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Abstract

The success of deep learning models on multi-
hop fact verification has prompted researchers
to understand the behavior behind their veracity.
One feasible way is erasure search: obtaining
the rationale by entirely removing a subset of
input without compromising verification accu-
racy. Despite extensive exploration, current
rationalization methods struggle to discern nu-
anced composition within the correlated evi-
dence, which inevitably leads to noise rational-
ization in multi-hop scenarios. To address this
issue, this paper proposes the consistent multi-
granular rationale extraction method, aiming to
realize the denoising rationalization for multi-
hop fact verification. Specifically, given a pre-
trained veracity prediction model, two inde-
pendent external explainers are introduced and
trained collaboratively to enhance the discrim-
inating ability by imposing varied constraints.
Meanwhile, three key properties (Fidelity, Con-
sistency, Salience) are introduced to regularize
the denoising and faithful rationalization pro-
cess. Additionally, a new Noiselessness metric
is proposed to measure the purity of the ratio-
nales. Experimental results on three multi-hop
fact verification datasets show that the proposed
approach outperforms 12 baselines.

1 Introduction

Computational multi-hop fact verification ap-
proaches typically explore neural models to verify
the truthfulness of claims through multi-hop rea-
soning across multiple pieces of evidence (Jiang
et al., 2020; Ostrowski et al., 2021). Despite the
prevalence of these approaches, limited attention
has been given to elucidating the underlying ratio-
nale of these systems(Kotonya and Toni, 2020a;
Si et al., 2023), which compromises user trust in
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Figure 1: A comparison between traditional and denois-
ing rationalization framework.

the prediction and hinders transparency of the mod-
els (Lyu et al., 2022; Tang et al., 2021).

A clear-cut rationalization way to explain the
behavior of a model regarding a specific predic-
tion is erasure search (Li et al., 2016; Feng et al.,
2018; De Cao et al., 2020), a post-hoc approache
wherein the rationale is derived by searching for
a maximum subset of the input (e.g., token span)
that can be entirely removed without impacting the
model prediction. This removal perturbation to
the input guarantees the explicit decorrelation of
discarded features with model prediction, thereby
showing faithfulness to the model for the derived
rationales (Si et al., 2023). In this paper, we ex-
plore a novel denoising rationalization paradigm to
extract potential post-hoc rationales for explainable
multi-hop fact verification.

Multi-hop fact verification entails a complex rea-
soning scenario with distinct constituent elements
as input (i.e., claim, true evidence, and noise evi-
dence.)1(Si et al., 2023). A reasonable multi-hop
fact verification model ought to be capable of dis-
cerning this discrepancy by aggregating informa-
tion solely from the true evidence to reach its pre-
diction, while disregarding the noise evidence (i.e.,

1True evidence provides intrinsic multi-hop information
capable of truly verifying the claim. Noise evidence constitutes
extracted evidence from the web containing highly semantic
and linguistic content related to the claim, but is irrelevant to
the claim verification.
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Right Prediction for Right Reasons (Gupta et al.,
2022)). However, as depicted in Fig.1(a), current
rationalization methods follow a paradigm stem-
ming from the explainability research on text clas-
sification tasks, which typically extract post-hoc
rationales (token span) by regarding different types
of evidence as equally (Li et al., 2016; Paranjape
et al., 2020; Wiegreffe and Marasovic, 2021). In
this case, a consequential issue arises: extensive
confusing noise token spans will inevitably be ex-
tracted as rationales from the noise evidence, i.e.,
noise rationalization, due to the lack of discriminat-
ing ability about the nuanced composition within
the correlated evidence. This noise rationalization
implies the containing of irrelevant and unfaithful
rationales to the task prediction. As shown in Fig.2,
VMASK (Chen and Ji, 2020) extract token ratio-
nales from both true evidence (token spans in E1,
E3, and E4) and noise evidence (token spans in E2,
E5) without differentiation, while the token spans
in E2 and E5 are unexpected to affect the reason-
ing process of the model (i.e., Right Prediction for
Wrong Reasons). In essence, this rationalization
uses spurious correlations between irrelevant evi-
dence, the claim, and the inference label to extract
rationales.

This paper argues that a rationalization system
for multi-hop fact verification is considered reason-
able only when it can extract sufficient, concise,
and pure rationale to reflect the basis of its deci-
sions, which is to extract the “right tokens” from
the “right sentences”, as illustrated in Fig.1(b). For
example, in Fig.2, an ideal rationalization system
could solely retain the the task-relevant rationales
in {E1, E3, E4} and wholly eliminate the irrele-
vant rationales in {E2, E5}. To tackle this issue,
we propose a Consistent mUlti-granular Rationale
Extraction (CURE) approach for denoising ratio-
nalization in multi-hop fact verification. The core
idea of our work is that we introduce two inde-
pendent explainers in parallel, which enables to-
ken and sentence explainers to assist and inhibit
each other collaboratively by imposing varied con-
straints between them. This mutual effect enhances
the discriminating ability of the token/sentence ex-
plainer by taking the sentence/token explainer as
intermediate, thus amplifying true tokens from true
evidence and suppressing noise tokens from noise
evidence.

In specific, given a pre-trained multi-hop fact
verification model, two parameterized explainers
are first trained to generate mask vectors for each

Claim
This organism and Panax are both plant genera. The Gulf named 
after the organism is part of Port McArthur Tidal Wetlands System.

Label    SUPPORTS

 Evidence

E1(✔): [Port McArthur Tidal Wetlands System] The Port McArthur Tidal 
Wetlands System comprises a 994 km tract of tidal wetlands on the 
south-west coast of the Gulf of Carpentaria in the Northern Territory 
of Australia. 
E2(❌): [Port McArthur Tidal Wetlands System] The land extends along the 
coast opposite the Sir Edward Pellew Group of Islands, incorporating 
the estuaries of the McArthur and Wearyan Rivers. 
E3(✔): [Panax] The Panax (ginseng) genus belongs to the Araliaceae 
(ivy) family.
E4(✔): [Carpentaria] Carpentaria acuminata (carpentaria palm), the 
sole species in the genus Carpentaria, is a palm native to tropical 
coastal regions in the north of Northern Territory, Australia.
E5(❌): [Sir Edward Pellew Group of Islands] The Sir Edward Pellew Group 
of Islands is situated in the south-west corner of the Gulf of 
Carpentaria, off the northern coast of Australia. 

✔❌ : Ground-truth Sentence Rationale Label✔❌ : Ground-truth Sentence Rationale Label

Figure 2: An example in the HoVer dataset (Jiang
et al., 2020) with marked token rationales extracted
by VMASK (Chen and Ji, 2020).

token and sentence to indicate which token or sen-
tence is necessary or can be discarded. Then, the
valid rationales are derived by intersecting the two
granular mask vectors and applying them to perturb
the input. Meanwhile, inspired by (Si et al., 2021),
the sentence mask vector is used to intervene in
the coupling coefficients during the evidence ag-
gregating process. Furthermore, three properties
are introduced to regularize denoising and faith-
ful rationalization process: (i) Fidelity to constrain
the faithfulness of rationales; (ii) Consistency to
increase the consistency across the multi-granular
explainers; (iii) Salience to guide the rationale ex-
traction through a predefined salience score. Addi-
tionally, a new metrics Noiselessness is proposed to
evaluate the purity of the extracted rationales. We
empirically conduct the experiments on 3 different
multi-hop fact verification datasets over 12 base-
lines. Both the automatic and manual evaluation
results validate the superiority of our method.

2 Preliminaries

Task. Given a claim c with associated evidence
E = {e1, e2, . . . , en}, we construct a fully con-
nected input graph G = (X,A), where n is the
number of evidence, xi ∈ X denotes i-th evidence
node by concatenating the evidence text ei with the
claim c. We first pretrained a Veracity Prediction
model (Si et al., 2021) to verify the claim, then
two independent explainers are trained jointly to
extract the rationales with multiple granularity, i.e.,
sentence rationales Rs = (Xs ⊂ X,As ∈ Rn×n)
and token rationales r = {ri ⊂ ei}|ni=0, where
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Figure 3: The overall architecture of our CURE. (a) Multi-granular rationale extraction with two parallel explainers
to yield token and sentence mask vectors. (b) Veracity prediction model with parameters fixed to verify the claim.

ri = {ti,j |ti,j ∈ ei}. Finally, the valid multi-
granular rationale GR is obtained.
Definition. Following Jain et al. (2020), we de-
fine the faithfulness and Noiselessness in a multi-
granular rationale extraction scenario.

Definition 1. (Faithfulness) Rs and r are multi-
granular faithful to their corresponding prediction
Y if and only if Y rely entirely on GR = ({xi∩ri |
xi ∈ Xs}, As).

Definition 2. (Noiselessness) Rs and r are multi-
granular noiseless if and only if satisfying

∑

xi∈Xs

|xi ∩ ri| ≤ ϵ,
∑

x′
i∈X\Xs

|x′
i ∩ ri| → 0, (1)

where ϵ is the maximum expected sparsity of token
rationales. X \ Xs denotes the complementary
subset of Xs.

3 Method

As shown in Fig.3, we propose the method CURE,
which includes: (i) the veracity prediction module
(Fig.3(b)), (ii) multi-granular rationale extraction
module (Fig.3(a)), and the terms we optimize: (iii)
the key properties, (iv) the optimization.

3.1 Veracity Prediction
For the multi-hop fact verification model f(·), as
shown in Fig.3(b), we adopt the typical veracity
prediction model as illustrated in Si et al. (2021).
(I) Semantic Encoder Given the input graph
G = (X,A), a Transformer (Vaswani et al., 2017)
layer is first applied to the node X to obtain
the token representation h = ⟨h0,h1, ...,hn⟩ for

each evidence, where hi = ⟨hi,0,hi,1, ...,hi,|xi|⟩,
hi,j ̸=0 denotes the j-th token representation in
i-th evidence. Then, a GAT layer is applied to
the [CLS] token representation to propagate the
message exchange among all evidence along the
edges, i.e., h̃i,0|ni=0 = GAT (hi,0|ni=0). Thus,
the updated representation is obtained, hi =
⟨h̃i,0,hi,1, ...,hi,|xi|⟩, where h̃i,0 denotes the sen-
tence representation for i-th evidence. By stack-
ing L-layers of Transformer with GAT, we get
the representation H = ⟨h0,h1, ...,hL⟩, where
h0 = X and the l layer hl = {hi}|ni=0.
(II) Evidence Aggregator To reach the claim ver-
ification based on the evidence, a capsule net-
work (Sabour et al., 2017) is used to aggregate
the information among all the evidence by taking
sentence representation h̃

L
i,0|ni=0 as the evidence

capsule and label as the class capsule. It permits us
to further eliminate the effect of non-rationale for
veracity prediction.

The veracity prediction model f(·) is optimized
by the capsule loss, and the parameters are frozen
during the subsequent rationalization process.

3.2 Multi-granular Rationale Extraction

Mask Learning To realize the valid multi-granular
perturbation to the input graph G, as shown in
Fig.3(a), our CURE relies on two independent pa-
rameterized explainers to generate binary masks at
the token level and the sentence level, indicating
the absence or presence of each token or sentence.

In specific, taking the hidden representation H
in the Semantic Encoder as input, for the token-
level explainer, we employ a shallow interpreter
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network gt(·) (i.e., one-hidden-layer MLP net-
work (De Cao et al., 2020)) to yield binary token
mask matrix z = {zi}|ni=0 based on the token rep-
resentation, where zi = {zi,j}||xi|

j=1 denotes mask
vector for i-th evidence, |xi| is the number of to-
kens. The sentence representation with j = 0 is
not considered here. We then apply Hard Concrete
reparameterization (HCR) trick (Louizos et al.,
2018) to enforce the values approximate to discrete
0 or 1, while keeping continuous and differential
for learning token level mask matrix.

zi = z0
i ⊙ · · ·⊙zL

i , pti = pt0i ⊙ · · · ⊙ ptLi ,

(zl
i,pt

l
i) = HCR(gt(hl

i,j ||xi|
j=1)),

(2)

where ⊙ is Hadamard product, pti,j ∈ pti is the
importance score of j-th token in i-th evidence.

For the sentence-level explainer, we train a sep-
arate interpreter network gs(·) to predict a binary
sentence mask vector m ∈ Rn based on sentence
representation to indicate the absence of sentence,

m = m0 ⊙ · · ·⊙mL, ps = ps0 ⊙ · · · ⊙ psL,

(ml,psl) = HCR(gs(h̃
l
i,0|ni=0)).

(3)

Input Perturbation Unlike previous work with
single granular rationales (De Cao et al., 2020), to
obtain the denoising rationales, we need to collabo-
ratively aggregate the results of two explainers to
perturb the input G. In addition, inspired by Si et al.
(2023), our CURE capture the topological relation-
ship between different evidence by re-construct the
adjacency matrix As. Specifically, the valid ratio-
nale GR can be derived by intersecting the two
granular masks on the original input graph,

r = {ri}|ni=0,where ri = xi ⊙ zi,

Rs = (Xs = X ⊙m, As = A⊙m⊤m),

GR = ({xi ∩ ri | xi ∈ Xs}, As).

(4)

Notably, to ensure that only extracted rationales
are used for veracity prediction, we further inter-
vene in the dynamic routing of the capsule network
for succinct aggregation by multiplying the sen-
tence mask vector with the coupling coefficients.

3.3 Properties

Fidelity Fidelity guarantees that the model verac-
ity is maintained after perturbing the input, which

measures the sufficiency for faithfulness of multi-
granular rationales (Jiang et al., 2021). To ensure
the faithfulness of rationales, We re-feed the orig-
inal graph G and perturbed graph GR into the ve-
racity model f(·) to generate the prediction logits,
respectively. Then the Euclidean distance between
these two logits is defined as fidelity loss,

LF = ∥f(G)− f(GR)∥2. (5)

Consistency We derive the denoised token ratio-
nale via improving the consistency between the two
independent explainers (i.e., gt(·) and gs(·)), which
ensures the synergy through the interplay between
them. We introduce the symmetric Jensen-Shannon
Divergence to regularize the consistency between
the importance score of two mask vectors,

LC =
1

2
KL(P (z)||P (z) + P (m)

2
)

+
1

2
KL(P (m)||P (z) + P (m)

2
),

(6)

where P (z) = softmaxi(
∑|xi|

j=1 pti,j), P (m) =
softmaxi(psi), and KL(·||·) denotes the Kullback-
Leibler divergence.

Salience (I) Salience-Sentence: The sentence ra-
tionale annotation is used to guide the learning
of token explainer gt(·) through the intermediate
sentence explainer gs(·), leading to that token ra-
tionales come from true evidence, rather than from
noise evidence. To this end, we adopt the sentence
rationale label to guide the training of sentence
explainer gs(·) by formulating it as a multi-label
classification problem using cross entropy (CE)
loss (Paranjape et al., 2020),

LSS = CE(m,E), (7)

where E = {Ei ∈ {0, 1}}|ni=0 denotes whether
the sentence is annotated rationale by humans.

(II) Salience-Token: As without direct guid-
ance, to avoid the hard convergence of the token
explainer gt(·) during training, we construct the
salience score S = {si}|ni=0 as soft reference for
each token within each piece of evidence via the
Layered Integrated Gradient (Kokhlikyan et al.,
2020), where si = {si,j ∈ [−1, 1]}||xi|

j=0. Then
the KL divergence is employed to regularize the
token rationale extraction,

LST =

n∑

i=0

KL(P (zi)||ŝi), (8)
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where P (zi) = softmaxj(pti,j) denotes the im-
portance score of tokens over the i-th evidence,
ŝi = softmaxj(si,j).

In addition, to regularize the compactness of
token rationale as (Jiang et al., 2021), we minimize
the number of non-zeros predicted by the token
explainer gt(·) via minimizing the L0 norm with
expectation (De Cao et al., 2020),

L0 =
n∑

i

|xi|∑

j

pti,j . (9)

3.4 Optimization
The optimization objective is minimizing the fol-
lowing loss function L,

L = λ1LF + λ2LC + λ3LSS + λ4LST + λ5L0, (10)

where λ1−5 are hyperparameters.
During training, we freeze the parameters of the

pretrained veracity prediction module f(·) and only
optimize the explainer parameters (i.e., gt(·) and
gs(·)) by minimizing L. In the inference stage, the
value of zi,j and mi are determined by 1(ptij > α)
and 1(psi > α), respectively, where α is the thresh-
old of rationales, 1(·) is the indicator function.

4 Experiments

Datasets We perform experiments on three multi-
hop fact verification datasets, including HoVer
(Jiang et al., 2020), LIAR-PLUS (Alhindi et al.,
2018), and PolitiHop (Ostrowski et al., 2021). For
HoVer, following (Khattab et al., 2021), the dataset
is constructed with retrieved evidence, where each
claim is associated with 5 pieces of evidence. For
LIAR-PLUS and PolitiHop, we use the datasets
provided in Ostrowski et al. (2021) and restrict each
claim associated with 10 and 5 pieces of evidence,
respectively. All the datasets require multi-hop
reasoning and consist of annotated sentence-level
rationale and noise evidence.

Baselines Since no other works aimed at multi-
granular rationale extraction, we compare CURE
with twelve single-granular rationale extraction
methods, including eight intrinsic-based methods
(i.e., Pipeline in ERASER (DeYoung et al., 2020),
Information Bottleneck (IB) (Paranjape et al.,
2020), Two-Sentence Selecting (TSS) (Glockner
et al., 2020), Learning from rationales (LR) (Carton
et al., 2022) for sentence rationale extraction. Lei
et al. (2016), DeClarE (Popat et al., 2018), FRESH

(Jain et al., 2020), VMASK (Chen and Ji, 2020) for
token rationale extraction.) and four post hoc meth-
ods (i.e., LIME (Ribeiro et al., 2016), SHAP (Lund-
berg and Lee, 2017), Layer Integrated Gradient (L-
INTGRAD) (Mudrakarta et al., 2018), DIFFMASK

(De Cao et al., 2020) for token rationale extraction).

Metrics Inspired by DeYoung et al. (2020), we
adopt the macro F1 and accuracy for verification
prediction evaluation, and macro F1, Precision and
Recall to measure the sentence-level agreement
with human-annotated rationales. We also report
fidelity defined in Eq.5 as a metric of faithfulness
for post hoc methods. Moreover, we propose a
new metric named Noiselessness based on the Def-
inition2 to measure the degree to which the token
rationales contain noise2. It can be calculated by
Token Rationale Overlap rate, which measures the
overlap between token rationale with sentence Ra-
tionale (TRO-R) or Non-rationale (TRO-N),

TRO-R :=
1

|Xs|
∑

xi∈Xs

|xi ∩ ri|
|xi|

,

TRO-N :=
1

|Xns|
∑

xi
′∈Xns

|xi
′ ∩ ri|
|xi

′| ,

Noiselessness := 1− TRO-N
TRO-R

,

(11)

where Xns = X \ Xs denotes the complement
subset of Xs. Higher Noiselessness with higher
accuracy means that token rationales contain more
true tokens from true evidence, rather than noise
evidence, i.e., less noise and high purity.

Implementation Details Our Veracity Prediction
model adopts the pretrained RoBERTa (Liu et al.,
2019) base model to initialize the Transformer com-
ponents and three hop steps are used (i.e., L = 3).
The maximum number of input tokens to RoBERTa
is 130 and the dimension of class capsule dc is 10.
The pretrained model has 80.03%, 83.14%, and
71.63% on label accuracy of claim verification on
HoVer, LIAR-PLUS, and PolitiHop, respectively.

5 Results and Discussion

5.1 Quantitative Analysis
Main results Tab.1 presents the results from our
CURE against the baselines for claim verification
and rationale extraction. We report our main eval-
uation of the multi-granular rationale extraction
on CURE*. Moreover, since the baselines cannot

2This metric should be considered together with the evalua-
tion of claim verification to avoid spurious high noiselessness.
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Dataset Model
Rationale Claim

Noiselessness↑ Fidelity↓ Acc. F1

LIAR-PLUS

Lei et al. (2016) 0.2619 -/- 0.5681 0.5442
DeClarE -0.0030 -/- 0.4773 0.2154
FRESH 0.2921 -/- 0.4345 0.4137
VMASK -0.0203 -/- 0.8262 0.8146
LIME 0.4819 0.8422 0.3061 0.1562
SHAP 0.0111 1.6401 0.7639 0.7531
L-INTGRAD 0.0210 0.5889 0.7172 0.6984
DIFFMASK 0.0131 4.2244 0.5850 0.4803
CURE* 0.6301 0.2675 0.8210 0.8078
CURE 0.5202 0.2675 0.8210 0.8078
CURE -C 0.2641 0.2642 0.8132 0.8028
CURE -SS 0.3968 0.3101 0.7704 0.7502
CURE -ST 0.3754 0.2541 0.8171 0.8069

HoVer

Lei et al. (2016) 0.0667 -/- 0.5015 0.3410
DeClarE 0.2063 -/- 0.5083 0.5076
FRESH -0.7372 -/- 0.6028 0.6014
VMASK 0.3720 -/- 0.7438 0.7369
LIME 0.7077 0.8356 0.5000 0.3333
SHAP 0.0870 2.6125 0.5983 0.5818
L-INTGRAD 0.1912 0.7058 0.5003 0.5386
DIFFMASK 0.6474 1.1632 0.7153 0.7130
CURE* 0.9522 0.2287 0.7698 0.7689
CURE 0.7456 0.2287 0.7698 0.7689
CURE -C 0.7381 0.2405 0.7585 0.7561
CURE -SS 0.4978 0.3469 0.7298 0.7297
CURE -ST 0.7476 0.2330 0.7683 0.7672

PolitiHop

Lei et al. (2016) 0.1489 -/- 0.5674 0.3691
DeClarE 0.1053 -/- 0.6950 0.2734
FRESH 0.1505 -/- 0.6170 0.4435
VMASK 0.0075 -/- 0.7234 0.5580
LIME 0.0057 0.8041 0.6950 0.2734
SHAP -0.0146 2.2659 0.5957 0.4071
L-INTGRAD 0.0022 0.6580 0.6950 0.2734
DIFFMASK 0.0134 2.4533 0.6738 0.4471
CURE* 0.8704 0.3204 0.6950 0.3236
CURE 0.4092 0.3204 0.6950 0.3236
CURE -C 0.3735 0.2984 0.6525 0.3553
CURE -SS 0.1479 0.2563 0.6950 0.4214
CURE -ST 0.3877 0.3372 0.6809 0.2951

Table 1: Evaluation results of multi-granular rationale across three datasets. CURE* denotes the results using
predicted token rationale and predicted sentence rationale, CURE denotes the results using predicted token rationale
and annotated sentence rationale. ↑ means the larger value is better. −C, −SS and −ST denote the constraint
removal of Consistency, Salience-Sentence and Salience-Token, respectively. Our main results are marked in bold
and the best results are underlined.

extract the two granular rationales simultaneously,
for a fair comparison, we also report the evaluation
using the sentence rationale annotated by humans
instead of the predicted sentence rationale to com-
pute the Noiselessness. We can observe that: (I)
CURE is capable of extracting noiseless rationales
with the highest Noiselessness score, which indi-
cates the importance of the differential between
true evidence and noise evidence for the token ra-
tionale extraction. This is significantly reflected
in the CURE*. However, in contrast, all baselines
fail to induce noiseless rationales, leaving a signifi-
cant gap with our CURE. (II) CURE is quite faith-
ful with the lowest fidelity value across all three
datasets, surpassing all other baselines. This result

is in accordance with Jiang et al. (2021) that the
Euclidean distance between the logits constrains
the explainer to provide more faithful explanations.
(III) On claim verification, our CURE outperforms
the post hoc methods, while slightly lower com-
pared with intrinsic methods. We conjecture that
the information leakage caused by soft selection
may improve the performance of these models.

Beyond relative performance against baselines,
we conduct control experiments in the ablation
study to explore the effectiveness of property.
With the removal of different properties individu-
ally, we observe the reduced performance in the ex-
tracted rationales, both in fidelity and noiselessness.
The most significant property is Salience-Sentence,
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Dataset Model
Sentence Rationale Claim

F1 Precision Recall Acc. F1

LIAR-PLUS

Pipeline 0.6677 0.7450 0.6564 0.5811 0.5393
IB 0.3777 0.3927 0.3967 0.6252 0.6048
TSS 0.4324 0.6349 0.3469 0.6239 0.6172
LR 0.6242 0.6776 0.6381 0.7652 0.7519
CURE 0.6789 0.8072 0.6329 0.8210 0.8078

HoVer

0.9427 0.9028 0.9900 Pipeline 0.6255 0.6244
IB 0.6236 0.7018 0.5783 0.5678 0.5674
TSS 0.6883 0.9026 0.5755 0.5368 0.5111
LR 0.9419 0.9029 0.9988 0.5110 0.4050
CURE 0.9376 0.9045 0.9877 0.7698 0.7689

PolitiHop

Pipeline 0.6390 0.5986 0.8234 0.6596 0.4173
IB 0.4180 0.5106 0.3902 0.6879 0.5489
TSS 0.4272 0.5177 0.4044 0.6525 0.4334
LR 0.5699 0.5674 0.6657 0.7021 0.4712
CURE 0.6947 0.6584 0.8403 0.6950 0.3459

Table 2: Evaluation of claim verification and sentence rationale extraction across three datasets. The best results are
marked in bold.

Model Spearman F1 Precision Recall

LIME 0.1695 0.5422 0.6564 0.5459
SHAP 0.0305 0.3636 0.5138 0.5170
L-INTGRAD 0.0776 0.5108 0.5314 0.5479
VMASK 0.1177 0.5247 0.5473 0.5732
CURE 0.4293 0.6747 0.6739 0.7650

Table 3: Evaluation of token rationale extraction on the
HoVer dataset based on our re-annotation. The best
results are marked in bold.

this can be due to that explainer is susceptible to
over-fitting and yields noise token rationales from
noise sentences when lacking the ground-truth in-
formation of sentence rationales. The second key
property is Consistency, there are varying decreases
in both fidelity and noiselessness throughout the
three datasets, particularly for LIAR-PLUS, which
requires more complex rationales for reasoning
over multiple pieces of evidence than the other two
datasets. We reasonably presume the synergy of
the two granular explainers by constraining the ex-
traction of right token from right sentence (Gupta
et al., 2022). Moreover, we note a minor decrease
in claim verification when removing the Salience-
Token, showing that the retained task-relevant to-
kens directed by the salience score can help boost
the performance of veracity prediction.

Plausibility As shown in Tab.2 and Tab.3, we fur-
ther conduct the experiments to explore how well
the extracted rationales agree with human anno-
tation (Jacovi and Goldberg, 2020) compared to
classical single-granular rationale methods.

For sentence rationale, surprisingly, we find
that our CURE still outperforms the most baselines

on claim verification and rationale extraction. We
reasonably posit that the high quality right token
is useful for extracting right sentence rationale in
turn. To further validate the quality of token ra-
tionale extraction, we ask 3 annotators with NLP
backgrounds to re-annotate 150 samples from the
development set of the HoVer dataset to obtain
the token rationale label. Our annotators achieve
0.6807 on Krippendorff’s α (Krippendorff, 2011)
and retain 20% tokens annotated as rationales for
each sample. We measure the agreement between
the predicted token rationales and human annotated
rationales with the Spearman’s correlation, macro
F1, Precision, and Recall. As shown in Tab.3, our
CURE is far more promising and outperforms the
baselines with a huge gap on all evaluation metrics.
It clearly demonstrates the effectiveness of the de-
noising rationalization framework we proposed for
explaining multi-hop fact verification.

5.2 Manual Evaluation

Inspired by Zhou et al. (2020) and Yan et al. (2022),
we provide a manual evaluation of the token ratio-
nales (contained in the sentence rationale rather
than all the evidence) extracted by CURE, com-
pared to DIFFMASK (De Cao et al., 2020) and
VMASK (Chen and Ji, 2020). We randomly se-
lect 50 samples and ask three annotators with NLP
backgrounds to score these rationales in a likert
scale of 1 to 5 according to three different crite-
ria: (I) Correctness, which measures what extent
users can approach ground-truth label given the pre-
dicted token rationales; (II) Faithfulness, which
measures what extent users can approach the model
predicted label given the predicted token rationales;
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Figure 4: Human evaluation results in a likert scale of
1 to 5, where 1 means strongly disagree and 5 means
strongly agree. Average denotes the average score of
three criteria. The inner-rater agreement measured by
Krippendorff’s α is 0.88.

(III) Noiselessness, which measures what extent
the predicted token rationales do not contain noise
and irrelevant words.

The human evaluation results are shown in Fig.4.
We can observe that CURE achieves the best re-
sults on correctness and faithfulness. Although
DIFFMASK performs particularly well on noise-
lessness, the correctness and faithfulness of the
generated rationales are far worse than those of the
other two models, indicating the low quality of its
rationales. In fact, DIFFMASK excels at masking al-
most all tokens due to the only constraint of L0 loss.
Considering the mutual constraints between noise-
lessness and the other two criteria, we calculate the
average scores of three criteria for each method.
CURE still outperforms on average score, which
demonstrates the high quality of the noiseless token
rationales generated by our method.

5.3 Rationale Examples

Fig. 5 presents an intuitive example with rationales
generated by our CURE from the HoVer dataset.
We can observe that our CURE correctly predicts
the sentence rationales while entirely removing the
noise sentence E2. Meanwhile, The corresponding
retained token rationales contain information that is
not only important for veracity prediction, but also
appears the true token rationales by ignoring the
noise tokens, demonstrating their faithfulness and
noiselessness. It is worth noting that our CURE is
prone to retaining the title of the document as the
key cue for linking multiple pieces of evidence.

6 Related Work

A growing interest in interpretability has led to
a flurry of approaches in trying to reveal the rea-

 

Claim:  Indigofera does not belong to the cypress family 
Cupressaceae. The type of tree used to build James Wild Horse 
Trap does not belong to another cypress family either. 
Cunninghamites elegans is an extinct species in this other family.

Label: SUPPORTS     Predicted Label: SUPPORTS

Evidence:
E1(✔): [Juniper] Junipers * coniferous plants * * Genus Juniperus 
* * cypress family Cupressaceae * �
E2(❌):  [*] * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

E3(✔): [James Wild Horse Trap] It * * location of a corral and fences 
used * capture wild horses * built out of dead Juniper trees * �
E4(✔): [Indigofera] Indigofera * * large genus of over 750 species * 
flowering plants belonging to the family Fabaceae * �
E5(✔): [Cunninghamites elegans] Cunninghamites elegans * * extinct 
conifer species * * family Cupressaceae * �

� ✔❌extracted sentence Ground-truth Label*Mask-out token

Figure 5: Rationales extracted by our method on the
HoVer dataset. All the tokens except * denote the token
rationales predicted by our CURE.

soning behavior behind the multi-hop fact verifi-
cation task. A well-studied way is to use the at-
tention weights as attribution score to indicate the
importance of a token or sentence, such as self-
attention (Popat et al., 2018) or co-attention (Shu
et al., 2019; Yang et al., 2019; Wu et al., 2020,
2021). While this method is incapable of guaran-
teeing the inattention of low-score features, draw-
ing criticism recently (Wiegreffe and Pinter, 2019;
Meister et al., 2021). Another line of research
focuses on perturbation-based methods. These
methods explore a built-in explainer to generate
the rationale by masking the unimportant language
features (Atanasova et al., 2020; Paranjape et al.,
2020; Glockner et al., 2020; Kotonya and Toni,
2020b; Zhang et al., 2021; Fajcik et al., 2022). This
way generally employs the extract-then-predict
paradigm, while Yu et al. (2021) reveals an issue
of model interlocking in such a cooperative ratio-
nalization paradigm.

Recently, a few studies have explored the post
hoc paradigm for explanation extraction by detach-
ing the explainer and the task model. With the
parameters of the task model frozen, they focus
on the external explainer to retain the key cue in
input as the rationales to indicate features the task
model relies on (De Cao et al., 2020; Si et al., 2023;
Atanasova et al., 2022; Ge et al., 2022). Our work
falls under the scope of the post hoc paradigm,
different from the prior works that only consider
the single-granular rationale, we for the first time
propose a novel paradigm to yield indicative to-
ken rationales by regularizing the multi-granular
rationale extraction.
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7 Conclusion

We propose a novel multi-granular rationale ex-
traction framework for denoising rationalization in
multi-hop fact verification. The parallel explainers
are collaboratively modeled by constraining with
three diagnostic properties. A new noiselessness
metric is introduced to measure the purity of the
rationales. The results on three multi-hop fact veri-
fication datasets illustrate the effectiveness of our
method. In the future, we will explore how to gen-
erate counterfactual explanations.

Limitations

A limitation of our work is that we employ the su-
pervised paradigm because of the difficulty in sat-
isfying our expectations about the rationales. We
need the labels of sentence-level rationales as guid-
ance to obtain better classification performance and
high-quality rationales, which may be difficult to
extend our method into the scenarios with few anno-
tations (i.e., semi-supervised or unsupervised). In
addition, the L0 loss regularization overemphasizes
the sparsity, which can damage the performance on
claim verification and make the model sensitive to
hyperparameters.
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A Generalized multi-granular
Faithfulness and Noiselessness

Multi-granular faithfulness and noiselessness can
be easily applied to explain a model with sequential
input.

For the given trained model f(·) and input
X = [c; e1; e2; . . . ; en] with its corresponding ra-
tionales Rs = {si | si ∈ {e1, e2, . . . , en}} and
r = {ri ⊂ ei}|ni=0, where ri = {ti,j |ti,j ∈ ei},
we define the generalized multi-granular faithful-
ness and noiselessness of Rs and r as follows.

Definition 3. (Faithfulness) Rs and r are multi-
granular faithful to their corresponding prediction
Y if and only if Y rely entirely on XR = [c, e1 ∩
Rs ∩ r1, . . . , en ∩Rs ∩ rm].
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Definition 4. (Noiselessness) Rs and r are multi-
granular noiseless to their corresponding predic-
tion Y if and only if satisfying

∑

si∈Rs

|si ∩ ri| ≤ ϵ,
∑

s′i∈X\Rs

|s′i ∩ ri| → 0, (12)

where ϵ is the maximum expected sparsity of token-
level rationales, X\Rs denotes the complementary
subset of Rs.

B Hard Concrete Distribution

The Hard Concrete distribution (Louizos et al.,
2018) assigning probability densities on the close
unit interval [0, 1] by using stretch and rectify the bi-
nary Concrete distribution (Maddison et al., 2017).
We describe this process here briefly.

Assume we have a binary concrete random vari-
able s distributed in the interval (0, 1) with its pa-
rameters ϕ = (logα, β), where logα is the loca-
tion and β is the temperature and probability den-
sity function (pdf) qs(s|ϕ) and cumulative density
function (CDF) Qs(s|ϕ),

qs(s|ϕ) =
βαs−β−1(1− s)−β−1

(αs−β + (1− s)−β)2
(13)

Qs(s|ϕ) = σ((log s− log(1− s))β − logα.
(14)

where σ(·) denotes Sigmoid(·).
We can stretch the above distribution to the in-

terval (γ, ζ), with γ < 0 and ζ > 1 and obtain

s̄ = s(ζ − γ) + γ,

s = σ((log u− log(1− u) + logα)/β),

u ∼ U(0, 1),

(15)

with the corresponding pdf and CDF

qs̄(s̄|ϕ) =
1

|ζ| − γ
qs(

s̄− γ

ζ − γ
|ϕ), (16)

Qs̄(s̄|ϕ) = Qs(
s̄− γ

ζ − γ
|ϕ). (17)

Then, by further rectifying s̄ with the hard-sigmoid,

z = min(1,max(0, s̄)), (18)

we can obtain a distribution over z:

q(z|ϕ) = Qs̄(0|ϕ)δ(z) + (1−Qs̄(1|ϕ))δ(z − 1)

+ (Qs̄(1|ϕ)−Qs̄(0|ϕ))qs̄(z|s̄ ∈ (0, 1), ϕ).

(19)
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z
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z)

Hard Concrete
Binary Concrete

Figure 6: The binary concrete distribution with location
logα = 0 and temperature β = 0.3. The hard concrete
distribution is obtained by stretching the binary concrete
distribution to (γ = −0.1, ζ = 1.1) and then applying
a hard-sigmoid.

as Fig.6 shows, which is composed of a delta peak
at zero with probability Qs̄(0|ϕ), a delta peak at
one with probability 1−Qs̄(1|ϕ), and a truncated
version of qs̄(s̄|ϕ) in the (0, 1) range.

According to Eq16, we can derive the expecta-
tion of non-zero for z,

p =

∫ 1

0
zq(z|ϕ) dz + q(1|ϕ), (20)

which is treated as the importance score of each
token or sentence in the input.

C Capsule Network with Intervention

We take the sentence representation h̃
L
i,0|ni=0 as evi-

dence capsules pci|ni=0 ∈ Rd and the label as the
class capsule ccj |mj=1 ∈ Rdc , where m denotes the
number of classes. The capsule network models the
relationship between evidence capsules and class
capsules by computing the routing weights using a
dynamic routing mechanism.

Specifically, let pcj|i be the predicted vector for
the pair of evidence capsule pci and the class cap-
sule ccj ,

pcj|i = W jipci, (21)

where W ji ∈ Rdc×d denotes the transformation
matrix. Then, all the evidence capsules are ag-
gregated by a weighted summation over all corre-
sponding predicted vectors to generate the presen-
tation of each class capsule:

ccj = Squash(

n∑

i

βjipcj|i), (22)
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Dataset Num. C. Avg.L Avg.SR

HoVer Train 18171 2 66.28 3.04
Dev 4000 2 53.66 3.37

LIAR-PLUS Train 6341 3 23.49 3.89
Dev 771 3 23.34 3.93

PolitiHop Train 592 3 24.92 2.53
Dev 141 3 25.41 2.55

Table 4: Statistics of datasets. Num. and C. are the
number of claims and classes of each dataset, respec-
tively. Avg.L denotes the average length of evidence,
and Avg.SR denotes the average number of sentence ra-
tionales.

where Squash(·) is a non-linear squashing func-
tion which limits the length of ccj to [0, 1] and βji
denotes the coupling coefficient and is calculated
by iterative dynamic routing algorithm on original
logits bji, which is summarized in Algorithm 1. Fi-
nally, the claim can be classified by choosing the
class capsule with the largest ρj via optimizing the
capsule loss.

To further eliminate the effect of noise sentences,
we use sentence mask vector m to intervene the
coupling coefficients βij between the evidence cap-
sule pci and class capsule ccj in the dynamic rout-
ing, as described in line 5 of Algorithm 1.

Algorithm 1 Dynamic Routing Algorithm

1: Procedure: Routing(pcj|i, p̂ji = |pci|)
2: Initialize the coupling coefficient bij → 0
3: for iteration do
4: For all capsules:

βji ← p̂ji · leaky_softmax(bji)
5: For all capsules: βji ← βji ·mi

6: For class capsules: sj ←
∑

i βji · pcj|i
7: For class capsules: ccj ← Squash(sj)
8: For all capsules: bji ← bji + pcj|i · ccj
9: end for

10: return cc ∈ Rm×dc , ρj = |ccj |

D Experimental Setup

D.1 Datasets

All the datasets we used require complex reasoning
over multiple pieces of evidence and have anno-
tated sentence rationales by humans. Note that
evidence of the datasets has a large portion of noise
evidence, leading to confusion for the model in
the reasoning process. For HoVer, given a claim
with 5 corresponding evidence sentences, a fact

verification model needs to predict the veracity of
the claim ∈ {SUPPORTS,REFUTES}. For
LIAR-PLUS and PolitiHop, given a claim with 10
and 5 corresponding evidence sentences, respec-
tively, a fact verification model needs to predict the
veracity of the claim∈ {false, half−true, true}.
Furthermore, as Section 5.1 described, we manu-
ally annotated the token-level rationales for 150
samples on the development set of HoVer. For each
dataset, we used a script to check for and remove
offensive content and identifiers. The statistics of
the datasets are shown in Tab.4.

D.2 Baselines

• Pipeline (DeYoung et al., 2020): An intrin-
sic pipeline sentence-level rationale extraction
method which consists of an extractor and
a classifier and verdicts the claim using one
sentence-level rationale with the highest con-
fidence score from the extractor.

• Information Bottleneck (IB) (Paranjape
et al., 2020): An intrinsic sentence-level ratio-
nale extraction model which employ the vari-
ational information bottleneck (Alemi et al.,
2017) to extract rationales for prediction and
interpretability simultaneously. We set the
threshold to 0.6, 0.4 and 0.4 for HoVer, LIAR-
PLUS, and PolitiHop, respectively.

• Two-Sentence Selecting (TSS) (Glockner
et al., 2020): An intrinsic sentence-level ra-
tionale extraction model which extracts ratio-
nales by using the loss logits of sentences. We
chose the first two sentences as sentence-level
rationales because of the expensive cost of
computing.

• Learning from rationales (Carton et al.,
2022): An intrinsic sentence-level rationale
extraction model with several novel loss func-
tions and learning strategies, which aims to
improve the performance of both prediction
and rationale extraction.

• LIME (Ribeiro et al., 2016): A post hoc token-
level rationale extraction method which com-
putes the attribution score for each input token
by using a linear model to locally approximate
the model’s predictions on a set of perturbed
instances around the base data point. We
use the implementation provided by Captum
(Kokhlikyan et al., 2020) and choose LASSO
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Veracity Prediction HoVer LIAR-PLUS PolitiHop

Layers 12 12 12
Hidden size 768 768 768
Heads in GAT 8 8 12
Dropout rate in GAT 0.0 0.0 0.6
Optimizer AdamW AdamW AdamW
Learning rate 1e-5 1e-5 1e-6
Train epochs 20 30 100
Batchsize 1 1 1

Rationale Extraction HoVer LIAR-PLUS PolitiHop

Optimizer Lookahead RMSprop* Lookahead RMSprop* Lookahead RMSprop*
Learning rate gs gt 3e-4 3e-4 3e-4
Train epochs 10 20 100
λ1−5 {1, 0.1, 1, 0.15, 0.2} {1, 0.2, 1, 0.1, 0.1} {1, 0.1, 1, 0.15, 0.45}

Table 5: Hyperparameters for training. Optimizer: *Tieleman et al. (2012); Zhang et al. (2019).

Dataset Model
Claim Verification Sentence-level Rationale

Acc. F1 F1 Precision Recall

LIAR-PLUS
CURE 0.8210 0.8078 0.6789 0.8072 0.6329
CURE -C 0.8132 0.8028 0.6935 0.8001 0.6627
CURE -ST 0.8171 0.8069 0.6766 0.8056 0.6326

HoVer
CURE 0.7698 0.7689 0.9376 0.9045 0.9877
CURE -C 0.7585 0.7561 0.9383 0.9044 0.9892
CURE -ST 0.7683 0.7672 0.9349 0.9066 0.9807

PolitiHop
CURE 0.6950 0.3459 0.6947 0.6584 0.8403
CURE -C 0.6525 0.3553 0.7121 0.6565 0.8811
CURE -ST 0.6809 0.2961 0.6954 0.6593 0.8397

Table 6: Ablation study results of sentence rationale extraction across three datasets. −C and −ST denote the
constraint removal of Consistency and Salience-Token, respectively.

as the surrogate model. We consider all to-
kens with an attribution score greater than 0
as rationales.

• Lei et al. (2016): An intrinsic token-level ra-
tionale extraction model which combines two
components, generator and encoder, where the
generator specifies a distribution over tokens
as candidate rationales, and these are passed
through the encoder for prediction. We im-
plement generator training using the Gumbel
Softmax instead of using REINFORCE for
stable training 3.

• SHAP (Lundberg and Lee, 2017): A post
hoc token-level rationale extraction method
similar to LIME, but where the weights of
each perturbed instance are computed based
on Shapely values when training the linear
model.

3https://github.com/yala/text_nn

• Layer Integrated Gradient (L-INTGRAD)
(Mudrakarta et al., 2018): A post hoc token-
level rationale extraction method which is a
variant of Integrated Gradients (Sundarara-
jan et al., 2017) and assigns an importance
score to layer inputs or outputs, depending on
whether we attribute to the former or to the
latter one. We use the implementation pro-
vided by Captum (Kokhlikyan et al., 2020)
and consider all tokens with an attribution
score greater than 0 as rationales.

• DeClarE (Popat et al., 2018): An intrinsic
token-level rationale extraction model which
extracts the rationales with the attention score.
We choose the attention score with the thresh-
old of 0.5.

• FRESH (Jain et al., 2020): A pipeline in-
trinsic token-level rationale extraction model
which is a simpler variant of Lei et al. (2016),
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where rationales are induced by using arbi-
trary attribution scores (e.g., gradient from
a trained model) heuristically. The words
with the top 50%, 30%, and 40% attribu-
tion scores were selected as the rationales for
HoVer, LIAR-PLUS, and PolitiHop, respec-
tively, to ensure the comparable sparsity with
our model results.

• VMASK (Chen and Ji, 2020): An intrinsic
token-level rationale extraction model based
on variational information bottleneck, which
is similar to IB (Paranjape et al., 2020). We
take tokens with an expectation greater than
0.5 as rationales.

• DIFFMASK (De Cao et al., 2020): A post hoc
token-level rationale extraction model which
learns to mask out a subset of the input tokens
while maintaining a distribution overpredic-
tion as close to the original distribution as
possible.

All experimental setups of the baselines are fol-
lowed from the original papers.

D.3 Implementation Details

We report the hyperparameters for training veracity
prediction models and multi-granular explainers in
Tab.5. We run all the experiments using the Nvidia
GeForce RTX 3090 (24 GB) GPU.

E Sentence Rationale Extraction Ablation
Study

In the ablation study, we explore whether the con-
straints of Consistency and Salience-Token from
the token rationale affect the performance of sen-
tence rationale extraction. As shown in Tab.6, as
expected, we observe a slight improvement in the
performance of sentence rationale extraction and a
slight decrease in claim verification when removing
the consistency. On one hand, the claim verifica-
tion will be affected by the noise tokens contained
in the extracted sentence without the regularization
of consistency from the token rationale. On the
other hand, the consistency is a trade-off term be-
tween the token rationale extraction and sentence
rationale extraction, thus the model will increase
the performance of sentence rationale extraction by
only focusing on the label information without the
constraint from the consistency.

 

Claim:  Says he was the only statewide elected official to speak in 

favor of a federal guest worker plan at the 2012 Republican Party of 

Texas convention.

Label: True     Predicted Label: True

Evidence:

E1(❌): [ * * ] A June 9 , 2012 , Texas Tribune news story quoted  * 's 
Bob * * * * * * as saying * * * * * * * * * * * * * * * * *

E2(✔): [ * * ] * said he * unique among * elected officials in speaking * 

* * section * * part * * * Party * * platform * 2012 * 🟠

E3(❌): [ * * ] * reminded us * * * * ** * * * * *

E4(❌): [ * * ] * * * only * * *

E5(❌): [ * * ] * * * * * * * * * * * * * * * * * *

E6(❌): [ * * ] * * * * * * * * * * * * * * * * * * *

E7(❌): [ * * ] * said * * * * * * * * * * * * * * * * * *

E8(✔): [  *  *  ] Click here for more on * six PolitiFact * and how we 
select facts * check * 🟠

E9(❌): [ * * ] But , * said * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

E10(❌): [ * * ] * opened by describing * * * * * * * * * * * * * * * * * * * * * * 

🟠 ✔❌Sentence rationale Ground-truth Label *Mask-out token

Figure 7: Rationales extracted by our method on LIAR-
PLUS. Each piece of evidence consists of the author
and an evidence sentence. All the retained tokens are
the token rationales predicted by our method.

F Token Annotation Guidelines

We ask three annotators with NLP backgrounds to
re-annotate the token rationale according to the
following guidelines. The annotators are three
graduate-level language technology researchers.
We follow the local laws and offer 30 dollars per
hour for each annotator.

Guidelines: Please determine whether each to-
ken in the evidence supports/refutes the claim ac-
cording to the claim, the evidence, the classification
label (SUPPORTS/REFUTES), and the sentence
label of whether each evidence is a sentence-level
rationale (1/0). Please read the following detailed
guidelines and the corresponding example care-
fully:

• Please try to focus on the tokens that sup-
ports/refutes the claim, i.e., important tokens,
preferably requiring some inference rather
than simply using tokens that duplicate those
in the claim as rationales.

• Please focus on the useful evidence (whose
label is 1), i.e., the sentence-level rationales,
rather than the useless evidence (whose label
is 0).

• If you think that part of the tokens of a word
is important, then you can label part of the
tokens of the word as rationales.
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585: Nicole Provis’s had a partner in the 1992 Dow Classic–Doubles. Her partner has won more championship doubles titles than Vasek Pospisil.
label: SUPPORTS
</s>1992 Dow Classic – Doubles</s></s>Nicole Provis and Elizabeth Smylie were the defending champions but were defeated in the quarterfinals by Jo-Anne Faull and Julie Richardson .</s> label: 1
</s>Jack Sock</s></s>A former junior US Open champion, Sock’s singles success is highlighted by 7 ATP finals , including three titles .</s> label: 0
</s>Elizabeth Smylie</s></s>During her career, she won four Grand Slam titles, one of them in women ’s doubles and three in mixed doubles .</s> label: 1
</s>Elizabeth Smylie</s></s>Elizabeth Smylie ( née Sayers, born 11 April 1963 ), sometimes known as Liz Smylie, is a retired Australian professional tennis player .</s> label: 1
</s>Vasek Pospisil</s></s>Along with partner Jack Sock, he won the 2014 Wimbledon Championships and the 2015 Indian Wells Masters men’s doubles titles .</s> label: 1
</s> 1992 ĠDow ĠClassic ĠâG, ˆ ĠDou bles </s> </s> Nic ole ĠPro vis Ġand ĠElizabeth ĠSmy lie Ġwere Ġthe ......

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ......
</s> Jack ĠS ock </s> </s> A Ġformer Ġjunior ĠUS ĠOpen Ġchampion Ġ, ĠS ock Ġ’ s Ġsingles Ġsuccess ......

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ......
</s> Elizabeth ĠSmy lie </s> </s> During Ġher Ġcareer Ġ, Ġshe Ġwon Ġfour ĠGrand ĠSlam Ġtitles Ġ, Ġone Ġof ......

0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 ......
</s> Elizabeth ĠSmy lie </s> </s> Elizabeth ĠSmy lie Ġ( Ġn Ã©e ĠS ayers Ġ, Ġborn Ġ11 ĠApril Ġ1963 ......

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ......
</s> V ase k ĠP osp is il </s> </s> Along Ġwith Ġpartner ĠJack ĠS ock Ġ, Ġhe Ġwon ......

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 ......

Table 7: The example of token-level rationales annotation

 

Claim:  An MSNBC reporter was fired for using a racial slur while 

covering the Kobe Bryant helicopter crash.

Label: False     Predicted Label: False

Evidence:

E1(✔): [ * * ] This isn ’ t accurate –– * has not been fired * 🟠

E2(✔): [ * * ]  * * * * * the flub was an accident and not a racial slur * 🟠

E3(❌): [ * * ] * * * * * * * *

E4(❌): [ * * ] * * * * * * * * * * * * * * * * * * * * * * 

E5(❌): [ * * ] * * * * * * * * * * * * * * * * * *

🟠 ✔❌Sentence rationale Ground-truth Label *Mask-out token

Figure 8: Rationales extracted by our method on Poli-
tiHop. Each piece of evidence consists of the speaker
and an evidence sentence. All the retained tokens are
the token rationales predicted by our method.

• If you feel that punctuation and special to-
kens </s> are also important, please remem-
ber to label them as rationales.

• For samples with the classification label RE-
FUTES, some parts of the claim may be cor-
rect and some may be incorrect. Please label
all the tokens that can verify both the correct
and incorrect parts as rationales.

• In some cases, you can find errors in the
ground-truth judgment (i.e., the classifica-
tion label or sentence label) or the evidence
does not contain enough information to de-
cide whether the claim should be supported
or refuted. If you notice so, please skip this
sample and mark it as ERROR.

That is all. Tab.7 is a specific example for anno-
tation. Thank you for annotating!

G Rationale Examples

Fig.7 and Fig.8 present the intuitive examples on
LIAR-PLUS and PolitiHop, respectively. The two
datasets are PolitiFact-based datasets, which con-
sist of the author profile in their evidence text. Un-
like the title of the document, the profile of the

author may trigger bias for the model. So our
method does not consider the author or speaker
to be rationales. It should be noted that each piece
of evidence in LIAR-PLUS comes from a passage
by the same author, so it is necessary to rely on
other evidence (i.e. context) to determine whether
each piece of evidence is correct. For example,
in Fig.7, we need E8 (probably a hyperlink to a
PolitiFact article, an official fact-checking site) to
prove the correctness of E2, and further approach
the veracity of the claim.
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