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1Institute for Natural Language Processing, University of Stuttgart, Germany

2Interchange Forum for Reflecting on Intelligent Systems, University of Stuttgart, Germany
{urban.knuples,agnieszka.falenska,filip.miletic}@ims.uni-stuttgart.de

Abstract

Pretrained language models (PLMs) have been
shown to encode binary gender information of
text authors, raising the risk of skewed repre-
sentations and downstream harms. This effect
is yet to be examined for transgender and non-
binary identities, whose frequent marginaliza-
tion may exacerbate harmful system behaviors.
Addressing this gap, we first create TRAN-
SCRIPT, a corpus of YouTube transcripts from
transgender, cisgender, and non-binary speak-
ers. Using this dataset, we probe various PLMs
to assess if they encode the gender identity
information, examining both frozen and fine-
tuned representations as well as representations
for inputs with author-specific words removed.
Our findings reveal that PLM representations
encode information for all gender identities but
to different extents. The divergence is most
pronounced for cis women and non-binary in-
dividuals, underscoring the critical need for
gender-inclusive approaches to NLP systems.

1 Introduction

Gender identity – an individual’s sense of self, re-
flected in their experience and perception of their
gender – is closely connected to language. Soci-
olinguistic research shows that speakers intention-
ally use language to construct their gender identity
(Eckert and McConnell-Ginet, 1992); such linguis-
tic practices evoke links with identity when per-
ceived by others (Eckert, 2008). Crucially for NLP,
this means that gender information is inherent in
all linguistic data and may be inadvertently learned
by computational systems.

In a stark illustration, Lauscher et al. (2022) con-
duct a probing study to show that pretrained lan-
guage models (PLMs) encode binary gender in
their representations. But are transgender and non-
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Figure 1: Overview of our corpus creation and probing.

binary identities encoded to the same extent?1 This
question is vital because gender information may
have a skewed distribution in the data, which may
be exacerbated through pretraining and propagated
to downstream tasks. PLM-based systems tend
to make more errors for texts authored by under-
represented groups, particularly in tasks such as
predicting psychometric characteristics and person-
ality traits (Lalor et al., 2022). These biases may
result in allocation harms and have significant real-
world consequences (Blodgett et al., 2020; Hossain
et al., 2023). Regarding gender identity, harmful
system behaviors are likely to disproportionately
affect transgender and non-binary people since they
are generally underrepresented (Dev et al., 2021;
Devinney et al., 2022). This issue reflects a broader

1Following Zimman and Hayworth (2020b), we use the
term transgender to refer to individuals whose gender identity
differs from the gender assigned to them at birth; cisgender to
those who identify with their assigned gender; and non-binary
to all those who do not identify as exclusively female or male.
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need for gender-inclusive approaches to language,
centering the experiences of trans and non-binary
people (Zimman, 2019, 2020).

We adopt precisely such an approach to investi-
gate gender information in PLMs from an inclusive
perspective. We create TRANSCRIPT, a corpus
of texts by transgender, cisgender, and non-binary
speakers (see Figure 1 for an overview). It con-
tains transcripts of YouTube videos whose creators
were sampled based on public sociodemographic
information from Wikidata (see Section 8 for an
explanation of the data licensing). We use our
corpus to replicate the probing methodology by
Lauscher et al. (2022) on a broader range of identi-
ties, and extend it to account for interactions with
topic (Bamman et al., 2014; Dayanik and Padó,
2021). We pose the following research questions:

RQ1 Do PLM representations encode gender iden-
tity beyond the male–female binary?

RQ2 Does the encoded information reflect author
identity rather than gender?

RQ3 Is gender identity encoded differently after
fine-tuning on an explicit label?

Our approach uses various PLMs to encode seg-
ments of transcripts and then trains a probing classi-
fier to predict the gender identity of the transcript’s
author. In this setting, gender classification is used
as a proxy task to examine PLM representations:
above-chance performance is indicative of encoded
gender information, and relatively higher perfor-
mance for a given class suggests a stronger bias
towards it. We provide the following contributions:
(1) A comprehensive pipeline to collect YouTube
transcripts, resulting in 6,000 texts by 168 individ-
uals across five gender identities.2 (2) A battery of
probing experiments which consistently show that
PLM representations encode all gender identities,
but to different extents. The divergence is strongest
for cis women and non-binary individuals, confirm-
ing the relevance of our gender-inclusive approach.
(3) A novel author-controlled probing method to
distinguish the effect of author and gender iden-
tity. This approach confirms that author-related
information, such as the use of specific words, is
also encoded in PLM representations, but does not
affect the encoding of gender.

2Code for reconstructing the corpus along
with experiments: https://github.com/urbikn/
inclusive-probing-of-gender-identity.

2 Related Work

NLP and gender identity. Different linguistic
expressions may convey the same meaning, but
also reflect the social identity of the speaker; this is
what sociolinguistics defines as the social meaning
of linguistic variation (Eckert, 2008). Illustrating
this pattern, Bamman et al. (2014) examine lexical
choices on social media with respect to assigned
binary gender. They identify linguistic features
linked to gender identity, but also find that align-
ments between gender and language use are vari-
able, not necessarily binary, and dependent on inter-
action. From a different perspective, such linguistic
variation is exploited to predict gender on the task
of authorship profiling (Argamon et al., 2009; Das
and Paik, 2021; HaCohen-Kerner, 2022).

Another line of work focuses on biased gen-
der representations learned from training data
(Caliskan et al., 2017). Devinney et al. (2020) ana-
lyze corpora in terms of topics specific to mascu-
line, feminine, and non-binary gender. Genders are
treated differently in all datasets, pointing to a mis-
representation of disadvantaged groups and a risk
for the biases to transfer to PLMs. Dev et al. (2021)
investigate BERT’s predictions of pronouns for
non-binary individuals, noting its tendency to mis-
gender even when given additional context. Cao
and Daumé III (2021) observe that NLP research
tends to make strong binary assumptions around
gender identity, ignoring the existence of trans and
non-binary individuals. This overall highlights the
need to better understand the limitations of NLP
models with respect to marginalized communities.

Probing PLMs. The knowledge encoded in
PLMs’ internal representations is generally an-
alyzed using probing techniques (Hupkes et al.,
2018; Tenney et al., 2019; Belinkov, 2022). A
probe is usually a simple classifier trained to predict
a property of interest on a model’s frozen represen-
tations (Belinkov et al., 2017; Petroni et al., 2019).
Its performance is taken to indicate the information
encoded in the representations. However, probing
classifiers may memorize patterns in the data which
are unrelated to representational properties (Hewitt
and Liang, 2019). Therefore, alternative probing
techniques are based on an information-theoretic
approach, such as the minimum description length
(MDL) probe (Voita and Titov, 2020).

Different techniques have been applied to probe
syntactic structures (Hewitt and Manning, 2019;
Linzen and Baroni, 2021), lexical semantics (Vulić
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et al., 2020; Mickus et al., 2020), and factual knowl-
edge (Petroni et al., 2019; Zhong et al., 2021). In
directly relevant work, Lauscher et al. (2022) as-
sess sociodemographic knowledge: age and binary
gender. They use a probing classifier and an MDL
probe to analyze PLMs of different sizes, compar-
ing frozen and fine-tuned representations across
layers. They find that sociodemographic informa-
tion is encoded, but also note the binary framing
of gender as a limitation due to a lack of gender-
inclusive datasets. It is to be determined if trans and
non-binary identity is encoded in the same way.

Gender-inclusive datasets. Existing datasets
generally treat gender as a binary variable, leading
the studies that use them to adopt the same framing
(Dayanik and Padó, 2021; Lauscher et al., 2022;
Orgad et al., 2022, among others). One exception
is GiCoref, a dataset aimed at analyzing corefer-
ence resolution systems (Cao and Daumé III, 2021).
It includes neopronouns (e.g. ze/hir, xe/xem) and
articles about non-binary individuals. From a so-
ciolinguistic perspective, Zimman and Hayworth
(2020a) create the TransLiveCorpus using posts
from four online communities aimed at transgen-
der and non-binary people. These examples incor-
porate gender-inclusive data based on the topic or
target audience; we are unaware of similarly inclu-
sive datasets with author-level information.

3 TRANSCRIPT Corpus

In order to investigate the encoding of gender in
PLM representations from an inclusive perspective,
we require texts produced by authors of different
gender identities. Faced with a lack of such corpora,
we construct TRANSCRIPT: the TRAnsgender
Non-binary Cisgender transcRIPTs corpus.

Due to recent restrictions on sources of sociode-
mographically enriched text such as X and Reddit
(Davidson et al., 2023), we devise an alternative
approach (Figure 1). We use Wikidata to sample
English-speaking, famous YouTubers across gen-
der identities, collect transcripts of their YouTube
videos, and then filter them to ensure data quality.
YouTube transcripts are a unique domain, compris-
ing segments of prepared speech (e.g., interviews)
as well as spontaneous conversations, opening pos-
sibilities for analyzing various language variations,
such as regional origin (Coats, 2023).

We now describe our pipeline in more detail and
present a topic analysis of the collected content.

3.1 Corpus Creation Pipeline

Using Wikidata to sample authors. Wikidata is
an open, collaborative database containing struc-
tured data about real-world entities (Vrandečić and
Krötzsch, 2014); it has also been used to study
PLMs (Petroni et al., 2019; Meng et al., 2022).
Each item contains standardized property–value
pairs describing its characteristics; e.g. the item
“Chris Hadfield” has the property “occupation”
with the value “astronaut”. Importantly for us,
Wikidata contains information on YouTubers.

We access the Wikidata Query Service3 and
select entries that (1) are an instance of human;
(2) contain properties sex or gender, date of birth,
country of citizenship, and YouTube channel ID;
(3) are citizens of the USA or the UK, so as to
prioritize English speakers; (4) contain properties
number of subscribers and number of viewers/lis-
teners of the YouTube channel, so as to control for
online presence and influence; (5) for the sex or
gender property, contain the value trans woman,
trans man, female, male, or non-binary.4 We find
four instances where the sex or gender property
has two values, which may occur when informa-
tion predating gender transition is not removed; we
retain the more recent value.

The cisgender groups are significantly overrep-
resented on Wikidata (Appendix A.1). Therefore,
we apply a sampling procedure, in which trans-
gender and non-binary individuals are the “target
group” and cisgender individuals “control group”.
We retain control group candidates only if they can
be matched with a target group individual based
on (i) country of citizenship; (ii) age, in five-year
increments; and (iii) level of YouTube fame (log-
transformed subscriber and view counts in ±0.5
range). This ensures that gender identity (rather
than e.g., age) remains the main distinguishing fea-
ture for the two groups.

Collecting YouTube transcripts. For the next
step, we direct our attention to YouTube, a social
media platform containing user-uploaded videos.
YouTube includes vast amounts of conversational
content such as interviews and vlogs.5 We focus on
videos which include transcripts uploaded by users,
usually channel owners themselves (Lakomkin

3query.wikidata.org/
4See Appendix A.1 for corresponding Wikidata codes.
5Vlogs are video blogs in which creators document their

lives or engage in discussions while facing the camera (Biel
and Gatica-Perez, 2010).
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et al., 2018), because they are likely reviewed for
accuracy and alignment with dialogue.

We start from the YouTubers identified on Wiki-
data and gather their channels from the YouTube
channel ID property; if multiple channels are pro-
vided, we select all of them. Next, we compile a
list of all videos from these channels and down-
load respective manually created transcripts with
libraries yt-dlp6 and YouTube Transcript/Subti-
tle API.7 We retain only English transcripts with
metadata language codes en, en-US, and en-GB.

A user-uploaded transcript is comprised of seg-
ments. Each segment is a verbatim transcription
of a speaker’s utterance in a specific part of the
video, associated with the start time and duration in
seconds. We additionally extract all metadata from
the associated YouTube videos using the pytube
library,8 including the video title and description.

Preprocessing. After collecting the data, we ap-
ply four filtering steps to limit any noise. (1) We ex-
clude transcripts of music videos and movie trailers,
identified from video metadata (musicVideoType
attribute) and string-based heuristics (video title
containing music video, cover, or trailer). (2) Some
transcripts include segments from multiple speak-
ers. Therefore, we implement a speaker diarization
system on the audio of the transcribed videos and
leave only segments spoken by the YouTuber of
interest (see Appendix A.2). (3) Our transcripts
are filtered for English based on metadata, but out
of precaution we also run py3langid9 (Lui and
Baldwin, 2012) and exclude transcripts predicted
to be non-English. (4) Similarly to Lakomkin et al.
(2018), we apply rule-based filters to exclude ir-
relevant information: transcripts with a duration
less than 1 second; non-ASCII characters; URL-
specific patterns http* and www*; speaker mark-
ings (Speaker 1:, Person:) and other annotations
([laughs], (laughs), \laughs\).

As final preprocessing steps, we tokenize the
corpus with spaCy (Honnibal and Montani, 2017)
using the en_core_web_md model. We concatenate
continuous transcript segments and slice them into
sequences of up to 256 tokens, using a 240-token
sliding window for context. These are the segments
referenced in the remainder of the paper.

6github.com/yt-dlp/yt-dlp
7github.com/jdepoix/youtube-transcript-api
8github.com/pytube/pytube
9github.com/adbar/py3langid

Gender Ident. Users Transc. Segm. Tokens

Trans woman 13 546 15,121 1,646,4121
Trans man 6 192 6,478 548,579
Cis woman 55 2,446 92,436 4,986,314
Cis man 79 2,474 80,902 4,309,761
Non-binary 15 514 9,397 960,224

Total 168 6,172 204,334 12,451,290

Table 1: Distribution of users, transcripts, segments and
tokens across gender identities in TRANSCRIPT.

Corpus overview. The final corpus (Table 1) con-
tains 6,172 transcripts by 168 speakers across five
gender identities, for a total of 12.5 million tokens.
The distribution of data is skewed towards the cis-
gender groups, possibly due to our sampling pro-
cedure: each target group speaker was matched to
potentially multiple control group candidates, all of
whom were retained. However, we reiterate that we
included all potential target group speakers. The
problem is therefore broader than a sampling issue
and likely explained by the target group’s demo-
graphic under-representation, further exacerbated
in databases such as Wikidata (Zhang and Terveen,
2021).

3.2 Topic Analysis

Before deploying our corpus in probing experi-
ments, we explore its content via topic analysis. On
the one hand, topics mediate the relationship be-
tween language use and gender identity (Bamman
et al., 2014); on the other, they may skew gender
classifiers (Dayanik and Padó, 2021). Strong topi-
cal variation across gender identity groups would
affect the robustness of our probing experiments.

We use the Latent Dirichlet Allocation topic
model (Blei et al., 2003) and present the 15 most
frequent topics in Figure 2 (see Appendix A.4 for
implementation details). Nearly all topics are rep-
resented in all groups, but to different degrees.
For example, trans and non-binary subcorpora in-
clude more discussions on issues surrounding the
LGBTQIA+ community, such as gender identity,
sexuality, and inclusion; this is in line with the com-
munity’s use of YouTube to voice lived experiences
(Miller, 2019). The cisgender groups have compar-
atively more discussions regarding general interests
and personal experiences, including sports, travel,
and food. Across the groups, there is a similar pro-
portion of topics such as politics, entertainment,
internet spaces, and healthcare.
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Figure 2: Top 15 topics in TRANSCRIPT and the
distribution across gender identity groups.

These results indicate that our gender-specific
subcorpora are overall comparable in topic; we
therefore view them as a validation of our data
collection pipeline. But we also take note of the
variable relative importance of individual topics,
which may also be due to idiosyncratic interests of
individual YouTubers. We aim to account for it in
our probing methodology, which we now present.

4 Probing Methodology

We replicate the probing methodology used by
Lauscher et al. (2022), who investigated binary
gender information encoded in PLMs. To ensure
consistency, we reimplement all their experimental
steps, including the probing methods and the se-
lection of PLMs. The only variable that differs in
our experiments is the dataset used for the analysis.
Note more generally that our method sometimes
involves direct comparisons of trans and cis gender
identities. We stress that we do not imply a funda-
mental distinction between these groups, but rather
use this perspective for a controlled assessment of
disparities in model behavior.

4.1 Data

To ensure balanced representation across all
classes10, we randomly subsample each subcorpus
within TRANSCRIPT to match the number of ex-
amples in the smallest one (i.e., the trans man part
with 6,478 segments). The resulting dataset con-
tains 32,390 segments across five gender identity

10Now that we switch to probing, we adopt ML terminology,
using the terms “classes” or “labels” to refer to the variable
extracted from PLMs - the gender identity of the authors.

groups. We divide it into training, validation, and
test sets using an 80/10/10 split, resulting in 25,910,
3,240, and 3,240 segments, respectively. Each split
maintains an equal proportion of segments from
each gender identity group. We refer to this bal-
anced subset as the TRANSPROB subcorpus.

4.2 Analyzed PLMs
We use PLMs from three model families:
RoBERTa in the base and large configurations (Liu
et al., 2019), DeBERTa base and large (He et al.,
2021b), and DeBERTaV3 xsmall, small, base, and
large (He et al., 2021a). We refer to Table 7 in
Appendix B.1 for sizes of these models. It is impor-
tant to note that our study examines only Lauscher
et al.’s (2022) subset of existing PLMs because
we aim to evaluate if their findings extend to non-
binary identities. Analyses of other models and
architectures are reserved for future research.

4.3 Probing Methods
To ensure the robustness of our findings, we use
two probing methods: traditional probing classi-
fiers and Minimum Description Length (MDL).

Traditional probing classifier is a supervised
model trained to predict a label (i.e., in our case, the
gender identity of the author) from the representa-
tions of PLMs (Belinkov, 2022; Hewitt and Liang,
2019). Figure 1 (bottom panel) depicts an exam-
ple of such a probe. The input dimension of the
classifier matches the embedding size of PLM, and
the output dimension corresponds to the number
of classes in the probed task. Since the representa-
tions are frozen during training (i.e., they are not
updated during back-propagation), the higher the
classifier’s accuracy, the more information it was
able to decode from these representations.

We implement the probing classifier as a two-
layer feed-forward network with ReLU activation
and softmax output. We refer to Appendix B.2 for
relevant hyperparameters.

MDL probing is an information-theoretic ap-
proach based on the idea that the efficiency of in-
formation encoding in the frozen representations
correlates with the amount of data needed to ex-
tract this information. During training, the probing
model estimates the minimum length (i.e., mini-
mum amount of data) required to transmit the target
property. Thus, the more effectively the representa-
tions encode the property, the more efficiently the
probing model can compress and transmit it.
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F1 MDL

RoBERTa-large .81 ±.01 298 ±2.3
DeBERTa-verLarge .81 ±.00 284 ±7.1
DeBERTaV3-verLarge .78 ±.00 324 ±3.2

Table 2: Pairwise probing results for frozen representa-
tions and two gender identities: cis men and cis women.
Averages and standard deviation for 5 runs.

For estimating MDL, we use online coding
(Voita and Titov, 2020). In general, a lower MDL
score represents a higher extractability of the prop-
erty from the given frozen PLM representations.

Preprocessing. We further tokenize segments
from TRANSPROB using the default tokenizers
provided with the models. We pad the given inputs
to a consistent length of 512 tokens and extract
word embeddings from the final hidden layer of the
PLMs. To create a single vector representation for
each input segment, we average the word embed-
dings, ignoring any special tokens. These averaged
embeddings are then used as frozen representations
to train and evaluate our two probing methods.

4.4 Evaluation

The performance of traditional probing classifiers
is evaluated on a held-out test set using the F1
score. MDL probing is cross-evaluated on the train-
ing data using the online coding measurement (see
Equation (2) in Appendix B.2). Performance scores
are reported as the mean and standard deviation
from five runs using different random initialization.

5 Gender Identity in PLMs

We now turn to the primary goal of this work
– analyzing whether PLMs capture information
about authors’ gender identities. Before address-
ing our three main research questions, we replicate
Lauscher et al.’s (2022) binary classification setup
with our dataset. These experiments evaluate the
positioning of TRANSPROB in relation to other
domains analyzed by the authors and determine if
our probing results are consistent with theirs.

5.1 Pairwise Classification

We perform pairwise classification, where the
probes are tasked with distinguishing between only
two classes. Table 2 presents a subset of results for
the three best-performing models and the same two
gender identities as Lauscher et al. (2022) – cis men
and cis women (for results across all genders, see

Figure 3: Results from the 5-way probing using frozen
representations. Average per-class F1 scores and stan-
dard deviation for 5 runs with different random seeds.

Table 8 in Appendix C.1). We observe that the clas-
sifiers are capable of predicting the gender identity
of the authors with a robust F1 score of 0.81. This
performance places TRANSPROB on par with the
Lauscher et al.’s (2022) control task CoLA and
their easiest dataset fb_wiki (Voigt et al., 2018)
– Facebook posts from public figures – for which
RoBERTa-large achieves 0.81 F1. Regarding MDL,
our results are also the most similar to fb_wiki,
where the three models receive between 260 to 300
MDL.11 Most importantly, both probing methods
consistently rank our three classifiers in the same
order as Lauscher et al. (2022).

5.2 5-way Probing of Gender Identity

Having established the validity of TRANSPROB
with respect to the probing framework of Lauscher
et al. (2022), we can address RQ1 and ask if frozen
PLM representations encode identities beyond the
binary cis genders. To explore this, we conduct a
5-way classification, where models are trained to
predict one out of the five labels from our dataset.

Figure 3 presents probing results for all gender
groups. First, accuracy is lower than in Table 2 – an
expected outcome given the more challenging set-
ting of predicting one of five classes. Nevertheless,
all classifiers perform well above the random base-
line of 0.2 F1, and almost all exceed 0.5 F1. This re-
sult demonstrates a substantial signal about gender
identities within the representations. Second, simi-
larly to results from Lauscher et al. (2022), model
size influences the encoding of sociodemographic
information. Larger models, such as DeBERTa-
large, exhibit higher information extractability than
smaller models like DeBERTaV3-xsmall.

11The authors do not provide concrete numbers, so we esti-
mate them from their plots.
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Figure 4: Number of errors (y-axis) from the 5-way
probing of frozen representations from DeBERTa-large.

Surprisingly, when comparing performance
across groups, we observe notable variations in the
difficulty of predicting gender identities from the
representations. Detecting signals for cis women
and non-binary individuals proves more challeng-
ing compared to those for trans women, trans men,
and cis men. Figure 4 zooms into this result and
presents the number of errors by the model with
the highest probing score – DeBERTa-large. It fre-
quently misclassifies examples from the cis woman
subcorpora as cis man and vice versa. Moreover,
examples from all subcorpora are predicted as be-
longing to the non-binary subcorpus, potentially
highlighting the broad spectrum of identities under
the non-binary umbrella. We expand upon these
observations in a broader context in Section 6.

5.3 Controlling for Authors’ Signals
As outlined in Section 3.2, our gender-specific
subcorpora are comparable in topics. However,
YouTube personalities often craft their online per-
sonas around specific matters or catchphrases –
could these be the signals that probing methods
capture? To address RQ2, we continue the probing
experiments from the previous section, this time
controlling for signals specific to authors.

Experimental setting. To identify words specific
to individual YouTubers, we use the Sparse Addi-
tive Generative Model of Text (SAGE; Eisenstein
et al., 2011). SAGE identifies terms that are signifi-
cantly over- or underrepresented in a target dataset
by comparing their frequency to the frequency in a
general (i.e., background) corpus.

We apply SAGE for each author in a one-vs-
all setting, where each target corpus comprises all
author-specific transcripts from the full TRAN-
SCRIPT, and the background corpus consists of

Figure 5: Results from the 5-way probing using author-
controlled frozen PLM representation. Average per-
class F1 scores and standard deviation from 5 runs.

all remaining texts. After calculating normalized
SAGE coefficients, we select all lemmas with val-
ues exceeding 1.0. This process identifies 41,829
terms, i.e. approximately 14% of all tokens in
TRANSPROB. Among these, we find phrases
specific to individual YouTubers, such as under-
achiever used as an established way of addressing
the audience or teehee used as an outro phrase
for each video. However, we also find more gen-
eral terms such as Kotick or Activision, which one
YouTuber uses in multiple videos about gaming
companies.12 Therefore, while our method primar-
ily aims to capture author-specific signals, it also
serves as an implicit means of controlling for topic.
Note moreover that individual YouTubers might fol-
low template-like structures for their videos. While
these could constitute an author-specific signal, we
deliberately mitigate such potential influences by
splitting the transcripts into smaller randomly sub-
sampled segments (see Section 3.1).

Next, we mask with <MASK> all author-related
tokens identified by SAGE in the corresponding
author’s transcripts in TRANSPROB. Afterwards,
we extract the averaged vector embeddings from
the selected PLMs and leave all the other prepro-
cessing and training procedures unchanged.

Results. The results of our author-controlled
5-way probing experiments are depicted in Fig-
ure 5. Given that the patterns observed from the
pairwise classifications and MDL probing are con-
sistent with the 5-way classification, we consider
them as validation experiments and provide details
in appendix (see Table 9 in Appendix C.1).

Comparing Figures 3 and 5, we notice decreased
probing accuracy for all models. While their rank

12Robert Kotick is the CEO of Activision Blizzard, one of
the largest video game publishers.
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remains unchanged – with DeBERTa-large achiev-
ing the highest F1 score and DeBERTaV3-xsmall
the lowest – their accuracy consistently drops by
approx. 0.05 F1 for all subcorpora. The impact of
model size also remains strong, with larger models
continuing to demonstrate greater extractability of
information. However, despite lower accuracy, all
models achieve F1 well above the majority base-
line. This suggests that the signals remaining af-
ter author-specific information is removed are still
sufficiently robust to enable the decoding of infor-
mation related to those authors’ gender identities.
Furthermore, similarly to the previous section, we
observe trends in these signals specific to the five
subcorpora, with the cis woman and non-binary
identities showing the lowest extractability.

5.4 Fine-tuning Representations
So far, we observed that the frozen representations
of PLMs encode gender identity information suf-
ficiently to achieve probing accuracy up to 0.7 F1.
This finding prompts the question: Is this the upper
limit? To explore this, we shift our focus to RQ3
and evaluate how the capabilities of PLMs change
if we fine-tune them using the same training objec-
tives as in probing. These experiments are designed
to assess the change in the models’ representations
when provided with explicit supervised signals as
a comparison to the probing experiments.

Experimental setting. We use the same architec-
ture as in the probing classifiers, using the averaged
word embeddings as inputs to the classification
heads. The main change is that the PLM repre-
sentations are not frozen anymore and can learn
new signals from the training data. All models are
fine-tuned for 3 epochs using a batch size of 8 and
a learning rate 1× 10−5 with Adam optimizer. We
use early stopping based on validation loss, with a
patience of 5. During fine-tuning, the models are
evaluated ten times and the best-performing model
is saved. Once training is complete, we load the
model with the overall best score.

Results. Figure 6 presents the results of the 5-
way fine-tuning experiments (see Table 10 in Ap-
pendix C.1 for the validation pairwise results). As
expected, fine-tuning improves accuracy by up to
0.1 F1 with the largest models reaching nearly 0.8
F1 for 4 out of 5 subcorpora. These results align
with other gender prediction findings that, accord-
ing to HaCohen-Kerner (2022), vary widely in ac-
curacy (52% to 91%) across different domains and

Figure 6: Results from 5-way fine-tuned classification.
Average F1 scores and standard deviation from 5 runs.

architectures. Additionally, fine-tuning reduces the
variance between the results of different PLMs,
with smaller models scoring closer to the base and
larger variants. However, despite these improve-
ments, disparities in F1 scores persist among gen-
der identities, with the cis woman and non-binary
subcorpora continuing to yield the lowest scores.

6 Discussion and Conclusion

In this paper, we adopted an inclusive perspective
to analyze whether gender identity is encoded in
the representations of PLMs. Our study began with
the creation of TRANSCRIPT, which, to the best
of our knowledge, is the first dataset to include lan-
guage samples from individuals across five gender
identities. The proposed data collection pipeline
and topic analysis contribute to ongoing research
on language use in trans and queer communities.

Do representations encode gender identity?
With two distinct probing methods, we found a
substantial amount of gender identity information
encoded within PLM representations. The infor-
mation extends beyond binary gender and is ex-
tractable from frozen representations even after
masking author-specific words, which may benefit
the probes. Moreover, model size is one of the
strongest factors indicating final probing accuracy.

Are there gender biases in representations?
We consistently observed error discrepancies in
model behaviors (refer to Shah et al. (2020) for
an overview of types of biases in NLP models).
These disparities persisted even when controlling
for author-specific words or fine-tuning with a di-
rect signal. Figure 7 presents an overview on
the disparities across all three experiments from
the highest scoring model DeBERTa-large. They
were particularly visible in model behavior for cis
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Figure 7: Overview of the 5-way classification results
from all three experiments on DeBERTa-large.

women and non-binary individuals. A detailed
sociolinguistic analysis of why this is the case
(e.g., stronger expressivity of some individuals or
identity-establishing language variation) represents
important future work. Analogously, a relevant di-
rection is the use of interpretability methods such
as SHAP (Lundberg and Lee, 2017) to identify in-
dividual tokens that lead to such model behaviours.
However, we can already conclude that even in bal-
anced data the ease of extracting gender identity
from representations differs across the analyzed
populations.

The observed biases in representations can pose
significant challenges in downstream applications.
For example, applications like YouTube’s auto-
matic captions may have disparate performance for
different gender identities due to biased encodings
(Tatman, 2017). Perhaps more critically, some iden-
tity verification systems incorrectly interpret non-
binary identities as fake or non-human (Dev et al.,
2021). Similarly, tools predicting users’ gender on
social media platforms can misgender individuals
from already marginalized groups, negatively im-
pacting their self-esteem (Fosch-Villaronga et al.,
2021). Future work should directly examine how
the patterns identified in our findings affect such
downstream tasks. Current debiasing methods
are incapable of fully removing authorship signals
from PLMs (Lalor et al., 2022), so it is all the
more critical to identify the tasks which might use
information related to gender identities and the pop-
ulations which might be harmed by them. Placed
within this context, our findings underscore the
vital importance of including transgender and non-
binary people in the development and assessment
of language technologies.

7 Limitations

This paper provides two main contributions: a
pipeline for creating TRANSCRIPT and the
findings from our probing analysis. Regarding
the pipeline, there are several points to consider.
Firstly, the pipeline strongly relies on the repre-
sentation of diverse gender identities on Wikidata.
Given that the trans and queer community is already
demographically underrepresented, publicly avail-
able databases such as Wikidata exacerbate this
underrepresentation (Zhang and Terveen, 2021).
Consequently, our approach to population sampling
reflects and potentially perpetuates this issue.

Secondly, the sampling method for cisgender
individuals, which relies on the same nationality,
similar age, and level of YouTube fame, can intro-
duce a selection bias in our corpus. Restricting the
country of citizenship allows us to focus on English-
speaking YouTubers, but including both American
and British English speakers may introduce minor
linguistic variations. Finally, we perform an auto-
matic diarization step to filter segments spoken by
the target speaker. While we carefully design the
methodology, it might still misidentify some of the
speakers in collaborative videos, leading to noise
in our data.

When it comes to the probing experiments, it
is important to emphasize that our results are lim-
ited to the domain of TRANSCRIPT: YouTube
transcripts. As such, the analyzed segments are
samples of spoken, but possibly scripted, language.
Therefore, our result do not directly generalize to
other domains. Secondly, while we account for
author-specific words and implicitly topic-related
signals, our probing experiments do not control for
other latent aspects that could influence our results.

8 Ethical Considerations

Our research involves collecting and predicting
sensitive personal information, specifically gender
identity. We acknowledge the potential for dual use
of our work, and specifically the fact that predic-
tive methods may be used for harmful applications,
such as author profiling, which may perpetuate bi-
ases and discrimination. However, we believe that
this risk is outweighed by obtaining findings that
promote the inclusion of LGBTQIA+ individuals
and assess the risks that NLP systems may pose
to already marginalized communities. We strive
to acknowledge associated risks and to account
for the sensitive nature of research related to the
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LGBTQIA+ community, thereby fostering more
inclusive and equitable NLP technologies.

We developed TRANsCRIPT by collecting ma-
terial available on YouTube in accordance with
YouTube’s Terms of Service (YouTube, 2024),
which allow for automated download of content
“as permitted by applicable law”. Article 3 of the
EU directive on copyright and related rights in the
Digital Single Market (Directive 2019/790) sets out
an exception for collecting and analyzing otherwise
copyright-protected material within the scope of
text and data mining for scientific research. The
work presented here falls under such a scope since
it was conducted as a non-commercial project in a
public research institution in the European Union.

To regulate the possible dual-use issues associ-
ated with the data, TRANSCRIPT will be made
available only upon direct request. Consequently,
we are releasing only the code needed to reproduce
our dataset and analysis – an approach that aligns
with previous work on YouTube (Ko et al., 2023,
among others). Moreover, we store the collected
data securely and do not directly disclose the au-
thors’ identities. We note however that the source
data remains publicly accessible by virtue of the
authors’ presence on YouTube.

The information we collect does not include self-
reported identity labels. Instead, we use a collab-
orative database, Wikidata, which contains infor-
mation about public figures, including their gen-
der identity labels. This approach has limitations,
as gender identities can overlap and change over
time. Relying on externally assigned labels may
not always accurately represent an individual’s self-
identified gender.

Finally, our findings pertain specifically to the
corpus and models used in this study and should
not be generalized to broader populations. The re-
sults do not represent the entire spectrum of gender
identities or sociodemographic groups and commu-
nities. We recognize the complexity and diversity
of gender identities and acknowledge that our work
captures only a subset of this spectrum within the
context of our resources.
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PROPERTY VALUE

PID Label QID Label

P31 instance of Q5 human

P27
country of
citizenship

Q30
United States
of America

Q145 United Kingdom

P21 sex or gender Q1052281 trans woman
Q2449503 trans man
Q6581072 female
Q6581097 male

Q48270 non-binary

P569 date of birth

P2397
YouTube

channel ID

P3744
number of
subscribers

P5436
number of

viewers/listeners

Table 3: Wikidata property (PID) and value (QID)
codes, accompanied by their corresponding labels.

A Corpus

A.1 Wikidata Information

Wikidata codes. The properties and values used
in the construction of TRANSCRIPT, along with
their corresponding Wikidata codes, are listed in
Table 3.

Distribution of gender identities. As outlined in
Table 4, there is a significant discrepancy of gender
identities among YouTubers on Wikidata, where
less than 0.03% of the individuals on Wikidata rep-
resent queer identities. The underrepresentation
of gender identities is reflected in the skewed dis-
tribution in TRANSCRIPT towards the control
group.

A.2 Speaker Filtering

YouTube transcripts can include segments spo-
ken by different speakers. Moreover, commentary
videos can feature clips of other speakers followed
by a discussion of their statements. Therefore, as
a preprocessing step, we perform speaker filtering
(Figure 8) using speaker diarization to identify the
person we sample from Wikidata (target speaker)
and remove segments in the transcripts produced
by other speakers (background speakers).

Speaker diarization is an unsupervised process
that identifies and labels specific segments of au-
dio or video recordings with a speaker identity la-
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Wikidata QID Wikidata Label Total YouTubers # Youtubers

Q6581097 Male 60.9% 0.21% 23,093
Q6581072 Female 21.1% 0.12% 12,861
Q1052281 Trans woman 0.02% 1× 10−3% 161
Q48270 Non-binary 1× 10−2% 1× 10−3% 140

Q2449503 Trans man 4× 10−3% 2× 10−4% 27
Q18116794 genderfluid 9× 10−4% 2× 10−4% 21
Q12964198 Genderqueer 9× 10−4% 1× 10−4% 13

Q189125 Transgender 7× 10−4% 8× 10−5% 9

Table 4: Top 8 frequently occurring sex or gender (P21) values on Wikidata that are human (Q5). We display the
overall percentage of occurrence along with the overall percentage and actual number of individuals with a YouTube
channel ID (P2397).

Keep Target Speaker

Speaker
Diarization

Text of Target Speaker

Audio

Transcript Transcript

Speaker Filtering

Figure 8: Representation of transcript preprocessing
using speaker filtering.

bel. In other words, it answers the question ‘who
spoke when’ (Park et al., 2022). We use an off-
the-shelf speaker diarization pipeline provided by
the pyannotate.audio library13 (Bredin, 2023) from
the Huggingface Hub.14 The pipeline contains a
pretrained end-to-end neural speaker diarization
model (Plaquet and Bredin, 2023), reporting sig-
nificant improvements in overlapping speech and
robust cross-domain performance.

The steps for performing speaker filtering on the
user-uploaded transcripts are the following:

1. Downloading the YouTube video’s audio file
using the yt-dlp library and reducing the file’s
quality for faster preprocessing. The frame
rate is decreased to 22050 Hz, the sample
width is set to 2 bytes, and the audio chan-
nel is converted to mono.

2. Applying the speaker diarization pipeline to
identify and obtain a group of speaker seg-
ments.

3. If multiple speakers are found, perform a
speaker disambiguation task to identify the
target speaker (Figure 9; details below).

13github.com/pyannote/pyannote-audio
14huggingface.co/pyannote/speaker-diarization-3.1

4. Trimming target speaker segments that inter-
sect with background speaker’s segments.

5. Removing transcript segments that do not
overlap with the target speaker’s segments
based on start time and duration. When no
speaker is identified, or the set of speaker seg-
ments is empty, we discard the entire tran-
script.

Since no prior audio samples are obtained from
the target speakers and due to the unsupervised
nature of speaker diarization, we incorporate an
additional step to identify the target speaker. We
frame this as a speaker disambiguation task (Fig-
ure 9), determining the target speakers from a group
of background speakers identified in the audio file.
We propose an algorithm that leverages a collection
of videos from the same YouTube channel as the
video being processed to identify the target speaker.
The algorithm initially compiles a list of videos
from the channel sorted in descending view count
and then by duration (rounded to the nearest 1000
views and 15 minutes, respectively), excluding mu-
sic videos and movie trailers. The assumption is
that longer, more popular videos are more likely to
feature the YouTube channel owner who is being
identified. It then iterates over the sorted list of
videos, each time concatenating a quality-reduced
audio file with the audio from the previously pro-
cessed videos and performing speaker diarization.
The iteration steps continue until a speaker rep-
resenting 70% of the speaking time is identified,
indicating our target speaker.

Speaker filtering offers advantages and limita-
tions. This step filters out non-target speakers and
background noises like musical cues or annota-
tions not transcribing spoken words, such as silent
videos with a story narrated using user-uploaded
transcripts. A limitation to consider is the iden-
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Audio from Video #1

Audio from Video #1

Keep Speaker with > 70% Speaking Time

Audio from Video #2

Audio from Video #3

Videos
from 

Same 
Channel

Target Video

Figure 9: Illustration of the speaker disambiguation task employed in the speaker filtering preprocessing step.

tification of the target speaker. Considering the
curation of YouTube videos from a channel, the
algorithm may identify the target speaker as a dif-
ferent commonly occurring speaker that is not the
actual candidate YouTuber from the target or con-
trol group.

A.3 Corpus Statistics

Reduction in corpus size. To assess the im-
pact of the corpus pipeline on the final size of
TRANSCRIPT, we provide statistics (Table 5)
on the number of users, transcripts, and tokens re-
tained during each stage of the corpus creation
pipeline. Initially, sampling from Wikidata re-
sulted in 9, 900 potential YouTubers. After col-
lecting YouTube transcripts, the number of users
decreased by 96.9% to 306 potential candidates,
with 7, 999 transcripts with a total of 18.9 million
tokens. The collection from YouTube significantly
reduces the number of authors, since the focus is on
authors who include user-uploaded transcripts in
their YouTube videos. During preprocessing (Sec-
tion 3.1), the discarding of music videos and movie
trailers, and the application of speaker filtering,
led to a 28% token reduction. The final TRAN-
SCRIPT (Table 1) contains 66% of the initially
collected data from YouTube.

A.4 Topic Modelling Details

Data and preprocessing. Using the TRAN-
SCRIPT corpus containing 6, 172 transcripts from
168 individuals, we represent each transcript as a
continuous string of text.

Similarly to Devinney et al.’s (2020) subset of
preprocessing steps, we tokenize, lemmatize, and

POS tag each document with spaCy (Honnibal and
Montani, 2017) using the en_core_web_md model.
We remove all punctuations, non-alphabetical
words, two-character words, and words included
in spaCy’s list of English stopwords. Using the
POS information from the tagger, we keep only
nouns, verbs, adjectives, and adverbs. We maintain
only the lowercase lemmatised list representations
of each document and exclude all high-frequency
terms that appear in more than 80% documents. We
test various thresholds and empirically determined
that excluding the top 20% of words achieves the
best results. Subsequently, we then use the gensim
library15 to convert the documents into a bag-of-
words (BoW) format.

Implementation details. We use the LDA imple-
mentation available in the gensim library. We set
the number of topics to k = 15 and the chunk size
to 2500, the number of iterations to 500, and the
number of passes to 50. All other hyperparameter
settings are kept to their default values. We do not
perform any evaluation steps during the model’s
training.

For a more interpretable understanding of a
topic’s meaning, we measure the relevance of a
term to a topic (Sievert and Shirley, 2014). The
relevance of a term w described in Equation 1 is
measured by calculating a weighted average of the
term’s probability within a topic t with the ratio of
a term’s probability within a topic to its marginal
probability across the corpus. We set the weight
parameter value to be λ = 0.6.

15radimrehurek.com/gensim/
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Users Transcripts Tokens (T) % T Kept

Wikidata Collection 9,874 N/A N/A N/A
YouTube Collection 306 7,999 18,877,552 100%

Filter Music and Movie Trailers 176 6,359 16,958,559 90%
Speaker Filtering 172 6,246 13,599,334 72%

Language Filtering 170 6,195 13,563,152 72%
Rule-based Text Filtering 168 6,172 12,451,290 66%

TRANSCRIPT 168 6,172 12,451,290 66%

Table 5: Reduction of users, transcripts, and tokens (T) at each step of the corpus creation pipeline, from the initial
Wikidata and YouTube collection to the final TRANSCRIPT corpus.

relevance(w|t) = λ∗p(w|t)+(1−λ)∗p(w|t)
p(w)

(1)

Relevant Words per Topic. In Table 6 we pro-
vide the 30 most relevant terms for each topic of
the 15 topics obtained from our topic modelling
analysis.

B Representation Probing

B.1 Analyzed PLMs

For all experiments in the paper, we use the models
described in Table 7.

B.2 Probing Methods

Traditional probing classifiers. The input di-
mension is set to match the PLM’s output dimen-
sion, which varies based on the model size: 384 for
xsmall, 512 for small, 768 for the base, and 1024
for large models. The hidden dimension is set to
100, and the output dimension is either 2 or 5, de-
pending on the classification setup. Using PyTorch
default parameters, we train the probing classifiers
using a batch size 32 and a learning rate of 1×10−3

with the Adam optimiser (Kingma and Ba, 2015).
Early stopping is applied based on validation loss,
with a patience of 5 epochs. The learning rate is
halved if the validation loss does not improve for a
single epoch. We follow the same approach when
implementing MDL, using the same network archi-
tecture and training procedure as described for the
probing classifiers.

MLD probing. We use the online coding method
to estimate MDL. First, the dataset D = (xi, yi)

N
i=1

is divided into S time steps 1 = t0 < t1 < ... <

tS < N .16 Then, a traditional probing classifier
is trained on the samples (1, ..., ti) and used to
predict the output label for the next (ti+1, ..., ti+1).
This process continues until the entire dataset is
processed. MDL is calculated as the sum of the
cross-entropy loss of the classifier over the data for
each time step and the uniform encoding of the first
block:

MDL = Lonline(y1:n|x1:n) = t1 log2K

−
S−1∑

i=1

log2 pθi(yti+1:ti+1 |xti+1:ti+1)
(2)

C Encoding of Gender Identity
Information

C.1 Results
C.1.1 Pair-wise Frozen Representations
The pairwise classification results on frozen rep-
resentations across all models and labels are pre-
sented in Table 8.

C.1.2 Pair-wise Author-controlled Frozen
Representations

The pairwise classification results on author-
controlled frozen representations across all models
and labels are presented in Table 9.

C.1.3 Pair-wise Fine-tuning
The pairwise classification results on fine-tuned
models across all labels are presented in Table 10.

C.2 Error Analysis
The number and types of errors across all three
experimental settings are shown in Figure 10 for

16Following Voita and Titov (2020), we use time steps that
correspond to 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2%, 6.25%,
12.5%, 25%, 50%, and 100% of the dataset.
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Topic Label Relevant Terms

Food
eat, paint, squishy, cake, ice, taste, cream, cook, pizza, little, food, cheese, chocolate, egg, flavor, chicken, butter, banana,

bread, add, milk, sugar, good, cider, oil, chip, strawberry, sauce, sandwich, candy

Sports/Games
right, win, dude, play, man, ball, guy, run, wait, throw, team, good, kill, cut, time, let, game, come, point, hit,

mean, jump, try, beat, bad, shoot, catch, second, die, kid

Other
little, look, good, eye, nerf, house, let, light, like, close, brush, right, bit, need, use, sleep, actually, plant,

want, nice, perfect, ahead, room, face, color, asmr, ear, come, sure, open

Life Experiences
feel, thing, time, want, people, day, life, love, kind, like, lot, year, wear, friend, tell, hair, actually, work, good,

talk, start, ask, body, try, find, way, look, come, happen, little

Anime
anime, season, character, episode, series, slime, show, genre, fan, animation, watch, robot, fantasy, adaptation,

fight, franchise, ending, animate, japanese, world, new, villain, hype, girl, sonic, superhero,
scene, titan, foul, time

Business/Finance
fucking, money, company, fuck, dollar, pay, product, shit, sell, buy, industry, price, cash, sale, market, business,

corporation, cost, executive, spend, bullshit, service, worth, year, rich, economy, literally,
profit, nft, investment

Content Creation
video, description, link, click, sound, language, channel, word, use, deaf, sign, caption, book, app, hear, content, number,

read, different, learn, creator, hearing, sponsor, write, month, page, watch, website, voice, today

Government/Politics
people, country, government, law, state, work, year, system, community, business, vote, support, need, say, customer,

help, disabled, public, world, vaccine, political, military, bill, job, legal, war, report, power, claim, police

Health/Medicine
doctor, pain, baby, pregnancy, symptom, pregnant, medical, risk, birth, patient, period, blood, hospital, abortion,

diagnosis, medication, pill, chronic, disorder, diagnose, body, test, cause, illness, surgery, joint, health,
uterus, infection, cycle

Video games/Accessibility
game, player, accessibility, play, setting, controller, feature, developer, release, gamer, mode, option, accessible,

videogame, gameplay, console, disabled, support, gaming, button, offer, microtransaction,
level, loot, design, control, audio, menu, launch, ability

Entertainment
guy, video, song, music, love, thank, want, like, laugh, girl, say, watch, look, right, literally, funny, favorite, kid,

send, mean, draw, sorry, post, picture, good, bitch, cool, tweet, hope, channel

Travel/Tourism
look, nice, wee, guy, hotel, right, good, thank, kinda, food, stuff, eat, place, maybe, dunno, walk, area, come,

street, way, bit, beach, drink, shop, brother, bloody, local, try, big, man

Vlogs
let, sharer, awesome, ready, look, car, crazy, check, cool, right, share, grace, epic, gun, pond, balloon, super,

thing, box, come, vlog, comment, work, way, water, giant, big, button, wait, goodness

Movies/Books
movie, film, character, story, book, musical, world, audience, end, death, version, human, way, author,

history, scene, write, bad, original, die, thing, evil, plot, narrative,
culture, alien, kill, time, kind, novel

LGBTQIA+
woman, people, gender, man, gay, sex, person, tran, queer, lesbian, lot, relationship, trans, transgender,

conversation, say, identity, white, sexual, black, thing, feel, talk, pronoun, male,
binary, understand, identify, right, way

Table 6: Top 30 relevant terms for each of the corresponding 15 topics.

DeBERTa-large, which achieved the highest prob-
ing scores.
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Model Layers Attention
Heads Hidden size URL

https://huggingface.co

roberta-base 12 12 768 /FacebookAI/roberta-base
roberta-large 24 16 1024 /FacebookAI/roberta-large
deberta-base 12 12 768 /microsoft/deberta-base
deberta-large 24 16 1024 /microsoft/deberta-large

deberta-v3-xsmall 12 6 384 /microsoft/deberta-v3-xsmall
deberta-v3-small 6 12 768 /microsoft/deberta-v3-small
deberta-v3-base 12 12 768 /microsoft/deberta-v3-base
deberta-v3-large 24 16 1024 /microsoft/deberta-v3-large

Table 7: PLMs utilised in our experiments, with architecture details and Huggingface model repository links.

ROBERTA DEBERTA DEBERTA V3

BASE LARGE BASE LARGE XSMALL SMALL BASE LARGE

F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL

Tr
an

sw
om

an Trans woman - - - - - - - -
Trans man .90 171 .92 161 .92 171 .92 144 .88 212 .89 184 .90 178 .91 167
Cis woman .88 158 .89 143 .88 144 .89 130 .85 190 .87 164 .86 163 .88 152
Cis man .92 201 .93 190 .93 188 .94 172 .91 238 .92 203 .93 207 .93 197
Non-binary .86 222 .87 212 .87 211 .88 188 .83 276 .85 241 .84 241 .87 228

Tr
an

sm
an

Trans woman .90 171 .92 161 .92 171 .92 144 .88 212 .89 184 .90 178 .91 167
Trans man - - - - - - - -
Cis woman .84 199 .85 189 .85 194 .87 169 .77 272 .82 223 .81 228 .83 214
Cis man .89 256 .90 244 .90 253 .91 227 .82 309 .86 269 .87 281 .86 260
Non-binary .82 238 .86 224 .83 235 .87 216 .79 289 .82 254 .82 255 .84 231

C
is

w
om

an

Trans woman .88 158 .89 143 .88 144 .89 130 .85 190 .87 164 .86 163 .88 152
Trans man .84 199 .85 189 .85 194 .87 169 .77 272 .82 223 .81 228 .83 214
Cis woman - - - - - - - -
Cis man .81 308 .81 298 .80 297 .81 283 .74 356 .77 321 .77 323 .78 324
Non-binary .80 202 .81 198 .81 200 .83 180 .75 276 .79 234 .79 235 .79 226

C
is

m
an

Trans woman .92 201 .93 190 .93 188 .94 172 .91 238 .92 203 .93 207 .93 197
Trans man .89 256 .90 244 .90 253 .91 227 .82 309 .86 269 .87 281 .86 260
Cis woman .81 308 .81 298 .80 297 .81 283 .74 356 .77 321 .77 323 .78 324
Cis man - - - - - - - -
Non-binary .87 269 .88 260 .88 269 .88 251 .83 331 .86 300 .86 299 .87 285

N
on

-b
in

ar
y Trans woman .86 222 .87 212 .87 211 .88 188 .83 276 .85 241 .84 241 .87 228

Trans man .82 238 .86 224 .83 235 .87 216 .79 289 .82 254 .82 255 .84 231
Cis woman .80 202 .81 198 .81 200 .83 180 .75 276 .79 234 .79 235 .79 226
Cis man .87 269 .88 260 .88 269 .88 251 .83 331 .86 300 .86 299 .87 285
Non-binary - - - - - - - -

Table 8: Results from pairwise probing of gender identities using frozen representations from our set of PLMs.
We report F1 and MDL scores of the probing classifier and MDL probe. Rows marked with ‘-’ indicate unary
classifications and are thus omitted.

11629

https://huggingface.co
/FacebookAI/roberta-base
/FacebookAI/roberta-large
/microsoft/deberta-base
/microsoft/deberta-large
/microsoft/deberta-v3-xsmall
/microsoft/deberta-v3-small
/microsoft/deberta-v3-base
/microsoft/deberta-v3-large


ROBERTA DEBERTA DEBERTA V3

BASE LARGE BASE LARGE XSMALL SMALL BASE LARGE

F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL F1 MDL

Tr
an

sw
om

an Trans woman - - - - - - - -
Trans man .81 195 .83 189 .83 196 .85 166 .80 234 .81 209 .84 199 .84 193
Cis woman .87 221 .86 218 .87 218 .88 203 .83 249 .85 228 .85 231 .86 217
Cis man .90 170 .90 169 .91 166 .92 156 .87 213 .89 187 .90 187 .90 175
Non-binary .77 252 .77 235 .78 244 .79 215 .71 303 .75 273 .75 270 .77 263

Tr
an

sm
an

Trans woman .81 195 .83 189 .83 196 .85 166 .80 234 .81 209 .84 199 .84 193
Trans man - - - - - - - -
Cis woman .81 287 .81 286 .81 281 .82 256 .78 325 .79 310 .79 303 .81 289
Cis man .86 214 .87 212 .87 216 .88 192 .83 280 .84 250 .86 243 .86 237
Non-binary .80 260 .81 261 .80 263 .83 240 .76 301 .80 275 .79 280 .80 260

C
is

w
om

an

Trans woman .87 221 .86 218 .87 218 .88 203 .83 249 .85 228 .85 231 .86 217
Trans man .81 287 .81 286 .81 281 .82 256 .78 325 .79 310 .79 303 .81 289
Cis woman - - - - - - - -
Cis man .74 332 .76 321 .76 324 .77 309 .71 366 .74 334 .73 339 .77 336
Non-binary .80 296 .80 287 .82 293 .83 270 .78 338 .81 313 .80 315 .80 312

C
is

m
an

Trans woman .90 170 .90 169 .91 166 .92 156 .87 213 .89 187 .90 187 .90 175
Trans man .86 214 .87 212 .87 216 .88 192 .83 280 .84 250 .86 243 .86 237
Cis woman .74 332 .76 321 .76 324 .77 309 .71 366 .74 334 .73 339 .77 336
Cis man - - - - - - - -
Non-binary .86 234 .85 230 .88 225 .89 209 .82 288 .85 252 .85 261 .86 242

N
on

-b
in

ar
y Trans woman .77 252 .77 235 .78 244 .79 215 .71 303 .75 273 .75 270 .77 263

Trans man .80 260 .81 261 .80 263 .83 240 .76 301 .80 275 .79 280 .80 260
Cis woman .80 296 .80 287 .82 293 .83 270 .78 338 .81 313 .80 315 .80 312
Cis man .86 234 .85 230 .88 225 .89 209 .82 288 .85 252 .85 261 .86 242
Non-binary - - - - - - - -

Table 9: Results from pairwise probing of gender identities using topic-controlled frozen representations from
our set of PLMs. We report F1 and MDL scores of the probing classifier and MDL probe. Rows marked with ‘-’
indicate unary classifications and are thus omitted.

(a) Frozen representations (b) Author-controlled representations (c) Fine-tuned representations

Figure 10: Number of errors (y-axis) from the 5-way probing of representations from DeBERTa-large.
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ROBERTA DEBERTA DEBERTA V3
BASE LARGE BASE LARGE XSMALL SMALL BASE LARGE

F1 F1 F1 F1 F1 F1 F1 F1

Tr
an

sw
om

an Trans woman - - - - - - - -
Trans man .89 .91 .90 .89 .81 .89 .90 .88
Cis woman .84 .91 .86 .90 .85 .85 .84 .91
Cis man .91 .95 .91 .95 .92 .91 .92 .95
Non-binary .85 .91 .84 .91 .84 .82 .83 .90

Tr
an

sm
an Trans woman .89 .91 .90 .89 .81 .89 .90 .88

Trans man - - - - - - - -
Cis woman .85 .90 .86 .90 .81 .83 .84 .90
Cis man .90 .92 .91 .93 .90 .89 .90 .92
Non-binary .88 .89 .87 .91 .86 .87 .88 .90

C
is

w
om

an Trans woman .84 .91 .86 .90 .85 .85 .84 .91
Trans man .85 .90 .86 .90 .81 .83 .84 .90
Cis woman - - - - - - - -
Cis man .79 .84 .77 .83 .76 .76 .77 .85
Non-binary .79 .86 .80 .87 .77 .78 .78 .86

C
is

m
an

Trans woman .91 .95 .91 .95 .92 .91 .92 .95
Trans man .90 .92 .91 .93 .90 .89 .90 .92
Cis woman .79 .84 .77 .83 .76 .76 .77 .85
Cis man - - - - - - - -
Non-binary .87 .91 .86 .92 .86 .87 .88 .92

N
on

-b
in

ar
y Trans woman .85 .91 .84 .91 .84 .82 .83 .90

Trans man .88 .89 .87 .91 .86 .87 .88 .90
Cis woman .79 .86 .80 .87 .77 .78 .78 .86
Cis man .87 .91 .86 .92 .86 .87 .88 .92
Non-binary - - - - - - - -

Table 10: F1 results across our set of fine-tuned PLMs on pairwise prediction of gender identities in TRANSPROB.
We include redundant rows of inverted class pairings for easier intra-class comparisons. Rows marked with ‘-’
indicate unary classifications and are thus omitted.
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