comes to task-oriented performance
(Chang et al., 2024), we include this comparison
for comprehensiveness. The superiority of smaller
fine-tuned LMs is confirmed in our experiments,
too (see Table 7 in Appendix), where smaller fine-
tuned models beat LLLMs on the original datasets.

5 Results
5.1 Robustness of PBNs

The robustness report of PBNs under both targeted
and static adversarial attacks under different exper-
imental setups (i.e., datasets, backbones, and attack
strategies), using the best hyperparameters is pre-
sented in Table 2. # > Best hyperparameters were
chosen among the permutation of all hyperparam-
eters presented in Section 4.3 to yield the highest

“To ensure that the perturbations do not significantly affect
the meaning of original texts, we compared the two versions
in terms of semantic similarity using OpenAl text-embedding-
ada-002 across all datasets and attack types, which yielded a
high similarity: 0.97 (SD = 0.01).

3QOur results showed that adversarial perturbations from
TextFooler and PWWS were more effective than others.

robustness (lowest ASR or highest accuracy). Un-
der the targeted setting, our results showed that
PBNs are more robust than vanilla LMs (having
lower ASR) regardless of the utilized backbone,
dataset, or attacking strategy. We saw similar trends
analyzing the robustness of PBNs compared to
vanilla LMs, averaging over all PBN hyperparame-
ters (find the details in Table 10). Focusing on the
APWP metric, the PBNs’ robustness was greater
than vanilla LMs (having higher APWP) in 71.0%
of the conditions, and this superiority dropped to
31.0% of the conditions when averaging over all
the hyperparameters (find the details in Table 9),
which suggested that PBNs’ robustness is sensitive
to hyperparameters involved in training.

We observed similar trends under static adversar-
ial attacks, where the PBNs’ robustness was higher
than vanilla LMs (having higher accuracy under at-
tack) in the majority of the conditions (93.7% of all
variations of experimental setups and hyperparame-
ters). Furthermore, in each experimental condition
(dataset and attack strategy), there was always a
PBN that outperformed larger LLMs, i.e., GPT40
(Al 2024) and Llama 3 (Al@Meta, 2024), which
have significantly more parameters but lack the in-
terpretability that PBNs inherently offer. Vanilla
LMs with adversarial augmented training demon-
strated greater robustness than PBNs in 71.2% of

12741

the conditions. This highlighted the more effective
role of additional data in adversarial augmented
training compared to PBNs’ robust architecture,
which makes PBNs a preferable choice when ef-
ficiency is prioritized (Goodfellow et al., 2014).
Analyzing PBNs’ robustness under the static ad-
versarial setting averaging over all PBNs’ hyperpa-
rameters, our results showed that in only 31.2% of
the conditions, PBNs have greater robustness com-
pared to vanilla LMs (find the details in Table 10),
which similar to observations on APWP, suggested
that PBNs’ robustness is sensitive to hyperparame-
ters involved in the training.

To sum up, we observed that PBNs consistently
and over different metrics were more robust com-
pared to vanilla LMs and LLMSs, using the best
hyperparameters without sacrificing performance
on the original unperturbed samples (find perfor-
mance on original datasets in Table 7). We believe
that the observed robust behavior is due to the de-
sign of the PBN architecture. Standard neural net-
works for text classification distinguish classes by
drawing hyperplanes between samples of different
classes that are prone to noise (Yang et al., 2018),
especially when dealing with several classes. In-
stead, PBNs are inherently more robust since they
perform classification based on the similarity of
data points to prototypes, acting as class centroids.
Finally, we observed that the robustness superior-
ity of PBNs compared to vanilla LMs diminished
when averaging over all possible hyperparameters,
indicating that the robustness of PBNs is sensitive
to hyperparameter choices. We investigated this
sensitivity further in Section 5.2.

5.2 Sensitivity to Hyperparameters

We studied the sensitivity of PBNs’ robustness to
the hyperparameters involved in training, covering
values discussed in Section 4.3. Focusing on each
hyperparameter, the value for the other ones was se-
lected to yield the best performance so that, overall,
we could better depict the sensitivity and limiting
effect of the hyperparameter of interest. We did
not observe any sensitivity from PBNs with respect
to the backbone, interpretability term ()\;; see Sec-
tion C.6), separation term (J\g4; see Section C.8),
and the distance function (d; see Section C.5).
However, as presented in Figure 2, we observed
that higher values of \., promoting tighter cluster-
ing of input examples around prototypes, hinder
PBNSs’ robustness. Clustering loss is a regulariza-
tion term that encourages samples to be close to

N ©
o o
adani

w [=)]
o o
SMaN OV

N
o

Attack Success Rate (%)
w
o

Figure 2: Attack Success Rate (ASR %) of PBNs with
different A\, values adjusting the importance of cluster-
ing in the trained PBNs, with other hyperparameters set
to their best values, and averaged across other possible
variables (e.g., backbone and attack type). The dashed
line represents the ASR for the non-PBN model.

o]
o

(=2}
o
L

(=)}
o
|

N
o

Attack Success Rate (%)
N
o

N
o
L

Prototypes

Figure 3: Attack Success Rate (ASR %) of PBNs with
different numbers of prototypes, with other hyperpa-
rameters set to their best values, and averaged across
other possible variables (e.g., backbone and attack type).
dashed line represents the ASR for the non-PBN model.

prototypes in the embedding space, further enhanc-
ing interpretability but potentially reducing accu-
racy by narrowing the diversity in embedding space,
which is a common phenomenon in loss terms of
competing goals. The mean and standard deviation
over (transformed) distances between prototypes
and samples can be used to describe the spread of
embedded data points around prototypes. These
values are (—0.2441.7) x 10~7 with A, = 0.9, and
(—0.18 +1.5) x 10~ with A, = 10, showing less
diverse prototypes indicated by smaller measured
distances caused by stronger clustering.

Additionally, as depicted in Figure 3, we ob-
served poor robustness from PBNs when the num-
ber of prototypes is as low as two, which is intu-
itive as a low number of prototypes also means a
lower number of semantic patterns learned, which
constraints the PBNs’ abilities to distinguish be-
tween different classes. Noting that more proto-

12742

Label
UnitWork

Proto.| Representative Training Examples

Py Handly’s Lessee v. Anthony (1820): De-
termined Indiana-Kentucky boundary.
Rasul v. Bush (2004): Decided jurisdiction
over Guantanamo detainees.

Py Marine Corps Air Station Futenma: U.S.
Marine Corps base, Ginowan, Okinawa; re-
gional military hub.

Ozdere: Turkish coastal resort town in
Izmir Province, popular among tourists.

Py Yevgeni Viktorovich Balyaikin: Russian
footballer for FC Tom Tomsk.

Gigi Morasco: Fictional character on
ABC’s One Life to Live.

UnitWork

Place

Place

Agent

Agent

Table 3: Examples of prototypes, their closest training
examples, alongside their label derived from their clos-
est training examples, extracted from a PBN with 16
prototypes and a BART backbone on DBPedia. Note
that the presented training examples are the summariza-
tion of their longer version for easier interpretation.

types add to the complexity and size of the network
as a whole, the observed stable trend of the robust-
ness with the higher number of prototypes (> 2)
suggests that as long as the number of prototypes is
not too low, PBNs with lower number of prototypes
can be preferred. This corroborates with the studies
performed by Yang et al. (2018). Finally, note that
the same analysis using other metrics (e.g., APWP)
and under static adversarial setting (using accuracy
as the studied metric) depicted the same trend and
can be found in Section C.7 and Section C.9.

5.3 PBNs’ Interpretability w.r.t. Robustness

PBNs are interpretable by design (Chen et al.,
2019), and we can understand their behavior
through the distance of input examples to proto-
types and the importance of these distances, ex-
tracted by the last fully connected layer of PBNs
transforming vector of distances to log probabili-
ties for classes. While proving interpretability in
the traditional sense is beyond the scope of this
paper (refer to Das et al., 2022; Hoffmann et al.,
2021; Davoodi et al., 2023; Ragno et al., 2022 for
more in-depth analysis of interpretability of PBNs),
we showcase how prototypes in PBNs can be inter-
pretable and utilized for robustness analysis under
adversarial attacks.

Examples of learned prototypes that can be rep-
resented by their closest training input examples
are shown in Table 3. These input examples help
the user identify the semantic features that the pro-
totypes are associated with, which by our observa-
tions in our case, were mostly driven by the class

label of the closest training examples. We can also
benefit from interpretable properties of PBNs to
better understand their robustness properties, re-
gardless of the success of perturbations. Table 4
illustrates predictions of a PBN on three original
and perturbed examples from the DBPedia dataset,
alongside the top-2 prototypes that were utilized
by the PBN’s fully connected layer for prediction
and prototypes’ associated label (by their closest
training examples). In the first two examples, PBN
correctly classifies both the original and perturbed
examples, and from the top-2 prototypes, we ob-
serve that this is due to unchanged prototypes uti-
lized in prediction. However, in the last example,
the model incorrectly classifies an example that
is associated with an Agent as a Place. Interest-
ingly, this incorrect behavior can be explained by
the change in the top-2 activated prototypes, where
they are changing from Agent-associated to Place-
associated prototypes because of the misspelling
of "saint" with "street." Thus, the use of prototypes
not only enhances our understanding of the model’s
decision-making process but also unveils how mi-
nor perturbations influence the model’s predictions.

6 Related Work

Robustness evaluation. Robustness in NLP is
defined as models’ ability to perform well un-
der noisy (Ebrahimi et al., 2018) and out-of-
distribution data (Hendrycks et al., 2020). With
the wide adoption of NLP models in different do-
mains and their near-human performance on vari-
ous benchmarks (Wang et al., 2019; Sarlin et al.,
2020), concerns have shifted towards models’ per-
formance facing noisy data (Wang et al., 2022a,b).
Studies have designed novel and effective adver-
sarial attacks (Jin et al., 2020; Zhang et al., 2020),
defense mechanisms (Goyal et al., 2023; Liu et al.,
2020), and evaluations to better understand the ro-
bustness properties of NLP models (Wang et al.,
2022a; Morris et al., 2020a). These evaluations
are also being extended to LLMs, as they similarly
lack robustness (Wang et al., 2023; Shi et al., 2023).
While prior work has studied LMs’ robustness, to
our knowledge, PBNs’ robustness properties have
not been explored yet. Our study bridges this gap.

Prototype-based networks. PBNs are widely
used in CV (Chen et al., 2019; Hase et al., 2019;
Kim et al., 2021; Nauta et al., 2021b; Pahde et al.,
2021) because of their interpretability and robust-
ness properties (Soares et al., 2022; Yang et al.,
2018). While limited work has been done in the

12743

Text Activ. Proto.s | Proto.s Labels | Pred. | Label
Roman Catholic Diocese of Barra: Diocese in Barra, Feira de Santana province, Brazil. Pi, P14 Place, Place Place | Place
Roman Catholic Bishop of Barra: Episcopal seat in Barra, Feira de Santana province, Brazil. | Pi, Pia Place, Place Place | Place
Inta Ezergailis: Latvian American professor emerita at Cornell University. P, Ps Agent, Agent | Agent| Agent
Inta Ezergailis: Latvian American poet and scholar at Cornell University. Ps, P; Agent, Work | Agent| Agent
Saint Eigrad: 6th-century Precongregational North Wales saint and Patron Saint of Llaneigrad. | P2, Ps Agent, Agent | Agent| Agent
St Eigrad: 6th-century Precongregational street of North Wales and Patron Saint of Llaneigrad. | Py, P14 Place, Place Place | Agent

Table 4: Examples of the original (top) and adversarially perturbed (bottom) examples of DBPedia using TextFooler,
classified by a PBN, alongside the top-2 activated prototypes by the PBN’s fully connected layer and their associated

labels. Incorrectly predicted examples are in italic.

NLP domain, PBNs have recently found applica-
tion in text classification tasks such as propaganda
detection (Das et al., 2022), logical fallacy detec-
tion (Sourati et al., 2023), sentiment analysis (Plu-
cinski et al., 2021), and few-shot relation extrac-
tion (Meng et al., 2023). ProseNet (Ming et al.,
2019), a prototype-based text classifier, uses sev-
eral criteria for constructing prototypes (He et al.,
2020), and a special optimization procedure for bet-
ter interpretability. ProtoryNet (Hong et al., 2020)
leverages RNN-extracted prototype trajectories and
deploys a pruning procedure for prototypes, and
ProtoTex (Das et al., 2022) uses negative proto-
types for handling the absence of features for clas-
sification. While PBNs are expected to be robust to
perturbations, this property has not been systemati-
cally studied in NLP. Our paper consolidates PBN
components used in prior studies and explores their
robustness in different adversarial settings.

7 Conclusions

Inspired by the state-of-the-art LMs and LLMs’
lack of robustness to noisy data, we study the ro-
bustness of PBNs, as an architecturally robust vari-
ation of LMs, against both targeted and static adver-
sarial attacks. We find that PBNs are more robust
than vanilla LMs and even LLMs such as LLlama3,
both under targeted and static adversarial attack set-
tings. Our results suggest that this robustness can
be sensitive to hyperparameters involved in PBNs’
training. More particularly, we note that a low num-
ber of prototypes and tight clustering conditions
limit the robustness capacities of PBNs. Addition-
ally, benefiting from the inherently interpretable
architecture of PBNs, we showcase how learned
prototypes can be utilized for robustness and also
for gaining insights about their behavior facing ad-
versarial perturbations, even when PBNs are wrong.
In summary, our work provides encouraging results
for the potential of PBNs to enhance the robustness
of LMs across a variety of text classification tasks
and quantifies the impact of architectural compo-
nents on PBN robustness.

Acknowledgments

This research was supported, in part, by the Army
Research Laboratory under contract W911NF-23-
2-0183, and by the National Science Foundation
under Contract No. IIS-2153546.

Limitations

Although we cover a wide range of adversarial per-
turbations and strategies for their generation, we
acknowledge that more complicated perturbations
can also be created that are more effective and
help the community have a more complete under-
standing of the models’ robustness. Hence, we do
not comment on the generalizability of our study
to all possible textual perturbations besides our
evaluation on AdvGLUE. Moreover, although it is
customary in the field to utilize prototype-based
networks for classification tasks, their application
and robustness on other tasks remain to be explored.
Furthermore, while we attempt to use a wide vari-
ety of backbones for our study, we do not ascertain
similar patterns for all possible PBN backbones
and leave this study for future work. Finally, we
encourage more exploration of the interpretability
of these models under different attacks to better
understand the interpretability benefits of models
when analyzing robustness.

Ethical Considerations

Although the datasets and domains we focus on
do not pose any societal harm, the potential harm
that is associated with using the publicly available
tools we used in this study to manipulate models in
other critical domains should be considered. Issues
surrounding anonymization and offensive content
hold importance in data-driven studies, particularly
in fields like natural language processing. Since we
utilize datasets like IMDB, AG_News, DBPedia,
and AdvGLUE that are already content-moderated,
there is no need for anonymization of data before
testing for robustness in this study.

12744

References

Open Al 2024. Hello GPT-40. https://openai.com/
index/hello-gpt-40/. [Accessed 15-06-2024].

Al@Meta. 2024. Llama 3 model card.

Plamen Angelov and Eduardo Soares. 2020. Towards
explainable deep neural networks (xdnn). Neural
Networks, 130:185-194.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1-45.

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Bar-
nett, Jonathan Su, and Cynthia Rudin. 2019. This
Looks like That: Deep Learning for Interpretable Im-
age Recognition. Curran Associates Inc., Red Hook,
NY, USA.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sang-
hai, and Deepak Verma. 2004. Adversarial classifica-
tion. KDD ’04, page 99—108, New York, NY, USA.
Association for Computing Machinery.

Anubrata Das, Chitrank Gupta, Venelin Kovatchev,
Matthew Lease, and Junyi Jessy Li. 2022. ProtoTEx:
Explaining model decisions with prototype tensors.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2986-2997, Dublin, Ireland.
Association for Computational Linguistics.

Omid Davoodi, Shayan Mohammadizadehsamakosh,
and Majid Komeili. 2023. On the interpretability
of part-prototype based classifiers: a human centric
analysis. Scientific Reports, 13(1):23088.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31-36,
Melbourne, Australia. Association for Computational
Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50-56. IEEE.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174-6181, Online. Association for
Computational Linguistics.

Shafie Gholizadeh and Nengfeng Zhou. 2021. Model ex-
plainability in deep learning based natural language
processing.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Shreya Goyal, Sumanth Doddapaneni, Mitesh M
Khapra, and Balaraman Ravindran. 2023. A survey
of adversarial defenses and robustness in nlp. ACM
Computing Surveys, 55(14s):1-39.

Xiaowei Gu and Weiping Ding. 2019. A hierarchical
prototype-based approach for classification. Informa-
tion Sciences, 505:325-351.

Antonio Gulli. AG’s Corpus of News Arti-
cles. groups.di.unipi.it/~gulli/AG_corpus_
of _news_articles.html. Accessed 15 June 2024.

Jiale Han, Bo Cheng, and Wei Lu. 2021. Exploring task
difficulty for few-shot relation extraction. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2605-2616,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Peter Hase and Mohit Bansal. 2020. Evaluating ex-
plainable Al: Which algorithmic explanations help
users predict model behavior? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics — ACL2020, pages 5540-5552,
Online. Association for Computational Linguistics.

Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin.
2019. Interpretable image recognition with hierar-
chical prototypes. In Proceedings of the AAAI Con-
ference on Human Computation and Crowdsourcing,
volume 7, pages 32—40.

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neu-
big. 2020. Learning sparse prototypes for text gen-
eration. Advances in Neural Information Processing
Systems, 33:14724-14735.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744-2751, Online. Association for Computa-
tional Linguistics.

12745

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.18653/v1/2022.acl-long.213
https://doi.org/10.18653/v1/2022.acl-long.213
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244

Adrian Hoffmann, Claudio Fanconi, Rahul Rade, and
Jonas Kohler. 2021. This looks like that... does
it? shortcomings of latent space prototype in-
terpretability in deep networks. arXiv preprint
arXiv:2105.02968.

Dat Hong, Stephen S Baek, and Tong Wang. 2020. In-
terpretable sequence classification via prototype tra-
jectory. arXiv preprint arXiv:2007.01777.

Dat Hong, Stephen S. Baek, and Tong Wang. 2021.
Interpretable sequence classification via prototype
trajectory.

Myeongjun Jang, Deuk Sin Kwon, and Thomas
Lukasiewicz. 2022. Becel: Benchmark for consis-
tency evaluation of language models. In Proceedings
of the 29th International Conference on Computa-
tional Linguistics, pages 3680—3696.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018-8025.

Mark T Keane and Eoin M Kenny. 2019. How case-
based reasoning explains neural networks: A theo-
retical analysis of xai using post-hoc explanation-by-
example from a survey of ann-cbr twin-systems. In
Case-Based Reasoning Research and Development:
27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8—12, 2019, Proceed-
ings 27, pages 155-171. Springer.

Eunji Kim, Siwon Kim, Minji Seo, and Sungroh Yoon.
2021. Xprotonet: Diagnosis in chest radiography
with global and local explanations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 15719-15728.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy
Liang. 2020. Concept bottleneck models. In In-
ternational conference on machine learning, pages
5338-5348. PMLR.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2017a. Adversarial examples in the physical world.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2017b. Adversarial machine learning at scale.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167-195.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alex Dimakis, Inder-
jit S Dhillon, and Michael J Witbrock. 2019. Discrete
adversarial attacks and submodular optimization with
applications to text classification. Proceedings of Ma-
chine Learning and Systems, 1:146—-165.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Ang Li, Fangyuan Zhang, Shuangjiao Li, Tianhua Chen,
Pan Su, and Hongtao Wang. 2023. Efficiently gen-
erating sentence-level textual adversarial examples
with seq2seq stacked auto-encoder. Expert Systems
with Applications, 213:119170.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018a. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin.
2018b. Deep learning for case-based reasoning
through prototypes: A neural network that explains
its predictions. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thir-
tieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAT 18/TAAT’18/EAAT’18. AAAI Press.

Tal Linzen. 2020. How can we accelerate progress
towards human-like linguistic generalization? arXiv
preprint arXiv:2005.00955.

Pengfei Liu, Jinlan Fu, Yanghua Xiao, Weizhe Yuan,
Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, Zi-Yi Dou, and Graham Neubig. 2021. Explain-
aBoard: An Explainable Leaderboard for NLP. In
Annual Meeting of the Association for Computational
Linguistics (ACL), System Demonstrations.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020. Adversarial training for large neural language
models. arXiv preprint arXiv:2004.08994.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Shiao Meng, Xuming Hu, Aiwei Liu, Shu’ang Li, Fukun
Ma, Yawen Yang, and Lijie Wen. 2023. RAPL:
A Relation-Aware Prototype Learning Approach
for Few-Shot Document-Level Relation Extraction.
arXiv preprint arXiv:2310.15743.

Pascal Mettes, Elise Van der Pol, and Cees Snoek. 2019.
Hyperspherical prototype networks. Advances in
neural information processing systems, 32.

12746

http://arxiv.org/abs/2007.01777
http://arxiv.org/abs/2007.01777
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://www.aclweb.org/anthology/P11-1015

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. 2019.
Interpretable and steerable sequence learning via pro-
totypes. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining. ACM.

Milad Moradi and Matthias Samwald. 2021. Evaluating
the robustness of neural language models to input
perturbations.

John X Morris, Eli Lifland, Jack Lanchantin, Yangfeng
Ji, and Yanjun Qi. 2020a. Reevaluating adversar-
ial examples in natural language. arXiv preprint
arXiv:2004.14174.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020b. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp.

Meike Nauta, Annemarie Jutte, Jesper Provoost, and
Christin Seifert. 2021a. This looks like that, be-
cause ... explaining prototypes for interpretable im-
age recognition. In Communications in Computer
and Information Science, pages 441-456. Springer
International Publishing.

Meike Nauta, Ron van Bree, and Christin Seifert. 2021b.
Neural prototype trees for interpretable fine-grained
image recognition. In Proceedings of the 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition — CVPR 2021, pages 14933—-14943,
Nashville, TN, USA. IEEE.

OpenAl. 2022. Chatgpt. https://openai.com/blog/
chatgpt. Accessed: April 30, 2023.

Frederik Pahde, Mihai Puscas, Tassilo Klein, and Moin
Nabi. 2021. Multimodal prototypical networks for
few-shot learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 2644-2653.

Nicolas Papernot and Patrick McDaniel. 2018. Deep
k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. arXiv preprint
arXiv:1803.04765.

Kamil Plucifski, Mateusz Lango, and Jerzy Ste-
fanowski. 2021. Prototypical convolutional neural
network for a phrase-based explanation of sentiment
classification. In Machine Learning and Principles
and Practice of Knowledge Discovery in Databases,
pages 457-472, Cham. Springer International Pub-
lishing.

Alessio Ragno, Biagio La Rosa, and Roberto Capo-
bianco. 2022. Prototype-based interpretable graph
neural networks. IEEE Transactions on Artificial
Intelligence, 5(4):1486-1495.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085—
1097, Florence, Italy. Association for Computational
Linguistics.

Eleanor H. Rosch. 1973. Natural categories. Cognitive
Psychology, 4(3):328-350.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sascha Saralajew, Lars Holdijk, and Thomas Villmann.
2020. Fast adversarial robustness certification of
nearest prototype classifiers for arbitrary seminorms.
In Advances in Neural Information Processing Sys-
tems, pages 13635-13650. Curran Associates, Inc.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal-
isiewicz, and Andrew Rabinovich. 2020. Superglue:
Learning feature matching with graph neural net-
works.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schirli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context.

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan
Liu, Yasheng Wang, Qun Liu, and Maosong Sun.
2021. Better robustness by more coverage: Ad-
versarial and mixup data augmentation for robust
finetuning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1569-1576.

Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju,
and Sameer Singh. 2022. Talktomodel: Explaining
machine learning models with interactive natural lan-
guage conversations.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Eduardo Soares, Plamen Angelov, and Neeraj Suri.
2022. Similarity-based deep neural network to detect
imperceptible adversarial attacks. In 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 1028-1035.

Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Dar-
shan Deshpande, Himanshu Rawlani, Filip Ilievski,
Héng-An Sandlin, and Alain Mermoud. 2023. Ro-
bust and explainable identification of logical fallacies
in natural language arguments. Knowledge-Based
Systems, 266:110418.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better: On
the importance of pre-training compact models.

12747

https://doi.org/10.1145/3292500.3330908
https://doi.org/10.1145/3292500.3330908
http://arxiv.org/abs/2108.12237
http://arxiv.org/abs/2108.12237
http://arxiv.org/abs/2108.12237
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
https://doi.org/10.1007/978-3-030-93736-2_34
https://doi.org/10.1007/978-3-030-93736-2_34
https://doi.org/10.1007/978-3-030-93736-2_34
https://doi.org/10.1109/cvpr46437.2021.01469
https://doi.org/10.1109/cvpr46437.2021.01469
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/https://doi.org/10.1016/0010-0285(73)90017-0
https://proceedings.neurips.cc/paper/2020/hash/9da187a7a191431db943a9a5a6fec6f4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9da187a7a191431db943a9a5a6fec6f4-Abstract.html
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/2302.00093
http://arxiv.org/abs/2302.00093
https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1109/SSCI51031.2022.10022016
https://doi.org/10.1109/SSCI51031.2022.10022016
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962

Betty van Aken, Jens-Michalis Papaioannou, Marcel G.
Naik, Georgios Eleftheriadis, Wolfgang Nejdl, Fe-
lix A. Gers, and Alexander Loser. 2022. This patient
looks like that patient: Prototypical networks for in-
terpretable diagnosis prediction from clinical text.

Viclav Voracek and Matthias Hein. 2022. Provably ad-
versarially robust nearest prototype classifiers. In In-
ternational Conference on Machine Learning, pages
22361-22383. PMLR.

Viclav Voracek and Matthias Hein. 2022. Provably
adversarially robust nearest prototype classifiers. In
Proceedings of the 39th International Conference on
Machine Learning, volume 162 of the Proceedings
of Machine Learning Research, pages 22361-22383,
Baltimore, MD, USA. PMLR.

Kiri Wagstaff. 2012. Machine learning that matters.
arXiv preprint arXiv:1206.4656.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-
lah, and Bo Li. 2022a. Adversarial glue: A multi-
task benchmark for robustness evaluation of language
models.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang,
and Xing Xie. 2023. On the robustness of chatgpt:
An adversarial and out-of-distribution perspective.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang,
Zijian Wang, Mingyue Shang, Varun Kumar, Samson
Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nal-
lapati, Murali Krishna Ramanathan, Dan Roth, and
Bing Xiang. 2022b. Recode: Robustness evaluation
of code generation models.

Xuezhi Wang, Haohan Wang, and Diyi Yang. 2022c.
Measure and improve robustness in nlp models: A
survey.

Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash
Harandi, and Li Li. 2021. Performance evaluation
of adversarial attacks: Discrepancies and solutions.
arXiv preprint arXiv:2104.11103.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-
Lin Liu. 2018. Robust classification with convolu-
tional prototype learning. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3474-3482.

Jin Yong Yoo, John X. Morris, Eli Lifland, and Yanjun
Qi. 2020. Searching for a search method: Bench-
marking search algorithms for generating nlp adver-
sarial examples.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and
Chenliang Li. 2020. Adversarial attacks on deep-
learning models in natural language processing: A
survey. ACM Transactions on Intelligent Systems
and Technology (TIST), 11(3):1-41.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2023. Explainability for
large language models: A survey. arXiv preprint
arXiv:2309.01029.

Pei Zhou, Rahul Khanna, Seyeon Lee, Bill Yuchen
Lin, Daniel Ho, Jay Pujara, and Xiang Ren.
2020. Rica: Evaluating robust inference capabili-

ties based on commonsense axioms. arXiv preprint
arXiv:2005.00782.

Julia El Zini and Mariette Awad. 2022. On the explain-
ability of natural language processing deep models.
ACM Comput. Surv., 55(5).

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022. St-moe: Designing stable and transfer-
able sparse expert models.

A Dataset Details

The statistics of the datasets we used in this study
to test the robustness of PBNs against perturba-
tions are demonstrated in Table 5. We present both
statistics about the original dataset and statistics
and details about the number of perturbations that
we have gathered on each dataset with different
attack strategies. All the original datasets we use
in this study are gathered by other researchers and
have been made public by them, mentioning non-
commercial use, which aligns with how we use
these datasets. We have included information on
their descriptions and how they were gathered:

IMDB. This dataset is compiled from a set of
50000 reviews sourced from IMDB in English, lim-
iting each movie to a maximum of 30 reviews. It
has maintained an equal count of positive and neg-
ative reviews, ensuring a 50% accuracy through
random guessing. To align with prior research
on polarity classification, the authors specifically
focus on highly polarized reviews. A review is
considered negative if it scores < 4 out of 10 and
positive if it scores > 7 out of 10. Neutral reviews
are excluded from this dataset. Authors have made
the dataset publicly available, and you can find
more information about this dataset at https://
ai.stanford.edu/~amaas/data/sentiment/.

12748

http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
https://proceedings.mlr.press/v162/voracek22a.html
https://proceedings.mlr.press/v162/voracek22a.html
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2112.08313
http://arxiv.org/abs/2112.08313
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
https://doi.org/10.1145/3529755
https://doi.org/10.1145/3529755
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2202.08906
https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/

Dataset #Classes #Tokens #Train #Val #Test BAE DWB PWWS TB TF Other
IMDB 2 234 22,500 2,500 25,000 1784 1584 2816 2408 2880 -

AG_News 4 103 112,400 7,600 7,600 663 1287 1533 1383 1893 -

DBPedia 9 38 240,942 36,003 60,794 1041 1143 1401 1281 1836 -
SST-2 2 14 67,349 872 1,821 - - - - - 148

Table 5: Dataset statistics: number of classes, the average number of tokens, and size of the perturbed datasets under
BAE, DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF), obtained. SST-2 subset comes from the
AdvGlue benchmark (Wang et al., 2022a) after removing the human-generated instances that do not belong to either

category of perturbation classes.

AG_News. This dataset comprises over 1 million
English news articles sourced from 2000+ news
outlets over a span of more than a year by Come-
ToMyHead, an academic news search engine op-
erational since July 2004. Provided by the aca-
demic community, this dataset aids research in
data mining, information retrieval, data compres-
sion, data streaming, and non-commercial activi-
ties. This news topic classification dataset features
four classes: world, sports, business, and science.
The details about the intended use and access condi-
tions are provided at http://www.di.unipi.it/
~gulli/AG_corpus_of_news_articles.html.

DBPedia. DBPedia® seeks to extract organized
information from Wikipedia’s vast content. The
gathered subset of data we used offers hierar-
chical categories for 342782 Wikipedia articles.
These classes are distributed across three lev-
els, comprising 9, 70, and 219 classes, respec-
tively. We used the version that has nine classes:
Agent, Work, Place, Species, UnitOfWork, Event,
SportsSeason, Device, and TopicalConcept. Al-
though the articles are in English, specific names
(e.g., the name of a place or person) can be
non-English. Find more information about this
dataset at https://huggingface.co/datasets/
DeveloperOats/DBPedia_Classes.

AdvGLUE. Adversarial GLUE (AdvGLUE)
(Wang et al., 2022a) introduces a multi-task En-
glish benchmark designed to investigate and assess
the vulnerabilities of modern large-scale language
models against various adversarial attacks. It en-
compasses five corpora, including SST-2 sentiment
classification, QQP paraphrase test dataset, and
QNLI, RTE, and MNLLI, all of which are natural lan-
guage inference datasets. To assess robustness, per-
turbations are applied to these datasets through both
automated and human-evaluated methods, span-
ning word-level, sentence-level, and human-crafted

https://www.dbpedia.org/

examples. Our focus primarily centers on SST-2
due to its alignment with the other covered datasets
in our study and its classification nature. This
dataset has been made public by the authors and is
released with CC BY-SA 4.0 license.

B Implementation Details

B.1 Experimental Environment

For all the experiments that involved training or
evaluating PBNs or vanilla LMs, we used three
GPU NVIDIA RTX A5000 devices with Python
v3.9.16 and CUDA v11.6, and each experiment
took between 10 minutes to 2 hours, depending
on the dataset and model used. All Transformer
models were trained using the Transformers pack-
age v4.30.2 and Torch package v2.0.1+cull7. We
used TextAttack v0.3.10 (Morris et al., 2020b) for
implementing the employed attack strategies and
perturbations.

B.2 Training Details

All prototypes are initialized randomly for a fair
comparison, and only the last layer of LM back-
bones are trainable. The prototypes are trained
without being constrained to a certain class from
the beginning, and their corresponding class can
be identified after training. The transformation
from distances to class logits is done through a
simple fully connected layer without intercept to
avoid introducing additional complexity and keep
the prediction interpretable through prototype dis-
tances. Both the backbone of PBNs and their
vanilla counterparts leveraged the same LM and
were fine-tuned separately to show the difference
that is only attributed to the models’ architecture.
Focusing on the BERT-based PBN for evaluation,
since BERT-base is one of the models from which
we extract static perturbations by directly attacking
it, to ensure generalization of the experiments on
different backbones in the evaluation step, we use
BERT-Medium (Turc et al., 2019) as the backbone

12749

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://huggingface.co/datasets/DeveloperOats/DBPedia_Classes
https://huggingface.co/datasets/DeveloperOats/DBPedia_Classes
https://www.dbpedia.org/

for BERT-based PBN and its vanilla counterpart.

For all the datasets, the training split, valida-
tion split, and test splits were used from https://
huggingface.co/. During training on the IMDB,
SST-2, and DBPedia datasets, the batch size was
set to 64. This number was 256 on the AG_News
dataset. All the models were trained with the num-
ber of epochs adjusted according to an early stop-
ping module with patience of 4 and a threshold
value of 0.01 for change in accuracy.

All the Transformer models were fine-tuned on
top of a pre-trained model gathered from https:
//huggingface.co/. Details of the models used
in our experiments are presented in the following:

* Electra (Clark et al., 2020): google/electra-
base-discriminator;

¢ BART (Lewis et al., 2019): ModelTC/bart-
base-mnli;

* BERT (Devlin et al., 2018): prajjwall/bert-
medium.

Furthermore, the models that were used in the
process of gathering static perturbations were also
pre-trained Transformer models gathered from
https://huggingface.co/. Find the details of
models used categorized by the dataset below:

e IMDB: textattack/bert-base-uncased-imdb,
textattack/distilbert-base-uncased-imdb,
textattack/roberta-base-imdb;

* AG_News: textattack/bert-base-uncased-ag-
news, andi611/distilbert-base-uncased-ner-
agnews, textattack/roberta-base-ag-news;

e DBPedia: dbpedia_bert-base-uncased,
dbpedia_distilbert-base-uncased,
dbpedia_roberta-base.

Since we could not find models from TextAttack
(Morris et al., 2020b) library that were fine-tuned
on DBPedia, the models that are presented above
were fine-tuned by us on that dataset as well and
then used as the target model.

Overhead of PBNs compared to vanilla LMs.
Since both PBNs and non-PBNs are trained simi-
larly and the primary difference in their architecture
is the involvement of prototypes in PBN architec-
ture, the number of parameters in PBNs is only
a fixed amount more than their non-PBN counter-
parts, based on the number of prototypes. This
matter is depicted in Table 6.

Furthermore, the overhead of using prototypes
in the inference time is close to zero and negligible.
However, because of the prototypes in the PBN
architecture, their training, and satisfying the extra
objective functions, training PBNs will take longer
than non-PBN models, which similarly depends on
the number of prototypes (e.g., up to a 5% increase
compared to non-PBNs using 16 prototypes).

B.3 GPT40 and Llama3 Baseline

We used GPT4o (Al 2024) and Llama3 (AI@Meta,
2024) as baselines in our experiments to compare
their performance on original and perturbed exam-
ples with PBNs and their vanilla counterparts. In
this section, we present the prompts that we gave to
these models to generate the baseline responses and
the reported performance in Table 2. We used the
following prompts for the four different datasets:

IMDB: Identify the binary sentiment of the fol-
lowing text: [text]. Strictly output only "negative"
or "positive" according to the sentiment and noth-
ing else. Assistant:

AG_News: Categorize the following news
strictly into only one of the following classes:
world, sports, business, and science. Ensure that
you output only the category name and nothing else.
Text: [text]. Assistant:

DBPedia: Categorize the following text article
strictly into only one taxonomic category from the
following list: Agent, Work, Place, Species, UnitOf-
Work, Event, SportsSeason, Device, and Topical-
Concept. Ensure that you output only the category
name and nothing else. Text: [text]. Assistant:

SST-2: Identify the binary sentiment of the fol-
lowing text: [text]. Strictly output only "negative"
or "positive" according to the sentiment and noth-
ing else. Assistant:

Analysis of LLMSs’ predictions. One potential
reason for the underperformance of LLMs on cer-
tain tasks could be limitations in the evaluation
framework. In other words, while LLMs may gen-
erate correct predictions, the evaluation method
might fail to recognize or appropriately assess them.
To address this, we conducted a sanity check to
determine whether the LLMs’ predictions were
within the label distributions of the datasets. Across
all experiments, only 0.5% of the predicted labels
fell outside the dataset’s label distribution. Addi-
tionally, when we adjusted the prompt to ask the
model for indices corresponding to correct labels
using a label-to-index dictionary, we observed sim-

12750

https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/

Model Type

BERT

ELECTRA

BART

Number of parameters

110M

110M

139M

parameters more in PBNs (4 prototypes)

1572864 (1.42% more)

1572864 (1.42% more)

1572864 (1.13% more)

parameters more in PBNs (16 prototypes)

6291456 (5.72% more)

6291456 (5.72% more)

6291456 (4.53% more)

parameters more in PBNs (64 prototypes)

25165824 (22.87% more)

25165824 (22.87% more)

25165824 (18.10% more)

Table 6: Comparison of model parameters between PBNs and non-PBNs based on the number of prototypes.

ilar patterns and results.

B.4 Perturbation Details

BAE. BAE (BERT-based Adversarial Examples;
Garg and Ramakrishnan, 2020) generates adversar-
ial examples for text classification by leveraging
the BERT masked language model (MLM) to cre-
ate contextually appropriate token replacements
and insertions. BAE replaces and inserts tokens in
the original text by masking a portion of the text
and leveraging the BERT-MLM to generate alterna-
tives for the masked tokens. This approach ensures
the adversarial examples maintain grammaticality
and semantic coherence better than prior methods,
leading to more effective and natural-looking adver-
sarial attacks. BAE has been shown to significantly
reduce the accuracy of even robust classifiers by
employing these perturbations.

TextFooler. TextFooler (Jin et al., 2020) is an ad-
versarial attack method designed to generate adver-
sarial text examples that can fool natural language
processing models while maintaining semantic sim-
ilarity and grammatical correctness. The approach
operates in a black-box setting, where the attacker
has no knowledge of the model’s architecture or
parameters. TextFooler works by first identifying
the most important words in the target text that in-
fluence the model’s prediction. It then iteratively
replaces these words with their most semantically
similar and grammatically correct synonyms until
the model’s prediction changes. This method en-
sures that the adversarial examples remain human-
readable and convey the same meaning as the orig-
inal text, thus preserving utility while effectively
deceiving the model.

TextBugger. TextBugger (Li et al., 2018a) is an
attack framework designed to generate adversarial
texts that deceive deep learning-based text under-
standing (DLTU) systems while maintaining read-
ability and semantic coherence for human readers.
It operates under both white-box and black-box
settings. In the white-box scenario, TextBugger
identifies critical words by analyzing the model’s

gradients, then applies one of five perturbation tech-
niques—such as inserting spaces, deleting charac-
ters, swapping adjacent characters, or substituting
with similar words or characters—to create adver-
sarial examples. In the black-box scenario, it uses
sentence importance and word scoring to select tar-
get words for manipulation. These perturbations
are crafted to be subtle yet effective in misleading
text classifiers used for tasks like sentiment anal-
ysis and toxic content detection, achieving high
success rates while preserving the original text’s
utility for humans.

PWWS. The Probability Weighted Word
Saliency (PWWS; Ren et al., 2019) algorithm is
designed to generate adversarial examples for text
classification by substituting words with synonyms.
Words are prioritized for a synonym-swap transfor-
mation based on a combination of their saliency
score and maximum word-swap effectiveness. This
approach ensures that the adversarial examples
are lexically and grammatically correct while
maintaining semantic similarity to the original text,
making them difficult for humans to detect.

DeepWordBug. DeepWordBug (Gao et al.,
2018) is a method designed to generate small per-
turbations in text that lead to misclassifications by
deep-learning classifiers, even in a black-box set-
ting. It utilizes unique scoring strategies to identify
key tokens within the text that, when altered, can
cause incorrect predictions. The approach applies
simple character-level transformations to these crit-
ical tokens, ensuring minimal changes to the origi-
nal text while still altering the classification.

C Additional Experiments

C.1 Performance of PBNs on Original
Datasets

The performance of PBN models compared with
both non-PBN models, GPT40, and Llama 3,
are shown in Table 7. The results suggest that
smaller fine-tuned language models perform better
than LLMs (i.e., GPT40 and Llama3) on original
datasets, and PBNs and non-PBNs perform on par.

12751

AG_News | DBPedia | IMDB SST2

BART 93.8 914 | 97.5| 93.1
+ PBN 93.5 92.2| 97.3| 90.0
BERT 92.6 909 | 95.6| 839
+ PBN 92.9 904 | 953 77.8
ELEC. 93.1 90.6 | 96.1| 87.6
+ PBN 93.6 90.9 | 959 | 98.5
GPT4o 71.4 684 994 | 91.0
Llama3 68.2 498 | 93.6| 76.0

Table 7: Comparison between PBNs, vanilla LMs,
GPT4o0, and Llama3 on the original datasets. The best
performance for each dataset among all models is bold-
faced, and the second best performance is underlined.

AG_News | DBPedia IMDB

Orig Adv | Orig Adv | Orig Adv
BART 93.7 926|912 91.3|97.5 96.0
+PBN 932 938|920 91.6|97.2 97.0
BERT 92.5 91.0|90.8 90.5|95.5 94.2
+PBN 92.8 912|903 90.8|952 95.0
ELEC. 93.0 92.1|90.5 90.0|96.0 94.5
+PBN 935 91.8|90.8 89.7|95.8 95.0

Table 8: Comparison between PBNs and vanilla LMs
on the original and paraphrased version of texts from
AG_News, DBPedia, and IMDB datasets that GPT3.5
generated.

C.2 Robustness of PBNs Against
Paraphrased-Based Perturbations

Comparison between PBNs and vanilla LMs on
the original and paraphrased version of texts from
AG_News, DBPedia, and IMDB datasets that
GPT3.5 generated are shown in Table 8, which
illustrated that both PBNs and vanilla LMs are ro-
bust to such perturbations.

C.3 Robustness of PBNs’ w.r.t. Average
Percentage of Words Perturbed

The Comparison of PBNs and vanilla LMs’ ro-
bustness with respect to the Average Percentage
of Words Perturbed (APWP) under different adver-
sarial settings, different datasets, and perturbation
strategies is shown in Table 9. We observed that
while using the best hyperparameters, PBNs are
more robust than vanilla LMs in the majority of
the cases, this superiority is less salient when aver-
aging over all hyperparameters involved in PBNs’
training, which entails how PBNs’ robustness is
sensitive to hyperparameters.

C.4 Robustness of PBNs’ Averaged over
Hyperparameters

The comparison of PBNs and vanilla LMs under
different adversarial settings, on different datasets,
and different attacking strategies, averaged over all
hyperparameters of PBNs, is shown in Table 10.
Comparing the observed trends with the trends ob-
served when using the best hyperparameters for
PBNGs, our results suggested that PBNs’ robustness
is sensitive to hyperparameters that are involved in
their training.

C.5 Effect of Distance Function on
Robustness

Figure 4, Figure 5, and Figure 6 illustrate the ro-
bustness of PBNs compared to vanilla LMs, using
different distance functions, showing that PBNs’
robustness is not sensitive to this hyperparameter.

C.6 Effect of Interpretability on Robustness

Figure 7, Figure 8, and Figure 9 illustrate the ro-
bustness of PBNs compared to vanilla LMs, using
different values of \; adjusting the importance of
interpretability, showing that overall, PBNs’ robust-
ness is not sensitive to this hyperparameter.

C.7 Effect of Clustering on Robustness

Figure 10, Figure 11 illustrate the robustness of
PBNs compared to vanilla LMs, using different

12752

Using the best hyperparameters
AG_News DBPedia IMDB
BAE DWB PWWS TB TF|BAE DWB PWWS TB TF|BAE DWB PWWS TB TF
BART 87 269 20.8 357 250| 9.1 273 169 50.1 262 | 4.1 6.4 42 333 59
+PBN 9.0 248 222 377 27.6| 101 17.1 159 433 260 | 4.7 6.6 8.1 334 13.6
BERT 7.4 268 21.6 374 241 9.7 279 194 538 2838 4.0 5.7 44 301 5.0
+PBN 7.7 266 241 37.7 288 | 109 279 224 50.0 30.6 | 4.6 6.7 9.3 359 154
ELEC. 82 237 17.5 327 208 | 109 246 17.7 58.0 229 54 8.1 88 44.7 112
+PBN 81 212 189 318 24.0| 119 251 194 485 26.8 5.6 8.4 13.3 38.6 18.5

Averaged over all hyperparameters
AG_News DBPedia IMDB
BAE DWB PWWS TB TF|BAE DWB PWWS TB TF|BAE DWB PWWS TB TF
BART 8.7 269 208 357 250 9.1 273 169 501 262| 41 64 42 333 59

+PBN 83 193 205 326 252 | 9.7 17.1 159 404 247 | 44 6.1 6.5 295 10.1
BERT 7.4 268 21.6 374 241 9.7 279 194 538 288 | 40 5.7 44 301 50
+PBN 72 241 219 350 259 | 95 241 193 431 276 4.1 5.5 50 273 171
ELEC. 8.2 23.7 17.5 327 208 | 109 24.6 177 58.0 229 | 5.4 8.1 88 4.7 112

+PBN 7.7 153 16.1 26.1 20.1 | 102 18.2 166 402 23.7| 54 6.7 10.1 313 13.6

Table 9: Comparison of PBNs and vanilla LMs’ robustness with respect to Average Percentage of Words Perturbed
(APWP) under targeted adversarial attack perturbations, both using the best hyperparameters and averaged over
all hyperparameters for PBNs, on IMBD, AG_News, and DBPeida datasets, under BAE, DeepWordBug (DWB),
PWWS, TextBugger (TB), TextFooler (TF). The highest APWP showing the superior model for each architecture is
boldfaced.

Targeted Attacks; Attack Success Rate (ASR %) reported
AG_News DBPedia IMDB
BAE DWB PWWS TB TF|BAE DWB PWWS TB TF | BAE DWB PWWS TB TF
BART 14.8 532 53.6 31.8 765 | 189 283 43.1 21.1 719 | 741 747 99.3 78.5 100.0
+PBN 148 404 50.7 29.8 76.2 | 17.0 14.7 28.7 127 494 | 555 49.2 86.2 49.7 885
BERT 17.0 78.0 69.8 45.7 88.8 | 13.9 248 31.6 220 613 | 825 79.7 999 839 999
+PBN 14.0 64.7 57.0 393 82.1 | 135 234 27.6 19.6 513 | 684 61.8 913 740 924
ELEC. 248 895 69.1 87.8 879 | 145 428 45.6 423 753 | 525 492 953 67.8 993
+PBN 18.5 504 55.7 63.6 80.0 | 12.6 194 261 27.1 46.5 | 41.0 359 777 55.6 86.2

Static Attacks; Accuracy (%) reported
AG_News DBPedia IMDB SST2
BAE DWB PWWS TB TF|BAE DWB PWWS TB TF|BAE DWB PWWS TB TF | GLUE
BART 532 767 832 775 858|555 686 584 725 713|741 805 836 858 87.6| 29.8
+PBN 504 683 757 705 79.6| 564 658 587 709 695|692 787 797 819 783 | 376
+Aug. 717 784 855 77.6 90.1| 840 79.6 89.7 888 94.0| 857 867 929 89.9 96.5 -
BERT 478 640 759 694 80.7| 623 614 754 784 820 751 771 850 834 859 | 42.0
+PBN 495 662 764 713 823|635 61.1 739 769 794|710 739 811 802 792| 471
+Aug. 583 716 783 712 854|755 709 841 905 91.0| 832 77.6 917 90.8 89.2 -
ELECTRA 504 65.0 73.5 639 T8 | 797 669 809 814 B84.4 | 89.7 903 94.6 945 956| 443
+PBN 527 639 737 671 778| 734 641 730 764 80.6| 80.6 794 799 802 868 | 564
+Aug. 550 595 717 616 79.5| 862 738 881 845 928 | 894 937 953 949 958 -

Table 10: Comparison of PBNs and vanilla LMs (+ vanilla LMs with adversarial augmented training under static
attack setting) under both targeted and static adversarial attack perturbations, averaged over all hyperparameters
for PBNs, on IMBD, AG_News, DBPeida (+ SST-2 AdvGLUE under static attack setting) datasets, under BAE,
DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF). The highest accuracy and lowest ASR showing
the superior model for each architecture is boldfaced, and the second best model is underlined for static attacks.

12753

Q80 =

s 3

v 07e o

© T T

0: >

N 60 e e ————

i 2

0 ‘-\. z

S =

0 40 = — 7

X 40

e ®

£ R

< *— — e %
20 = T
Euclidean Cosine

Distance Function

Figure 4: Attack Success Rate (ASR %) of PBNs with
different distance functions and other hyperparameters
set to their best values and averaged across other pos-
sible variables (e.g., backbone and attack type). The
dashed line represents the ASR for the vanilla LMs.

X 30{e * -

o i

s o 8

= 10 . :

O 40 >

0]

b @ 9 IG)

3 3

o =

o 204)

o T T

[0)

g 401 — ¢

g g

2 30 “-I- ------------------------- - o
Euclidean Cosine

Distance Function

Figure 5: Average Percentage of Words Perturbed
(APWP) of PBNs with different distance functions and
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dashed line represents the APWP for
the vanilla LMs.

== non-PBN = non-PBN augmented
100 1 @—— =
e = —9. 5
9O e w
> 1001 . '
o C e 3
— IZ
S
8 80 e e e e e e e e e g
< T T <
100 1 @ —0 8
o
e e ®
Q.
_____________________________ Q_J
80 T
Eucledian Cosine

Distance func

Figure 6: Accuracy of PBNs under static adversarial
settings, with different distance functions, with other
hyperparameters set to their best values and averaged
across other possible variables (e.g., backbone and at-
tack type). The dashed line represents the accuracy for
the vanilla LMs.

g 80 A g
o) .___________-——-k ®
© 60 - T T T

e >
W 60 F=========================== @
8 \ =
O 50 1 —o- 2
> 0
m T T T

36 A0 L ____—_- CDD
© o
£ 301 ®
< [O— o =

0.0 0.9 10.0
A

Figure 7: Attack Success Rate (ASR %) of PBNs with
different \; values adjusting the importance of inter-
pretability of the prototypes in training, with other hy-
perparameters set to their best values, and averaged
across other possible variables (e.g., backbone and at-
tack type). The dashed line represents the ASR for the
non-PBN model.

12754

40 + - —

S _
%’ =
g 20 S
_O T T T

40 >
(O]
o ¢ - Q
>
S I 2
o 2041 w0
o T T T
() i
& 20 .__________———0— —e U
© 40 i
g 304 e <

0.0 0.9 10.0
A

Figure 8: Average Percentage of Words Perturbed
(APWP) of PBNs with different \; values adjusting
the importance of interpretability of the prototypes in
training, with other hyperparameters set to their best val-
ues, and averaged across other possible variables (e.g.,
backbone and attack type). The dashed line represents
the APWP for the non-PBN model.

== non-PBN —- + aug training

> 100 4
2 o——————.\. P
o IZ
=]
8 80 e e e e e e e e e e = g
< T T T v

100 A

80 T T

0.0 0.9 10.0
Ai

Figure 9: Accuracy of PBNs under static adversarial
settings, with different \; values adjusting the level of
interpretability in PBNs, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dashed
line represents the accuracy for the vanilla LMs.

40 1 @——

=
20 &

S
©
s
o
; T T
©

40 A >
(]
e |° ©
=)
e =
o 201 v
o T T T
) i
Y 50 1 @— o]
g 40 - &
E 30 '_l_ ____________ Selelaletelalalatalala = T

0.0 0.9 10.0
Ac

Figure 10: Average Percentage of Words Perturbed
(APWP) of PBNs with different)\, values adjusting
the importance of clustering of examples in PBNs, with
other hyperparameters set to their best values, and aver-
aged across other possible variables (e.g., backbone and
attack type). The dashed line represents the APWP for
the non-PBN model.

values of \. adjusting the importance of cluster-
ing, that alongside the trends observed using ASR
(see Figure 2), show that overall, PBNs’ robustness
degrades with tighter clustering in PBNs’ training.

C.8 Effect of Separation on Robustness

Figure 12, Figure 13, and Figure 14 illustrate the
robustness of PBNs compared to vanilla LMs, us-
ing different values of A\¢ adjusting the importance
of separability between prototypes, showing that
overall, PBNs’ robustness is not sensitive to this
hyperparameter.

C.9 Effect of Number of Prototypes on
Robustness

Figure 15, Figure 16 illustrate the robustness of
PBNs compared to vanilla LMs, using different
numbers of prototypes, that alongside the trends
observed using ASR (see Figure 3), show that over-
all, PBNs’ robustness degrades with low number
of prototypes as PBNs can capture lower number
of semantic patterns in such conditions, resulting
in lower robustness.

12755

== non-PBN ==+ + aug training
100 1 @ —o- —o =
e e 5
) w
2> 100 A I I I
8 — — * 3
j .
S =
8 80 ____'___'___'___'___'___'___'___'___'___'___'___'___'___'1 réD
< T T T @
100 1 @—— *— —o 3
e z
(o8
_____________________________ 5
80 +— T T
0.0 0.9 10.0

Figure 11: Accuracy of PBNs under static adversarial
settings, with different A, values adjusting the level
of clustering in PBNs, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dashed
line represents the accuracy for the vanilla LMs.

80 -

9 =
- .\ 8

Qe 70 A —9

© T T T
e« >
B 60 Fe=========================== o
o b=
§ 50 1-@— - —o 2
") . : — 7
% 40 LI —__—_- EUD
© o
b \ @
[oR
< —e =

20 +— T T

0.0 0.9 10.0
As

Figure 12: Attack Success Rate (ASR %) of PBNs
with different)¢ values adjusting the level of separation
between the prototypes, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dashed
line represents the ASR for the vanilla LMs.

40 .____________——0\.

20 A

40'F —0-\. 15
=
(0]

Average Perturbed Word (%)

20 '—._____________._ ____________ ,_‘ 3

a0 ./.\. %

(vs)

40 po

o4+ s
0.0 0.9 10.0

Figure 13: Average Percentage of Words Perturbed
(APWP) of PBNs with different A\ values adjusting
the level of separation between the prototypes, with
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dashed line represents the APWP for
the vanilla LMs.

== non-PBN — -+ aug training
100 1 ¢— —— o =
e e e e 5
Q0 fro s e e e v
> . T T T
o 100 - —— z
. |
> =2
8 80 P s e e s s s =t g
< T T T @
100 1 @—— —e —e
L @
o
_____________________________ E,
80 +— T T
0.0 0.9 10.0
As

Figure 14: Accuracy of PBNs under static adversarial
settings, with different \¢ values adjusting the level of
separation between the prototypes, with other hyperpa-
rameters set to their best values and averaged across
other possible variables (e.g., backbone and attack type).
The dashed line represents the accuracy for the vanilla
LMs.

12756

40 - ~
=
20 &

8
©
o
2
e

40 - >
()]
8 — " " '2
>
€ . 2
o 201 w
o T T T T T
(0] i
g, 50 2
S 40 g
DS L e ————————— >
< T T T T T

2 4 8 16 64

Prototypes

Figure 15: Average Percentage of Words Perturbed
(APWP) of PBNs with different numbers of prototypes,
with other hyperparameters set to their best values, and
averaged across other possible variables (e.g., backbone
and attack type). The dashed line represents the APWP
for the non-PBN model.

== non-PBN —+ + aug training

100 +

~
Ul
1

Accuracy
=
o
o
1

(S
o

100 +

80 T T T T T

prototypes

Figure 16: Accuracy of PBNs under static adversar-
ial settings, with different numbers of prototypes, with
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dashed line represents the accuracy
for the vanilla LMs.

12757

