
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 11572–11583
November 12-16, 2024 ©2024 Association for Computational Linguistics

A Decoding Algorithm for Length-Control Summarization
Based on Directed Acyclic Transformers

Chenyang Huang*1, Hao Zhou†2, Cameron Jen1, Kangjie Zheng2,
Osmar R. Zaïane‡1, Lili Mou‡1

1Dept. of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta
2Institute for AI Industry Research (AIR), Tsinghua University

chenyangh@ualberta.ca zhouhao@air.tsinghua.edu.cn cjen@ualberta.ca

kangjie.zheng@gmail.com zaiane@ualberta.ca doublepower.mou@gmail.com

Abstract

Length-control summarization aims to con-
dense long texts into a short one within a cer-
tain length limit. Previous approaches often
use autoregressive (AR) models and treat the
length requirement as a soft constraint, which
may not always be satisfied. In this study,
we propose a novel length-control decoding
algorithm based on the Directed Acyclic Trans-
former (DAT). Our approach allows for multi-
ple plausible sequence fragments and predicts a
path to connect them. In addition, we propose
a Sequence Maximum a Posteriori (SeqMAP)
decoding algorithm that marginalizes different
possible paths and finds the most probable sum-
mary satisfying the length budget. Our algo-
rithm is based on beam search, which further
facilitates a reranker for performance improve-
ment. Experimental results on the Gigaword
and DUC2004 datasets demonstrate our state-
of-the-art performance for length-control sum-
marization.1

1 Introduction

Summarization systems aim to condense lengthy
text into a shorter form, while preserving key in-
formation (Nenkova et al., 2011; Rush et al., 2015;
Schumann et al., 2020; Tsvigun et al., 2022). Re-
cent studies underscore the importance of length-
control summarization (Liu et al., 2018; Takase and
Okazaki, 2019; Liu et al., 2022a). For example, the
Google search engine limits webpage title displays
to 63 characters, tweets have a 280-character cap,
and scientific paper abstracts are typically restricted
to a few hundred words.

Most previous text summarization methods rely
on autoregressive (AR) models (Sutskever et al.,

*Work partially done during an internship at AIR
†Corresponding author
‡Canada CIFAR AI Chair
1Our code, output, and data are available at https://

github.com/MANGA-UOFA/DAT-LenC

2014; Vaswani et al., 2017), which generate a sum-
mary word by word. For length control, AR mod-
els typically treat the summary length as an addi-
tional signal during both training and inference (Liu
et al., 2018; Takase and Okazaki, 2019). However,
such methods do not strictly control the genera-
tion length, and thus fall into the soft-constraint
category.

Recently, non-autoregressive (NAR) models (Gu
et al., 2018; Lee et al., 2018) have been applied
to text summarization (Su et al., 2021; Liu et al.,
2022a). Unlike its autoregressive counterpart, an
NAR model predicts target words independently so
that the length-control text generation problem can
be decomposed into shared sub-problems, facilitat-
ing dynamic programming for efficient computa-
tion (Liu et al., 2022a,b). Such methods fall into
the hard-constraint category.

Specifically, Liu et al. (2022a,b) apply the Con-
nectionist Temporal Classification (CTC) model
(Graves et al., 2006), which allows placeholders
and repetitions during generation but removes them
in a post hoc manner. However, these CTC-based
methods tend to produce word-level extractive sum-
maries due to their restricted modeling capacity. As
a result, the generated summaries contain very few
new words and mostly preserve the original word
order (Chuang et al., 2021; Shao and Feng, 2022).

In this work, our first insight is to apply the Di-
rected Acyclic Transformer (DAT, Huang et al.,
2022b) for length-control summarization. DAT,
originally introduced for machine translation, is a
powerful NAR approach that expands its canvas
to allow multiple plausible text fragments and pre-
dicts links to connect them (the links along with
the predicted words are called a path). In this way,
DAT is more flexible in predicting words and de-
termining their order, resulting in better generation
quality than CTC (Huang et al., 2022b, 2023b).

For length-control decoding based on DAT,
we propose a Sequence Maximum a Posteriori

11572

https://github.com/MANGA-UOFA/DAT-LenC
https://github.com/MANGA-UOFA/DAT-LenC

(SeqMAP) decoding objective, which marginalizes
possible linked steps and seeks the most proba-
ble sequence satisfying the length budget. Our
SeqMAP is different from the existing MAP de-
coding objective (Shao et al., 2022) that seeks
the most probable path (links and words), which
we refer to as PathMAP. Since DAT training con-
siders the marginalization of all possible links
for a groundtruth sequence, our SeqMAP aligns
with the training objective better (as it also per-
forms marginalization), and is expected to surpass
PathMAP in length-control summarization.

Compared with PathMAP, our SeqMAP is a
more challenging decoding objective. The tradi-
tional PathMAP performs argmax for both links
and words, which can be reorganized according
to prediction time steps and accomplished by dy-
namic programming in one pass. On the contrary,
our SeqMAP performs argmax for word selec-
tion after summing over all possible linked steps,
but max and sum operations cannot be directly
swapped to decompose the overall problem by time
steps, breaking down the dynamic programming
algorithm.

To this end, we propose an approximate algo-
rithm to address SeqMAP, where we nevertheless
decompose the objective by time steps. For each
step, we make a greedy selection for the max op-
eration, where we only consider a beam of high-
probability sequences for the sum operation. Fur-
ther, we may apply a reranker by a pretrained BERT
model (Zhuang et al., 2021) to select the best se-
quence in the beam for performance improvement.

We perform extensive experiments using the Gi-
gaword (Graff et al., 2003) and DUC2004 (Bom-
masani and Cardie, 2020) datasets, following pre-
vious work in non-autoregressive length-control
summarization (Liu et al., 2022a). Results show
that both SeqMAP and PathMAP outperform ex-
isting models based on CTC, which justifies our
choice of the DAT model. Further, our approximate
algorithm for SeqMAP outperforms PathMAP even
without the reranker, suggesting the superiority
of the SeqMAP objective. Our reranker further
improves the summarization quality consistently,
demonstrating its effectiveness.

2 Methodology

In this section, we first present the Directed Acyclic
Transformer (DAT) and the existing PathMAP de-
coding method (Subsection 2.1). Then, we intro-

duce our SeqMAP decoding objective, and develop
a beam search-based dynamic programming algo-
rithm to approach it (Subsection 2.2). Finally, we
design a reranking process to select the best beam
candidate (Subsection 2.3).

2.1 Length Control with DAT
DAT Model. Our first contribution is the adap-
tation of the Directed Acyclic Transformer (DAT,
Huang et al., 2022b) to the length-control summa-
rization task. DAT is a non-autoregressive (NAR)
model, capable of generating multiple plausible
output segments, which are then selected and con-
nected via links to form the final output. DAT pro-
vides more flexibility in word selection and order-
ing, compared with the existing NAR summariza-
tion system (Liu et al., 2022a), which is based on
the Connectionist Temporal Classification (CTC)
model (Graves et al., 2006).

Consider the source text x = (x1, · · · , xTx)
and the corresponding groundtruth summary y =
(y1, · · · , yTy), where Tx and Ty denote their
lengths. To allow multiple plausible output seg-
ments, DAT expands its generation canvas by hav-
ing S prediction steps, typically S ≥ Ty.

At each step s ∈ {1, · · · , S}, DAT makes a word
prediction p

(s)
word(·) and a link prediction p

(s)
link(·).

In particular, the word prediction is given by

p
(s)
word(·|x) = softmax(Wwordhs) (1)

where Wword ∈ R|V|×d is a learnable matrix and
hs ∈ Rd is the decoder’s hidden state at step s,
with d being the dimension and |V| representing
the vocabulary size.

Link prediction forecasts the step of the subse-
quent word that follows the sth step:

p
(s)
link(·|x) = softmax([k⊤

s qs+1; · · · ;k⊤
s qS]) (2)

where ks = Wkhs and qs = Wqhs are trans-
formations of the hidden state, both Wk and Wq

being learnable matrices in Rd×d. The [;] operation
concatenates scalars into a column vector.

Given a reference summary y of length Ty from
the training set, the DAT model predicts links to
connect Ty-many steps among a total of S gener-
ation steps. We denote the linked steps by a =
(a1, · · · , aTy), where 1 = a1 < · · · < aTy = S.
Following Huang et al. (2022b), we refer to the
linked steps and corresponding words as a path.2

2In practice, two special tokens, ⟨bos⟩ and ⟨eos⟩, are added
at the beginning and end of y, respectively. Therefore, every
path has ⟨bos⟩ at step 1 and ⟨eos⟩ at step S.

11573

The probability of a path—having the linked
steps a and yielding the target summary y—is
given by

p(y,a|x) =
Ty∏

t=2

p
(at−1)
link (at)

Ty∏

t=1

p
(at)
word(yt) (3)

where p
(at−1)
link (at) is the probability of linking the

at−1th generation step to the atth, and p
(at)
word(yt) is

the probability of predicting the word yt at the atth
step. Conditioning on x is omitted in pword and plink
for brevity. Further denoting them by lat−1,at and
wat,yt , we rewrite Eqn. (3) as

p(y,a|x) =
Ty∏

t=2

lat−1,at

Ty∏

t=1

wat,yt (4)

= w1,y1

Ty∏

t=2

lat−1,atwat,yt (5)

For DAT, obtaining the probability of generating
a target summary y requires marginalizing over all
possible sequences of linked steps, given by

p(y|x) =
∑

a∈ΓTy,S

p(y,a|x) (6)

=
∑

a∈ΓTy,S

w1,y1

Ty∏

t=2

lat−1,atwat,yt (7)

where ΓTy,S = {a = (a1, · · · , aTy)|1 = a1 <
· · · < aTy = S} is the set of all possible Ty-many
linked steps among S-many generation steps.

Although direct enumeration over ΓTy,S is in-
tractable, a dynamic programming algorithm can
efficiently compute the marginalization for training
(Huang et al., 2022b).

PathMAP Decoding. Recently, Shao et al.
(2022) propose a DAT-based decoding algorithm
(referred to as PathMAP) that finds the most proba-
ble path of words and linked steps, given a specific
length.

Formally, we consider a length-T path of linked
steps a ∈ ΓT,s and predicted words va =
(va1 , · · · , vaT), where vat ∈ V is the predicted
word at the atth step and s ∈ {T, · · · , S} is any
valid prediction step allowing T words. The most
probable length-T path is obtained by maximizing
the joint probability of the linked steps and word

predictions at any valid prediction step, given by

max
s∈{T,··· ,S}

max
a∈ΓT,s

va∈VT

w1,v1

T∏

t=2

lat−1,atwat,vat
(8)

= max
s∈{T,··· ,S}

max
a∈ΓT,s

w1,v∗1

T∏

t=2

lat−1,atwat,v∗at
(9)

= max
s∈{T,··· ,S}

ws,v∗s max
s′∈{T−1,··· ,s−1}

{

ls′,S max
a∈ΓT−1,s′

(
w1,v∗1

T−1∏

t=2

lat−1,at wat,v∗at

)}

(10)

In Eqn. (9), we choose word predictions greedily
because the max operation of a word is indepen-
dent of the max operations over other words and
linked steps. Further, Eqn. (9) can be decomposed
into Eqn. (10) in a recursive fashion, allowing for
efficient dynamic programming.

2.2 Our SeqMAP Decoding
A Limitation of PathMAP. As seen, the PathMAP
objective described in Eqn. (8) performs max for
both links and words, which is different from
DAT’s marginalization training objective. This is
not ideal, as a discrepancy between training and
inference often leads to performance degradation
(Bengio et al., 2015; Zhang et al., 2019).

SeqMAP Objective. To this end, we propose a
novel Sequence Maximum a Posteriori (SeqMAP)
objective that marginalizes all possible linked steps
to find the most probable sequence of length T .
This is given by

y∗= argmax
y∈VT

∑

s∈{T,··· ,S}

∑

a∈ΓT,s

w1,y1

T∏

t=2

lat−1,atwat,yt

(11)
However, solving Eqn. (11) is challenging. This

is because the argmax and summation cannot be
swapped to decompose the overall objective based
on the sentence length, making it infeasible to de-
sign a SeqMAP-like dynamic programming algo-
rithm.

Decoding Algorithm for SeqMAP. We pro-
pose an approximate algorithm to maximize our
SeqMAP objective. The general idea is to per-
form dynamic programming (DP) by re-organizing
argmax and summation operations based on the
output length anyway, and further improve the effi-
ciency of the summation with beam search.

11574

Let At,s be the (approximated) top-K length-t
sequences that are generated at or before DAT’s
sth step, denoted by

At,s = {b(k)}Kk=1 (12)

In addition, we need to store the probability of
generating b(k) ending at step s′; we denote it
by us′(b

(k)), for t ≤ s′ ≤ s. This is because a
sequence b(k) can be generated at different steps
before the sth, and tracking their probabilities is
helpful for marginalization.

The initialization of At,s fills in the DP table for
t = 0, where each A0,s (for s > 0) contains a spe-
cial ⟨bos⟩ token, indicating the beginning of a sen-
tence. Additionally, the score for each us(⟨bos⟩) is
initialized to 1.

The DP recursion iteratively computes At,s for
every t > 0 and every s such that t ≤ s ≤ S. We
observe that each At,s can be obtained by 1) ex-
panding the length-(t− 1) sequences in At−1,s−1

with words from the sth step, which results in se-
quences ending at step s, and 2) further merging
them with the length-t sequences in At,s−1, which
approximates the best length-t sequences ending
before step s. Therefore, we design a recursive step
with an EXPAND operation and a MERGE opera-
tion.

EXPAND. Let Bt,s be the approximated top-K
length-t sequences that are generated exactly at the
sth step. Intuitively, we can approximate Bt,s by
expanding sequences in At−1,s−1 with the word
predictions at step s, given by

Bt,s = top-K
{
b⊕ v

∣∣∣b ∈ At−1,s−1, v ∈ V
}

(13)

When expanding a partial sequence with v ∈ V , our
implementation only considers the top-V words
based on the predicted word probability in Eqn. (1)
to improve efficiency.

For each expanded sequence in Bt,s, the corre-
sponding scores are given by

us(b⊕ v) = ws,v

s−1∑

s′=t−1

us′(b) · ls′,s (14)

Here, we marginalize out different previous linked
steps that may generate b, which follows the
spirit of the marginalization in our SeqMAP ob-
jective (11).

MERGE. By definition, At,s approximates the
best length-t sequences, which may be generated

Source Text

Candidate 1 Candidate 2 Candidate 3

Ranking

Embedding

RoBERTa

Multi-Head Attention

Multi-Head Attention

Add & Norm

Add & Norm

Add & Norm

Feed Forward Network

Average Pooling & Softmax

RoBERTa
 RoBERTa
 RoBERTa

Figure 1: The neural architecture of our reranker. This
example assumes a beam size of K = 3.

at the sth step (approximated by Bt,s) or before the
sth step (approximated by At,s−1). Therefore, we
can obtain At,s by merging Bt,s and At,s−1:

At,s = top-K
{
At,s−1 ∪ Bt,s

}
(15)

where the top-K operation ranks the sequences by
their total scores at and before the sth step, given by∑s

s′=t us′(b). This ensures that our approximation
algorithm considers the marginalization over s in
Eqn. (11).

Appendix A provides the pseudocode of our de-
coding algorithm.

2.3 Reranker
Our SeqMAP beam search finds several high-
probability summary candidates, providing an op-
portunity to further improve the generation qual-
ity using a reranker (Och et al., 2004; Lee et al.,
2021; Ravaut et al., 2022). In particular, we train
the reranker by predicting which beam candidate
has the most overlapped words compared with the
groundtruth summary.

Neural Architecture. Figure 1 depicts the over-
all architecture of our reranker.

First, we use the pretrained RoBERTa model
(Zhuang et al., 2021) to represent the source text x
and each of the summary candidates b(k), for 1 ≤
k ≤ K, individually.

Then, we build a one-layer Transformer block to
predict the best summary for x. We start by propos-
ing a novel approach of rank embeddings (initial-
ized randomly and trained by backpropagation) to
capture the rank of a candidate given by the DAT
model. The rank embedding has the same dimen-
sion as RoBERTa, and the kth rank’s embedding
is added to the RoBERTa representation of every

11575

word in the kth candidate. After that, self-attention
is performed among the words in different can-
didates, and cross-attention is performed to fetch
information from the source text. Finally, we pool
the representations of all the time steps (including
all the words in different candidates) and apply a
K-way softmax to predict the best candidate.

Training Objective. The target of the classifica-
tion is the beam candidate b(k) having the highest
number of overlapped words compared with the
groundtruth summary y of a training sample. We
use the standard cross-entropy loss for training,
and apply label smoothing (Szegedy et al., 2016)
to improve generalization.

3 Experiments

3.1 Setup

Our experimental setups generally follow the previ-
ous non-autoregressive length-control studies (Liu
et al., 2022a,b).

Datasets. We evaluated the proposed method on
the Gigaword headline generation dataset (Graff
et al., 2003) and the DUC2004 dataset (Bommasani
and Cardie, 2020). The Gigaword dataset pairs
news articles with their headlines; it contains 3.0M
training pairs, 189K validation pairs, and 1951 test
pairs. The DUC2004 dataset contains 500 samples,
and is only used as a test set. The performance in
the DUC2024 experiment is obtained by the model
trained on Gigaword.

Metrics. We used ROUGE scores (Lin, 2004)
as the main metric for the quality evaluation of
generated summaries. Specifically, we reported
ROUGE-n, for n ∈ {1, 2}, to measure the n-gram
overlaps between the generated summary and the
ground truth, and reported ROUGE-L to measure
the length of the longest common subsequence.

In addition, we used a large language model
(LLM) as a surrogate for human evaluation. We
performed pairwise comparisons between the gen-
erations of our SeqMAP and baseline models. We
reported the win, loss, and tie percentages.

Implementation Details. For the neural ar-
chitecture of our DAT models, we used the
Transformer-base (Vaswani et al., 2017) as the
backbone. To train the models, we used a batch size
of 64K tokens, with a maximum of 100K updates.
For regularization, we set the dropout rate to 0.1
and the label smoothing factor to 0.1. For decoding,
our SeqMAP had a beam size of K = 20 and a vo-
cabulary exploration of V = 5, as mentioned after

Eqn. (13). More details can be found in our GitHub
repository (Footnote 1), where the configurations
of training and inference are included.

3.2 Results and Analyses
Main Results on Gigaword. Table 1 presents our
main results on the Gigaword dataset. For thorough
comparison, we evaluate the approaches in three
scenarios: setting the summary lengths to 20%,
25%, and 30% of the source text length. For non-
strict length-control methods, the output will be
truncated if the length exceeds the limit.

We first include two baseline methods that do
not have length control: 1) the standard autore-
gressive Transformer (AT, Vaswani et al., 2017),
and 2) BERT-CRF (Su et al., 2021), which is a
non-autoregressive method that uses BERT as the
encoder (Devlin et al., 2019) and applies a condi-
tional random field (CRF, Lafferty et al., 2001) for
decoding. As seen in Table 1, a large portion of
the generated sentences from AT and BERT-CRF
require truncation to meet the length requirement
(Rows 1 and 3), resulting in incomplete summaries.
Also, their ROUGE scores are low in general.

We further consider a soft length-control method:
AT-LenInfo (Liu et al., 2018), which integrates a
length embedding to softly guide the output length
of the autoregressive Transformer. As we can see,
AT-LenInfo largely reduces the truncation ratio,
while achieving similar ROUGE scores to AT. How-
ever, AT-LenInfo still has 1.03–4.66% of sentences
truncated, suggesting that such a soft-constraint
method is inadequate for length control.

On the other hand, the CTC (Liu et al., 2022a)
and our DAT methods perform exact length control
by dynamic programming; thus, no truncation is re-
quired (Rows 4–7). Among these models, our DAT
(with any inference method) consistently outper-
forms CTC, verifying that DAT is a more powerful
non-autoregressive model.

We also observe that our SeqMAP method, with
or without the reranker, is better than PathMAP,
with only one exception (the R-2 score in the 25%
setting); our reranker further improves the total
ROUGE scores (R-Sum) by 0.49–1.32 points. The
results verify the superiority of our SeqMAP ob-
jective and the effectiveness of our decoding algo-
rithms.

Main Results on DUC2004. We report the per-
formance on the DUC2004 dataset in Table 2. As
seen, the trends mirror those observed on the Gi-
gaword dataset. In particular, our SeqMAP con-

11576

Ratio # Model %Truncate R-1 R-2 R-L R-Sum Length

20%

1 AT w/ Truncate 60.28% 33.16 15.02 30.91 79.09 6.1
2 AT-LenInfo w/ Truncate 1.03% 33.53 14.32 31.21 79.06 5.7
3 BERT-CRF w/ Truncate 39.98% 31.94 13.67 30.09 75.70 5.8
4 CTC Length Control 0.00% 34.14 13.61 31.96 79.71 6.9
5 DAT PathMAP 0.00% 35.19 16.95 32.84 84.98 6.9
6 DAT SeqMAP (Ours) 0.00% 36.34 17.29 33.81 87.44 6.9
7 w/o Reranking 0.00% 35.63 17.24 33.28 86.15 6.8

25%

1 AT w/ Truncate 33.52% 34.52 15.78 31.90 82.20 6.8
2 AT-LenInfo w/ Truncate 1.54% 35.12 16.19 32.60 83.91 7.3
3 BERT-CRF w/ Truncate 18.93% 32.85 14.23 30.86 77.94 6.2
4 CTC Length Control 0.00% 34.51 13.89 32.08 80.48 8.5
5 DAT PathMAP 0.00% 36.11 17.43 33.41 86.95 8.5
6 DAT SeqMAP (Ours) 0.00% 36.74 17.22 33.87 87.83 8.4
7 w/o Reranker 0.00% 36.30 17.40 33.64 87.34 8.4

30%

1 AT w/ Truncate 20.04% 35.07 16.00 32.35 83.42 7.1
2 AT-LenInfo w/ Truncate 4.66% 35.29 16.15 32.44 83.88 8.8
3 BERT-CRF w/ Truncate 9.65% 33.08 14.44 31.08 78.60 6.4
4 CTC Length Control 0.00% 34.04 13.63 31.49 79.16 10.0
5 DAT PathMAP 0.00% 35.57 16.65 32.88 85.10 9.9
6 DAT SeqMAP (Ours) 0.00% 36.24 16.74 33.34 86.32 9.9
7 w/o Reranker 0.00% 35.80 16.76 33.04 85.60 9.9

Table 1: Results on the Gigaword dataset, where we set the length constraint to be 20%, 25%, and 30% of the
source length. %Truncate is the percentage of sentences that require truncation to meet the length requirement.
R-1, R-2, R-L, and R-Sum denote the ROUGE-1, ROUGE-2, ROUGE-L, and the sum of the three ROUGE scores,
respectively.

R-1 R-2 R-L R-Sum

AT w/ Truncate 27.03 8.92 24.20 60.15
AT-LenInfo w/ Truncate 27.88 9.28 25.58 62.74
BERT-CRF w/ Truncate 23.69 7.16 21.64 52.49
CTC Length Control 28.67 8.29 26.34 63.30
DAT PathMAP 28.77 9.98 26.48 65.23
DAT SeqMAP (Ours) 30.11 10.29 27.22 67.62

w/o Reranker 29.17 10.27 26.66 66.10

Table 2: Results on the DUC 2004 dataset. The sum-
mary length is set to 20% of the source length.

sistently outperforms other baselines in all metrics.
Since the DUC2004 results are obtained from mod-
els trained on Gigaword, we conclude that our ap-
proach is transferable to different testing scenarios.

LLM Evaluation. In addition to ROUGE scores,
we prompt a large language model (LLM), in par-
ticular, gpt-4-0125-preview, serving as a surro-
gate for human evaluation. Concretely, we perform
pairwise comparison between the outputs of our
SeqMAP and baseline models on the Gigaword
test set. For each comparison, we query an LLM
four times by enumerating the order and IDs of the
candidates for better robustness; the exact prompt
is presented in Table 3.

Given the text: [Source]
Consider two summaries of the text:
Summary [ID1]: [Summary1]
Summary [ID2]: [Summary2]
A good summary is a shorter piece of text that has
the essence of the original and adheres to coher-
ence, faithfulness, relevance, and overall quality as
defined above. Which summary is better?
Answer:

Table 3: Our prompt template for LLM-based pairwise
evaluation. Here, “Source” is the text to be summa-
rized. The choices of IDs are “1” and “2”; “Summary1”
and “Summary2” are substituted with model-generated
text. Since LLM is not robust to candidate ID and or-
der (Zheng et al., 2023; Shen et al., 2023), we enumerate
different combinations for a given case, resulting in four
LLM queries.

Table 4 shows the results of LLM evaluation.
We first observe that our SeqMAP dominates AT,
AT-LenInfo, and CTC baselines with a winning
rate of 68.80–72.40%. Further, our SeqMAP has
an 11.73% higher winning rate than PathMAP with
the same DAT backbone. Overall, our pairwise
LLM evaluation is consistent with the comparison
based on ROUGE scores (Tables 1 and 2), fur-

11577

Pairwise Comparison Win Loss Tie

Ours vs. AT w/ Trunc. 68.70% 0% 31.30%
Ours vs. AT-LenInfo w/ Trunc. 69.45% 0% 30.55%
Ours vs. CTC Length Control 72.40% 20.00% 7.60%
Ours vs. DAT PathMAP 43.77% 32.04% 24.18%

Table 4: LLM pairwise comparison between DAT Se-
qMAP and baseline methods. For each sample, we
determine the outcome of “win,” “loss,” or “tie” based
on the votes of the four LLM queries (by varying candi-
date order and ID tokens). We report the ratios of wins,
losses, and ties of our model.

Model Word Novelty Reordering Degree

1 CTC 18.41% 8.69%
2 DAT PathMAP 21.80% 9.09%
3 DAT SeqMAP (Ours) 22.48% 9.01%

4 Human Reference 50.51% 8.05%

Table 5: The word novelty and reordering ratio of CTC,
DAT PathMAP, DAT SeqMAP, and the human reference.
The results are based on the Gigaword test set.

ther verifying the effectiveness of our SeqMAP
approach.

Generation Novelty. In this work, we hypothe-
size that the Directed Acyclic Transformer (DAT,
Huang et al., 2022b) is more flexible in predicting
words and determining their order, compared with
the Connectionist Temporal Classification (CTC)
model (Graves et al., 2006), which is used in
Liu et al. (2022a) for length-control summariza-
tion. To verify this hypothesis, we adopt two met-
rics, namely word novelty and the reordering de-
gree, to compare the generated summaries by DAT
and CTC.

In particular, word novelty measures the percent-
age of the summary’s words that are not in the
source text, indicating the method’s flexibility in
word choice. The reordering degree assesses the
flexibility in generation order. It is computed by the
following steps: 1) Align the words in the summary
to the source text,3 2) Enumerate every pair of word
positions (i, j) such that i < j in the source, and
3) Count the fraction of the order being reversed in
the output.

Table 5 presents the results on the Gigaword
dataset. Interestingly, humans tend to use novel
words but preserve the word order. The DAT model
has the highest reordering degree, which, although
not agreeing with humans, verifies our hypothesis

3We use FastAlign (Dyer et al., 2013), a tool for word
alignment, to obtain the target-to-source alignments.

Model Sentences/s Words/s

1 AT w/ Trunc. 10.59 90.99
2 CTC Length Control 25.61 219.71
3 DAT PathMAP 61.30 520.64
4 DAT SeqMAP w/ Reranker 10.97 104.08
5 DAT SeqMAP w/o Reranker 20.75 177.00

Table 6: Inference speed of different methods.

that DAT is more flexible than CTC in word order-
ing. In addition, DAT also yields more novel words
than CTC.

Inference Speed. Non-autoregressive (NAR)
models are originally designed to improve infer-
ence efficiency for text generation (Gu et al., 2018;
Gu and Kong, 2021; Huang et al., 2022a). In this
work, we compare the inference speed following
the convention of NAR research, where the batch
size is set to 1, mimicking real-world scenarios
where user queries come one after another.

As seen from Table 6, NAR-based methods, ex-
cept DAT SeqMAP with the reranker (Row 4), are
faster than the autoregressive baseline (Rows 2, 3,
and 5 versus Row 1). It is understandable that our
DAT SeqMAP with the reranker is not as efficient
as other NAR models because it requires a dynamic
programming-based beam search and an external
neural module for reranking. Nevertheless, our
method is still faster than the autoregressive model,
showing its practical value in application.

It is worth mentioning that our SeqMAP im-
plementation has not been optimized for paral-
lelism yet, as opposed to the PathMAP implemen-
tation (Shao et al., 2022). Therefore, there is room
to further improve the efficiency of our SeqMAP.

Decoding Hyperparameters. Our SeqMAP de-
coding method has two hyperparameters control-
ling its search scope:

• K: the beam size for the candidate set As,t as
in Eqn. (12), and

• V : the number of words explored at each step,
as mentioned after Eqn. (13).

We analyzed their impact by varying K (with fixed
V = 5) and varying V (with fixed K = 20). The
results are listed in Tables 7 and 8, respectively.

First, we observe that SeqMAP’s performance
generally improves as K or V increases, with or
without the reranker. This shows that our approx-
imation algorithm for SeqMAP benefits from in-
creasing its search scope.

When K or V is increased beyond a certain
value (K = 20 or V = 5), the performance stops
increasing, or even slightly decreases in some met-

11578

Model K R-1 R-2 R-L R-Sum

PathMAP - 36.11 17.43 33.41 86.95

Se
qM

A
P

w/o Reranker

10 36.27 17.3 33.58 87.15
15 36.27 17.34 33.59 87.20
20 36.30 17.40 33.64 87.34
25 36.27 17.36 33.6 87.23

w/ Reranker

10 36.61 17.27 33.8 87.68
15 36.65 17.41 33.80 87.86
20 36.74 17.22 33.87 87.83
25 36.74 17.32 33.87 87.93

Table 7: Reranker performance of different K. Here,
V = 5, and the length ratio is 0.25.

V R-1 R-2 R-L R-Sum

PathMAP - 36.11 17.43 33.41 86.95

Se
qM

A
P

w/o Reranker

1 36.23 17.37 33.59 87.19
3 36.24 17.34 33.58 87.16
5 36.30 17.40 33.64 87.34
7 36.24 17.34 33.59 87.17
9 36.24 17.34 33.59 87.17

w/ Reranker

1 36.45 16.92 33.62 86.99
3 36.73 17.16 33.84 87.73
5 36.74 17.22 33.87 87.83
7 36.74 17.20 33.85 87.79
9 36.74 17.18 33.85 87.77

Table 8: Reranker performance of different K. Here,
V = 20, and the length ratio is 0.25.

rics such as R-2. This is consistent with autoregres-
sive beam search, where a moderately sized beam
works the best (Stahlberg and Byrne, 2019; Meister
et al., 2020; Wen et al., 2024).

Analysis of the Reranker. As mentioned in Sec-
tion 2.3, our neural reranker for summarization con-
sists of several key components: 1) Label smooth-
ing, which is used for regularization (Szegedy et al.,
2016), 2) Rank Embedding, which captures the rank
of a candidate given by DAT, and 3) Pretraining,
where we use RoBERTa-base (Zhuang et al., 2021)
for sentence representation. We perform an abla-
tion study on the impact of the three components,
and present the results in Table 9.

As seen, removing label smoothing results in a
0.27 decrease in R-Sum (Rows 1 and 2). This is
because the difference between beam candidates
can be minimal, and lowering the confidence of the
reranker in training leads to better generalization.

When removing the rank embedding, we observe
a 0.6 decrease in R-SUM (Rows 1 and 3). This
confirms our intuition that incorporating the DAT
model’s ranking as prior knowledge is beneficial.

LS RankEmb Pretrain R-1 R-2 R-L R-Sum

1 ! ! ! 36.61 17.27 33.80 87.68
2 ! ! 36.50 17.18 33.73 87.41
3 ! ! 36.23 17.28 33.57 87.08
4 ! ! 36.38 17.34 33.68 87.41

Table 9: Ablation study on the effect of label smooth-
ing, positional embedding, and pretraining. To save the
training time, we set K to 10 and V to 5.

Additionally, we observe that having Rank Embed-
ding leads to faster training convergence.

Without using the pretrained RoBERTa model
(i.e., randomly initializing the weights), R-SUM
decreases by 0.27. This drop is anticipated since
the pretrained model enhances text understanding.

4 Related Work

Non-autoregressive (NAR) models predict words
independently, and are initially developed to in-
crease the inference speed of neural machine trans-
lation (Gu et al., 2018; Lee et al., 2018; Qian
et al., 2021; Gu and Kong, 2021; Huang et al.,
2023a). Recently, NAR models have been adapted
for length-control summarization in our previous
work (Liu et al., 2022a,b), where we find that
NAR’s independent word predictions allow the
length-control tasks to be divided into several in-
dependent sub-tasks, resulting in an efficient ex-
ploration of the NAR output space. Therefore, we
have developed dynamic programming algorithms
based on the Connectionist Temporal Classification
(CTC) model (Graves et al., 2006).

Our work introduces a novel decoding algorithm
that leverages the Directed Acyclic Transformer
(DAT, Huang et al., 2022b). Unlike CTC, which
preserves the order of the source sequence (Chuang
et al., 2021; Shao and Feng, 2022), DAT offers
greater flexibility in word selection and generation
order. While recognizing the value of existing DAT-
based decoding methods (Shao et al., 2022) for
managing length, we identify their limitations and
propose a new SeqMAP approach.

Our proposed reranker is inspired by the rerank-
ing methods in machine translation (Och et al.,
2004; Lee et al., 2021) and summarization (Ravaut
et al., 2022), where a list of n-best sequences are
presented to an external model for scoring.

5 Conclusion

This work proposes a novel SeqMAP decoding
method based on the Directed Acyclic Transformer

11579

(DAT) for length-control summarization. Our
SeqMAP is a beam search-based dynamic program-
ming algorithm, which bridges the gap between the
training and inference of DAT. Experimental results
on the Gigaword and DUC2004 datasets demon-
strate the effectiveness of our SeqMAP approach.

6 Limitations

One potential limitation of this work is that the pro-
posed algorithm for SeqMAP does not guarantee
to find the best sequence in DAT’s decoding space.
As discussed, an exact algorithm may not exist due
to the computational complexity of the Maximum
A Posteriori (MAP) problems (Koller and Fried-
man, 2009; de Campos, 2011). Nevertheless, we
propose an approximate algorithm for SeqMAP
and empirically show that it is consistently better
than PathMAP.

We also notice a slight performance decrease
with a large scope of our beam search (controlled
by K and V mentioned in Section 2.2). This phe-
nomenon, previously observed in autoregressive
text generation models (Stahlberg and Byrne, 2019;
Meister et al., 2020), might stem from the label bias
issue (Lafferty et al., 2001; Huang et al., 2021). We
leave the investigation of this phenomenon as fu-
ture work.

Acknowledgments

We would like to thank all reviewers and chairs for
their comments. This research was supported in
part by the Natural Science Foundation of China
under Grant No. 62376133. This research was also
supported in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC)
under Grant Nos. RGPIN-2020-04440 and RGPIN-
2020-04465, the Amii Fellow Program, the Canada
CIFAR AI Chair Program, the Alberta Innovates
Program, the Digital Research Alliance of Canada
(alliancecan.ca), and a donation from DeepMind.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Ad-
vances in Neural Information Processing Systems,
pages 1171–1179.

Rishi Bommasani and Claire Cardie. 2020. Intrinsic
evaluation of summarization datasets. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 8075–8096.

Shun-Po Chuang, Yung-Sung Chuang, Chih-Chiang
Chang, and Hung-yi Lee. 2021. Investigating the re-
ordering capability in CTC-based non-autoregressive
end-to-end speech translation. In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 1068–1077.

Cassio P de Campos. 2011. New complexity results
for map in bayesian networks. In Proceedings of the
International Joint Conference on Artificial Intelli-
gence, pages 2100–2106.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English Gigaword. Linguistic Data Consor-
tium, 4:34.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd International Conference on Machine learning,
pages 369–376.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133.

Chenyang Huang, Fei Huang, Zaixiang Zheng, Osmar
Zaïane, Hao Zhou, and Lili Mou. 2023a. Multilin-
gual non-autoregressive machine translation without
knowledge distillation. In Findings of the Associa-
tion for Computational Linguistics: IJCNLP-AACL
2023, pages 161–170.

Chenyang Huang, Wei Yang, Yanshuai Cao, Osmar
Zaïane, and Lili Mou. 2021. A globally normalized
neural model for semantic parsing. In Proceedings of
the 5th Workshop on Structured Prediction for NLP,
pages 61–66.

Chenyang Huang, Hao Zhou, Osmar R Zaïane, Lili Mou,
and Lei Li. 2022a. Non-autoregressive translation
with layer-wise prediction and deep supervision. In

11580

https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://aclanthology.org/2020.emnlp-main.649
https://aclanthology.org/2020.emnlp-main.649
https://aclanthology.org/2021.findings-acl.92
https://aclanthology.org/2021.findings-acl.92
https://aclanthology.org/2021.findings-acl.92
https://arxiv.org/abs/1007.3884
https://arxiv.org/abs/1007.3884
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://catalog.ldc.upenn.edu/LDC2003T05
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2023.findings-ijcnlp.14
https://aclanthology.org/2023.findings-ijcnlp.14
https://aclanthology.org/2023.findings-ijcnlp.14
https://aclanthology.org/2021.spnlp-1.7
https://aclanthology.org/2021.spnlp-1.7
https://ojs.aaai.org/index.php/AAAI/article/view/21323
https://ojs.aaai.org/index.php/AAAI/article/view/21323

Proceedings of the AAAI Conference on Artificial
Intelligence, pages 10776–10784.

Fei Huang, Pei Ke, and Minlie Huang. 2023b. Directed
acyclic transformer pre-training for high-quality non-
autoregressive text generation. Transactions of the
Association for Computational Linguistics, 11:941–
959.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022b. Directed acyclic transformer for non-
autoregressive machine translation. In International
Conference on Machine Learning, pages 9410–9428.

D. Koller and N. Friedman. 2009. Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, page
282–289.

Ann Lee, Michael Auli, and Marc’Aurelio Ranzato.
2021. Discriminative reranking for neural machine
translation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 7250–7264.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Puyuan Liu, Chenyang Huang, and Lili Mou. 2022a.
Learning non-autoregressive models from search for
unsupervised sentence summarization. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7916–7929.

Puyuan Liu, Xiang Zhang, and Lili Mou. 2022b. A
character-level length-control algorithm for non-
autoregressive sentence summarization. In Advances
in Neural Information Processing Systems, pages
29101–29112.

Yizhu Liu, Zhiyi Luo, and Kenny Zhu. 2018. Con-
trolling length in abstractive summarization using a
convolutional neural network. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4110–4119.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If
beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2173–2185.

Ani Nenkova, Sameer Maskey, and Yang Liu. 2011. Au-
tomatic summarization. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, page 3.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004. A
smorgasbord of features for statistical machine trans-
lation. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter of
the Association for Computational Linguistics, pages
161–168.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 1993–
2003.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Raphael Schumann, Lili Mou, Yao Lu, Olga Vechto-
mova, and Katja Markert. 2020. Discrete optimiza-
tion for unsupervised sentence summarization with
word-level extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5032–5042.

Chenze Shao and Yang Feng. 2022. Non-monotonic
latent alignments for CTC-based non-autoregressive
machine translation. In Advances in Neural Informa-
tion Processing Systems, pages 8159–8173.

Chenze Shao, Zhengrui Ma, and Yang Feng. 2022.
Viterbi decoding of directed acyclic transformer for
non-autoregressive machine translation. In Findings
of the Association for Computational Linguistics:
EMNLP 2022, pages 4390–4397.

Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang
You, and Lidong Bing. 2023. Large language mod-
els are not yet human-level evaluators for abstrac-
tive summarization. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
4215–4233.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th

11581

https://doi.org/10.1162/tacl_a_00582
https://doi.org/10.1162/tacl_a_00582
https://doi.org/10.1162/tacl_a_00582
https://icml.cc/virtual/2022/spotlight/17958
https://icml.cc/virtual/2022/spotlight/17958
https://books.google.co.in/books?id=7dzpHCHzNQ4C
https://books.google.co.in/books?id=7dzpHCHzNQ4C
https://dl.acm.org/doi/10.5555/645530.655813
https://dl.acm.org/doi/10.5555/645530.655813
https://dl.acm.org/doi/10.5555/645530.655813
https://aclanthology.org/2021.acl-long.563
https://aclanthology.org/2021.acl-long.563
https://www.aclweb.org/anthology/D18-1149
https://www.aclweb.org/anthology/D18-1149
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/2022.acl-long.545
https://aclanthology.org/2022.acl-long.545
https://openreview.net/forum?id=KXybrIUJnya
https://openreview.net/forum?id=KXybrIUJnya
https://openreview.net/forum?id=KXybrIUJnya
https://aclanthology.org/D18-1444
https://aclanthology.org/D18-1444
https://aclanthology.org/D18-1444
https://aclanthology.org/2020.emnlp-main.170
https://aclanthology.org/2020.emnlp-main.170
https://aclanthology.org/volumes/P11-5/
https://aclanthology.org/volumes/P11-5/
https://aclanthology.org/N04-1021
https://aclanthology.org/N04-1021
https://aclanthology.org/N04-1021
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2022.acl-long.309
https://aclanthology.org/2022.acl-long.309
https://aclanthology.org/D15-1044
https://aclanthology.org/D15-1044
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://openreview.net/forum?id=Qvh0SAPrYzH
https://openreview.net/forum?id=Qvh0SAPrYzH
https://openreview.net/forum?id=Qvh0SAPrYzH
https://aclanthology.org/2022.findings-emnlp.322
https://aclanthology.org/2022.findings-emnlp.322
https://aclanthology.org/2023.findings-emnlp.278
https://aclanthology.org/2023.findings-emnlp.278
https://aclanthology.org/2023.findings-emnlp.278
https://aclanthology.org/D19-1331
https://aclanthology.org/D19-1331

International Joint Conference on Natural Language
Processing, pages 3356–3362.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021. Non-
autoregressive text generation with pre-trained lan-
guage models. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 234–
243.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
pages 3104–3112.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826.

Sho Takase and Naoaki Okazaki. 2019. Positional en-
coding to control output sequence length. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3999–4004.

Akim Tsvigun, Ivan Lysenko, Danila Sedashov, Ivan
Lazichny, Eldar Damirov, Vladimir Karlov, Artemy
Belousov, Leonid Sanochkin, Maxim Panov, Alexan-
der Panchenko, Mikhail Burtsev, and Artem Shel-
manov. 2022. Active learning for abstractive text
summarization. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
5128–5152.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, page 6000–6010.

Yuqiao Wen, Behzad Shayegh, Chenyang Huang, Yan-
shuai Cao, and Lili Mou. 2024. EBBS: An ensem-
ble with bi-level beam search for zero-shot machine
translation. arXiv preprint arXiv:2403.00144.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between training
and inference for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou,
and Minlie Huang. 2023. Large language models are
not robust multiple choice selectors. In International
Conference on Learning Representations.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227.

A The Pseudocode for Our Algorithm

We present in Algorithm 1 the pseudocode of our
beam search-based dynamic programming algo-
rithm for the SeqMAP objective.

As a recap of Section 2.2, At,s is the approxi-
mated top-K length-t sequences that are generated
at or before DAT’s sth step, whereas Bt,s is the
approximated top-K length-t sequences generated
exactly at the sth step.

In Algorithm 1, Lines 2–4 are the initialization
of A0,s, which is set to be the special token ⟨bos⟩
indicating the beginning of a sentence, and the
score for the token is 1.

Lines 5–14 are the iterations for computing
the dynamic programming (DP) table for each
t ∈ {1, · · · , T} and s ∈ {1, · · · , S}. Within each
iteration,

• Lines 7–12 correspond to our EXPAND opera-
tion, which approximates Bt,s by expanding
sequences in At−1,s−1. Specifically, Line 10
corresponds to the sequence expansion as de-
scribed in Eqn. (13), and Line 11 computes
the scores of newly generated sequences as
described in Eqn. (14). Then, the top-K op-
eration in Line 12 prevents the beam from
growing exponentially.

• Lines 13–14 correspond to the MERGE op-
eration, which combines the newly formed
sequences in Bt,s and the inherited sequences
from At,s−1. Again, we have the top-K oper-
ation to keep the beam search tractable, where
the ranking is given by summing the proba-
bilities over different steps, as explained after
Eqn. (15).

Our DP algorithm terminates when we have com-
puted AT,S , which contains a few length-T se-
quences of high probability given by DAT. Finally,
Line 15 applies a reranker (as described in Sec-
tion 2.3) to determine the best summary in AT,S .

11582

https://aclanthology.org/2021.eacl-main.18
https://aclanthology.org/2021.eacl-main.18
https://aclanthology.org/2021.eacl-main.18
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://aclanthology.org/N19-1401
https://aclanthology.org/N19-1401
https://aclanthology.org/2022.findings-emnlp.377
https://aclanthology.org/2022.findings-emnlp.377
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2403.00144
https://arxiv.org/abs/2403.00144
https://arxiv.org/abs/2403.00144
https://aclanthology.org/P19-1426
https://aclanthology.org/P19-1426
https://openreview.net/forum?id=shr9PXz7T0
https://openreview.net/forum?id=shr9PXz7T0
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

Algorithm 1: Our beam search-based dynamic programming algorithm for the SeqMAP objective

1 Input: S: total prediction steps in DAT; V: vocabulary; li,j : link probability for
i, j ∈ {1, · · · , S}; ws,v: word probability for s ∈ {1, · · · , S} and v ∈ V; K: beam size;
V : number of words to be expanded; T : the desired length

▷ Initialization
2 : for s := 1, · · · , S do
3 A0,s := {⟨bos⟩} ▷ ⟨bos⟩ is the starting token
4 us(⟨bos⟩) := 1 ▷ us(b) is the score of generating b at step s

▷ Recursive steps
5 for t := 1, · · · , T do
6 for s := t, · · · , S do

▷ Expand At−1,s−1 to obtain Bt,s

7 for each b in At−1,s−1 do
8 Bt,s := {} ▷ Initialization
9 for each top-V most probable predicted words v′ ∈ V at step s do

10 Bt,s := Bt,s ∪ {b⊕ v′} ▷ ⊕ denotes string concatenation

11 us(b⊕ v′) := ws,v′
∑s−1

s′=t−1 us′(b) · ls′,s ▷ Marginalization

12 Bt,s := top-K
{
Bt,s} ▷ Ranking is based on us(b)

▷ Merge Bt,s and At,s−1

13 if s > t then
14 At,s := top-K

{
Bt,s ∪ At,s−1

}
▷ Ranking is based on

∑s
s′=t us′(b)

▷ Reranking
15 return the top reranked b in AT,S according to our reranker (Section 2.3)

11583

