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Abstract

Fact knowledge memorization is crucial for
Large Language Models (LLM) to generate
factual and reliable responses. However, the
behaviors of LLM fact memorization remain
under-explored. In this paper, we analyze the
scaling laws for LLM’s fact knowledge and
LLMs’ behaviors of memorizing different types
of facts. We find that LLMs’ fact knowledge
capacity has a linear and negative exponential
law relationship with model size and training
epochs, respectively. Estimated by the built
scaling law, memorizing the whole Wikidata’s
facts requires training an LLM with 1000B non-
embed parameters for 100 epochs, suggesting
that using LLMs to memorize all public facts
is almost implausible for a general pre-training
setting. Meanwhile, we find that LLMs can gen-
eralize on unseen fact knowledge and its scal-
ing law is similar to general pre-training. Addi-
tionally, we analyze the compatibility and pref-
erence of LLMs’ fact memorization. For com-
patibility, we find LLMs struggle with memo-
rizing redundant facts in a unified way. Only
when correlated facts have the same direction
and structure, the LLM can compatibly memo-
rize them. This shows the inefficiency of LLM
memorization for redundant facts. For prefer-
ence, the LLM pays more attention to mem-
orizing more frequent and difficult facts, and
the subsequent facts can overwrite prior facts’
memorization, which significantly hinders low-
frequency facts memorization. Our findings re-
veal the capacity and characteristics of LLMs’
fact knowledge learning, which provide direc-
tions for LLMs’ fact knowledge augmentation.

1 Introduction

Large Language Models (LLM) have demon-
strated remarkable abilities over a wide range of
tasks (OpenAl, 2023; Touvron et al., 2023; Reid
et al., 2024; Bai et al., 2023a; DeepSeek-Al, 2024;
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Figure 1: The fact capacity of LLMs with different sizes
on Wikidata, under 100 training epochs. According
to the predicted scaling law, memorizing all Wikidata
triples (15B) requires 1000B non-embed parameters.

Cai et al., 2024; Sun et al., 2024). However,
LLMs are prone to generating non-factual and fab-
ricated contents, which is usually called “hallucina-
tion” (Zhang et al., 2023; Huang et al., 2023; Rawte
et al., 2023) and undermines LLMs’ reliability.

LLMs’ factual responses highly rely on fact
memorization. Specifically, the LLM memorizes
fact knowledge during pre-training and the subse-
quent fine-tuning enables it to extract correspond-
ing fact knowledge for the given instruction (Zhu
and Li, 2023). If the base LLM does not memo-
rize specific knowledge, it will be challenging for
the fine-tuned LLM to correctly answer the corre-
sponding question (Ren et al., 2024). Additionally,
fine-tuning with unmemorized fact knowledge even
encourages LLMs’ hallucination (Lin et al., 2024;
Gekhman et al., 2024). Despite the critical role
of fact memorization, the behaviors of LLM fact
memorization remain largely under-explored. Pre-
vious work usually analyzes the pre-trained LLMs’
various abilities through the loss on unstructured
text (Kaplan et al., 2020; Hoffmann et al., 2022a),
and it is hard to reflect LLMs’ fact memorization
for two reasons: 1. The composition of pre-training
corpus is highly complicated and fact knowledge
appears in it mixedly and unevenly, which makes
it hard to accurately quantify the fact knowledge
in massive pre-training data. 2. The widely used
metric, loss, can not directly measure the LLM fact

11263

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 11263-11282
November 12-16, 2024 ©2024 Association for Computational Linguistics



memorization since not all tokens are fact-related.

This paper makes progress in quantitatively ana-
lyzing LLM fact memorization behaviors, includ-
ing the scaling laws and behaviors of memorizing
different types of facts. We focus on the memoriza-
tion of atomic facts to facilitate accurately quan-
tifying the number of facts and the memorization
accuracy. We define atomic fact knowledge as a
(key, attribute, value) triple, e.g., (SpaceX, CEO,
Elon Musk), following Allen-Zhu and Li (2024).
Given a key and an attribute, if the LLM correctly
predicts the corresponding value, we consider it to
memorize this fact knowledge. In this way, we can
accurately quantify the number of fact knowledge
and whether the LL.M fully memorizes a specific
fact, which facilitates a more accurate quantitative
analysis of LLM’s fact memorization behaviors.

Based on this setting, we analyze the LLM’s
fact memorization behaviors on massive facts from
a large real-world information table. Specifically,
we analyze the fact memorization scaling law of
LLMs and LLMs’ behaviors of memorizing differ-
ent types of fact knowledge, including the follow-
ing research questions (RQ):

RQ1: How does LLM’s fact knowledge capac-
ity scale with its size and training epochs? We
define the fact knowledge capacity as the maxi-
mum fact triple quantity that the LLM can accu-
rately memorize. We find that LLM’s fact capacity
linearly scales with its size under the same train-
ing epochs. Additionally, we find that the train-
ing epochs required for LLMs to memorize fact
knowledge is significantly larger than one and this
leads to higher training cost than general knowl-
edge learning in pre-training. Increasing training
epochs can initially increase the LLM’s fact ca-
pacity and then reach saturation, which exhibits
a trend of negative exponential law. Additionally,
we extend our experiments to the Wikidata and the
results exhibit a consistent trend, shown in Figure 1.
According to the scaling law, under 100 training
epochs, memorizing all Wikidata’s fact triples re-
quires about 1000B non-embed parameters, which
seems very costly. These indicate the necessity of
supplementing LLMs with fact knowledge by ex-
ternal information, like Retrieval-Augmented Gen-
eration (RAG) (Guu et al., 2020; Gao et al., 2024;
Asai et al., 2023; Arivazhagan et al., 2023; Li et al.,
2024; Min et al., 2023; Shi et al., 2023).

RQ2: Can LLMs efficiently memorize redundant
facts? Many facts are derivable and thus redun-

dant. For example, “Ivanka is Trump’s daughter”
can derive from “Trump is Ivanka’s father”. We
analyze whether LLMs can efficiently memorize re-
dundant facts, i.e., whether LLMs can save memo-
rization capacity when simultaneously memorizing
redundant facts. We find that LLMs struggle with
efficiently memorizing redundant information. In
general cases, when memorizing the redundant and
non-redundant information of the same scale, the
LLM exhibits a similar memorization rate. Only un-
der specialized conditions, e.g., the correlated facts
have the same direction and structure, the LLM
can efficiently memorize them. These demonstrate
LLMs’ inefficiency in redundant fact memoriza-
tion. Since massive redundant facts can appear in
pre-training data in various forms, these indicate
it is not cost-effective to use LLMs’ parameters to
store fact knowledge, and using a non-parametric
method, like RAG, can be more efficient.

RQ3: What influences LLM’s memorization pref-
erence for different types of fact knowledge?
During pre-training, LL.Ms meet various facts and
only memorize portions of them. We analyze
LLMs’ fact memorization preference in three as-
pects: frequency, difficulty and memorization order.
We find that LLMs pay more attention to memoriz-
ing more frequent and difficult facts. Additionally,
when an LLM memorizes two types of facts se-
quentially, the subsequent facts will significantly
overwrite the memorization of prior facts. These
further explain LLMs’ inferior memorization of
low-frequency facts since they appear infrequently
during pre-training process and thus can be easily
overwritten by subsequent pre-training knowledge.

Beyond fact memorization, we also analyze an
interesting topic of fact knowledge generalization:

RQ4: Can LLMs generalize on unseen fact
knowledge? What is the relation between fact
memorization and generalization?  Surprisingly,
we find that the LLM can generalize on unseen facts
to a certain level and its scaling law is highly simi-
lar to common pre-training LLM scaling law (Ka-
plan et al., 2020). The generalization accuracy is
determined by the type of fact and some types of
facts exhibit high generalizability, suggesting the
potential of improving LLMs’ factuality by adap-
tively leveraging fact generalization. Meanwhile,
we find a qualitative relation between fact memo-
rization and generalization: To the same type of
fact, the easier the LLLM is to memorize it, the bet-
ter the LLM generalizes on the unseen set. This
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indicates that both LLM fact memorization and
generalization are based on the correlation between
input and output (Geirhos et al., 2020). If there is
a stronger correlation between the input and out-
put of one type of fact, it will be easier for the
LLM to memorize and learn about the type of fact
knowledge in a unified manner. Conversely, if the
correlation is minimal, LLLM needs to memorize
facts individually, and is hard to generalize on un-
seen ones.

We summarize our contribution as follows: 1)
To the best of our knowledge, this paper is the first
to quantitatively analyze LLMs’ scaling laws and
behaviors of fact memorization on massive real-
world facts. 2) Our findings reveal the capacity and
characteristics of LLMs’ fact knowledge learning.
These results show that LLMs are highly inefficient
for fact memorization from multiple perspectives,
which suggests leveraging non-parametric methods,
e.g., RAG, to enhance the fact knowledge of LLM:s.
3) We find that LLMs can generalize on unseen
facts and different types of facts show different
generalizability, which indicates the potential of
improving LLMs’ factuality by adaptively leverag-
ing LLMs’ fact generalization. 4) We will release
our code to facilitate future research!.

2 Preliminary

In this paper, we focus on the quantitative analysis
of LLMs’ atomic fact knowledge memorization
and we introduce the experiment setup as follows.

Atomic Fact Knowledge Memorization We de-
fine atomic fact knowledge as a (key, attribute,
value) triple, e.g., (SpaceX, CEO, Elon Musk), and
we cast fact memorization as a triple value predic-
tion task. Specifically, for a fact triple (k, a, v),
we use the cross-entropy loss to train the LLM to
predict the value by the (k, a) as:

p = LLM(template,(k,a)), (1)

where k and a are the key’s name and attribute
name, and template, is the natural language tem-
plate of the attribute to make the LLM’s input more
coherent for realism. We adopt one template for
one attribute for simplicity. Our pilot experiments
show that various numbers of templates lead to
consistent results, shown in Appendix A. Since we
focus on fact memorization, we use the same input
for training and inference.

"https://github.com/StarLooo/Scaling_Law_LLM_Fact_
Memorization

Field Description Example
Company™ company name Tiktok Co., Ltd.
Credit-No social credit number  91110105MA...
Operator legal representative Lidong Zhang
Start-Date founding date 2003.11.2

Title representative title Executive Director
Type company type Co., Ltd.
Register-Capital  registered capital ¥10°

Longitude company longitude 116.497976

Table 1: Company information table, which has 22 fields
and 10M lines. “Company*” is the primary key. The
information of overall fields is shown in Appendix B.

After training on facts D = {k;, a;, vl}‘f:j'1 we
evaluate the LLM’s Memorization Rate (MR) as:

1D

MR(D) = average,_; (EM(p;,v;)), (2

where EM means exact match, and p; and v; are the
i-th fact’s prediction and value. In this way, we can
use the memorization rate to accurately quantify
the portion of facts the LLM has memorized.

Dataset This paper mainly conducts experiments
on massive facts of a large real-world company
information table, which is provided by a commer-
cial data company, INTSIG?. The table contains
various attributes of massive companies and we use
facts like (Company, Attribute, Value) for experi-
ments. The involved facts are from the real world
and the types of them are diverse, and thus closely
mirror the various facts in pre-training process. We
show the table’s statistics and sample row in Ta-
ble 1. Additionally, experiments on Wikidata also
show consistent trends (Section 3).

Implementation Details We mainly use the
model architecture and tokenizer of Qwen (Bai
et al., 2023b) and we show the results on other ar-
chitectures and tokenizers in Appendix E, which
show consistent trends. We mainly train LLMs’
fact memorization from scratch and we show the
results on pre-trained LLMs in Appendix C. For
the specific hyper-parameters of each model size
and overall implementation details, please refer to
Appendix D.

3 Fact Capacity Scaling Laws

Exploratory Experiment First, we observe the
same LLM’s memorization rate over varying num-
bers of training facts under the same training

2INTSIG is a leading company of intelligent document
recognition. https://www.intsig.com/
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Figure 2: LLMs’ memorization rate under different
numbers of training facts.

epochs. We show the results in Figure 2. We see
that the memorization rate significantly decreases
with the increasing facts. These initially show that
there is a memorization capacity upper limit for the
LLM with the same size and training epochs.

In this section, we explore the scaling laws of
LLMs’ fact capacity. We define the fact capacity
as the maximum fact quantity that the LLM can
accurately memorize as:

C = max(|D|) s.t. MR(D) > ¢%,  (3)

where D is training facts, a list of randomly sam-
pled facts from all facts, and ¢ means a high MR
close to 100%. In experiments, we set ¢% to
be 95% and enumerate Ds of varying sizes to
find the maximum |D| that MR(D) is between
[6%, (¢ + 1)%].
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Figure 3: The relation between LLMSs’ fact capacity and
their model sizes, under fixed training epochs.

Scaling Law of Fact Capacity and Model Size
We plot the fact capacities of the varying model

sizes from 30M to 0.5B, under the fixed training
epochs in Figure 3 (20M fails to reach 95% MR at
these epochs). We find that the LLM’s fact capacity
linearly scales with the model size. Meanwhile,
we find that the line fitted from points of small
model sizes (non-embed parameters <= 38M ) can
extrapolate well to large model size 0.5B (308M
non-embed parameters ~ 8 x 38M ), which shows
the robustness of the linear scaling laws.

8e5
7e5
>
2 6e5
G
S 5e5
8 4e5
G 3e5t/ - Fitting Points
fid 2e5 Prediction
b Fitted Upper Limit
1e5 . Memorization Failure
0 200 400 600 800 1000
Training Epochs
(a) 44M Model
1.8e6
1.6e6
21.4e6
G
® 1.2e6
&
3 1le6
ko] 8e5 ), »  Fitting Points
L 6e5 7 Prediction
4e5 g Fitted Upper Limit
2e5 Memorization Failure

0 200 400 600 800 1000
Training Epochs

(b) 69M Model

Figure 4: The relation between LLMs’ fact capacity and
training epochs, under fixed model size.

Scaling Law of Fact Capacity and Epochs We
plot the same LLM’s fact capacities under varying
training epochs in Figure 4. We find that with
increasing training epochs, the LLM’s fact capacity
significantly increases at the beginning and then
approaches saturation at about 1000 epochs, and
we use the negative exponential law to fit the trend:

C =C"—ag-exp(—fg - Epoch), (4)

where C* means the LLM’s fact capacity saturation
when epochs approach infinity, and «r and S are
constants. We further train the LLM on fact quan-
tity which is 1.1 times of C'* and then find the LLM
fails to accurately memorize all of those training
facts, under 3000 epochs (almost saturated), which
verifies the effectiveness of the fitting of negative
exponential law. Additionally, for those small train-
ing epochs, e.g., < 35, the LLM almost can not
accurately memorize facts, and this shows that the
cost of fact memorization is significantly higher
than general knowledge learning by pre-training,
which usually requires only one epoch (Cai et al.,
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2024). This result indicates that it is challenging
for the LLM to memorize those low-frequency fact
knowledge in pre-training and up-sampling those
facts can be a potential solution.

Experiments on Wikidata We extend our exper-
iments to Wikidata. Specifically, we use the fact
triples from Wikidata as the training facts and plot
the relation between the fact capacity and LLM’s
size in Figure 1. We find that the results on Wiki-
data also show a linear relation between the fact ca-
pacity and the model size, which demonstrates the
generality of the linear scale of the capacity param-
eter. According to the fitted line, we estimate that
it requires an LLM with 1000B non-embed param-
eters to fully memorize all of Wikidata fact triples
(about 15B?) under 100 training epochs, which
seems costly. Since Wikidata’s fact knowledge is
only a subset of all public facts, our analysis in-
dicates that it is very challenging for an LLM to
memorize all public fact knowledge in the common
LLM size and pre-training setting, which shows the
necessity of enhancing LLMs’ fact knowledge by
external information, e.g., RAG (Gao et al., 2024).

4 Redundant Fact Memorization

In this section, we explore whether LLMs can ef-
ficiently memorize redundant facts, i.e., whether
LLMs can save memorization capacity when si-
multaneously memorizing redundant facts. Specif-
ically, we conduct experiments on three types of
redundant facts: 1) The forward and reverse ver-
sions of the same fact knowledge 2) The correlated
facts of the same key 3) Single-hop facts and their
derivable multi-hop facts. Additionally, we ana-
lyze whether learning abstract abilities occupies
the fact memorization capacity. We set the training
epoch as 1000 to make the LLM’s memorization
saturated, unless otherwise specified.

The Same Fact of Different Directions In this
section, we analyze whether the LLM can effi-
ciently memorize the forward and reverse versions
of the same facts. The forward fact is predicting
the value based on the company name and attribute,
as in Eq (1). The reverse fact is predicting the com-
pany based on the attribute’s value (Berglund et al.,
2024; Allen-Zhu and Li, 2023). We select three
highly reversible attributes, “Operator”, “Credit-
No” and “Register-No”for the experiment. Specif-
ically, we compare the memorization rate of the

3https://www.Wikidata.org/wiki/Property:P10209
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Figure 5: LLMs’ memorization of the same facts with
different directions, where “*” means facts are from
another group of keys. The right is the learning curves.

following three groups: 1) separately memorizing
the forward or reverse version of the same facts.
2) simultaneously memorizing the forward and re-
verse versions of the same facts (redundant). 3)
simultaneously memorizing the forward facts and
the reverse version of another set of facts (non-
redundant). The number of each direction’s facts is
the same and thus the memorization load of group
2 and 3 is consistent. We show the results on 41M
model in Figure 5. We also plot corresponding
learning curves in Figure 5, which show that the
LLMs’ fact memorization is almost saturated. The
results on 30M model are shown in Appendix F and
show similar trends. We see that simultaneously
memorizing facts of different directions leads to a
significantly lower MR than separately memorizing
them and the MR of simultaneous memorization is
lower than the half of separate memorization.

These show that the LLM does not compatibly
memorize them and memorizing different direc-
tions of the same fact even conflicts with each other.
Meanwhile, memorizing different directions of the
same group of facts (redundant) has a similar mem-
orization rate to memorizing different groups of
facts (non-redundant). These show that when the
LLM memorizes the same facts in different direc-
tions, it seems to memorize them separately like
memorizing independent facts, which reflects the
inefficiency of LLM memorization for the same
facts with different directions (Golovneva et al.,
2024). Since the massive facts can be described in
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different directions, these results can indicate that
the LLM’s parametric knowledge is not efficient
for fact memorization.

Correlated Facts of the Same Key In this sec-
tion, we analyze whether the LLM can efficiently
memorize the correlated facts of the same key, e.g.,
a company'’s type and its type code. Specifically,
we select two combinations of correlated attributes
to conduct analysis and additionally adopt two un-
related combinations as a comparison. For each
combination, we compare the memorization rate of
the following three groups: 1) individually memo-
rizing facts of a single attribute; 2) simultaneously
memorizing facts of two attributes on the same
companies (if attributes are correlated, these facts
will be redundant); 3) simultaneously memoriz-
ing one attribute’s facts on a group of companies
and another attribute’s facts on another group of
companies (non-redundant). The number of each
attribute’s facts is the same and thus the memoriza-
tion load of group 2 and 3 is consistent.

99 AL MR 90 AL MR
98 A2 MR 86 A2 MR

Al A2 AL &A2 Al &A2+ Al* & A2
Training Facts (Al: Title, A2: Title-Code)

AL & A2 Al &A2* Al* & A2
Training Facts (AL: Type, A2: Type-Code)

= ALMR = ALMR
45 A2 MR 81 A2 MR

Al A2 AL&A2 AL&A2" AL*&A2 Al A2 AL&A2 AL&A2" AL*&A2
Training Facts (Al: Longitude, A2: Operator) Training Facts (Al: Start-Date, A2: Operator)

Figure 6: Memorization on correlated facts, where “*”
means that facts are from another group of keys.

The results are shown in Figure 6 and Ap-
pendix G. We find that simultaneously memorizing
correlated attributes leads to a higher memoriza-
tion rate than separate memorization, which shows
LLMs can efficiently memorize one key’s corre-
lated attributes, and correlated fact memorization
can facilitate the individual fact’s memorization.
Meanwhile, for those unrelated attributes, simul-
taneously memorizing them leads to a decreased
memorization rate, which shows that whether LLM
can compatibly memorize one key’s facts highly
depends on the correlation of those facts. While
it is hard to inject new correlated knowledge into
LLMs (Allen-Zhu and Li, 2023), these results indi-
cate the potential of additionally memorizing cor-
related facts in pre-training since they can be com-
patibly memorized.

Derivable Multi-hop Fact In this section, we
analyze whether the LLM can efficiently memorize
derivable facts. For example, when the LLM mem-
orizes the longitude of two companies, can it addi-
tionally memorize their longitude gap efficiently?
We explore this question on facts about attributes
“Longitude” and “Start-Date”, and choose their gap
as derivable 2-hop facts. For 2-hop facts of one at-
tribute, given two different keys, we train the LLM
to predict the value gap of this attribute. Specif-
ically, we compare the memorization rate of the
following three groups: 1) separately memorizing
single-hop facts and their derivable 2-hop facts. 2)
simultaneously memorizing single-hop facts and
their derivable 2-hop facts (redundant). 3) simul-
taneously memorizing single-hop facts and 2-hop
facts derived from another set of single-hop facts
(non-redundant). We control the numbers of 1-hop
facts and 2-hop facts to be equal. The results are
shown in Figure 7. We find that group 2 leads to a
significantly lower memorization rate than group
1, which shows that the memorization of derivable
2-hop facts is not compatible with corresponding
1-hop facts. Additionally, the memorization rate
of group 2 is similar to group 3. This shows that
when the LLM memorizes single-hop facts and
their derivable facts, it seems to memorize them
separately like memorizing irrelevant facts. This
reflects the inefficiency of LLM memorization for
derivable facts, which hinders the LLM’s fact ca-
pacity for massive derivable facts in pre-training
corpus (Ju et al., 2024).

= 1-Hop: Longitude MR
2-Hop: Longitude Gap MR

mmm 1-Hop: Start-Date MR
2-Hop: Start-Date Gap MR

1-Hop 2-Hop 1&2 16&2% 1-Hop 2-Hop 1&2 16&2%
Training Facts Training Facts

(a) Longitude (b) Start-Date

Figure 7: LLM memorization for derivable facts, where
“*” means that facts are from another group of keys.

Fact Memorization Meets Abstract Ability
Learning We explore whether abstract ability
learning occupies LLMs’ fact memorization ca-
pacity. Specifically, we compare the fact MR or
test accuracy of two groups: 1) separately learning
fact knowledge and abstract ability 2) simultane-
ously learning fact knowledge and abstract abilities.
We use SNLI (MacCartney and Manning, 2008)
and Amazon Sentiment Analysis (McAuley and
Leskovec, 2013) for abstract ability learning. The
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frequency of facts and abstract ability examples is
the same. The results are shown in Figure 8. We
see that additionally learning abstract abilities de-
creases the fact memorization rates. Meanwhile,
the incorporation of fact knowledge slightly hurts
the classification tasks’ test accuracy. These in-
dicate that fact memorization and abstract ability
learning will influence each other and occupy the
LLMs’ knowledge capacity jointly, which further
exacerbates the challenges of LLMs memorizing
facts during pre-training.
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SNLI Tongitude
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(a) Longitude & SNLI

Tongitude & SNLT TongitudeLongitude & Amazon-CLS

Training Facts

(b) Longitude&Amazon-CLS

Figure 8: The influence of abstract ability learning to
LLM’s fact memorization.

5 Fact Memorization Preference of LLMs

We analyze LLMs’ fact memorization preference in
three aspects: frequency, difficulty and memoriza-
tion order. Since this section focuses on preference,
we select irrelevant facts to conduct experiments.
Specifically, we use the combination of facts in the
company information table and a specialized subset
of Wikidata facts (Book — Author).

Frequency We compare the respective memo-
rization rate of simultaneously memorizing two
attributes under different frequencies. The results
on “Longitude & Author” and “Operator & Author”
are shown in Figure 9. We see that the higher fre-
quency leads to a significantly higher memorization
rate and inhibits low-frequency facts’ memoriza-
tion (Mallen et al., 2023). This indicates the impor-
tance of increasing the frequency of low-frequency
facts in pre-training corpus to facilitate LLMs’
memorization of them. However, since facts in
pre-training corpus usually appear in a complicated
and mixed manner, it is non-trivial to separately
control their respective frequency, which further
increases the challenges for LLMs to memorize
low-frequency facts.

Difficulty We compare the respective memoriza-
tion rate of three groups: 1) using LLM of size
2 x N to simultaneously memorize facts of two at-
tributes with different memorization difficulties; 2)
using LLM of size N to separately memorize facts

== ongitude MR = Operator MR

Author MR Author MR

MR (%)
MR (%)

11 3:1 11 31
Operator : Author Operator : Author

(a) Longitude & Author (b) Operator & Author

Figure 9: The effect of frequency for fact memorization.

= Longitude MR
Credit-No MR

= Longitude MR
Operator MR

Tongitude Credit-No__ Longitude & Credit-No

Training Facts

(a) Longitude & Credit-No

Longitude Operator _ Longitude & Operator
Training Facts

(b) Longitude & Operator

Figure 10: The effect of difficulty for fact memorization.

of each attribute. In group 1 and 2, the number of
facts of each attribute is the same and thus the av-
erage fact capacity for each attribute is consistent.
In this way, we can observe the LLM’s preference
when simultaneously memorizing two attributes.
The results on “Longitude & Credit-No” and “Lon-
gitude & Operator” are shown in Figure 10 and
more results on other combinations are shown in
Appendix H. We define the difficulty of facts ac-
cording to the memorization rate under the same
training size. In group 2, the memorization rates of
attributes “Credit-No” and “Operator” are higher
than “Longitude” and thus they are easier to mem-
orize. Compared with group 2, the memorization
rate of difficult facts and easy facts in group 1 in-
creases and decreases, respectively. These show
that when LLLMs memorize different types of facts,
they tend to pay more attention to the facts that are
harder to memorize.

Memorization Order We compare the memo-
rization rate of simultaneously memorizing facts
of two attributes in different memorization orders.

Training Facts Longitude MR Author MR
Longitude 20.9 -
Author - 76.1
Longitude=>Author 0 13.1
Author=-Longitude 17.7 0

Training Facts Credit-No MR  Operator MR

Credit-No 30.7 -
Operator - 38.9
Credit-No=-Operator 0 32.6
Operator=-Credit-No 20.6 0.1

Table 2: The influence of memorization order. “A=-B”
means memorizing A before B.
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The results are shown in Table 2. We find that
the memorization rate of earlier facts decreases to
almost zero and the subsequent memorized facts al-
most refresh the LLM’s fact memorization. These
indicate a potential reason for LLM’s inferior mem-
orization of low-frequency facts: maybe some of
them only appear in the early stage of pre-training
process and they were almost overwritten by the
subsequent pre-training knowledge. Additionally,
the MR of subsequent facts is lower than its individ-
ual memorization, which demonstrates the impor-
tance of evenly distributing various types of facts
in pre-training process.

6 Fact Generalization of LLMs

Beyond the fact memorization, we explore an inter-
esting question: can LLMs generalize on unseen
fact knowledge? Specifically, we train the LLM to
memorize facts of a group of keys and test it on
unseen keys’ facts. We show each attribute’s gen-
eralization accuracy (exact match) of 44M model
in Figure 12. We also test results of 30M model
and observe similar trends (see Appendix I). We
observe that facts on most of the attributes have a
generalization accuracy greater than zero, which
indicates that LL.Ms can generalize on unseen fact
knowledge to a certain level.

To analyze why the LLM can generalize on fact
knowledge, we conduct a case study on facts of
three attributes and show the cases in Appendix J.
We find that LLMs’ fact generalization depends
on the correlation between input (key) and out-
put (value) (Geirhos et al., 2020). For a specific
type of fact (attribute), the higher correlation be-
tween the key and value leads to higher general-
ization accuracy. For example, the LLM may cor-
rectly predict an unseen company’s longitude if
the company name contains a region name and the
training dataset contains the longitude of compa-
nies with the same region name. Or it can roughly
estimate the company’s register-capital according
to company size indicated by the company name,
e.g., “Fruit shop”— (¥10* ~ ¥10°) or “Investment
company”— (¥107 ~ ¥10%). Meanwhile, differ-
ent types of facts have different generalizability.
For those facts with obvious patterns, the LLM
can achieve reliable generalization. For those at-
tributes with weak correlation, although the LLM
does not know exactly the facts, it can identify the
rough range of facts. These suggest the potential
of adaptively leveraging LLM’s fact generalization:

1. selectively leveraging generalization of those
highly generalizable facts; 2. if the LLM does not
exactly know the whole fact, it can response with
a part of the fact, e.g., a rough range, to make its
response more informative and thus helpful.

Fact Generalization Scaling Law Additionally,
we analyze the scaling law of LLMs’ fact knowl-
edge generalization. Specifically, we plot the
LLMs’ loss values on test fact knowledge under
different training fact quantities, following Kaplan
et al. (2020). The results are shown in Figure 11.
We find that the test loss on fact generalization also
follows the power-law (Kaplan et al., 2020) as:

L(D) = D,  D°", 5)

where D is the number of training facts, D. and
«ap are constant numbers. This trend is similar with
general pre-training (Kaplan et al., 2020), which
indicates that LLMs follow a similar learning mech-
anism in learning factual knowledge as they learn
general knowledge in pre-training (OpenAl, 2023).

25 Prediction on 44M 30|l e
: Observations on 44M

22,0 Q225
3

Prediction on 97M
e Observations on 97M

15 20
3 7
210 Q15

0.5 1.0

0 2e6 4e6 6e6 8e6 le7 1.2e 0
The Number of Training Facts

2e6 4e6 6e6 8e6 le7 1.2e
The Number of Training Facts

(a) 44M (b) 97M

Figure 11: LLMs’ fact generalization loss across differ-
ent numbers of training facts.

Relation between Fact Memorization and Gen-
eralization We plot the memorization rate and
generalization accuracy for each type of fact in Fig-
ure 12. We find that the generalization accuracy of
one type of fact highly correlates with its memo-
rization rate. For one type of fact, the higher memo-
rization rate leads to higher generalization accuracy.
These indicate that both LLM fact memorization
and generalization are based on the correlation be-
tween input and output (Geirhos et al., 2020). If
there is a stronger correlation between the input
and output, it will be easier for the LLM to memo-
rize and learn about the type of fact knowledge in a
unified manner. If the correlation is minimal, LLM
needs to memorize facts individually, and is hard
to generalize on unseen ones.
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Figure 12: Memorization and generalization over facts of different types, on 44M LLM trained by 10M facts.

7 Related Work

Understanding the scaling behaviors of LLMs is
important for decisions about the key choice design
of LLMs, e.g., model size or pre-training data (Ka-
plan et al., 2020; Gao et al., 2022; Clark et al.,
2022). Most of the existing work focuses on the sce-
nario of general pre-training or downstream tasks.
Kaplan et al. (2020) observe the power law rela-
tionships between the LLM perplexity and size of
LLM and dataset. Hoffmann et al. (2022b) explore
the optimal token quantity and LLM size for pre-
training under a specified compute budget and find
that the LLM size and training tokens should be
scaled equally for compute-optimal LLM training.
Besides pre-training, researchers find that the per-
formance of downstream tasks can be predicted
from the LLM size and training data scale (Hernan-
dez et al., 2021; Ghorbani et al., 2021; Isik et al.,
2024). Different from them, our paper specifically
focuses on scaling laws of LLMs’ fact memoriza-
tion and behaviors of memorizing different types of
facts, which is critical for LLMs’ factual responses.

Allen-Zhu and Li (2024), concurrently to our
work, explore scaling laws of LLMs’ memoriza-
tion on synthetic facts. Our work differs in several
ways: 1. We analyze LLM’s fact memorization
on real-world facts while they use randomly gen-
erated facts, which have a non-negligible gap with
real-world facts. According to our findings, we
conclude that memorizing all Wikidata’s facts re-
quires 1000B non-embed parameters, which indi-
cates that using an LLM to memorize all public
facts is almost not plausible. 2. We additionally
analyze LLMs’ behaviors of learning fact knowl-
edge in different aspects, including compatibility,
preference and generalization, which further pro-
vide directions for fact knowledge augmentation of
LLMs.

8 Conclusion

We analyze LL.Ms’ fact memorization behaviors
and these are our main conclusions: 1) The fact

capacity has a linear relationship with model size
and a negative exponential law relationship with
training epochs. According to the built scaling law,
we estimate that memorizing all of Wikidata fact
triples requires training an LLM with 1000B non-
embed parameters for 100 epochs, which seems
very costly; 2) We find that LLMs struggle with
efficiently memorizing redundant facts. Only for
redundant facts with the same direction and struc-
ture, LLMs can memorize them in a unified manner.
3) The LLM prefers memorizing more frequent and
difficult facts. 4) LLMs can generalize on unseen
fact knowledge and its scaling law is similar to
general pre-training.

Limitations

We list limitations of this paper as follows:

* Since this paper focuses on fact knowledge
memorization, each atomic fact individually
forms a training example and we keep the
same inputs for the training and inference
stages. This has a small gap with pre-training
setting, which usually uses unstructured text
and concatenates short sentences into a large
chunk for training efficiency. We regard the
exploration of facts of unstructured text as
future work.

* As shown in Figure 4, fact memorization re-
quires hundreds of training epochs, which
leads to significant computational costs. Lim-
ited by computational resources, the maxi-
mum LLM size used in experiments is 0.5B.
We regard the exploration of larger scales as
future work.

Ethics Statement
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mation table and Wikidata fact triples. The com-
pany information table is provided by a commercial

11271



data company and we obtain its permission to con-
duct this research. Meanwhile, the trained models
are only for LLM fact memorization analytical re-
search and will not be made public.

Acknowledgments

This work was supported by the National Key
Research and Development Program of China
(No0.2022CSJGGO0801). The computations in this
research were performed using the CFFF platform
of Fudan University.

References

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of
language models: Part 3.2, knowledge manipulation.
Preprint, arXiv:2309.14402.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of lan-
guage models: Part 3.3, knowledge capacity scaling
laws. Preprint, arXiv:2404.05405.

Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi
Chen, William Yang Wang, and Zhiheng Huang.
2023. Hybrid hierarchical retrieval for open-domain
question answering. In Findings of the Associ-
ation for Computational Linguistics: ACL 2023,
pages 10680—-10689, Toronto, Canada. Association
for Computational Linguistics.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
Preprint, arXiv:2310.11511.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023a.
Qwen technical report. Preprint, arXiv:2309.16609.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023b.
Qwen technical report. Preprint, arXiv:2309.16609.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. 2024. The reversal curse: LIms
trained on "a is b" fail to learn "b is a". Preprint,
arXiv:2309.12288.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chenggqi Lv,
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,
and Dahua Lin. 2024. Internlm2 technical report.
Preprint, arXiv:2403.17297.

Aidan Clark, Diego de las Casas, Aurelia Guy,
Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake Hechtman, Trevor
Cai, Sebastian Borgeaud, George van den Driess-
che, Eliza Rutherford, Tom Hennigan, Matthew John-
son, Katie Millican, Albin Cassirer, Chris Jones,
Elena Buchatskaya, David Budden, Laurent Sifre,
Simon Osindero, Oriol Vinyals, Jack Rae, Erich
Elsen, Koray Kavukcuoglu, and Karen Simonyan.
2022. Unified scaling laws for routed language mod-
els. Preprint, arXiv:2202.01169.

DeepSeek-Al. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Leo Gao, John Schulman, and Jacob Hilton. 2022.
Scaling laws for reward model overoptimization.
Preprint, arXiv:2210.10760.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673.

11272


https://arxiv.org/abs/2309.14402
https://arxiv.org/abs/2309.14402
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://doi.org/10.18653/v1/2023.findings-acl.679
https://doi.org/10.18653/v1/2023.findings-acl.679
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2210.10760
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://doi.org/10.1038/s42256-020-00257-z

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal,
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024.
Does fine-tuning llms on new knowledge encourage
hallucinations? Preprint, arXiv:2405.05904.

Behrooz Ghorbani, Orhan Firat, Markus Freitag,
Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. 2021. Scal-
ing laws for neural machine translation. Preprint,
arXiv:2109.07740.

Olga Golovneva, Zeyuan Allen-Zhu, Jason Weston, and
Sainbayar Sukhbaatar. 2024. Reverse training to
nurse the reversal curse. Preprint, arXiv:2403.13799.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. Preprint,
arXiv:2002.08909.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
Preprint, arXiv:2102.01293.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022a. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022b. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. Preprint, arXiv:2311.05232.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh,
Dimitris Paparas, Sergei Vassilvitskii, and Sanmi
Koyejo. 2024. Scaling laws for downstream task

performance of large language models. Preprint,
arXiv:2402.04177.

Tianjie Ju, Yijin Chen, Xinwei Yuan, Zhuosheng Zhang,
Wei Du, Yubin Zheng, and Gongshen Liu. 2024.
Investigating multi-hop factual shortcuts in knowl-

edge editing of large language models. Preprint,
arXiv:2402.11900.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue
Yin, Tianxiang Sun, and Xipeng Qiu. 2024. Lla-
trieval: Llm-verified retrieval for verifiable genera-
tion. Preprint, arXiv:2311.07838.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan
Xiong, Jimmy Lin, Wen tau Yih, and Xilun Chen.
2024. Flame: Factuality-aware alignment for large
language models. Preprint, arXiv:2405.01525.

Ilya Loshchilov and Frank Hutter. 2019.
coupled weight decay regularization.
arXiv:1711.05101.

De-
Preprint,

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 521-528, Manchester, UK.
Coling 2008 Organizing Committee.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. Preprint, arXiv:2212.10511.

Julian J. McAuley and Jure Leskovec. 2013. Hidden
factors and hidden topics: understanding rating di-
mensions with review text. In Seventh ACM Confer-
ence on Recommender Systems, RecSys 13, Hong
Kong, China, October 12-16, 2013, pages 165—-172.
ACM.

Sewon Min, Suchin Gururangan, Eric Wallace, Han-
naneh Hajishirzi, Noah A. Smith, and Luke Zettle-
moyer. 2023. Silo language models: Isolating le-
gal risk in a nonparametric datastore. Preprint,
arXiv:2308.04430.

OpenAl. 2023. Gpt-4 technical report.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.
Preprint, arXiv:2309.05922.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, loannis Antonoglou, Ro-
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, James Molloy, Jilin Chen, Michael
Isard, Paul Barham, Tom Hennigan, Ross Mcll-
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,
Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, Clemens Meyer, Gregory Thornton,
Zhen Yang, Henryk Michalewski, Zaheer Abbas,

11273


https://arxiv.org/abs/2405.05904
https://arxiv.org/abs/2405.05904
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2403.13799
https://arxiv.org/abs/2403.13799
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2102.01293
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2402.04177
https://arxiv.org/abs/2402.04177
https://arxiv.org/abs/2402.11900
https://arxiv.org/abs/2402.11900
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2405.01525
https://arxiv.org/abs/2405.01525
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://aclanthology.org/C08-1066
https://aclanthology.org/C08-1066
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2212.10511
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://arxiv.org/abs/2308.04430
https://arxiv.org/abs/2308.04430
https://api.semanticscholar.org/CorpusID:257532815
https://arxiv.org/abs/2309.05922
https://arxiv.org/abs/2309.05922

Nathan Schucher, Ankesh Anand, Richard Ives,
James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro-
man Ring, Stephen Spencer, Eren Sezener, and et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. CoRR,
abs/2403.05530.

Mengjie Ren, Boxi Cao, Hongyu Lin, Cao Liu, Xianpei
Han, Ke Zeng, Guanglu Wan, Xunliang Cai, and
Le Sun. 2024. Learning or self-aligning? rethinking
instruction fine-tuning. Preprint, arXiv:2402.18243.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. Preprint,
arXiv:2301.12652.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li,
Qinyuan Cheng, Xiangyang Liu, Hang Yan, Yunfan
Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao,
Ke Chen, Yining Zheng, Zhejian Zhou, Ruixiao Li,
Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang,
Lingling Wu, Zhangyue Yin, Xuanjing Huang, Yu-
Gang Jiang, and Xipeng Qiu. 2024. Moss: An open
conversational large language model. Machine Intel-
ligence Research.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the Al ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

Zeyuan Allen Zhu and Yuanzhi Li. 2023. Physics of
language models: Part 3.1, knowledge storage and
extraction. CoRR, abs/2309.14316.

11274


https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://arxiv.org/abs/2402.18243
https://arxiv.org/abs/2402.18243
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2301.12652
https://doi.org/10.1007/s11633-024-1502-8
https://doi.org/10.1007/s11633-024-1502-8
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.14316
https://doi.org/10.48550/ARXIV.2309.14316
https://doi.org/10.48550/ARXIV.2309.14316

A The Effect of Template Quantity

In this section, we analyze the influence of template
quantity on memorization rate. Specifically, we
observe the memorization rate of the same 200K
facts under various numbers of templates using a
30M model. The results are shown in Figure 13.

We see that the memorization rates over different
numbers of templates are at a consistent level. Even
when the paraphrase quantity increases to 32, the
memorization rate of specific attribute facts only
decreases to as low as 75% of the original. There-
fore, the number of templates does not significantly
influence the LLM’s fact memorization.
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Figure 13: Memorization on different templates.

B Attributes of Table

We list the information and average length of over-
all fields of the used large information table in
Table 4.

C The Effect of Pre-training on Fact
Memorization

We compare the fact knowledge learning from
scratch and pre-trained checkpoints. The results are
shown in Table 5. We find that the pre-trained ini-
tialization leads to higher generalization accuracy
and consistent memorization rate of training data.
These show that the pre-trained knowledge almost
does not influence the LLMs’ memorization of new
fact knowledge and can improve LLMs’ general-
ization on unseen facts. We leave further analyses
of pre-trained influence to fact generalization as
future work.

D Implementation Details

In this section, we first introduce the general im-
plementation details (model, training, dataset) and

then introduce details of the specific settings for
each individual experiment.

D.1 Model Details

We mainly use the model architecture and tokenizer
of Qwen-1.5 (Bai et al., 2023b). For more details of
Qwen, we refer the reader to the original paper (Bai
et al., 2023b). We mainly set the hyper-parameters
of each LLM’s size according to the following as-
pects: 1) The aspect ratio, which is the ratio of
the hidden size to the number of layers, should be
maintained at a moderate value. Following conven-
tional design practices, we control the aspect ratio
within the range of 128/3 (as adopted by Qwen-
1.5-0.5B) to 128 (as adopted by Qwen-1.5-7B). 2)
The intermediate size should be approximately 8/3
times of the hidden size and be divisible by 128.
We provide the detailed hyper-parameters of model
architecture in Table 6.

D.2 Training Details

We configure the global batch size as 512 and em-
ploy the AdamW optimizer (Kingma and Ba, 2017;
Loshchilov and Hutter, 2019). In exploratory exper-
iments, we find that LLMs with different sizes are
highly sensitive to learning rates and thus we search
for the best learning rates for each size’s LLM and
different datasets to achieve the optimal memoriza-
tion rate, under small training epochs. Meanwhile,
we adopt the cosine learning rate scheduler. We list
the learning rates of each model size in Table 6. It’s
observed that the optimal learning rates differed be-
tween the company information table and Wikidata,
and the latter requires a higher learning rate. Most
of these experiments are conducted using either 8
NVIDIA RTX 3090s or 4 NVIDIA A800s-80GB,
utilizing BFloat16 mixed precision training. The
training speed of models with different sizes can
be referred to in Table 3.

D.3 Dataset Details

In this paper, we conduct experiments on fact
triples from a large real-world company informa-
tion table and Wikidata*. The company informa-
tion table is provided by a commercial data com-
pany and we obtain its permission to conduct this
research. For Wikidata, we follow this public
github repository” to get all of its fact triples. The
facts of the company information table are in Chi-
nese and Wikidata’s facts are in English. For the

*https://www.wikidata.org/wiki/Wikidata:Introduction
>https://github.com/neelguha/simple-wikidata-db
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Model Identifier = Training Speed
20M 800
30M 700
41M 650
44M 600
69M 500
97M 400
116M 300
200M 225
0.5B 100

Table 3: Training speeds (triples per second per GPU) of
models of different sizes, which are based on NVIDIA
RTX 3090.

key and entity in the company information table
and Wikidata, we use their natural language name
instead of the original key (uid) to closely mirror
the facts in pre-training data.

D.4 Details on Scaling Law of Fact Capacity
and Model Size

We conduct a series of experiments using various
model sizes ranging from 30M to 0.5B (20M fails
to reach 95% MR at these epochs), while keep-
ing the training epochs fixed. We use the number
of non-embed parameters to measure model size,
following Kaplan et al. (2020). When randomly
sampling facts, we first randomly sample keys and
then use facts of these keys’ all attributes to make
fact type distributions consistent. In these experi-
ments, we use |D| * M R(D) to measure the fact
capacity more accurately since the memorization
rate may vary slightly for each D. The objective is
to investigate the relationship between fact capacity
and model size. Specifically, we utilize the results
from models with fewer than 200M parameters to
establish a scaling law formula. We then validate
the extrapolation by employing models with 200M
and 0.5B parameters on both the company informa-
tion table and Wikidata. For Wikidata, we set the
fixed training epochs to 100, while for the company
information table, we use 50 and 200 epochs. In
this way, we can observe the results across different
datasets and epochs, which makes our results and
the built scaling law more robust. Besides, the tem-
plates we use for the company information table
are listed in Table 7. For Wikidata, since it contains
tremendous types of fact (relations), it is costly to
design an individual template for each type and
thus we use a unified template: "For this entity,
(E), the entity forming the relationship ‘(R)’ is:".

D.5 Details on Scaling Law of Fact Capacity
and Epochs

To explore the relationship between fact capacity
and memorization epochs, we conduct experiments
using different quantities of fact triples from the
company information table and train 44M/69M
models to memorize these triples. To ensure con-
vergence of loss and memorization rate, we set the
maximum memorization epochs to be 1000 or even
more. To save the computational cost, we manu-
ally stop the training once the model achieves a
sufficiently high memorization rate (>95%). For
each quantity of triples, we identify the first epoch
in which the model attains a memorization rate
higher than 95%. We use this triple quantity as
the memorization fact capacity at this epoch. After
collecting these data points, we fit a negative expo-
nential curve as shown in Figure 4. Furthermore,
we observe that for quantities of triples exceeding
the fact capacity saturation point, the model is un-
able to achieve a memorization rate higher than
95% under 3000 training epochs, which almost
reaches saturation.

D.6 Details on Redundant Fact Memorization

All of this section’s experiments are conducted un-
der 1000 epochs to ensure that the model’s memo-
rization reaches saturation.

For experiments on memorization of the same
facts with different directions, we employ a 30M
model and a 41M model to enhance model size di-
versity, and the triple quantity of each fact direction
is 100K for the 30M model and 200K for the 41M
model. The templates employed for forward and
reverse versions of fact knowledge can be found in
Table 8.

For experiments on memorization of correlated
facts with the same key, we employ a 20M model.
To prevent the LLM from fully memorizing all facts
(which makes the memorization rates of groups
100% and hard to distinguish), the number of triples
for each attribute is set to be different, with 400K
triples for attributes in group 2 (Title, Title-Code,
Type, and Type-Code), and 100K triples for at-
tributes in group 3 (Longitude, Start-Date, and Op-
erator).

For experiments on memorization of derivable
multi-hop facts, we employ a 30M model. The
number of triples used for single-hop and two-hop
knowledge is set to 200K. The templates employed
for two-hop knowledge can be found in Table 9.
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For experiments on mixed training of fact mem-
orization and abstract ability learning, we employ
a 30M model to train on a combined dataset com-
prising 200K fact memorization triples and 200K
samples from either the SNLI or Amazon-CLS
train split. The templates utilized for SNLI and
Amazon-CLS can be found in Table 10.

D.7 Details on Fact Memorization Preference

Since this section focuses on memorization pref-
erence analysis, we select a combination of an at-
tribute (Longitude or Operator) from the company
information table and an attribute (Author) from
Wikidata, to avoid the correlation between facts.
The model used for these experiments has a size of
30M, and the quantity of each type of fact knowl-
edge (not triples) is set to 100K. To manipulate the
frequency, we evenly up-sample one type of fact
knowledge, thereby increasing its triple quantity.
For experiments investigating the difficulty pref-
erence of LLMs in memorization, we employ both
a 30M model and a 41M model. The number of
non-embed parameters in the 41M model is ap-
proximately twice that of the 30M model. In each
experiment, we utilize 100K fact triples for each
attribute (Longitude, Operator, and Credit-No).
For experiments investigating the memorization
order preference of LLMs, we load a pre-trained
checkpoint of a 30M model that has already trained
to memorize 200K fact triples of one attribute. We
then continue training this model to memorize an
additional 200K fact triples of another attribute.
This allow us to observe the influence of the mem-
orization order on the model’s performance.

E Supplement Experiment for Scaling
Law of Fact Capacity and Model Size

Considering that 1. Previous work (Kaplan et al.,
2020; Allen-Zhu and Li, 2024) shows that the spe-
cific architecture does not influence the scaling
law’s form 2. Our computational resources are
limited, we mainly conducted experiments on the
Qwen LLMs. Here we also supplement the exper-
iments on other widely used LLM architectures
such as Llama3 and Mistral in Figure 14. Similar
to Figure 3, the results also show a consistent lin-
ear relationship between model capacity and model
size, and also achieve good extrapolation, which
enhances the reliability and robustness of our es-
tablished scaling law.
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Figure 14: The relation between LLMs’ fact capacity
and their model sizes, under 50 training epochs.

F Supplement Experiment for
Memorizing Same Facts with Different
Directions

We also analyze memorizing facts with different
directions on the 30M model with 100K training
facts and the results are shown in Figure 15, which
exhibit the same trend as experiments of the 41M

model.
Reverse
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Figure 15: LLMs’ memorization of the same facts with
different directions, on 30M model with 100K facts of
each direction, where “*” means facts are from another
group of keys. The right side is the learning curves.

G Supplement Experiment for
Memorizing Correlated Facts of the
Same Key

We also analyze memorizing correlated facts of the
same key on some other attributes and the results
are shown in Figure 16, which exhibit a consistent
trend as experiments in Figure 6.
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Figure 16: Supplementary results of memorization on
correlated facts, where “*” means that facts are from
another group of keys.

H Supplement Experiment for Difficulty
Preference of LLM Fact Memorization

We also analyze the difficulty preference when
LLMs memorize fact knowledge using some other
combinations of attributes, and the results are
shown in Figure 17, which exhibit a consistent
trend as experiments in Figure 10.

= Credit-No MR
Reg-Org MR

Reg-Capl __ Operator & Reg-Capi Credit-No Credit-No & Reg-Org
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Training Facts
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Figure 17: Supplementary results of the effect of diffi-
culty for fact memorization, where “Reg-Capi”, “Reg-
Org”, and “St-Date” are abbreviations for “Register-
Capi”, “Register-Org”, and “Start-Date”, respectively.

I Supplement Experiment for Relation
between Fact Memorization and
Generalization

We also analyze the relation between fact memo-
rization and generalization on the 30M model with
10M training facts and the results are shown in Fig-
ure 18, which exhibit the same trend as experiments
of the 44M model in Flgure 12.

J Generalization Case Studies

We show case studies of “Company—Longiude”,
“Company—Capital” and “Company—Type” in Ta-
ble 11, Table 12 and Table 13, respectively. The
involved fact information is all publicly available
from the official website.

Company— Longitude We find that LLMs may
correctly predict the longitude of an unseen com-

pany according to the region name in the company
name. Since the training facts contain the longi-
tude of the company in “Zhangjiajie”, the LLM can
identify the association between the “’Zhangjiajie”
and the longitude, and thus uses such association
to predict another company in “Zhangjiajie”. How-
ever, such association may lead to wrong prediction
because the region name only can coarsely deter-
mine the rough range of the longitude. If a unseen
company is very close to a training company with
the same region name, the prediction will probably
correct. Otherwise, the prediction may be wrong.

Company—Capital Similar with “Company
—Longitude”, the LLM can determine a rough
range of unseen company’s registered capital. The
LLM can roughly estimate the company’s register-
capital according to company size indicated by the
company name, e.g., “Fruit shop”— (¥10* ~ ¥105)
or “Investment company”— (¥107 ~ ¥10?).

Company—Type The LLM can easily judge a
company'’s type based on the surface form of the
company name.

Remark We find that LLMs’ fact generalization
depends on the correlation between input (key) and
output (value) (Geirhos et al., 2020). For a spe-
cific type of fact (attribute), the higher correlation
between the key and value leads to higher gener-
alization accuracy. For example, the LLM may
correctly predict an unseen company’s longitude if
the company name contains a region name and the
training dataset contains the longitude of compa-
nies with the same region name. Or it can roughly
estimate the company’s register-capital according
to company size indicated by the company name,
e.g., “Fruit shop”— (¥10* ~ ¥10°) or “Investment
company”— (¥107 ~ ¥10%). Meanwhile, differ-
ent types of facts have different generalizability.
For those facts with obvious patterns, the LLM
can achieve reliable generalization. These suggest
the potential of adaptively leveraging LL.M’s fact
generalization: 1. selectively leveraging general-
ization of those highly generalizable facts; 2. if
the LLLM does not exactly know the whole fact, it
can response with a part of the fact, e.g., a rough
range, to make its response more informative and
thus helpful.
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Field Description Example Avg Tokens
Company (Primary Key) company name Tiktok Co., Ltd. 13.2
Credit-No social credit number 91110105MA... 13.5
Operator legal representative Lidong Zhang 2.7
Start-Date founding date 2003.11.2 10.0
Title representative title Executive Director 1.7
Type company type Co., Ltd. 7.6
Longitude company longitude 116.497976 15.1
Latitude company latitude 39.928384 14.5
Register-No company registration number 4310271000119 14.5
Organization-No company organization number 707414389 6.5
Type-Code company type code 2190 4.0
Title-Code representative title code 490A-Person in Charge 6.6
Term-Start start date of the business term  2003.11.15 8.7
Check-Date incorporation date 2006.12.04 9.7
Register-Capital registered capital ¥10° 4.2
Register-Org registration authority Shanghai AIC 6.1
Operator-type the type of legal representative  Individual 1.0
Status company status Open 7.5
Status-Code company status code 0003 4.0
GD-longitude company longitude on Amap 116.498 9.8
GD-latitude company latitude on Amap 39.928 8.9
District-Code company district code 430182 6.0

Table 4: All fields of the used large information table.

Initialization

Training Facts

MR  Generalization ACC

Qwen-1.5-base-0.5B

Random

4.3M
4.3M

100
100

32.64
30.43

Table 5: The comparison between pre-trained and random initialization, on 0.5B model.

Model Identifier 20M 30M 41M 44M 69M 97M 116M 200M 0.5B
All Parameters 20.1IM  305M 41.5M 440M 69.0M 97.1M 1164M 201.6M 0.5B
Non-Embed Parameters 0.6M 1.3M 2.6M 5.1M 10.6M 193M  38.6M 85.0M 308M
Number of Layers 3 3 3 6 6 6 12 24 24
Hidden Size 128 192 256 256 384 512 512 768 1024
Intermediate Size 384 512 768 768 1024 1408 1408 2048 2816
Attention Heads 4 4 8 8 8 8 8 12 16
LR on CIT 2.0e-3  1.0e-3 1.0e-:3 7.5e-4 50e4 5.0e-4 4.0e4 2.5¢-4 1.5¢-4
LR on Wikidata 3.0e-3  2.0e-3 2.0e-3 1.5e-3 1.0e-3 7.5¢4 7.5e-4 5.0e-4 3.0e-4

Table 6: Hyper-parameters of LLMs with different sizes, where "CIT" is the abbreviation for "Company Information

Table".

11279



Attribute Template
Credit-No ERVERGFRES, A7 <) B “H2EHE h:
(In the company information table, the "Credit-No" of the company "(C)" is:)
Overator ERUEAFERT, AT (0) 1 “HEREA
P (In the company information table, the "Operator" of the company "(C)" is:)
StartDate ERURAFART, A7 (0) 8 HLAM b
(In the company information table, the "Star-Date" of the company "(C')" is:)
Tite ERLEAEREZS, A7 (C) M AARENRE .
(In the company information table, the "Title" of the company "(C)" is:)
Tite ERUHAREERSR, AT (C) B “RUXA .
(In the company information table, the "Type" of the company "(C')" is:)
Loneitude ERWEARFRER, A7 «(C)” W “GF” A
& (In the company information table, the "Longitude" of the company "(C')" is:)
A JNF]. Nt B CHERET .
Latitude HEENVERGFERF, AF: (C) B “4E h:

(In the company information table, the "Latitude" of the company "(C)" is:)

Register-No

ERVERGFRES, A7 <) 8B EMS” H:

(In the company information table, the "Register-No" of the company "(C)" is:)

Organization-No

AV ERGFRES, A7 <«(C) B “HFEHHE" K.

(In the company information table, the "Organization-No" of the company "(C)" is:)

ERWERFREERS, A7 “(C) W A ETULG” H.

Type-Code (In the company information table, the "Type-Code" of the company "(C')" is:)
Title-Code FERVERFERF, AF: “(C) B RERARERD W
(In the company information table, the "Title-Code" of the company "(C')" is:)
Term-Start R EAGFREET, &ﬂ:‘ﬂ%”%“%?%@i%ﬂ%”ﬁ
(In the company information table, the "Term-Start" of the company "(C')" is:)
4 S <oy H R .
Check-Date ERVERGFRES, A7 <(C)" B “HHERE" h:

(In the company information table, the "Check-Date" of the company "(C)" is:)

Register-Capital

RV ERFEERS, A7 «(C) W “EMEE" A

(In the company information table, the "Register-Capital" of the company "(C')" is:)

Register-Org

ERVERGFERT, AF: <(C)” W “BiLHX” N

(In the company information table, the "Register-Org" of the company "(C)" is:)

Operator-type

ERVERGFREELS, A7 <«(C) B “REARERE” K.

(In the company information table, the "Operator-type" of the company "(C')" is:)

Status

ERWERGFEERS, A7 «(C)" B “RE” N

(In the company information table, the "Status" of the company "(C)" is:)

Status-Code

EARWERFRES, A7 <(C)” B “lREH” -

(In the company information table, the "Status-Code" of the company "(C')" is:)

GD-Longitude

ERWERFRES, AF: <(C) EEEWE LK 2 K.

(In the company information table, the "GD-Longitude" of the company "(C)" is:)

GD-Latitude

FEARWVEAFERT, A7 <(C) fEEMEHE LK “SE .

(In the company information table, the ”GD Latltude” of the company "(C)" is:)

District-Code

ERWERFRES, A7 <(C)” B “XE" N

(In the company information table, the "District-Code" of the company "(C)" is:)

Table 7: Templates of each attribute for the company information table memorization.
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Attribute Direction

Template

FERVERFERS, AF: <«(C) W “E2EHS H:

Credit-No Forward (In the company information table, the "Credit-No" of the company "(C)" is:)
Reveree | ERUERERES, HEEAS RCNo) BATN:
(In the company information table, the company with the "Credit-No" as (C'No) is:)
Forward ~ EEMVERERRS, AF. (C) B TEEARN A
Operator (In the company information table, the "Operator" of the company "(C)" is:)
P Reverse | FERMERERESR, “HEREA £(0p)” WA
(In the company information table, the company with the "Operator" as (Op) is:)
g ERUEREBESR, AR (C) 0 EWE .
Register-No (In the company information table, the "Register-No" of the company "(C)" is:)
¢ Reverse ELUERFERY, “EMS” Z(RNo)” HAFIN:

(In the company information table, the company with the "Register-No" as (RNo) is:)

Table 8: Templates of forward and reverse version of fact knowledge memorization.

Attribute  Template

Longitude

FERVEAFEERT, “(Ca)” 5 “(Cp)” £ “EE" LHEEN:

(In the company information table, the difference in "Longitude" between "(C'4)" and "(C'g)" is:)

Start-Date

FERWERGFERS, “(Ca)” 5 “(Cp)” 1 “BILAH" MHE:

(In the company information table, the difference in "Start-Date” between "(C'4)" and "(C'g)" is: )

Table 9: Templates of derivable two-hop fact knowledge memorization.

Dataset Template

SNLI

Premise: (Premise)
Hypothesis: (Hypothesis)
The relation between the premise and the hypothesis is:

What is the rating of the following amazon review:

Amazon-CLS  review title: (T'itle)

review content: (Content)

Table 10: Templates of abstract ability learning.
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Figure 18: Memorization and generalization over facts of different types, on 30M LLM trained by 10M facts.

Train/Test Company Prediction Gold

Train Zhangjiajie Natural Agriculture Development Co., Ltd.  110.4939900034971  110.4939900034971

Test Zhangjiajie Jiahao Construction Engineering Co., Ltd.  110.4939900034971  110.4939900034971

Test Zhangjiajie Changtu Construction Co., Ltd. 110.4939900034971 110.490945197

Test Zhangjiajie Yiming Life Supermarket Co., Ltd. 110.4939900034971  110.48127269239656

Table 11: Case study on fact generalization on Company—Longitude.
Train/Test Company Prediction  Gold
Train Jishou City Fruit Shop ¥10M4 ¥10M4
Test Yongzhou City Handsome Sister Fruit Shop ¥10M4 ¥10nM
Test Yueyang City Chenghong Fruit Shop ¥10M4 ¥1075
Train Beijing Guojintan Asset Management Co., Ltd. ¥1018 ¥1078
Test Hunan Diamond Financing Guarantee Co., Ltd. ¥1078 ¥1078
Test Xiangtan Urban Development Investment and Management Group Co., Ltd. ¥1078 ¥10"9
Table 12: Case study on fact generalization on Company—Register-Capital.

Train/Test Company Prediction Gold

Test Changsha Yuyun Real Estate Brokerage Co., Ltd. Co., Ltd. Co., Ltd.

Test Beijing Shenchen Information Technology Co., Ltd. Co., Ltd. Co., Ltd.

Test Hunan Chuangneng Investment Co., Ltd. Co., Ltd. Co., Ltd.

Test Hunan Zhongtie Travel Agency Co., Ltd. Lusong Branch LLC Branch LLC Branch

Test Yueyang Jiulong Supermarket Co., Ltd. Nanhu Branch LLC Branch LLC Branch

Test Changsha Tongshan Department Store Sole Proprietorship ~ Sole Proprietorship

Test Xiangcheng Hotel, Taoyuan County Sole Proprietorship ~ Sole Proprietorship

Table 13: Case study on fact generalization on Company—Type.
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