
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 12557–12569
November 12-16, 2024 ©2024 Association for Computational Linguistics

Textual Dataset Distillation via Language Model Embedding

Yefan Tao Chris Kong Andrey Kan Laurent Callot
{tayefan, luyankon, avkan, lcallot}@amazon.com
Amazon Web Services, Seattle, Washington, USA

Abstract

Dataset distillation is a process aimed at con-
densing datasets while preserving essential
characteristics. In the text domain, prevail-
ing methods typically generate distilled data
as embedding vectors, which are not human-
readable. This approach simplifies optimiza-
tion but limits the transferability of distilled
data across different model architectures. To
address this limitation, we introduce a model-
agnostic, data-efficient method that leverages
Language Model (LM) embeddings. Com-
pared to parameter-efficient methods such as
LORA, our approach achieves comparable per-
formance with significantly faster processing
times. We evaluate our methodology through
classification tasks on datasets like IMDB and
AG-News, demonstrating performance that
is on par with or exceeds previous model-
dependent techniques. By utilizing LM em-
beddings, our method offers enhanced flexibil-
ity and improved transferability, expanding the
range of potential applications.

1 Introduction

Recent advancements in Natural Language Process-
ing (NLP) models have been significantly driven
by the availability of large-scale datasets(Wu et al.,
2020) (Yin et al., 2021). It has been widely ob-
served that larger datasets often lead to better per-
formance. However, there is a growing recog-
nition that "small and high quality data" can be
more effective than simply "larger but low-quality
data"(Gunasekar et al., 2023; Li et al., 2023). Ad-
ditionally, training NLP models on large-scale
datasets can be remarkably time-consuming and
resource-intensive, presenting a substantial chal-
lenge in the field. This has spurred ongoing re-
search efforts to optimize the efficiency of model
training while ensuring the data quality and in-
tegrity.

In the context of recent trends involving Large
Language Models (LLMs), the consideration of

0.5 0.6 0.7 0.8 0.9 1.0
accuracy

0

500

1000

1500

2000

2500

3000

tim
e,

 se
c

IMDB ours is x50 faster,
accuracy within 5%

full

ours is x37 faster,
similar accuracy

LORA

ours has similar speed,
but is 13% more accurate
random sample ours

0.5 0.6 0.7 0.8 0.9 1.0
accuracy

0

2000

4000

6000

8000

10000

12000

tim
e,

 se
c

AG news ours is x26 faster,
accuracy within 2%

full

ours is x20 faster,
3% more accurate

LORA

ours has similar speed,
but is 15% more accurate

random sample ours

Figure 1: Comparative training time of four training
strategies on IMDB and AG-News datasets. Our pro-
posed method (trained with a small distilled dataset)
achieves significantly faster training times than full data
and LORA, with comparable accuracy, and outperforms
training with a random subset in accuracy at similar
speeds. Detail in Section 5.7

dataset size and quality becomes particularly per-
tinent. LLMs, despite their extensive capabilities,
are associated with inherent challenges, including
significant latency in API calls and substantial op-
erational costs. Thus it has been increasingly com-
mon to use a LLM as an orchestrator that breaks

12557

down natural language request into steps, and in-
vokes relatively small, task-specific models for in-
dividual sub-tasks. For example, in multifunctional
enterprise chatbots, it is common to first identify
query intent using a fine-tuned intent classifier (e.g.,
the entered query can be classified into “taking ac-
tion on data”, “answering a question about data”, or
“off topic”). Using a specialized model is cheaper
and faster compared to using LLM for the same
task. Moreover a model fine-tuned on customer
data can be more effective on customer’s domain
compared to a large generic model. Such a syn-
ergy between pre-trained LLMs and specialized
fine-tuned models enhances overall system efficacy.
In turn, small, high-quality datasets are crucial for
training highly specialized and efficient models(Li
et al., 2023).

One promising approach to obtain "small and
high quality data" is dataset distillation(Wang et al.,
2020; Li et al., 2022), a technique that aims to
distill the knowledge from a large dataset into a
smaller, more compact dataset that preserves the
performance of the model. Unlike traditional core-
set selection method, dataset distillation aims at
generating "synthetic data" which represents the
whole dataset’s information. The main benefits
of dataset distillation comes from two aspects: 1)
remove the requirement of heuristics, which is al-
ways needed in core-set selection algorithm 2) not
bounded by real data points, which leads to higher
compression rate.

While LoRA (Low-Rank Adaptation)(Hu et al.,
2021) primarily focuses on the parameter aspect
by reducing the number of trainable parameters to
lower memory and computational demands, dataset
distillation targets data efficiency. Unlike LoRA,
which modifies the model architecture to enhance
parameter efficiency, dataset distillation reduces
the volume of training data, thereby significantly
enhancing training speed (as shown in Figure 1),
which is particularly valuable in scenarios requir-
ing rapid deployment or frequent retraining. This
distinction underscores the unique benefits each
method offers in optimizing model training under
different operational constraints.

Most existing dataset distillation methods have
been predominantly developed for the vision do-
main. A significant challenge in distilling textual
data arises from the discrete nature of real text,
which prevents direct training on synthetic data.
To circumvent this problem, previous research (Su-

cholutsky and Schonlau, 2021; Li and Li, 2021)
has focused on generating ’synthetic embeddings’
as a form of distilled data. While this approach
yields reasonable results, it comes with a severe
limitation: these synthetic embeddings are typi-
cally constrained to the same model architecture
and tokenizer used during their generation. This
restriction greatly impedes the practical applica-
tions of such methods. Ideally, distilled textual data
should be universally effective, robust against vari-
ations in model architecture, and adaptable across
different NLP models. Such universality is cru-
cial for advancing realistic applications in textual
dataset distillation.

Here we focus on the question: “how to per-
form an effective model-independent distillation of
text data?” To this end, we are proposing a novel
three-step procedure. Initially, the original textual
dataset is encoded into vector representations using
state-of-the-art embedding models (e.g., Sentence-
BERT, OpenAI embedding, etc.). Next, the data
is strategically sampled, aiming to maximize in-
formation retention. This step is not limited to
selecting subsets of existing vectors: it permits an
unconstrained search within the embedding space.
Finally, the distilled embedding vectors are trans-
lated back into authentic textual format through a
“vec2text” model. The regenerated text is crafted
to retain the integrity of the information for ap-
plication across various downstream tasks. We
will go through each step in detail in Section 3.
We named the proposed method DaLLME, which
stands for Data Distillation via Large Language
Model Embedding.

Our primary contributions are as follows:

• We introduce a novel model-agnostic frame-
work that leverages the embeddings from
Large Language Models (LLMs) to distill
comprehensive information from extensive
textual datasets into a more compact, synthetic
form.

• We demonstrate that the application of
’prompting’ techniques can enhance the qual-
ity of embedding representations for special-
ized downstream tasks.

• Through rigorous evaluation across a variety
of downstream tasks, our approach achieves
state-of-the-art performance on multiple tex-
tual datasets, underscoring the efficacy of our
proposed method.

12558

2 Related Works

2.1 Dataset Distillation
Dataset distillation has been a topic of increasing
interest in recent years, as the size and complex-
ity of machine learning datasets continue to grow.
Most of the previous work in dataset distillation
requires the training on synthetic data to mimic the
behavior of the training on real data. The first line
of work (Wang et al., 2020) treat the data and learn-
ing rate as part of the trainable parameters, then the
synthetic data is generate by minimizing the loss
with second-order derivative. (Sucholutsky and
Schonlau, 2021) extends the work to include label
as "soft-label". Also, (Sucholutsky and Schonlau,
2021) is the first work to apply the dataset distilla-
tion algorithm in the text domain. However, these
works both requires bi-level iteration and second-
order derivatives calculation, which is very time-
consuming and not scalable.

To generate synthetic data efficiently, many fol-
lowing works avoid the second-order iteration and
propose novel approaches (Lei and Tao, 2023).
One line of work is proposing new meta-learning
frameworks: (Bohdal et al., 2020) and (Sucholut-
sky and Schonlau, 2021) learns the label instead of
data to avoid the heavy weight updates. (Nguyen
et al., 2021) and (Nguyen et al., 2022) use the ker-
nel methods in dataset distillation. The other line
of work is focusing on data matching framework,
including gradient matching (Zhao et al., 2021),
(Lee et al., 2022), distribution matching(Zhao and
Bilen, 2022; Wang et al., 2022), trajectory match-
ing(Cazenavette et al., 2022), (Du et al., 2023), etc.

2.2 Core-Set selection
Core-Set selection methods aim to identify and
extract a representative subset of the full dataset,
known as a ’Core-Set,’ which succinctly captures
the essence of the entire dataset while substan-
tially reducing its size(Feldman, 2020). The core
idea is to maintain the distribution and diversity of
the original data, allowing for the preservation of
learning complexity and ensuring minimal loss in
model performance when trained on this reduced
set. Core-Set selection methods can be catego-
rized based on their sampling criteria, including
geometry-based(Sener and Savarese, 2017; Killam-
setty et al., 2021b), uncertainty-based(Coleman
et al., 2019), submodularity-based(Mirrokni and
Zadimoghaddam, 2015), gradient-based(Aljundi
et al., 2019; Killamsetty et al., 2021a) and loss

approximation-based(Guo et al., 2022).

2.3 Vec2Text

“Vec2text” refers to the process of converting nu-
merical vector representations into human-readable
text. The Encoder-Decoder architecture has
been highly successfully in the image process-
ing domain, exemplified by its ability to en-
code images into high–dimensional hidden vec-
tors and subsequently decode them back to im-
age form(Badrinarayanan et al., 2017). Within
the realm of Natural Language Processing(NLP),
similar Encoder-Decoder frameworks are preva-
lent and are foundational to tasks such as ma-
chine translation(Cho et al., 2014) and text sum-
marization(Liu and Lapata, 2019). However, the
landscape of NLP is evolving with Large Lan-
guage Models (LLMs) increasingly adopting ei-
ther Encoder-only(like BERT and RoBERTa) or
Decoder-only (GPT-family, LLaMA) architectures
to fulfill diverse objectives.

A body of research has dedicated efforts to
construct vec2text models tailored to specialized
datasets. One approach involves the development
of these models via auto-encoders(Bowman et al.,
2015; Shen et al., 2020), while another line of in-
quiry seeks to establish a universal vec2text model
by training on extensive text corpora(Cideron et al.,
2022). More recently, a novel methodology has
emerged wherein a multi-step correction strategy is
employed to refine and approximate the translation
of embedding vectors back into coherent plain text
(Morris et al., 2023).

3 Methodology

3.1 Problem Statement

Given a large-scale dataset Do = {xi}N , where
N is the number of sample in Do, the problem of
dataset distillation is to generate a synthetic data
Ds = {x̃j}M with M ≪ N , such that Ds effec-
tively encapsulates the informational essence of Do.
The distilled dataset Ds should enable the training
of models that achieve comparable performance to
models trained on Do, despite the significant reduc-
tion in size. Both xi and x̃j are human-readable
text so that the generated synthetic data can be
transferred to different downstream models. For-
mally,

Ds = argmin
Ds

eval(Θ(Do))− eval(Θ(Ds)) (1)

where Θ(Do) and Θ(Do) are models trained on

12559

Figure 2: The DaLLME Framework Process Flow. The framework initiates by transforming raw textual data into
embedding vectors using a Language Model. Subsequently, a condensed set of distilled vectors is derived in the
embedding space, designed to encapsulate maximum informational content. Finally, the ’vec2text’ model translates
these distilled embedding vectors back into textual form. The resulting distilled text is not only significantly more
compact but also retains the informational richness of the original, expansive dataset, making it suitable for various
downstream tasks.

Do and Ds for specific downstream tasks, eval is
the evaluation function for downstream task.

3.2 Proposed Method

We propose an innovative approach to address this
challenge by utilizing Language Model embed-
dings. These embeddings are known for encapsu-
lating rich information, as highlighted by (Morris
et al., 2023). Furthermore, they facilitate quantita-
tive operations, enabling advanced data manipula-
tion. Our methodology comprises three key steps:

Text-to-Embedding Conversion: In the first
step, we convert textual data into embedding vec-
tors. This transformation exploits the Large Lan-
guage Model’s (LLM) proficiency in distilling and
representing intricate textual content within a mul-
tidimensional vector space. It is well-established
that judicious prompting can substantially enhance
the LLM’s efficacy in downstream tasks(Kojima
et al., 2022). We posit that embeddings, when
enriched with appropriate prompts, encapsulate a
richer informational content compared to their non-
prompted counterparts.

For scenarios where dataset distillation is tai-
lored for a specific downstream task, we incorpo-

rate a task-specific prompt to augment the perfor-
mance of the embedding model. This strategic
prompting is designed to align closely with the
task’s nuances, thereby boosting the model’s rele-
vance and effectiveness. Conversely, in the context
of general-purpose dataset distillation, the addition
of prompts is deemed unnecessary. In such cases,
our focus shifts to maintaining the versatility and
broad applicability of the embeddings without the
influence of task-specific cues.

Synthetic Embedding Generation: In the sec-
ond step, we generate synthetic data within the
embedding space. The overarching goal of this
step is a general yet vital one: given a list of high-
dimensional vectors, we aim to generate a compact
set that captures the essence and information con-
tained in the original vector list. This process is
akin to distilling the key features and patterns from
a vast dataset into a more manageable and insight-
ful subset.

To support this approach, we introduce a Gen-
erator, represented as g, which is designed to be
adaptable to specific tasks. A good generation strat-
egy should offer users the flexibility to control the
generation size, allowing for adjustments based on

12560

specific needs and constraints. In our approach,
we utilize the k-centroid algorithm, which does not
require training (detail in Appendix B.2). We also
experimented with the Gaussian Mixture Model
(GMM) (Bond et al., 2001) and observed no signif-
icant difference in results.

The choice of the generator, whether it be k-
centroid, or any other method, can be tailored to
the specific requirements of the task at hand. This
adaptability ensures that our approach is not only
versatile but also capable of yielding high-quality
synthetic data that is both relevant and representa-
tive of the original dataset.

Embedding-to-Text Translation: In the last
step, we convert the synthetic embedding vectors
back into human-readable text, which ensures its
generalization across different model architectures.
We adopted the "multi-step correction" strategy pro-
posed by (Morris et al., 2023), and trained several
vec2text models for specific down-stream tasks.
This step is crucial for the transferability of the
distilled data.

4 Experiments Configuration

Embedding Model. MTEB(Muennighoff et al.,
2022) provides a comprehensive benchmarking
on a series of embedding models’ performance
on different NLP tasks. Generally, the dimension
of embedding model correlates to the model’s
representative ability. In order to understand
the embedding model’s performance on the
quality of distilled dataset, we picked the
following embedding models with different
output dimensions: GloVe1(dim=300), e5-
base-v22(dim=768) from Sentence-Transformer,
text-embedding-ada-2-002(dim=1536) and text-
embedding-3-large3(dim=3072) from OpenAI
API.

Training of vec2text Model. The Vec2Text
model functions primarily as a decoder and requires
training across various embedding models. Follow-
ing (Morris et al., 2023), we initialize the model
from T5-Base and fine-tune with domain-specific
training data. We set the maximum sequence length
as 128 to avoid model deterioration. To ensure the
vec2text model’s efficacy, we employ the BLEU
score to access similarity between the original and

1https://huggingface.co/sentence-
transformers/average_word_embeddings_glove.6B.300d

2https://huggingface.co/intfloat/e5-base-v2
3https://platform.openai.com/docs/guides/embeddings

the reconstructed text. Each vec2text model is fully
trained until the BLEU score is converged on test-
ing data.

Downstream Tasks and Datasets. We evalu-
ate the proposed method with the text classifica-
tion task, focusing on the IMDB4 and AG-News5

datasets. IMDB is a dataset for binary sentiment
classification, featuring 50,000 movie reviews la-
beled as positive or negative. AG-News comprises
news articles across four categories, aiming for
topic classification.

Evaluation. Our goal is to synthesize a dataset
that maintains its effectiveness across a diverse
downstream models, thereby ensuring robustness
and model-agnostic performance. To this end,
we have conducted evaluations using different
downstream models, including Logistic Regres-
sion (LR), Naive Bayes (NB), Support Vector
Machine (SVM), more advanced neural network
models including customized TextCNN, TextRNN
and pre-trained language models, including distil-
BERT(Sanh et al., 2019) and T5-Base(Raffel et al.,
2020). For input text vectorization, LR/NB/SVM
utilize TF-IDF, whereas TextCNN/TextRNN em-
ploy GloVe-100d embeddings, and distilBERT/T5-
Base leverage their own tokenizer and embeddings.
Utilizing the distilled dataset, we trained these
downstream models to full capacity and assessed
their performance by measuring accuracy on the
original test dataset. Higher accuracy indicates
that the distilled data retains a high level of infor-
mational content. For each result, we conducted
10 experiments and reported the average accuracy
along with its standard deviation. More detail about
the model architectures are in Appendix A.

Baseline. There are limited works in the do-
main of textual dataset distillation, and previous
work(Sucholutsky and Schonlau, 2021; Li and Li,
2021) are all model-specific. Even though it’s not a
fair comparison, we still include it to better under-
stand whether the proposed method can compete
with the model-specific ones. Meanwhile, we also
add random sampling as a naive baseline. Overall,
we have the following baselines:

• Random Sampling: We randomly select a sub-
set from the original dataset, repeat the ex-
periment 10 times, and average the results to
reduce sampling error.

4https://huggingface.co/datasets/imdb
5https://huggingface.co/datasets/ag_news

12561

method LR SVM Naive-Bayes TextCNN TextRNN distilBERT T5-Base average

IM
D

B
Full Data 0.883(00) 0.874(00) 0.840(00) 0.871(18) 0.833(21) 0.907(15) 0.935(17) 0.877(14)

ba
se

lin
e Random 0.583(19) 0.578(21) 0.585(29) 0.557(20) 0.531(23) 0.608(27) 0.624(26) 0.581(24)

TDD - - - 0.739 - - - -
EDA 0.591(20) 0.591(21) 0.627(19) 0.625(19) 0.585(23) 0.645(23) 0.743(19) 0.630(20)
DeepCore 0.593(20) 0.595(20) 0.585(33) 0.569(21) 0.539(17) 0.734(23) 0.706(15) 0.617(22)

pr
op

os
ed GloVE-300d 0.640(21) 0.636(22) 0.636(28) 0.608(18) 0.573(23) 0.675(20) 0.651(21) 0.631(22)

e5-base 0.605(20) 0.624(18) 0.620(22) 0.599(19) 0.585(20) 0.685(23) 0.697(19) 0.631(20)
openAI-ada-002 0.651(19) 0.670(17) 0.653(24) 0.698(22) 0.657(21) 0.758(18) 0.762(17) 0.692(20)
openAI-3-large 0.650(18) 0.677(19) 0.684(21) 0.683(19) 0.645(24) 0.769(16) 0.763(22) 0.696(20)

A
G

-N
ew

s

Full Data 0.905(01) 0.907(00) 0.889(00) 0.913(15) 0.921(17) 0.945(13) 0.954(15) 0.919(11)

ba
se

lin
e Random 0.677(10) 0.678(10) 0.686(07) 0.752(10) 0.741(14) 0.786(17) 0.763(15) 0.726(12)

TDD - - - 0.856 - - - -
EDA 0.680(10) 0.679(10) 0.700(13) 0.853(06) 0.814(07) 0.837(09) 0.830(12) 0.770(10)
DeepCore 0.671(10) 0.671(11) 0.681(12) 0.811(07) 0.783(17) 0.831(22) 0.811(19) 0.751(15)

pr
op

os
ed GloVE-300d 0.685(17) 0.695(15) 0.689(23) 0.857(18) 0.813(16) 0.854(19) 0.847(21) 0.777(19)

e5-base 0.703(15) 0.719(21) 0.723(18) 0.860(19) 0.821(18) 0.866(19) 0.861(23) 0.793(19)
openAI-ada-002 0.750(19) 0.750(21) 0.757(18) 0.874(21) 0.847(23) 0.878(18) 0.877(18) 0.819(20)
openAI-3-large 0.746(19) 0.755(18) 0.764(23) 0.883(18) 0.845(19) 0.889(16) 0.893(20) 0.825(19)

Table 1: Accuracy comparison of a Distilled Dataset at 0.1% of the Original Size(20 for IMDB and 120 for
AG-News) in Text Classification Tasks. EDA uses 10 times the 0.1% size after augmentation. Results of TDD is
from (Sucholutsky and Schonlau, 2021) and (Li and Li, 2021). 0.877(14) means 0.877±0.014

.

• Text Dataset Distillation(TDD) (Sucholutsky
and Schonlau, 2021; Li and Li, 2021): The
"traditional" dataset distillation method per-
forms gradient descent on model-specific syn-
thetic data, generating a numerical matrix in-
stead of plain text.

• Easy Data Augmentation (EDA) (Wei and
Zou, 2019): We randomly sample a subset
from the full dataset and augment it tenfold
using simple text editing techniques, includ-
ing synonym replacement, random insertion,
random swap, and random deletion.

• DeepCore (Guo et al., 2022): A state-of-the-
art core-set selection method, originally pro-
posed for image data, is adapted here for tex-
tual data by treating it as a one-dimensional
’image’ and applying the ’Submodularity-
based’ method.

Other implementation details are in Appendix
B.1.

5 Results and Discussion

Main Results. We generated distilled dataset with
a size of 0.1% of the full data, and evaluated the ac-
curacy with different down-streamed models. The
accuracy attained using full datasets establishes
the upper performance limit for each architecture.
text-embedding-3-large achieve the highest av-
eraged accuracy. Compared to the accuracy on
full data, we recover the accuracy by 79.2% on

IMDB and 89.9% on AG-News. While the random
sampling only recovers 64.6% on IMDB and 78.9%
AG-News. Compared to the model-specific method
TDD, our method is worse on IMDB by 4.2% but
better on AG-News by 2.9%.

5.1 Comparison between data augmentation
and data distillation

From Table 1, our proposed method outperforms
EDA under all configurations. Both methods aim
to improve model accuracy with limited training
data, but they approach this goal from different di-
rections. Data augmentation increases the training
data size to achieve performance gains or robust-
ness. On the other hand, dataset distillation re-
duces the training data size, making training more
efficient in terms of time and cost, even with an
acceptable performance drop. Augmentation is
particularly useful when there is indeed limited
training data available, as it enhances the dataset by
generating more samples. Conversely, distillation
is more beneficial when the goal is to reduce the
training size from a large dataset, as it condenses in-
formation from the entire dataset. Under the same
constraint of training data, distillation is superior
to augmentation because it effectively captures and
compresses the essential information, whereas aug-
mentation only utilizes information from a small
selected subset. This is similar to core-set selec-
tion, which also uses information from a selected
subset, albeit a more informative one than random
sampling.

12562

5.2 Effect of Distillation Ratio on recovered
accuracy

We define the Distillation Ratio as the ratio be-
tween the size of distilled dataset and the size of
full dataset. We evaluated the recovered accuracy
at different distillation ratio. Figure 4 and Figure
5 in Appendix C show the results on IMDB and
AG-News respectively. At all distillation ratios,
the proposed method achieves better accuracy un-
der different distillation ratio, which confirms the
dense information in the distilled data. Specifically,
with a 10% dataset size on IMDB, we can recover
up to 98.5% of the average accuracy achieved using
the full dataset. Similarly, with a 1% dataset size
on AG-News, we can recover up to 95.4% of the
average accuracy.

5.3 Effect of embedding model
The quality of embedding model is crucial to
the distillation process. In Figure 4 and Fig-
ure 5, we see that text-embedding-ada-002
and text-embedding-3-large consistently out-
perform GloVE and e5-base. Our assumption is
that these models have a higher dimension, which
means they have stronger representative ability.
To verify that, we train a simple linear classifier,
which takes the embedding vectors as input and
predicts the classification label. Then we report
the resulting accuracy from different embedding
models. Higher accuracy means stronger capability
in the classification task. Results are reported in
Table 2. We can see that the embedding model’s
quality improve in the order of GloVE.6B.300d
→ e5-base-v2 → text-embedding-ada-002 →
text-embedding-3-large. This confirms our as-
sumption and we conclude that better embedding
model leads to better distilled dataset.

Model Acc on
IMDB

Acc on
AG-News

dim

GloVe.6B.300d 0.824 0.897 300
e5-base-v2 0.924 0.916 768
text-embedding-ada-002 0.936 0.924 1536
text-embedding-3-large 0.964 0.934 3072

Table 2: Downstream performance of different embed-
ding models

5.4 Is task-specific prompt necessary?
We also examinate the necessity of task-specific
prompt. As illustrated in Fig 2, the "task-specific"
prompt is optional depending on the actual down-
stream task. We compare the performance of

distilled data with and without the prompt, and
result is shown in Table 3. We observed that
the optional task-specific prompt brings ad-
ditional benefit to the distillation. The effect
is more noticeable on larger embedding model
(like text-embedding-3-large), and almost no
effect on smaller models (like GloVe.6B.300d and
e5-base-v2).

Model Without
Prompt

With
Prompt

GloVe.6B.300d 0.773 0.777
e5-base-v2 0.795 0.793
text-embedding-ada-002 0.789 0.819
text-embedding-3-large 0.790 0.825

Table 3: The averaged accuracy with and without task-
specific prompt, evaluated on AG-News with distillation
ratio of 0.1%.

5.5 Is vec2text necessary?

The vec2text process plays a crucial role in con-
verting embedding vectors into transferable plain
text. This raises an important question: Is such
a process truly indispensable? One alternative
method involves employing kNN (k-nearest neigh-
bors) rather than k-centroid during the sampling
phase. This adjustment leads to the approach con-
verging on a core-set selection strategy, thereby
rendering the vec2text step redundant. In our ex-
periments with this alternative configuration, we
observed that the average accuracy using "core-set"
samples decreased by approximately 5% in com-
parison to our proposed method.

5.6 Effect of the vec2text model’s quality

We explore the relationship between the perfor-
mance of the vec2text model and the quality of the
distilled text it generates. Adhering to the frame-
work outlined in (Morris et al., 2023), we employ
accuracy as a metric to evaluate the vec2text model
within the same domain. A higher accuracy indi-
cates that the vec2text model is more capable of
faithfully reconstructing text from embeddings. To
examine this relationship, we trained the vec2text
model for varying numbers of epochs to produce
several instances of the model, each with differing
levels of accuracy, and then assessed the quality
of the text they generated. As demonstrated in
Figure 3, our findings suggest the existence of an
optimal vec2text model configuration that yields
the highest quality of generated text. Our analysis
reveals that when the accuracy is low, the vec2text

12563

model is likely under-trained, resulting in distilled
text that fails to effectively encapsulate the informa-
tion present in the embedding space. Conversely,
when the model achieves high accuracy, it may be
over-trained, causing the generated text to regress
towards mirroring the original data too closely and
thus failing to fulfill the objective of information
condensation.

Figure 3: Comparative Analysis of Vec2Text Model
Performance on Text Distillation.

5.7 Comparison with LoRA

Our proposed method falls into the category of data
efficiency, whereas there are parameter-efficient
methods, such as LoRA, that focus on reducing the
number of trainable parameters. To compare these
distinct approaches, we trained a T5-base model us-
ing different methods. The detailed results in Table
4 and a visualization plot is in Figure 1. Compared
to LoRA, dataset distillation achieves similar accu-
racy with much faster training speeds. While LoRA
is parameter-efficient, its training time does not de-
crease proportionally to the reduction in trainable
parameters, primarily due to data and computa-
tional overhead. This distinction underscores the
unique advantage of dataset distillation in reducing
training time, which can be crucial in applications
requiring extremely fast iterations.

IMDB AG News

Time Acc. Time Acc.

Full Data 3247 0.936 1391 0.956
LoRA(0.8% params), full data 2862 0.893 11483 0.914
LoRA(0.4% params), full data 2461 0.887 10351 0.908
random data, 1% of full data 66 0.765 506 0.791
distilled data, 1% of full data 67 0.891 508 0.936

Table 4: Comparison between dataset distillation and
LoRA. Time is the training time in seconds.

5.8 Cost of Generating Embedding Vectors

For commercial embedding models (text-
embedding-ada-002 and text-embedding-3-large),
the API cost is cheap. For instance, generating
full embeddings for all 120k AG-News data costs
about $1.7 based on current pricing.6.

6 Limitation

If we revisit the text distillation problem, our pro-
posed framework introduces an encoder-decoder
architecture to utilize the existing powerful em-
bedding model. Similar to the image compression
problem with a encoder-decoder model, the mean-
ingful and valuable information are condensed on a
manifold in the high dimensional embedding space.
The original data are discretely distributed on the
manifold, and the sampling process is picking "syn-
thetic" embedding vectors that contains more infor-
mation. Then, in order to generate transferable tex-
tual data, the vec2text model reconstructs plain-text
data with these embedding vectors. From an infor-
mational perspective, the sampling stage represents
a process of compressing information, whereas the
vec2text phase involves the loss of information to
facilitate transferability.

While our proposed method demonstrates signif-
icant potential in dataset distillation for NLP tasks,
it is not without its challenges. Extending our ap-
proach to tasks beyond classification, such as Se-
mantic Text Similarity (STS), requires a nuanced
redesign of the sampling and vec2text inversion
stages due to the complex relationships inherent
in STS data formats. Moreover, crafting a versa-
tile vec2text model that is both high-quality and
broadly applicable across different tasks remains
a demanding endeavor, constrained by the speci-
ficity of task and dataset requirements. Despite
these limitations, our work opens up promising
avenues for future research, notably in exploring
the use of Encoder-Decoder models like T5 as uni-
versal vec2text solutions, and in integrating our
framework with bi-level optimization methods for
enhanced dataset distillation. These directions not
only hold the promise of overcoming current con-
straints but also advancing the efficiency and appli-
cability of dataset distillation in NLP.

6https://openai.com/blog/new-embedding-models-and-
api-updates

12564

7 Conclusion

We introduced a novel dataset distillation frame-
work for textual data that utilizes language model
embeddings to create compact, highly informative
datasets. Our experiments demonstrate that the dis-
tilled text maintains high accuracy in classification
tasks and is compatible with various downstream
architectures. Ablation studies highlight critical
factors affecting distillation quality, such as the em-
bedding model quality, task-specific prompts, and
vec2text model training.

References
Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua

Bengio. 2019. Gradient based sample selection for
online continual learning. Advances in neural infor-
mation processing systems, 32.

Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla. 2017. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(12):2481–2495.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales.
2020. Flexible dataset distillation: Learn labels in-
stead of images.

Stephen R Bond, Anke Hoeffler, and Jonathan RW Tem-
ple. 2001. Gmm estimation of empirical growth mod-
els. Available at SSRN 290522.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Bengio.
2015. Generating sentences from a continuous space.
arXiv preprint arXiv:1511.06349.

George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A. Efros, and Jun-Yan Zhu. 2022. Dataset
distillation by matching training trajectories.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Geoffrey Cideron, Sertan Girgin, Anton Raichuk,
Olivier Pietquin, Olivier Bachem, and Léonard
Hussenot. 2022. vec2text with round-trip transla-
tions. arXiv preprint arXiv:2209.06792.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2019. Selection
via proxy: Efficient data selection for deep learning.
arXiv preprint arXiv:1906.11829.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi
Zhou, and Haizhou Li. 2023. Minimizing the accu-
mulated trajectory error to improve dataset distilla-
tion.

Dan Feldman. 2020. Introduction to core-sets: an up-
dated survey. arXiv preprint arXiv:2011.09384.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022.
Deepcore: A comprehensive library for coreset selec-
tion in deep learning. In International Conference
on Database and Expert Systems Applications, pages
181–195. Springer.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Krishnateja Killamsetty, Sivasubramanian Durga,
Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
2021a. Grad-match: Gradient matching based data
subset selection for efficient deep model training.
In International Conference on Machine Learning,
pages 5464–5474. PMLR.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and
Rishabh Iyer. 2021b. Retrieve: Coreset selection for
efficient and robust semi-supervised learning. Ad-
vances in Neural Information Processing Systems,
34:14488–14501.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sang-
doo Yun, and Sungroh Yoon. 2022. Dataset conden-
sation with contrastive signals.

Shiye Lei and Dacheng Tao. 2023. A comprehensive
survey of dataset distillation.

Guang Li, Bo Zhao, and Tongzhou Wang. 2022. Awe-
some dataset distillation. https://github.com/
Guang000/Awesome-Dataset-Distillation.

Yongqi Li and Wenjie Li. 2021. Data distillation for
text classification. arXiv preprint arXiv:2104.08448.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

12565

http://arxiv.org/abs/2006.08572
http://arxiv.org/abs/2006.08572
http://arxiv.org/abs/2203.11932
http://arxiv.org/abs/2203.11932
http://arxiv.org/abs/2211.11004
http://arxiv.org/abs/2211.11004
http://arxiv.org/abs/2211.11004
http://arxiv.org/abs/2202.02916
http://arxiv.org/abs/2202.02916
http://arxiv.org/abs/2301.05603
http://arxiv.org/abs/2301.05603
https://github.com/Guang000/Awesome-Dataset-Distillation
https://github.com/Guang000/Awesome-Dataset-Distillation

Vahab Mirrokni and Morteza Zadimoghaddam. 2015.
Randomized composable core-sets for distributed
submodular maximization. In Proceedings of the
forty-seventh annual ACM symposium on Theory of
computing, pages 153–162.

John X Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander M Rush. 2023. Text embeddings
reveal (almost) as much as text. arXiv preprint
arXiv:2310.06816.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee.
2021. Dataset meta-learning from kernel ridge-
regression.

Timothy Nguyen, Roman Novak, Lechao Xiao, and
Jaehoon Lee. 2022. Dataset distillation with infinitely
wide convolutional networks.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Ozan Sener and Silvio Savarese. 2017. Active learn-
ing for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and
Tommi Jaakkola. 2020. Educating text autoencoders:
Latent representation guidance via denoising. In
International conference on machine learning, pages
8719–8729. PMLR.

Ilia Sucholutsky and Matthias Schonlau. 2021. Soft-
label dataset distillation and text dataset distillation.
In 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo
Yang, Shuo Wang, Guan Huang, Hakan Bilen, Xin-
chao Wang, and Yang You. 2022. Cafe: Learning to
condense dataset by aligning features.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A. Efros. 2020. Dataset distillation.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan
Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie,
Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020.
MIND: A large-scale dataset for news recommenda-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3597–3606, Online. Association for Computational
Linguistics.

Wenpeng Yin, Dragomir Radev, and Caiming Xiong.
2021. Docnli: A large-scale dataset for document-
level natural language inference.

Bo Zhao and Hakan Bilen. 2022. Dataset condensation
with distribution matching.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021.
Dataset condensation with gradient matching.

12566

http://arxiv.org/abs/2011.00050
http://arxiv.org/abs/2011.00050
http://arxiv.org/abs/2107.13034
http://arxiv.org/abs/2107.13034
https://doi.org/10.1109/ijcnn52387.2021.9533769
https://doi.org/10.1109/ijcnn52387.2021.9533769
http://arxiv.org/abs/2203.01531
http://arxiv.org/abs/2203.01531
http://arxiv.org/abs/1811.10959
https://doi.org/10.18653/v1/2020.acl-main.331
https://doi.org/10.18653/v1/2020.acl-main.331
http://arxiv.org/abs/2106.09449
http://arxiv.org/abs/2106.09449
http://arxiv.org/abs/2110.04181
http://arxiv.org/abs/2110.04181
http://arxiv.org/abs/2006.05929

A Architecture of Downstream Models

A.1 LR, NB and SVM

We utilize the implementation from scikit-learn
with the following imports:

\begin{verbatim}
from sklearn.linear_model import

↪→ LogisticRegression
from sklearn.naive_bayes import

↪→ MultinomialNB
from sklearn.svm import LinearSVC
\end{verbatim}

A.2 TextCNN

We follow the definition in (Sucholutsky and Schon-
lau, 2021) to have a fair comparison between TDD
and our method. Detail is below:

%\begin{verbatim}
class TextCNN(nn.Module):

def __init__(self , vocab_size ,
↪→ embedding_dim , num_filters ,
↪→ filter_sizes , output_dim ,
↪→ dropout ,
↪→ pretrained_embeddings):
super(TextCNN , self).__init__ ()
self.embedding = nn.Embedding(

↪→ vocab_size , embedding_dim
↪→)

self.embedding.weight.data.copy_
↪→ (torch.from_numpy(
↪→ pretrained_embeddings))

self.embedding.weight.
↪→ requires_grad = False

self.convs = nn.ModuleList ([
nn.Conv2d(in_channels =1,

↪→ out_channels=
↪→ num_filters ,
↪→ kernel_size =(fs,
↪→ embedding_dim))

for fs in filter_sizes
])
self.fc = nn.Linear(num_filters

↪→ * len(filter_sizes),
↪→ output_dim)

self.dropout = nn.Dropout(
↪→ dropout)

def forward(self , x):
#x = x.permute(1, 0)
embedded = self.embedding(x)
embedded = embedded.unsqueeze (1)
conved = [F.relu(conv(embedded))

↪→ .squeeze (3) for conv in
↪→ self.convs]

pooled = [F.max_pool1d(conv ,
↪→ conv.shape [2]).squeeze (2)
↪→ for conv in conved]

cat = self.dropout(torch.cat(
↪→ pooled , dim=1))

return self.fc(cat)
%\end{verbatim}

A.3 TextRNN

Similar to TextCNN, we change the strucutre to
RNN like below:

class TextRNN(nn.Module):
def __init__(self , vocab_size ,

↪→ embedding_dim , hidden_dim ,
↪→ output_dim , n_layers ,

bidirectional , dropout ,
↪→
↪→ pretrained_embeddings
↪→):

super(TextRNN , self).__init__ ()
Embedding layer
self.embedding = nn.Embedding(

↪→ vocab_size , embedding_dim
↪→)

self.embedding.weight.data.copy_
↪→ (torch.from_numpy(
↪→ pretrained_embeddings))

self.embedding.weight.
↪→ requires_grad = False

RNN layer
self.rnn = nn.LSTM(embedding_dim

↪→ , hidden_dim , num_layers=
↪→ n_layers , bidirectional=
↪→ bidirectional , dropout=
↪→ dropout , batch_first=True
↪→)

self.fc = nn.Linear(hidden_dim *
↪→ 2 if bidirectional else
↪→ hidden_dim , output_dim)

self.dropout = nn.Dropout(
↪→ dropout)

def forward(self , text):
embedded = self.embedding(text)
output , (hidden , cell) = self.

↪→ rnn(embedded)
if self.rnn.bidirectional:

hidden = self.dropout(torch.
↪→ cat((hidden[-2,:,:],
↪→ hidden [-1,:,:]), dim
↪→ =1))

else:
hidden = self.dropout(hidden

↪→ [-1,:,:])

return self.fc(hidden)

A.4 distilBERT

from transformers import
↪→ DistilBertTokenizer ,
↪→ DistilBertForSequenceClassification
↪→

model_name = "distilbert -base -uncased"
tokenizer = DistilBertTokenizer.

↪→ from_pretrained(model_name)
model_config = DistilBertConfig.

↪→ from_pretrained(model_name ,
↪→ num_labels =2)

model =
↪→ DistilBertForSequenceClassification
↪→ .from_pretrained(model_name ,
↪→ config=model_config)

12567

A.5 T5-Base

from transformers import T5Tokenizer ,
↪→ T5ForConditionalGeneration

model_name = "t5-base"
tokenizer = T5Tokenizer.from_pretrained(

↪→ model_name)
model = T5ForConditionalGeneration.

↪→ from_pretrained(model_name)

B Implementation Detail

B.1 Training Hyper-parameters
All the training and evaluation are completed
within the PyTorch(Paszke et al., 2019) framework
on an AWS p3.2xlarge instance, with 16GB GPU
memory. Model detail is mentioned in Appendix
A. We use AdamW(Loshchilov and Hutter, 2018)
as the optimizer and linear learning rate scheduler.
The maximum input token length is set to 128 for
all datasets. All models are trained for 20 epochs
by default to fully converge. The learning rate
was chosen within 1e-5, 5e-4, 1e-4, 5e-3 after grid
search. Generally, smaller training size requires
larger learning rate to converge to the optimal per-
formance.

B.2 K-centroid Sampling
We use the standard KMeans method from the
sklearn.cluster library with Euclidean distance.

from sklearn.cluster import KMeans

Perform k-means clustering
kmeans = KMeans(n_clusters=k,

↪→ random_state =42).fit(
↪→ embeddings)

Get the cluster centroids
centroids = kmeans.cluster_centers_
return centroids

C Performance of DaLLME under
different distillation ratio

12568

Figure 4: Accuracy vs Distillation Ratio on IMDB.

Figure 5: Accuracy vs Distillation Ratio on AG-News.

12569

