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Abstract

Previous research leveraged Large Language
Models (LLMs) in numerous ways in the edu-
cational domain. Here, we show that they can
be used to answer exam questions simulating
students of different skill levels and share a
prompt, engineered for GPT-3.5, that enables
the simulation of varying student skill levels on
questions from different educational domains.
We evaluate the proposed prompt on three pub-
licly available datasets (one from science ex-
ams and two from English reading comprehen-
sion exams) and three LLMs (two versions of
GPT-3.5 and one of GPT-4), and show that it
is robust to different educational domains and
capable of generalising to data unseen during
the prompt engineering phase. We also show
that, being engineered for a specific version of
GPT-3.5, the prompt does not generalise well to
different LLMs, stressing the need for prompt
engineering for each model in practical appli-
cations. Lastly, we find that there is not a direct
correlation between the quality of the rationales
obtained with chain-of-thought prompting and
the accuracy in the student simulation task.

1 Introduction

Large Language Models (LLMs) currently repre-
sent the state of the art in text generation, with
some capable of generating human-like texts, such
as GPT-4 (OpenAI, 2023), Llama (Touvron et al.,
2023; Meta, 2024), and Gemma (Gemma Team and
DeepMind, 2024). In this work we focus on the
educational domain, which can massively benefit
from LLMs (Jeon and Lee, 2023; Kasneci et al.,
2023; Caines et al., 2023). Specifically, we study
whether it is possible to leverage LLMs to simu-
late the response patterns of students of different
skill levels to exam questions. Previous research
tried to simulate the responses of human partici-
pants to surveys with LLMs (Dillion et al., 2023;
Argyle et al., 2023; Demszky et al., 2023; Aher
et al., 2023), but nothing similar has been done

for simulating students answering exam questions.
There have been some concerns about the fairness
of using LLMs instead of (or in addition to) human
survey participants (Harding et al., 2023; Crockett
and Messeri, 2023), and we agree that this is an
important aspect to consider in the educational do-
main, as well. However, we believe that it might
be less of an issue with respect to general-domain
surveys, due to the factual nature of learning con-
tent and exam questions, which are built to evalu-
ate domain knowledge and to minimise the effects
that the wording has on the students’ outcomes
(Yaneva et al., 2019). In this work, we aim at an-
swering the following Research Questions. RQ1:
can LLMs be prompted to answer Multiple Choice
Questions (MCQs) while role-playing as (i.e., sim-
ulating) learners of different skill levels, and does
this generalise to unseen data?1 RQ2: How do
these findings compare across different models?

We work primarily on GPT-3.52 and three pub-
licly available datasets of science MCQs (ARC)
and English reading comprehension MCQs (RACE
and CUP&A), and engineer a prompt (referred to
as “Reference Prompt” or RP) that leads the LLM
to answer exam questions with different levels of
accuracy, thus representing students of different
skill levels. Also, we observe a small but positive
correlation between the difficulty obtained from
virtual pretesting with LLMs and the difficulty
from pretesting with human learners. Although
the prompt was engineered using only GPT-3.5 and
one dataset, this behaviour proved generalisable
to new questions (also from different educational
domains), but not to other LLMs, thus stressing
the need for prompt engineering for each model.
Lastly, we find that there is not a direct correlation
between the quality of the rationales obtained with
chain-of-thought prompting and the accuracy of
the models in the student simulation task.

1Unseen indicates data not used for prompt engineering.
2We use gpt-3.5-turbo-0613, except where explicitly said.
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The code, prompts, and LLM outputs are pub-
licly available at github.com/lucabenedet
to/LLM-student-simulations.

2 Methodology

We proceed in three steps: we i) perform prompt
engineering to search for the “best” prompt using
one LLM and one dataset, ii) evaluate its gener-
alisation capabilities to unseen data and to other
LLMs, and iii) perform some additional analyses
of the models’ responses.

2.1 Prompt engineering

We perform prompt engineering on GPT-3.5 and
a dev set subsampled from the ARC dataset (ques-
tions from science exams), considering only zero-
shot prompts and temperature=0.3 The LLM is
prompted to perform MCQ Answering (MCQA)
simulating students of different skill levels and,
with each prompt, we ask the model to simulate
one student level and answer one question. Thus,
in our setup the LLM is shown only one question at
a time, without having a view of the whole exam or
information about its previous responses. Similarly,
the LLM is asked to simulate one student at a time,
not to provide in a single response the answers of
students of different levels. From this initial ex-
ploration we develop the “reference prompt” (RP),
which is the one that leads to the best simulation of
students’ response patterns, according to the met-
rics defined in 3.2. Specifically, we are looking
for i) increasing MCQA accuracy for increasing
simulated levels, and ii) lower accuracy on more
difficult questions. RP is shown in Table 1.

2.2 Analysis of generalisation capabilities

Generalisation to unseen data. We study the
generalisation capabilities of RP as follows. We
evaluate it i) on a separate test set from ARC, and
ii) on RACE and CUP&A, which contain English
reading comprehension questions.4 This approach
might penalise the LLM, as the prompt was not
engineered on these datasets, but we argue that it
is the most appropriate way to study the generali-
sation capabilities of the proposed method, as it is
the standard methodology of splitting the dataset
in dev and test sets.

3To reduce the variance of the LLM output.
4As shown in Table 1, RP is actually slightly changed,

adding the text of the reading passage and swapping a science
exam with an English reading comprehension exam, to reflect
the different nature of these datasets.

Generalisation to other LLMs. Prompt engi-
neering was performed on gpt-3.5-turbo-0613 but
we also experiment on using RP on two differ-
ent LLMs, gpt-3.5-turbo-1106 and gpt-4-1106-
preview, to see whether the behaviour generalises
and is consistent across models.

2.3 Additional analyses
Question level and answer explanation fields.
As shown in Table 1, RP asks the LLM not only to
answer the question as a student of a specific level,
but also to i) assign a difficulty level to the question
(question level in the output JSON) and ii) explain
its rationale (answer explanation). Although we
added these two fields to RP because they proved
helpful in reaching the desired simulation capa-
bilities, by leveraging chain-of-thought prompting
(Wei et al., 2022), we evaluate them to see whether
they can provide useful insights. Specifically, we
compare the model-assigned difficulty with the ref-
erence difficulty levels available in the datasets,
and perform a quantitative and qualitative analy-
sis of the explanations to study whether there are
meaningful differences between simulated levels
and their educational validity.

Experiments on different educational scales.
RP simulates students on an abstract knowledge
scale from one to five, but we also study the effects
of using different scales. Specifically, we consider:
i) exam marks (A, ..., F) and ii) a non-standardised
scale (beginner, intermediate, advanced).

3 Experimental Setup

3.1 Experimental datasets
We experiment with three public datasets.

ARC, AI2’s Reasoning Challenge dataset (Clark
et al., 2018), is a MCQA dataset of questions from
science exams. Each question is assigned a grade
(from 3 to 9), which indicates the school grade that
the question was built for. Although this is not a
direct indication of question difficulty, questions
with higher grades are meant for more advanced
learners, and the grade has been used as a proxy for
question difficulty in previous research (Benedetto,
2023). We work on a subsampled portion of the
dataset: we use 350 questions as dev set and other
350 as test set. Both sets are sampled from the
original test split with stratified sampling in order
to have in both groups 50 questions for each grade.

RACE is a MCQA dataset of questions from En-
glish reading comprehension exams. We work on
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Table 1: Reference prompt RP for the ARC dataset, the variable {X} in the system message is substituted with one,
two, ..., five to indicate one of five student levels. The reference prompt for RACE and CUP&A is the same, except
two changes done to account for the questions of different type: i) a science exam is swapped with an English
reading comprehension exam and ii) we add Reading passage: “{passage}” to the user prompt (before Question).

SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). You must assign a difficulty level to the given multiple choice
question, and select the answer choice that a student of level {X} would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the question”, “answer
explanation”: “the list of steps that the students of level {X} would follow to select the answer, including the misconcep-
tions that might cause them to make mistakes”, “index”: “integer index of the answer chosen by a student of level {X}”}
USER:
Question: “{question}”
Options: “{answer options}”

the version obtained by merging the original RACE
(Lai et al., 2017) with RACE-c (Liang et al., 2019).
Each question in the dataset is assigned one of
three levels (middle, high, college), which indicates
the school level of the target students. Similarly
to ARC, although this is not a direct indication of
question difficulty, it has been used as a proxy for
it in previous research, middle being the lowest dif-
ficulty and college the highest, e.g., by Loginova
et al. (2021). We work on a reduced set of 150
questions, obtained with stratified sampling from
the test split, keeping 50 questions per level.

CUP&A5 (Mullooly et al., 2023), is a MCQA
dataset of questions from English reading com-
prehension exams. It contains questions aimed at
students of different CEFR levels (from B1 to C2).
We work on a stratified version built by sampling
50 questions for each CEFR level (200 questions in
total). Differently from ARC and RACE, it provides
for all the questions an indication of the actual ques-
tion difficulty, as obtained from pretesting with real
learners. This can be compared with the difficulty
obtained from virtual pretesting with LLMs.

3.2 Metrics for prompt engineering
Evaluating whether the LLMs are capable of sim-
ulating students is not straightforward, especially
considering the information that is available in pub-
licly available datasets. Indeed, the ideal evaluation
would be to compare the response pattern of the
LLMs with the response patterns of human learn-
ers, but the latter is unavailable in the three datasets
we experiment on.6 As an alternative, we evaluate
each prompt as follows.

i) We study the MCQA accuracy of the LLMs
5The Cambridge MCQs Reading Dataset from Cambridge

University Press & Assessment.
6To the best of our knowledge, there are no public datasets

providing both the texts of MCQs and the students’ responses.

when simulating students of different levels; ide-
ally, we want a monotonically increasing accuracy
curve (i.e., higher role-played levels are more ac-
curate).7 Specifically, we devise an evaluation met-
ric to quantitatively compare the accuracy plots
obtained with different prompts. The metric com-
bines the correlation with the ideal accuracy curve
and penalizes non-monotonic behavior in the ac-
curacy sequence. Let L = (a1, a2, · · · , a5) be
the list of accuracy scores obtained when using
one prompt to simulate levels (one, two, ..., five)
and I = (0.0, 0.25, 0.5, 0.75, 1.0) the ideal accu-
racy curve. We refer with ρL,I to the Pearson’s
correlation between the two accuracy curves. The
Penalty for Non-Monotonicity (P ) is calculated
as:

∑4
i=1

√
|ai+1 − ai| · I(ai+1 < ai), where

I(ai+1 < ai) is an indicator function that is 1 when
ai+1 < ai and 0 otherwise. Finally, the metric (M )
is the difference between the correlation score and
the penalty for non-monotonicity: M = ρL,I − P .

ii) We also analyse the MCQA accuracy of dif-
ferent simulated levels on questions of different
difficulty: given a simulated level, the MCQA ac-
curacy should be lower on more difficult questions.

4 Results and Analysis

4.1 Analysis of the reference prompt

Our first step consists in engineering the reference
prompt (RP), by iterating over a number of dif-
ferent prompts and evaluating them with GPT-3.5
on the dev set of ARC. Figure 1 shows how the
MCQA accuracy of GPT-3.5 changes depending
on the role-played level for five different prompts;
all the prompts shown here use non-standardised

7In our experimental setting, each simulated learner an-
swer all the questions of the exam, meaning that the accuracy
corresponds to the estimated knowledge level according to
testing theories such as IRT (Hambleton et al., 1991).
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Figure 1: Comparison of the MCQA accuracy of GPT-
3.5 on the dev split of ARC, when prompted with differ-
ent prompts to simulate students of different levels.

students’ levels from one to five. The reference
prompt (RP), which is the one we selected as best
performing on the dev set of ARC, leads to the high-
est score according to the metric defined in Section
3.2: MRP = 0.91. Compared to RP, i) prompt P1
(MP1 = 0.73) adds a description about the mean-
ing of students’ levels; ii) prompt P2 (MP2 = 0.57)
removes the answer explanation field and adds a
field for the text of the chosen answer; iii) prompt
P3 (MP3 = 0.43) adds a description of each level
to prompt P2; and iv) prompt P4 (MP4 = 0.83),
the most similar to the reference prompt, renames
the field answer explanation into motivation. The
complete prompts are shown in Appendix A.

A common issue is to have the highest MCQA
accuracy for intermediate (simulated) levels –
shown in the figure by prompts P1, P2, and P3
– and we observed this was often triggered by mi-
nor changes. Prompt P4 is close to the desired
behaviour (the trend is monotonic), but it shows
a significant step in accuracy between simulated
levels one and two, and then the accuracy almost
reaches a plateau, which is undesirable, and indeed
it leads to a lower score with respect to RP. The
difference between P4 and RP is only a renamed
field in the output JSON required from the model,
showing that even minor differences in the prompt
can lead to relevant differences in the output. To
have a reference, we also prompted GPT-3.5 to just
answer the exam questions (without simulating a
specific level) and obtained an accuracy of 0.92,
slightly better than the highest simulated level.
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Figure 2: MCQA accuracy of different simulated levels
obtained with the reference prompts and GPT-3.5 on
the test split of ARC and on the RACE and CUP&A
datasets.

4.2 Generalisation to unseen data

Figure 2 shows the behaviour of GPT-3.5 with RP
on the ARC dev and test sets and the two read-
ing comprehension datasets, RACE and CUP&A.
The figure shows that the behaviour is qualitatively
similar, with a monotonically increasing accuracy
for increasing levels. As could be expected, it is
slightly worse on the ARC test set than on the dev
set: indeed, there is a smaller difference between
the accuracy of the three highest simulated levels
and this is captured by the metric M , which is 0.86
for ARC test (it was 0.91 for dev). Considering the
other datasets, CUP&A (which shows an almost
ideal trend for the first three levels but then reaches
a plateau) scores 0.90, and RACE 0.94. These sim-
ilar trends suggest that the behaviour obtained with
RP8 and GPT-3.5 is capable of generalising fairly
well to previously unseen data, also coming from
different educational domains. It is worth noting
that the accuracy is generally higher on ARC than
on the other two datasets; this might be because it
is inherently easier for GPT (indeed, "just" GPT-
3.5 has an accuracy of 0.86 on ARC test, 0.78 on
RACE and 0.77 on CUP&A) or that we performed
prompt engineering on it.

Focusing on the second metric defined in Sec-
tion 3.2, we plot in Figure 3 the MCQA accuracy
of different simulated levels on questions of differ-
ent difficulty, separately for the three datasets. The
figures show that the trend of increasing MCQA
accuracy for increasing simulated levels is visible
across question levels and across datasets. Focus-

8Please note that the reference prompt for RACE and
CUP&A is slightly modified, as described in Table1.

11354



one two three four five
Simulated level

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

M
CQ

A 
ac

cu
ra

cy

middle
high
college

(a) RACE, questions of different levels.
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(b) ARC, questions of different grades.
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(c) CUP&A, different difficulty.

Figure 3: Evaluation of the MCQA accuracy of GPT-3.5 on the three datasets when simulating students of different
levels, separately on questions of different difficulty levels (difficulty definition is different in the three datasets).

ing on RACE (Figure 3a), if we look at the accuracy
of a simulated level on questions of increasing lev-
els, we can see that it consistently decreases, with
the only exception of student level five on high
questions. The same analysis is shown for ARC
in Figure 3b.9 The results are not as clean as on
RACE: indeed, although we can see a general trend
of increasing accuracy for increasing role-played
levels, the trend is monotonic only for grade 9;
grades 3 and 7 have one “drop” that affects mono-
tonicity (level three and five, respectively), while
grade 5 has several oscillations. Even though it
is not always true that the same role-played level
has lower accuracy on questions of higher grades,
this trend is mostly visible for all grades, except
grade 5 which seems to be the most problematic.
This might also be due to the specific types of
questions in ARC: indeed, even though most of
the questions are knowledge questions for which it
makes sense to define the difficulty, we observed
that some do not necessarily get more difficult for
higher grades (e.g., questions about safety equip-
ment in the lab). Finally, Figure 3c shows the same
results for CUP&A; in this case, the difficulty is a
continuous value instead of a discrete one, hence
we group questions in three difficulty bins. Again,
the trend of monotonic increase in MCQA accu-
racy is visible across difficulty levels (with the only
exceptions of level four for the easier questions and
level five for the medium difficulty questions), and
a given simulated level has lower accuracy on more
difficult questions, with the only exceptions of sim-
ulated levels one and two on mid-level questions.

4.3 Virtual pretesting with role-playing LLMs
CUP&A provides for each question a quantitative
measurement of difficulty obtained from pretesting

9We show only the odd grades to improve readability.

with human learners. This enables us to evaluate
the simulation capabilities of the LLM by perform-
ing virtual pretesting and comparing the difficulty
obtained from it with the reference value, ideally
looking for a perfect correlation.10 In our setup,
the difficulty from virtual pretesting is defined as
the fraction of (simulated) students that answer the
question wrongly. We observe a positive correla-
tion coefficient between the two variables (diffi-
culty from virtual and “real” pretesting) of 0.13
(pvalue = 0.06), while a random baseline leads to
a correlation coefficient of −0.03 (pvalue = 0.62).
This correlation might seem low but, to put it in
context, we also performed an Item Response The-
ory (IRT) simulation (Hambleton et al., 1991). This
consists in simulating the responses of five “mock”
students of prescribed skill levels to the questions
of known difficulty, and doing pretesting with such
responses. We consider students’ skills equally
spaced in the skill range, which is an ideal scenario
(almost) never observed in practice and can be seen
as an upper bound. This simulation, whose details
are described in Appendix B, led to a correlation
of 0.43 (pvalue = 10e−10). This suggests that,
although the correlation observed with the LLMs
is quite low, it is promising because a five-student
pretesting scenario is particularly challenging, es-
pecially considering that the LLM is not given any
anchoring item to match the simulated skill levels
to the difficulty of the items in the exam.

4.4 Generalisation to other LLMs

To evaluate the generalisation capabilities of the ref-
erence prompt to other LLMs, we experiment with

10A short premise: at this stage, we are performing virtual
pretesting with only five simulated students (GPT-3.5 role-
playing as five students of different levels), which would be
quite a small pretesting sample even with human learners.
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(a) ARC.
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(b) RACE.
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Figure 4: Comparison between the behaviour of gpt-3.5-turbo-0613 (full lines), gpt-3.5-turbo-1106 (dashed lines),
and gpt-4-1106-preview (dotted lines) on the three datasets, when prompted with the reference prompts.

a different version of GPT-3.5 (gpt-3.5-turbo-1106)
and GPT-4 (gpt-4-1106-preview), and compare the
behaviours obtained with them with gpt-3.5-turbo-
0613, which is the version used for prompt engi-
neering and all the other experiments. The results
are shown separately for each dataset in Figure 4.

The updated version of GPT-3.5 shows a simi-
lar behaviour, but there are significant differences.
For both ARC and RACE the behaviour is arguably
worse, since the highest MCQA accuracy is not ob-
tained for level five but instead for level three and
four respectively, and the model reaches a plateau
at level three for both datasets. This is also shown
by the score obtained with the evaluation metric,
which is 0.63 for ARC and 0.77 for RACE (it was
0.86 and 0.95 with GPT-3.5, respectively). The be-
haviour on CUP&A is different, though: the newer
version performs actually better since it does not
reach a plateau, and indeed gets a higher score of
0.96 (it was 0.90). It is also worth remarking that,
in almost all cases, the newer gpt-3.5-turbo-1106
leads to higher MCQA accuracy, and a narrower
range of skill levels for virtual pretesting. These
results suggest that prompts engineered for a spe-
cific version of GPT-3.5 should only be used on
that specific version, as they might work differently
when used on different versions.

On the other hand, the behaviour with GPT-4
is clearly worse: first, the accuracy of the lowest
level is quite high (above 85% for all datasets), and
there is not a clear trend of increasing MCQA ac-
curacy for increasing simulated levels. This is also
shown by the scores of the monotonicity evaluation,
which are in all cases worse than GPT-3.5 (0.74
for ARC, 0.85 for RACE, and 0.68 for CUP&A),
again supporting the need for performing prompt
engineering on each model. Also, this aligns with
the findings from Aher et al. (2023), suggesting

that advanced models such as GPT-4 might suffer
of the curse of hyper-accuracy.

4.5 Additional analyses

The output obtained with the reference prompt con-
tains, in addition to the index of the answer choice
selected by the simulated learner, an indication of
the question difficulty level (as directly assigned
by the LLM) and an explanation of the answer.11

Even though these were added during prompt engi-
neering because they help in reaching the desired
behaviour, we analyse them to understand whether
they provide further insights.

4.5.1 Analysis of the difficulty level
The difficulty level assigned by LLM is on the
scale [1; 5]∩N (the same as the simulated learners),
which is different from the target difficulty values
available in the three datasets. Thus, to compare
them, we perform a linear scaling from [1; 5]∩N to
the difficulty range used in each dataset ([1; 3] ∩ N
in RACE, [3; 7] ∩ N in ARC, [30; 110] in CUP&A).

We find that the difficulty level provided by the
LLMs cannot be directly used as an indication of
question difficulty with the current prompt, and
this holds true for the three datasets and the three
versions of GPT we are experimenting on. The
majority of questions are given difficulty values in
{2, 3, 4}, with levels 1 and 5 almost never being
assigned. Also, the LLMs are not consistent in
this difficulty classification task and different dif-
ficulty levels are assigned to the same questions,
possibly due to the request of simulating students
of different skill levels. In terms of average error,
the observed MAPE (Mean Absolute Percentage

11“the list of steps that a student of level {X} would follow
to select the answer, including the misconceptions that might
cause them to make mistakes.”
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Figure 5: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, ARC).

Error) ranges from the 12.81 for GPT-3.5-1106 on
CUP&A to the 32.70 of GPT-4 on RACE. A more
detailed analysis is shown in Appendix C.

4.5.2 Analysis of the explanations
We study the explanations provided by the LLMs
both quantitatively and qualitatively.

For the quantitative analysis, we build a clas-
sifier to estimate the simulated level from the ex-
planation provided by the LLM. A high accuracy
in this level prediction task would suggest that the
explanations are significantly different between the
different simulated levels. To improve the inter-
pretability of the predictor, we use TF-IDF (Man-
ning et al., 2008) weights as features and a Logis-
tic Regression model for the classification; the pa-
rameters of both are selected with cross-validation
(parameters are listed in Appendix D.1).12 Consid-
ering the explanations provided by GPT-3.5, the
accuracy ranges from 0.41 for RACE to 0.55 for
CUP&A, while considering GPT-4 it ranges from
0.52 to 0.58 (the random baseline is 0.20), sug-
gesting that indeed there is a significant difference
between the explanations for different simulated
levels, and this is greater for GPT-4 than for GPT-
3.5. Also, the confusions matrices show that pre-
diction error is generally small: Figure 5 shows
the confusion matrix for GPT-3.5 and ARC, but the
trend is similar across the two models and three
datasets (the other matrices are in Appendix D).

12Prior to this analysis, we remove any explicit reference to
the simulated level from the explanation.

Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
would likely choose 186 216 66 21 5
may think that 64 30 21 7 5
however is not 18 3 6 1 1
may not understand 16 4 1 0 0
might not consider 15 4 2 0 0
would choose option 21 17 38 77 104
would understand that 8 17 44 60 49
would know that 5 22 74 142 136
misconc. that could 2 5 3 3 13
it is important 9 21 8 18 19

GPT-4
not fully understand 146 26 0 0 0
might not understand 50 3 0 0 0
at would likely 61 42 26 21 5
but would likely 58 26 1 0 0
might not know 47 20 1 0 0
therefore correct is 1 4 22 74 96
would not be 0 9 18 15 39
would know that 7 82 97 130 114
would recognize that 7 58 77 94 87
other option are 4 11 14 23 32

Table 2: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
ARC (misconc. is abbreviation for misconception).

We then collect for each simulated level the
most relevant n-grams, according to the prediction
models, and analyse how their frequency changes
across simulated levels. Table 2 focuses on the
ARC dataset,13 and shows the five most relevant
n-grams for simulated levels one and five (for GPT-
3.5 and GPT-4). Indeed the explanations often (but
not always) follow a trend of using wording related
to knowledge and understanding for higher levels,
and the opposite for lower simulated levels. Also, i)
the trend is arguably more visible for GPT-4 and ii)
most of the relevant features are not shared between
the two models, suggesting that the explanations
are significantly different between them.

The results of this quantitative analysis show
that the explanations are different for different sim-
ulated levels and they often follow meaningful pat-
terns in term of the knowledge that learners of in-
creasing levels are expected to have. Also, GPT-4
seems to provide better explanations than GPT-3.5,
although this does not lead to a better behaviour in
the simulation task, as shown in Section 4.4.14

We also qualitatively analysed some of the ex-
planations, and indeed observed some differences

13Results for the other datasets are shown in Appendix D.
14This is in line with previous research suggesting that the

rationales created with e.g., chain-of-thought are not necessar-
ily used in the downstream task (Pfau et al., 2024).
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Sim. Answer explanation from GPT-3.5
level
one A student of level one would choose the answer ’muscle cells’ because they might think that muscles are

responsible for feeling heat and pressure. However, the correct answer is ’nerve cells’ because they are the cells
that transmit signals to the brain to interpret sensations like heat and pressure.

three A student of level three would select the answer ’nerve cells’ because they have a basic understanding of the
human body and know that nerve cells are responsible for transmitting signals related to heat and pressure. [...]

five A student of level five would choose the answer ’nerve cells’ because nerve cells are responsible for detecting
and transmitting sensations such as heat and pressure to the brain. [...]

Table 3: An example of how the answer explanation from GPT-3.5 changes depending on the simulated levels (we
show only the most relevant parts of the explanations due to the lack of space). The question is: “What helps skin
feel heat and pressure?”. The answer options: [‘muscle cells’, ‘blood cells’, ‘nerve cells’, ‘bone cells’].

between different simulated levels. An example
is shown in Table 3, where it is visible that level
one simulated with GPT-3.5 makes a reasonable
mistake, while levels three and five get the correct
answer. The full list of explanations is available in
the supplementary material.

4.5.3 Analysis of different educational scales
We study the effect of using different educational
scales instead of the one to five used in the ref-
erence prompt RP, by prompting GPT-3.5 with a
modified version of RP to consider i) exam marks
(A, B, C, D, F) and ii) a non-standardised scale
(beginner, intermediate, advanced). In both cases,
the results are very good for all datasets, leading
to monotonic accuracy curves with almost linear
increases (especially for ARC) and high scores ac-
cording to the metric M (between 0.97 and 0.99),
supporting the finding that LLMs might be capable
of simulating different levels. The accuracy curves
and prompts are shown in Appendix E.

5 Related Work

Previous research discussed the possibility of using
LLMs instead of (or in addition to) human partici-
pants in surveys (Dillion et al., 2023; Argyle et al.,
2023; Demszky et al., 2023), and studied whether
LLMs can be prompted to show human-like be-
haviours in a series of task (Aher et al., 2023).
However, it is not agreed whether this is actually
a good practice. Indeed, some researchers argue
that LLMs cannot (and should not) replace human
research participants (Harding et al., 2023; Crock-
ett and Messeri, 2023). We mostly agree with the
latter, but believe that exam simulations are a dif-
ferent application scenario, as knowledge-based
exam questions are built to assess students knowl-
edge in an objective (as much as possible) manner.
Still, possible biases of this approach will have to
be studied before an application in the real world.

An approach like the one proposed by Beck et al.
(2023) (i.e., using LLMs as a preliminary step be-
fore the human annotations) might be adopted in
education, for instance pretesting with human learn-
ers only a fraction of the original items.

Previous research also discussed profusely the
potential of LLMs in education (Jeon and Lee,
2023; Kasneci et al., 2023; Caines et al., 2023).
Closer to our work, previous research experimented
on Knowledge Tracing with LMs (Liu et al., 2022),
but without using them for simulating students.
Also related to the current work is the previous
research of question difficulty estimation with NLP
(AlKhuzaey et al., 2023; Benedetto et al., 2023; Ro-
goz and Ionescu, 2024), especially when performed
in an unsupervised manner (Loginova et al., 2021).
Indeed, the students simulation we propose in this
paper could be used as an alternative to previous
approaches for difficulty estimation.

6 Conclusions and future work

In this paper, we have shown that it is possible
to prompt GPT-3.5 to simulate students of dif-
ferent levels, and the reference prompt we have
engineered proved capable of generalising across
datasets. However, even though the prompt seems
to generalise well to unseen data, it does not seem
to generalise to different LLMs, thus stressing the
need for prompt engineering for each model. Al-
though we found some strong indications that it
might be possible to simulate students of different
levels with LLMs, there are questions still to be
addressed. For a better simulation, one could try to
use retrieval augmented generation (RAG) (Lewis
et al., 2020) on topic specific documents to better
define the level of the role-played student. For a
better virtual pretesting, it will be needed to have
a larger set of simulated students. Also, it might
be helpful to simulate whole exams, instead of one
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question at a time as we did here. Future work
could also iterate on the reference prompt, possi-
bly using automatic prompt optimization (Pryzant
et al., 2023), and experiment with open models,
which is particularly relevant since specific ver-
sions of closed LLMs can become deprecated.

7 Limitations

This work uses LLMs to simulate the responses
of students to exam questions and, therefore, any
decision taken upon these simulations is at risk of
being biased, due to the intrinsic biases in LLMs.
This risk is mitigated by the fact that exam ques-
tions are built to assess domain knowledge, but it
is still present. Focusing on the aspects that are
specific to the educational domain, it might happen
that LLMs reproduce response patterns (and errors)
only of a fraction of the population of students, sim-
ilarly to how using LLMs for surveys oversamples
WEIRD15 participants (Apicella et al., 2020). If
this is the case, virtual pretesting done with LLMs
would not account for all the other students who
make different errors. An example in language
learning is the fact that students from different L1s
(i.e., first language), tend to make different mis-
takes. If LLMs reproduce the errors of specific L1s
only, this might disadvantage learners with specific
backgrounds. This is a common challenge in exam
item writing, and even human experts struggle with
it. Possible ways to address this are i) to perform
pretesting with the desired population of learners
and analyse whether their responses are aligned
with the ones from the models, and ii) look for bi-
ases with the Marked Personas approach proposed
by Cheng et al. (2023).

An important point that we have raised in this
paper is that the results do not seem to generalise
across LLMs, as prompts which were very effec-
tive on gpt-3.5-turbo-0613 did not work as well on
gpt-3.5-turbo-1106 and, especially, GPT-4 (gpt-4-
1106-preview). This is a significant concern from a
practitioner’s perspective, since any process based
on a similar approach might become unusable as
soon as there is a new version of the LLM and the
older one is deprecated, and suggests that moving
towards open LLMs could be a better alternative.

It is worth mentioning that one of the limitations
of this approach is the instability of the prompts,
and the fact that minor changes to the input prompt
might lead to major differences in behaviour. This

15Western, Educated, Industrialized, Rich, Democratic.

is a common issue with LLMs, and could be par-
tially mitigated by performing automatic prompt
optimization as mentioned in the conclusions.

Lastly, the training dataset of GPT* models is
not precisely known, and one might think that this
could affect the results shown in this work. Indeed,
ARC and RACE provide some information about
question difficulty, and this might be leveraged in
some way by the model to adapt its responses to
question difficulty. We believe that it is not the
case, since the CUP&A dataset was released very
recently – it is more recent than the training data
used in all the models considered in this work – and
the findings are consistent across datasets.
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A List of prompts: Analysis of the
reference prompt

Table 4 shows the text of the four prompts that are
compared to the reference prompt (RP) in Section
4.1 and whose behaviour is shown in Figure 1. The
four prompt, similarly to RP, ask the LLMs to sim-
ulate students of five different skill levels (from
one to five) and to produce an output in JSON for-
mat. The JSON fields that the LLMs are asked to
produce are different between the prompts.

B IRT simulation

In Section 4.3 we presented the results obtained
with an IRT simulation, to show an upper threshold
for the correlation between the difficulties obtained
from pretesting and the target values (i.e., the ones
available in the CUP&A dataset) when having a
very small population of five students.

IRT (Item Response Theory) (Hambleton et al.,
1991) is a mathematical framework used in educa-
tional settings to estimate the latent traits of stu-
dents and questions (e.g., skills and difficulties)

involved in an exam. The simplest model, named
“Rasch model” (Rasch, 1961), associates a skill
level to each student and a difficulty level to each
question; more complex models take into consid-
eration additional latent traits (Loken and Rulison,
2010), such as the probability of correct answer by
guessing.

IRT provides a function (named item response
function) to compute the probability that a given
student i correctly answers a given question j:

Pcorrect = cj +
1− cj − s

1 + e−aj(θi−bj)
(1)

where i) θ is the skill level associated to the stu-
dent, ii) b the difficulty of the question, iii) a the
discrimination of the question, iv) c a guess factor
(to account for the fact that students might get the
correct answer in a MCQ by randomly guessing),
and v) s a slip factor to account for skilled stu-
dents that might make mistakes due to temporary
distraction or fatigue.

IRT is commonly used for pretesting exam ques-
tions (i.e., to estimate the latent traits of new items
before using them to assess students). However,
it can also be used, as we do in this paper, to
simulate how mock students of known skill lev-
els would answer questions of known difficulty.
Specifically, we simulate a population of five stu-
dents with skill levels uniformly distributed in the
range [30; 110], which is the “known” range of dif-
ficulty in CUP&A, answering the question in the
exam. We use the following parameters for the
IRT simulation: i) the difficulty values available in
the CUP&A dataset, ii) discrimination a = 1, iii)
guess c = 0.25, and iv) slip s = 0.05. Given these
simulation parameters, we proceed as follows for
all student-question pairs ij.

• We estimate the probability Pij that student i
will correctly answer question j according to
the item response function.

• We generate a random number r uniformly
distributed in [0; 1].16

• If Pij ≥ r we mark the question as correctly
answered, otherwise we mark it as wrongly
answered.

• Measure the fraction of wrong answers for
each question (i.e., estimate its difficulty).

16Using random.uniform from numpy.
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Table 4: List of prompts showed in Figure 1 in Section 4.1, where they are compared with the reference prompt. For
all prompts, the student levels we consider are [‘one’, ‘two’, ‘three’, ‘four’, ‘five’].

ID Prompt
P1 SYSTEM:

You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). Similarly, the students can be identified with skill levels
from one (low level student) to five (very skilled student). The level of students is defined such that a student of a
certain level can answer most of the questions of lower levels, and almost none of the question of higher levels.
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the answer
chosen by the student”}
USER:
Question: “{question}”
Options: “{answer options}”

P2 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the chosen
answer”}
USER:
Question: “{question}”
Options: “{answer options}”

P3 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from level one (very easy) to level five (very difficult). Similarly, each student can be given a skill level:
level one represents the least skilled students, who answer most questions wrongly, and level five represents the
most skilled students, who can correctly answer even the most difficult items.
You must assign a difficulty level to the given multiple choice question, and select the answer choice that a student
of level {X} would pick. Provide only a JSON file with the following structure: {“level”: “difficulty level of the
question”, “index”: “integer index of the answer chosen by a student of level {X}”, “text”: “text of the chosen
answer”}
USER:
Question: “{question}”
Options: “{answer options}”

P4 SYSTEM:
You will be shown multiple choice questions from a science exam. The questions in the exam have difficulty levels
on a scale from one (very easy) to five (very difficult). You must assign a difficulty level to the given multiple
choice question, motivating your choice, and select the answer choice that a student of level {X} would pick.
Provide only a JSON file with the following structure: {“level”: “difficulty level of the question”, "motivation":
"reason why you assigned that difficulty level", “index”: “integer index of the answer chosen by a student of level
{X}”, “text”: “text of the chosen answer”}
USER:
Question: “{question}”
Options: “{answer options}”
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• Compute the correlation between the this dif-
ficulty and the target value available in the
dataset.

C Analysis of the difficulty levels assigned
by the LLMs

This section complements 4.5.1 by providing a
more detailed analysis of the difficulty level di-
rectly provided by the LLM in the “question level”
field of the output JSON.

As we have mentioned previously, both GPT-3.5
and GPT-4 are not consistent in this difficulty clas-
sification task, assigning different difficulty values
to the same question, even though we are using
temperature=0; this might be side-effect of the
simulated student level mentioned in the prompt.
Also, the difficulty levels output by the LLMs do
not cover the whole range of levels specified in the
prompt (“...difficulty levels from one (very easy) to
five (very difficult)...”). Table 5 shows (separately
for for GPT-3.5, GPT-4, and each dataset) the fre-
quency with which each level is assigned to one
of the exam questions. The table proves the incon-
sistency of the LLMs in performing this task, with
a distribution that varies greatly when simulating
different skill levels. It is worth noting that in some
cases the LLMs produce outputs which are not a
difficulty value in the required format; when this
happens, we ignore the output for this analysis.

The fact that the difficulty values directly pro-
vided by the LLMs are not usable as a measurement
of the difficulty of exam items is also shown in Fig-
ure 6 and Figure 7, which display the evaluation
metrics – MAPE (Mean Absolute Percentage Error)
and R2 score – obtained with the two LLMs on the
three datsets.17 Both figures show that the results
are not satisfactory, with large MAPE values and
R2 scores mostly negative or close to 0, and there
is not a clear difference between the two models,
nor between the datasets, nor between the different
simulated levels (shown with different colours in
the bar plot).

D Additional analysis of the explanations

This Section complements Section 4.5.2 by provid-
ing a more detailed analysis of the explanations
provided by the LLMs.

17As mentioned in Section 4.5.1, before computing these
metrics we perform a linear scaling from [1; 5] ∩ N to the
difficulty range used in each dataset ([1; 3] ∩ N in RACE,
[3; 7] ∩ N in ARC, [30; 110] in CUP&A).

GPT-3.5
Sim. “question level”

Dataset Level 1 2 3 4 5
one 20 226 87 12 0
two 17 187 104 14 0

ARC three 2 255 18 41 0
four 3 152 182 12 0
five 4 137 178 24 0
one 3 86 59 2 0
two 1 69 77 2 0

RACE three 0 107 12 29 0
four 0 46 102 0 0
five 0 35 101 11 0
one 0 107 93 0 0
two 0 73 127 0 0

CUP&A three 0 111 69 20 0
four 0 18 182 0 0
five 0 10 178 12 0

GPT-4
Sim. “question level”

Dataset Level 1 2 3 4 5
one 40 261 46 1 0
two 18 302 27 0 0

ARC three 16 304 29 0 0
four 18 290 41 0 0
five 53 272 23 0 0
one 26 93 29 2 0
two 4 124 21 0 0

RACE three 2 91 54 3 0
four 3 63 72 11 0
five 8 82 47 11 0
one 0 94 100 5 1
two 0 122 78 0 0

CUP&A three 0 42 153 5 0
four 0 19 140 41 0
five 0 39 127 34 0

Table 5: Distribution of the difficulty level that is as-
signed, in the “question level” of the output JSON, to
each question by the LLMs (shown GPT-3.5 and GPT-4)
when simulating different student levels. This table does
not analyse the predictive capabilities of the LLMs, but
highlights the instability of the “question level” field at
varying simulated level.
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Figure 6: Mean Average Percentage Error (MAPE) eval-
uation of the “difficulty level” produced by the LLMs
in the output JSON, separately for different models,
datasets, and simulated student levels (the latter indi-
cated with different colours in the bar graph). The tar-
get value is the difficulty level available in the three
datasets (grade for ARC, level for RACE, and difficulty
for CUP&A), and the predicted value the difficulty level
output in the “difficulty level” field of the JSON pro-
duces by the LLMs.
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difficulty level output in the “difficulty level” field of
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Figure 8: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, ARC).

Dataset
Model ARC RACE CUP&A

GPT-3.5 0.43 0.41 0.55
GPT-4 0.58 0.52 0.52

Table 6: Accuracy in the task of simulated level predic-
tion from the explanation for the two models and the
three datasets.

We start by showing the results of the evaluation
of the accuracy of the prediction model trained to
predict the simulated level from the explanations
provided by the LLMs. The figures from Figure 8
to Figure 12 show the confusion matrices obtained
for the three datasets and the two models.18 The
figures show that, in most cases, the largest values
are on the diagonal (or close to it), showing that
the prediction model we implemented is overall
capable of correctly estimating the simulated level
from the explanations. This is also supported by
the prediction accuracy values we observed, which
are shown in Table 6 (the random baseline is 0.20).
Both results indicate that the explanations provided
by both GPT-3.5 and GPT-4 are significantly dif-
ferent for different simulated levels.

In the main body of text we have shown which
are the most relevant n-grams (according to the
prediction models) for each simulated level, con-
sidering the ARC dataset (Table 2). The analysis
showed that there seems to be a trend such that

18Please note that we train a separate prediction model for
each dataset-LLM pair; the parameters used for GridSearchCV
are shown in Section D.1.
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Figure 9: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, RACE).
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Figure 10: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, RACE).
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Figure 11: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-3.5, CUP&A).
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Figure 12: Confusion matrix obtained with the model
for predicting the simulated level from the explanation
(GPT-4, CUP&A).
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Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
might choose option 39 7 7 0 0
most likely choose 15 0 0 0 0
because it is 41 33 33 16 16
confused by mention 4 2 2 0 0
option that match 4 2 2 0 1
read passage carefully 0 0 0 23 40
would carefully read 0 0 0 0 13
information in passage 2 4 4 9 20
would understand that 0 0 0 10 26
would easily understand 0 0 0 16 17

GPT-4
might struggle with 27 1 0 0 0
might focus on 29 2 1 0 0
likely look for 44 8 0 0 0
passage directly state 11 3 2 3 5
for keywords in 26 4 0 0 0
would first identify 0 0 0 6 28
would likely not 0 1 2 9 21
is correct because 2 2 5 10 14
supported by text 11 16 21 23 21
passage and identify 1 0 8 10 8

Table 7: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
RACE. We show the five most relevant (according to
the prediction models) n-grams for simulated levels one
and five and the two models.

wording related to “knowledge” is more frequent
in higher simulated levels, while wording related
to “uncertainty” and “mistakes” is more common
in the lowest simulated level, and this is more visi-
ble with GPT-4. As a complement to that analysis,
we show here the results obtained, separately for
GPT-3.5 and GPT-4, for the two reading compre-
hension MCQs datasets: RACE (in Table 7) and
CUP&A (in Table 8). In both cases, we show the
five most relevant n-grams according to i) GPT-3.5
and simulated level one, ii) GPT-3.5 and level five,
iii) GPT-4 and level one, and iv) GPT-4 and level
five.

D.1 Parameters for GridSearchCV

The parameters used for training the predictors of
simulated level from the explanations are the fol-
lowing:

• ’tfidf__ngram_range’:[(1, 1), (1, 2), (1, 3),
(2,3), (2,2), (3,3)],

• ’tfidf__max_df’: [0.1, 0.2, 0.3, 0.4, 0.5],

• ’tfidf__min_df’: [ 0.005, 0.01 ,0.015, 0.02],

• ’logistic__C’: [0.1, 0.5, 1, 10],

Simulated level

Relevant n-grams on
e

tw
o

th
re

e

fo
ur

fiv
e

GPT-3.5
might choose option 34 10 3 0 0
most likely choose 110 19 3 1 0
might think that 27 12 1 0 0
her work because 0 1 2 2 2
her what sing 1 1 1 1 1
would pick option 0 1 9 10 24
because would understand 0 0 0 0 6
he was unsure 2 0 1 1 2
he had not 1 1 1 1 1
he is concerned 1 1 2 1 1

GPT-4
might struggle with 80 2 0 0 0
might focus on 35 4 1 0 0
however correct is 44 14 9 4 2
struggle with abstract 58 0 0 0 0
in question and 30 6 3 1 0
would first identify 0 0 0 2 33
which is not 7 12 12 13 16
need carefully analyze 0 0 1 7 14
therefore correct is 9 17 38 48 62
other option are 16 13 19 28 33

Table 8: Number of relevant n-grams in the explanations
provided by the LLMs for different simulated levels,
CUP&A. We show the five most relevant (according to
the prediction models) n-grams for simulated levels one
and five and the two models.

• ’logistic__penalty’: [’l1’, ’l2’].

E Analysis on different educational scales

This section complements Section 4.5.3 by show-
ing the accuracy plots obtained with the different
educational scales, the full list of scores accord-
ing to the metrics to evaluation monotonicity (M ),
and the prompts used for these experiments. The
goal of this analysis is to perform a preliminary
exploration of whether it might be possible to use
different educational scales from the one to five
used in the reference prompt RP.

E.1 Exam grades (marks): A, B, C, D, F
Figure 13 shows the MCQA accuracy obtained
when prompting GPT-3.5 to simulate students that
got different exam grades, from A (best score) to
F (worst score). The plot shows a really good be-
haviour across datasets, with the MCQA accuracy
decreasing towards simulated students of lower
skills, and it is particularily good for the ARC
dataset. This is also shown by the scores obtained
with the evaluation metric M , which are shown in
Table 9. This result is particularly interesting since
the LLM does not have view of the whole exam,
but is given only one question at a time, without
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Figure 13: Evaluation of GPT-3.5 when simulating stu-
dents of grade [A, B, C, D, F] on the three datasets.

ARC RACE CUP&A
M score 0.99 0.98 0.97

Table 9: M scores obtained when prompting GPT-3.5
to simulate students that got different exam marks, sep-
arately on the three datasets.

any information about its responses to the other
questions of the exam. The updated prompts used
for this analysis are presented in Table 11, showing
in bold the differences with respect to the reference
prompt (RP).

E.2 Abstract scale: beginner, intermediate,
advanced

The results obtained when prompting GPT-3.5 to
simulate the student levels beginner, intermedi-
ate, and advanced are shown in Figure 14. For
all datasets, we can observe the desired mono-
tonic trend of increasing MCQA accuracy for in-
creasing simulated levels, and this is also shown
by the scores obtained with the evaluation metric,
shown in Table 10. The updated prompts used
for this analysis are presented in Table 12, showing
in bold the differences with respect to the refer-
ence prompt (RP). The results obtained with these
updated prompts support the finding that LLMs
(specifically GPT-3.5, in our experiments) might
indeed be used to simulate students of different
levels, although future work is needed to precisely

ARC RACE CUP&A
M score 0.97 0.98 0.98

Table 10: M scores obtained when prompting GPT-
3.5 to simulate beginner, intermediate, and advanced
students, separately on the three datasets.

a beginner an intermediate an expert
Simulated level
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Figure 14: Evaluation of GPT-3.5 when simulating stu-
dents of beginner, intermediate, and advanced levels on
the three datasets.

control the accuracy obtained with each simulated
level.
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Table 11: Prompts used for the experiments on exam marks analysed in Figure 13 in Section E.1. The first prompt is
used on ARC, the second on RACE and CUP&A. In bold the parts that are different from the reference prompts.

Prompt Student levels
SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam
have difficulty levels on a scale from one (very easy) to five (very difficult). You must assign a
difficulty level to the given multiple choice question, and select the answer choice that a grade {X}
student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that a grade {X} student would follow to select
the answer, including the misconceptions that might cause them to make mistakes”, “index”: “integer
index of the answer chosen by a grade {X} student”}
USER:
Question: “{question}”
Options: “{answer options}”

[A, B, C, D, F]

SYSTEM:
You will be shown a multiple choice question from an English reading comprehension exam, and the
questions in the exam have difficulty levels on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice
that a grade {X} student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that a grade {X} student would follow to select
the answer, including the misconceptions that might cause them to make mistakes”, “index”: “integer
index of the answer chosen by a grade {X} student”}
USER:
Reading passage: “{context}”
Question: “{question}”
Options: “{answer options}”

[A, B, C, D, F]

Table 12: Prompts used for the experiments on the additional qualitative scale ([beginner, intermediate, advanced])
analysed in Figure 14 in Section E.2. The first prompt is used on ARC, the second on RACE and CUP&A. In bold
the parts that are different from the reference prompts.

Prompt Student levels
SYSTEM:
You will be shown a multiple choice question from a science exam, and the questions in the exam
have difficulty levels on a scale from one (very easy) to five (very difficult). You must assign a
difficulty level to the given multiple choice question, and select the answer choice that {X} student
would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that {X} student would follow to select the answer,
including the misconceptions that might cause them to make mistakes”, “index”: “integer index of
the answer chosen by {X} student”}
USER:
Question: “{question}”
Options: “{answer options}”

[a beginner, an inter-
mediate, an expert]

SYSTEM:
You will be shown a multiple choice question from an English reading comprehension exam, and the
questions in the exam have difficulty levels on a scale from one (very easy) to five (very difficult).
You must assign a difficulty level to the given multiple choice question, and select the answer choice
that {X} student would pick.
Provide only a JSON file with the following structure: {“question level”: “difficulty level of the
question”, “answer explanation”: “the list of steps that {X} student would follow to select the answer,
including the misconceptions that might cause them to make mistakes”, “index”: “integer index of
the answer chosen by {X} student”}
USER:
Reading passage: “{context}”
Question: “{question}”
Options: “{answer options}”

[a beginner, an inter-
mediate, an expert]
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