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Abstract

Gradient-free prompt optimization methods
have made significant strides in enhancing the
performance of closed-source Large Language
Models (LLMs) across a wide range of tasks.
However, existing approaches make light of
the importance of high-quality prompt initial-
ization and the identification of effective opti-
mization directions, thus resulting in substan-
tial optimization steps to obtain satisfactory
performance. In this light, we aim to acceler-
ate prompt optimization process to tackle the
challenge of low convergence rate. We propose
a dual-phase approach which starts with gener-
ating high-quality initial prompts by adopting
a well-designed meta-instruction to delve into
task-specific information, and iteratively opti-
mize the prompts at the sentence level, lever-
aging previous tuning experience to expand
prompt candidates and accept effective ones.
Extensive experiments on eight datasets demon-
strate the effectiveness of our proposed method,
achieving a consistent accuracy gain over base-
lines with less than five optimization steps.

1 Introduction

LLMs have demonstrated remarkable capabilities
across a wide range of natural language processing
(NLP) tasks, including machine translation (Qin
et al., 2024), summarization (Goyal et al., 2022),
and question answering (Zhang et al., 2023a). The
dependency on prompt quality has led to the emer-
gence of prompt engineering (Diao et al., 2023b;
White et al., 2023), aiming at crafting effective
prompts to elicit the desired responses from LLMs.
As the need for efficient prompt design becomes
increasingly evident (Liu et al., 2021b), automatic
prompt optimization has been introduced to stream-
line the prompt design process, ensuring that LLMs
are utilized to their full potential (Gao et al., 2021;
Liu et al., 2021a; Reynolds and McDonell, 2021).
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Figure 1: Average accuracy improvement on eight
datasets with four optimization steps.

Automatic prompt optimization can be broadly
categorized into gradient-based and gradient-free
methods. Gradient-based methods (Shin et al.,
2020; Li and Liang, 2021; Liu et al., 2021b, 2022)
are devised for open-source LLMs to enable the op-
timization of prompts through adjustments based
on model gradient. Gradient-free methods have
emerged as the predominant approach for closed-
source LLMs, which focuses on refining prompts
without access to the model gradient (Prasad et al.,
2022; Yang et al., 2023b; Guo et al., 2023). Start-
ing from initial prompts, these methods usually
expand candidate prompts using searching meth-
ods (Pryzant et al., 2023; Wang et al., 2023) and
then accepting the more prominent ones in an iter-
ative manner. This paper focuses on gradient-free
methods due to the distinguished abilities of closed-
source LLMs and the challenge of optimizing their
prompts with limited model information.

We argue that current gradient-free prompt opti-
mization methods have not adequately considered
the rate of convergence. Typically, these methods
demand an excessive number of optimization steps
to obtain satisfactory prompts due to the limited ac-
cess to model details, the vast discrete search space,
and the uncertain optimization directions (Wang
et al., 2023; Pan et al., 2023; Yang et al., 2023b).
Representative work such as OPRO (Yang et al.,
2023b) even necessitates nearly 200 optimization
steps for some NLP tasks. This requirement for ex-
cessive optimization steps makes existing methods
impractical for real-world applications since users
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are understandably reluctant to tolerate extensive
optimization steps to achieve satisfactory perfor-
mance levels. Therefore, we aim to achieve accel-
erated prompt optimization, obtaining satisfactory
performance via few optimization steps (e.g., < 5).

To achieve accelerated prompt optimization, two
crucial factors need to be considered: high-quality
initial prompts and effective optimization direc-
tions. Firstly, the initialization of the prompt plays
a crucial role in determining the efficiency of the
optimization process (Ye et al., 2023), whereas ex-
isting approaches pay insufficient attention to the
impact of initialization on subsequent optimization.
Therefore, we aim to obtain initial prompts of high
quality, laying a solid foundation to accelerate opti-
mization process. Secondly, the accelerated prompt
optimization needs to identify the most effective op-
timization directions in each step, streamlining effi-
cient optimization from the initial prompts. Thus,
we aim to design a more refined expansion tuned
by experience and acceptance of candidate prompts
enhanced by examination of failure cases.

To this end, we propose a dual-phase approach
to achieve the accelerated gradient-free prompt
optimization. Our approach consists of two
phases: high-quality initial prompt generation, and
experience-tuned optimization. Firstly, we utilize a
well-designed meta-instruction to guide the LLM
in generating high-quality and structured initial
prompts that contain task-specific information, in-
cluding task type and description, output format
and constraints, suggested reasoning process, and
professional tips. After that, we devise a sentence-
level prompt optimization strategy for efficiently
optimization on the long initial prompt, leverag-
ing previous direction tuning experience, together
with failure cases, to select sentences in the initial
prompt to be expanded and accept effective prompt
candidates. Extensive experiments (cf. Figure 1)
on three LLMs across several datasets confirm the
effectiveness and superiority of our method. Our
contributions are threefold:

• We reveal the issue of low convergence rate in
gradient-free prompt optimization, and highlight
the problem of accelerated prompt optimization.

• We propose a dual-phase approach, achieving
accelerated prompt optimization through high-
quality initial prompt generation and experience-
tuned optimization.

• We conduct extensive experiments, demonstrat-

ing that the proposed method achieves satisfying
performance within few optimization steps.

2 Related Work

The gradient-free prompt optimization for closed-
source LLMs typically contains two phases: ini-
tialization and iterative optimization steps, where
the optimization step consists of expansion and
selection stages.

Initialization. The prompt initialization for op-
timization can be achieved manually or au-
tonomously. Manual initialization often entails
professional machine learning engineers formulat-
ing prompts, as delineated in (Pryzant et al., 2023).
Concurrently, works such as (Guo et al., 2023),
(Pan et al., 2023), and (Wang et al., 2023) utilize
existing manual prompts as the foundational set to
harness human creativity. In contrast, automated
initialization leverages the power of LLM genera-
tion, which is exemplified by (Zhang et al., 2023b),
generating prompts from few-shot exemplars and
a rudimentary description, and (Zhou et al., 2022),
fabricating prompts based on meta-prompts and
illustrative input-output examples. Our method be-
longs to the automated initialization, improving the
initial prompt generation for acceleration.

Optimization. The optimization step is achieved
by expanding prompt candidates by modifying
from the initial prompt and selecting the better can-
didates for the next iteration. The expansion stage
can be executed through rephrasing, as in (Zhou
et al., 2022), where high-scoring prompts undergo
evolution akin to a Monte Carlo search method-
ology, or through heuristic algorithms that auto-
matically revise prompts, as in (Guo et al., 2023)
and (Pan et al., 2023). More complex regenera-
tion strategies are employed by works like (Wang
et al., 2023), where the optimizer LLM progres-
sively expands prompts based on task delineations
and historical iterations. The expansion can also
be implemented leveraging an open-source LLM
(Lin et al., 2023; Chen et al., 2023). Reinforcement
learning-based methods have also been adopted for
prompt modification (Diao et al., 2023a). More-
over, the granularity of prompt modification ex-
hibits variation across studies. Heuristic-based
methods and (Hsieh et al., 2023) work operate at
the word/token granularity, while classical opti-
mization algorithms like (Pryzant et al., 2023; Zhou
et al., 2022) consider the entire prompt. The se-
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lection stage generally utilized the performance of
the prompt on a held-out validation set (Pryzant
et al., 2023; Zhou et al., 2022; Wang et al., 2023),
while recent work also explores human preference
feedback (Lin et al., 2024) or score feedback from
other LLMs (Yang et al., 2024).

3 Problem Formulation

3.1 Gradient-Free Prompt Optimization

For a target NLP task T with input x, the closed-
source LLM predicts the output ŷ given x concate-
nated with the prompt p, where x, ŷ and p are all
word sequences. The aim for prompt optimization
is to find an optimal prompt p∗ that obtains the de-
sired ŷ, which can be evaluated by metrics such as
accuracy with reference to the ground truth y. The
gradient-free prompt optimization contains an ini-
tialization phase followed by K iterative optimiza-
tion steps. The k-th optimization step starts from an
initial prompt pk−1, k ∈ [1,K], and sequentially
performs two stages: expansion of prompt candi-
dates, and acceptance of the prominent prompts as
the next initial prompts, as detailed below.

Expansion of Prompt Candidates. At the k-th
optimization step, The expansion stage search for
new prompt candidates with potential better perfor-
mance starting from pk−1, with searching methods
such as edit-based (Prasad et al., 2022) and LLM
rewriting (Pryzant et al., 2023). Formally, the ex-
pansion function fE(·) generates prompt candidate
set P c

k = {pck1 , · · · , pckQ} with size Q.

P c
k = fE(pk−1). (1)

Acceptance of Prominent Prompts. The ac-
ceptance stage evaluates the performance of each
prompt candidate in P c

k to determine whether it
should be continued for next optimization step.
This is usually achieved by evaluation on a held-out
validation set V = {(xv, yv)}, and accepting the
top-performing prompt candidates. Formally, with
the evaluation function on LLM as fS(·),

rki = fS(p
c
ki
, V ), i ∈ [1, · · · , Q], (2)

pk = pckj ,where j = argmax({rk1 , ..., rkQ}).

where argmax(·) denotes the index of the maxi-
mum value. At the final optimization step, the
top-performing prompt pK will be accepted as the
optimized prompt p∗.

3.2 Accelerated Prompt Optimization

Although current research on gradient-free prompt
optimization can achieve significant performance
gains on multiple tasks, demands for a great num-
ber of optimization steps hinder their practicability
in real-world scenarios. For instance, Yang et al.
(2023b) does not converge even after over 150 steps
in some tasks; Wang et al. (2023) finds a good solu-
tion in 50 to 75 steps. Therefore, we highlight the
problem of accelerated prompt optimization, i.e.,
obtaining p∗ with satisfactory performance in few
optimization steps, e.g., K < 5.

4 Proposed Method

4.1 Motivation

We believe that two factors are crucial for achiev-
ing accelerated prompt optimization, which current
gradient-free prompt optimization methods fail to
achieve. Firstly, the initial prompt p0 plays a cru-
cial role in accelerating the prompt optimization
process (Ye et al., 2023), where p0 with better LLM
performance makes the optimization towards bet-
ter prompts easier, preventing LLMs from exces-
sively exploring suboptimal prompt regions. This
is generally overlooked by existing research that
utilizes uninformative initial prompts, e.g., (Yang
et al., 2023b). Therefore, we propose to devise
high-quality p0 by crafting a novel initial prompt
schema. Furthermore, a more precise expansion
and acceptance of prompt candidates ensure highly
efficient optimization direction and fewer optimiza-
tion steps. Current expansion and acceptance tech-
niques optimize the prompt towards improving the
general task performance, where effective optimiza-
tion direction in each step is hard to ensure. To
tackle this, we propose to utilize the past failure
cases from previous optimization steps to further
navigate the expansion and acceptance of prompt
candidates. We illustrate our dual-phase approach
as follows (cf. Figure 2).

4.2 High-Quality Initial Prompt Generation

We think that a high-quality initial prompt that can
elicit the desired response from LLMs should be
able to provide clear task instruction and detailed
task-related information. Specifically, it should 1)
give a clear definition of the task type and provide
a detailed task description, 2) define the output for-
mat and constraints, 3) provide insights on the rea-
soning processes and professional tips. To achieve
such initial prompts, we are inspired by the step-
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Figure 2: Illustration of the proposed method.

back prompting (Zheng et al., 2023) which demon-
strates LLM’s ability to derive high-level concepts
and principles from examples. Thus, following
(Zhou et al., 2022), we design a meta-instruction
Im (cf. Figure 3), leveraging LLM’s ability to gen-
erate p0 by observing the input-output exemplars of
the target task T and inferring the above required
information. Formally, defining input-output exem-
plars as D = {(xd, yd)},

p0 = LLM(Im, D). (3)

4.3 Experience-Tuned Optimization
In the optimization phase, it is necessary to tune the
expansion and acceptance of prompt candidates to
quickly improve the task performance as evaluated
on the validation set V and thus reduce optimiza-
tion steps. Inspired by previous research (Pryzant
et al., 2023), we intend to make the best of past fail-
ure cases to generate promising prompt candidates
and filter out unnecessary optimization attempts. In
each optimization step, we maintain a failure case
set Fk = {(xfk , y

f
k )} containing the examples from

V where the initial prompt pk−1 fails to predict the
ground truth in the acceptance stage, i.e., ŷfk ̸= yfk .

Expansion. In the expansion stage, since the ini-
tial prompts are long prompts with at least four sen-
tences, we aim to improve the expansion efficiency
by segmenting them into individual sentences for
sentence-level expansion following LongPO (Hsieh
et al., 2023). Moreover, since different sentences
in the initial prompts contain different task-related
information and may have different impacts on
the task performance, we devise sentence weights
wk to estimate the impact of each sentence on the
performance improvement, which is updated lever-

aging the past failure cases. We first split the ini-
tial prompt p0 into M sentences, and initialize the
weight w1 for each sentence as 1.

p0 = [s11, s
1
2, ..., s

1
M ], (4)

w1
t = 1, t ∈ [1,M ].

In the k-th optimization step, we compute the ac-
ceptance probability Prk for each sentence:

Prki =
exp(wk

i )∑M
j=1 exp(w

k
j )
. (5)

After that, we sample a sentence for expan-
sion based on the probability distribution Prk =
[Prk1, · · · ,PrkM ], where the sampled sentence is de-
noted as sko , o ∈ [1,M ]. For expansion of sko , we
design a meta-instruction Ie (cf. Figure 4) to in-
struct LLM to generate a revised sentence consid-
ering the past experience.

ŝko = LLM(Ie, pk−1, Fk, s
k
o). (6)

Before passing ŝko to the acceptance stage, we
design additional strategies to further guarantee the
effectiveness of the generated sentence leveraging
Fk. Firstly, to ensure ŝko can actually improve over
sko , we replace sko in pk−1 with ŝko , denoted as p̂k,
and evaluate whether p̂k outperforms pk−1 on Fk.
We accept ŝko only when p̂k has improved the per-
formance over pk−1 larger than a threshold HF .

fS(p̂k, Fk)− fS(pk−1, Fk) > HF . (7)

Besides, to avoid repeatedly generating the same
ineffective ŝko , we build a collection G of undesired
sentence revisions and check whether ŝko has ap-
peared in G. If the above two criteria are not met,
we abandon ŝko and regenerate starting from Eq. 6.
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You gave me an instruction on a certain task 
and some example inputs with chain-of-thought. 
I read the instruction carefully and wrote an 
output with chain-of-thought for every input 
correctly. Here are some correct input-output 
pairs which strictly meet all your 
requirements:

{example_pairs}

The instruction given contains the following 
parts. Based on the input-output pairs 
provided, give me the final complete 
instruction in English without any explanation:

###Task type###
Task type: This is a <...> task.

###Task detailed description###
Task detailed description: <Task detailed 
description>

###Your output must satisfy the following 
format and constraints###
Output format(type): <Output format or its 
type>
Output constraints: <constraints on output>

###You must follow the reasoning process###
<add several reasoning steps if it's 
necessary>

###Tips###
<add several useful tips from a professional 
point of view to accomplish this task better>

meta-instruction for initialization

Figure 3: Meta-instruction used in our initialization
phase to generate high-quality initial prompts.

Acceptance. In addition to evaluating p̂k’s per-
formance on the entire failure case Fk, we also
evaluate its performance on the validation set V .
We accept p̂k as the next initial prompt pk only
when p̂k has improved the performance over pk−1

larger than a threshold HV . Otherwise, we abandon
p̂k and restart from sampling sko .

fS(p̂k, V )− fS(pk−1, V ) > HV . (8)

If p̂k is accepted, we update its sentence weights.
We calculate the mixed evaluation result fR(·) and
update the wk+1 as follows, where α and the learn-
ing rate η are adjusting hyperparameters.

fR(p̂k) = αfS(p̂k, V ) + (1− α)fS(p̂k, Fk). (9)

wk+1
i = wk

i exp(
ηfR(p̂k)

PrkiM
).

When the number of times that Eq. 7 or Eq. 8 is
not satisfied accumulates to 5, we consider the al-

I'm trying to write a zero-shot prompt which 
consists of four parts.
My current prompt is:
[{prompt_to_revise}]

But it gets the following outputs that fail to 
match the expected outputs:
{failed_cases}

The sentence I want to revise is:
{sentences[chosen_sentence]}

Comparing the wrong outputs with their 
corresponding expected answers under the same 
input, optimize the above sentence to help AI 
understand the task more comprehensively and 
accomplish this task better. 
Your response format is as follows.
The given sentence 
'{sentences[chosen_sentence]}' should be 
revised as: 

meta-instruction for optimization

Figure 4: Meta-instruction used in the optimization
phase.

gorithm to have converged.
The weight formula is designed to adaptively up-

date the importance of each sentence in the prompt
based on its impact on overall performance im-
provement. fR(p̂k) modulates the magnitude of
the weight adjustment: a higher fR(p̂k) leads to
larger updates. Prki determines the weight’s con-
tribution, while M is used for normalization to
ensure balanced weight updates. The learning rate
η controls the extent of weight adjustments based
on the evaluation feedback. Inspired by the EXP3
algorithm (Auer et al., 1995), these components
facilitate a dynamic and adaptive optimization pro-
cess, tuned by empirical performance data. The
who process is summarized in Algorithm 1.

5 Experiments

In this section, we begin by detailing datasets, base-
lines, and the implementation of the experiments.
Following this, we conduct comprehensive and con-
trolled experiments on our method.

5.1 Experimental Settings

Datasets. Our experiments are first conducted
on general natural language understanding tasks
across four datasets to validate our method, specifi-
cally focusing on sentiment classification (SST-2
(Socher et al., 2013)), topic classification (AG’s
News (Zhang et al., 2015), TREC (Voorhees and
Tice, 2000)) and subjectivity classification (Subj
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Algorithm 1
Dual-Phase Accelerated Prompt Optimization

Require: Input-output exemplars D, validation
set V , meta-instruction Im and Ie.

Ensure: Optimized prompt p∗

1: Initialize p0 (Eq. 3), derive failure case set F1

2: Split p0 into M sentences [s11, s
1
2, . . . , s

1
M ], ini-

tialize sentence weights {w1
i }Mi=1 ← 1, k ← 1

3: while not converged do
4: ▷ Expansion
5: Sample a sentence sko based on Prk (Eq. 5)
6: Generate revised sentence ŝko (Eq. 6)
7: Replace sko in pk−1 with ŝko to get p̂k
8: if ŝko ∈ G or (Eq. 7) is not satisfied then
9: Add ŝko to G

10: Regenerate ŝko from line 6
11: end if
12: ▷ Acceptance
13: if (Eq. 8) is not satisfied then
14: Restart from line 5
15: end if
16: pk ← p̂k, update wk+1

i , k ← k + 1
17: Update Fk with new failure cases
18: end while
19: return optimized prompt p∗ = pk

(Pang and Lee, 2004)). Then we perform our ap-
proach to the challenging BBH tasks (Suzgun et al.,
2022), which include manually provided few-shot
Chain-of-Thought (CoT) prompts containing task
descriptions and demonstrations.

Baselines. We compare our method with three
popular prompt optimization methods for zero-shot
black-box prompting and the well-crafted prompts
manually provided in BBH tasks: APO (Pryzant
et al., 2023): Generating natural language “gradi-
ents” to criticize and improve the current prompts.
APE (Zhou et al., 2022): Proposing both a naive
and an iterative Monte Carlo search methods to ap-
proximate the solution to the prompt optimization
problem. PromptAgent (Wang et al., 2023): Au-
tomating expert-level prompt generation by treat-
ing it as a strategic planning problem using Monte
Carlo tree search and error feedback to refine
and optimize prompts. Manual Prompt (Suzgun
et al., 2022): The few-shot CoT version of human-
designed prompts with teaching examples devel-
oped in BBH tasks.

Implementation Details. In line with (Wang
et al., 2023), since BBH tasks lack an official train-

test split, we shuffle the data and allocate approxi-
mately half for testing. The rest is used for training,
prompt generation, and optimization. For datasets
with predefined test sets, we use those directly.

Unless otherwise stated, we evaluate perfor-
mance (i.e., accuracy) on GPT-3.5-Turbo using the
OpenAI API1 (currently gpt-3.5-turbo-0125) in a
zero-shot prompt setting. The temperature is set to
0 for prediction and 0.5 for prompt generation to en-
hance diversity. To accelerate prompt optimization,
we limit the maximum optimization steps to four
for all methods, while keeping other baseline pa-
rameters and settings at default. At the beginning of
prompt initialization, eight exemplars are obtained
by concatenating unique input-output pairs from
the shuffled training data until the desired amount
is reached, ensuring no duplicate inputs. Due to
limited computational resources, our approach gen-
erates and optimizes only one initial prompt. By
default, we set HF = 0.3, HV = 0.1, α = 0.4,
and η = 0.055 in Algorithm 1 to accelerate the
optimization phase.

5.2 Main Results & Analysis

Few-shot Zero-shot

Task Manual APO APE PA Ours

SST-2 / 0.89 0.92 0.443 0.978
AG’s News / 0.88 0.819 0.785 0.928
TREC / 0.795 0.513 0.687 0.785
Subj / 0.64 0.593 0.494 0.72

Logical Five 0.388 0.392 0.404 0.443 0.48
Hyperbaton 0.744 0.808 0.865 0.823 0.88
Disambiguation 0.580 0.688 0.645 0.696 0.74
Salient Translation 0.544 0.456 0.538 0.468 0.548

Avg. 0.564 0.694 0.662 0.605 0.757

Table 1: Accuracy on eight tasks on GPT-3.5-Turbo.
PA indicates PromptAgent. Bold and underlined text
indicate the best and second-best results, respectively.

Overall Results. Table 1 demonstrates the effec-
tiveness of our accelerated dual-phase approach
across 8 NLP tasks compared to classic prompt
optimization methods. Our method significantly
outperforms all baselines, achieving an average
improvement of approximately 10.7% over APO,
16.4% over APE, and 29.7% over PromptAgent
across the given tasks.

Our method also surpasses few-shot CoT human-
crafted prompts with an approximately 17.6% aver-
age improvement on selected BBH tasks, indicating

1https://chat.openai.com/
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Figure 5: Performance (accuracy) over 4 steps across 8 tasks on GPT-3.5-Turbo.

its ability to produce high-quality prompts that en-
hance the black-box LLM’s capabilities in logical
deduction, grammar, language understanding, and
multilingual tasks without teaching examples.

Analysis. To understand this result, we analyzed
the prompt expansion and acceptance processes:
In prompt expansion, our method leverages past
experience, filters out unnecessary optimization at-
tempts, and collects undesired revisions. This con-
trasts with baseline methods that inefficiently ex-
plore prompt space and underutilize past iterations.
APE lacks reflection on past iterations, slowing its
Monte Carlo-based search. APO uses error feed-
back to guide beam search but is slowed by eval-
uating many paths. PromptAgent’s Monte Carlo
Search Tree explores prompt optimization through
simulations, but limited steps lead to suboptimal
results.

In the acceptance process, inspired by the EXP3
algorithm, our method uses weighted sentences and
modifications to enhance prompt quality, making
it superior in identifying promising candidates and
optimizing directions.

Convergence Analysis. To evaluate our
method’s convergence within four steps compared
to others, we examine how quickly each method
achieves peak performance across datasets. Figure
5 shows the performance (accuracy) variation
of four prompt optimization methods across
eight datasets, with each subfigure representing
a different dataset. While APO, APE, and
PromptAgent experience fluctuations or plateau
at lower accuracy, our method demonstrates the
fastest convergence across most datasets, often
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Figure 6: Results on GPT-3.5-Turbo with different ini-
tial prompt schemas.
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Figure 7: Results on GPT-3.5-Turbo with different opti-
mization learning rates.

reaching near-peak performance within the first
two steps. This rapid convergence highlights our
method’s efficiency in optimizing prompts quickly
and effectively, making it promising for tasks
requiring prompt optimization within a few steps.

5.3 Ablation Study
We conduct several ablation experiments to assess
the efficacy of our method.

5.3.1 Different Initial Prompt Schemas
Our method uses a meta-instruction to generate a
prompt with four components: a) task type and
description, b) output format and constraints, c)
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Figure 8: Accuracy over 4 steps across 8 tasks on Baichuan2-Turbo.
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Figure 9: Accuracy over 4 steps across 8 tasks on GPT-4.

suggested reasoning process, and d) professional
tips. We define: Schema 4: All four components
Schema 3: First three components Schema 2: First
two components Schema 1: Task type and descrip-
tion only (common in current techniques). We vary
the meta-instructions for these schemas and con-
duct four-step prompt optimization experiments on
SST-2 and AG’s News to assess their impact on
optimization.

As shown in Figure 6, initial prompts from
Schema 4 yield the highest evaluation results. In
contrast, Schema 1 has the lowest metrics and often
falls into suboptimal local minima, a common issue
with current methods. This comparison validates
our meta-instruction design and underscores that
a high-quality initial prompt is crucial for quickly
identifying the optimal prompt.

5.3.2 Sensitivity to Learning Rate

During the optimization phase, the learning rate
η controls the extent of sentence weight updates
after each round. A higher η results in significant

updates and responsiveness to recent performance
changes, while a lower η promotes stability with
gradual adjustments. This balance is crucial for
navigating the trade-off between exploration and
exploitation.

We conduct prompt optimization experiments
on SST-2 and AG’s News within four steps, testing
η values from 0.01 to 0.1. As shown in Figure 7,
η = 0.055 and η = 0.07 are the most and second
most effective in accelerating optimization.

5.3.3 Performance on Different LLMs
As Table 1 indicates, APO is the best baseline
method. Therefore, we compare our method with
APO using Baichuan2 (Yang et al., 2023a) and
GPT-4 accessed via the APIs. We conduct prompt
optimization experiments on eight NLP datasets
across four optimization steps.

Figure 8 and 9 illustrate the performance vari-
ation of both methods across different datasets as
optimization steps progress. APO fails to converge
within four steps and shows greater performance
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Model APO Ours

GPT-3.5-Turbo 0.36 0.392

GPT-4 0.448 0.488

Table 2: Accuracy on Geometric Shapes task on GPT-
3.5-Turbo and GPT-4.
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Figure 10: Accuracy over 20 steps on GPT-3.5-Turbo.

volatility compared to Baichuan2-Turbo and GPT-4.
In contrast, our method demonstrates rapid conver-
gence and strong optimization acceleration. Except
for the generalizability to other models, we also
find that stronger LLM can achieve more effective
prompt optimization with our method.

5.3.4 Performance on Specialized
Domain-Specific Task

To evaluate our method performance on specialized
tasks that require domain knowledge, we conduct
experiments on the Geometric Shapes task (Suzgun
et al., 2022), which involves interpreting SVG paths
to determine the geometric figures they represent,
a task that requires specific domain knowledge.

As shown in Table 2, our approach demonstrates
consistent performance improvement over the best
baseline APO, revealing the effectiveness of our
method in specialized task.

5.3.5 Results without Step Constraint
We report the results of prompt optimization with
a maximum of 20 steps on two general NLU tasks.
As shown in Figure 10, the strongest baseline, APO,
converges on the SST-2 task with slightly lower ac-
curacy than our method. However, on the AG’s
News task, APO’s performance fluctuates signif-
icantly and lags behind our method. Thus, our
method demonstrates superior performance and
faster convergence compared to existing methods,
even with fewer optimization steps.

5.3.6 Computational Complexity
Since the running time is related to the number of
API calls and may be affected by the network con-

dition, we mainly present the number of API calls,
which is an important metric for cost comparison
on black-box LLMs.

Task APO Ours

SST-2 12,520 1,708
AG’s News 12,733 2,089
TREC 9,739 1,486
Subj 12,790 1,848

Logical Five 9,631 1,512
Hyperbaton 9,934 1,626
Disambiguation 9,471 1,187
Salient Translation 10,190 1,451
Geometric Shapes 9,648 1,496

Avg. 10,739 1,600

Table 3: API calls consumed on nine tasks on GPT-4.

We conduct our experiments with GPT-4 on nine
tasks. As shown in Table 3, our method requires
approximately 1/7 of the number of API calls com-
pared to the strongest baseline method, APO.

6 Conclusion

In this paper, we addressed the issue of low con-
vergence rates in gradient-free prompt optimiza-
tion methods for LLMs. Our proposed dual-phase
approach effectively accelerates prompt optimiza-
tion by generating high-quality initial prompts and
leveraging tuning experience to navigate the opti-
mization process. Extensive experiments on sev-
eral LLMs across diverse datasets demonstrated
the superiority of our method in achieving satis-
factory performance within few optimization steps.
Our approach not only enhances the efficiency of
prompt optimization but also improves the overall
performance of LLMs in various NLP tasks. Future
work will focus on further refining the optimization
strategies and exploring their applications in more
diverse and complex scenarios.
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Limitations

We acknowledge some limitations despite the
promising results of our research that could pave
the way for future studies:

1) Our experiments were limited to general NLP
tasks and one domain-specific task, more perfor-
mance assessment on specialized tasks remains to
be included. 2) Our method relies on labeled task
data for prompt generation and evaluation, raising
concerns about its robustness in personalized or
scenarios lacking labeled data. 3) Our experiments
were confined to GPT-3.5-Turbo, Baichuan2-Turbo
and GPT-4, leaving the effectiveness of our method
on other large language models to be validated in
future studies.

Further study may be needed to address these
limitations so as to improve the generalizability and
robustness of our approach in broader and more
complex real-world applications.
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