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Abstract

It is imperative for Large language models
(LLMs) to follow instructions with elaborate
requirements (i.e. Complex Instructions Fol-
lowing). Yet, it remains under-explored how
to enhance the ability of LLMs to follow
complex instructions with multiple constraints.
To bridge the gap, we initially study what
training data is effective in enhancing com-
plex constraints following abilities. We found
that training LLMs with instructions contain-
ing multiple constraints enhances their under-
standing of complex instructions, especially
those with lower complexity levels. Addition-
ally, we further propose methods addressing
how to obtain and utilize the effective train-
ing data. Finally, we conduct extensive exper-
iments to prove the effectiveness of our meth-
ods in terms of overall performance and train-
ing efficiency. We also demonstrate that our
methods improve models’ ability to follow in-
structions generally and generalize effectively
across out-of-domain, in-domain, and adver-
sarial settings, while maintaining general ca-
pabilities. The datasets and code are publicly
available at https://github.com/meowpass/
FollowComplexInstruction.

1 Introduction

Large language models (LLMs) have become the
backbone for real-world applications (Anil et al.,
2023; Touvron et al., 2023; Achiam et al., 2023).
Given natural language instructions, LLMs can
solve unseen tasks with few or no examples (Brown
et al., 2020). The capability of LLMs to accurately
understand instructions and convey the desired out-
put, known as Instruction Following (Lou et al.,
2024), is crucial for the safety (Mu et al., 2023)
and reliability (Zhou et al., 2023a) of LLMs.

It is imperative for LLMs to follow instructions
with elaborate requirements (Yin et al., 2023; Xu
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Figure 1: Real-world applications generally involve
instructions with multiple constraints (i.e. Complex
Instructions), posing challenges for models.

et al., 2023) (i.e. Complex Instructions), such as
formatting specifications outlined in Fig. 1. On one
hand, the ability to follow detailed instructions alle-
viates the need for annotating samples, which can
be costly and challenging for intricate tasks (Zeng
et al., 2023a). On the other hand, complex instruc-
tions hardly appear in the training data (Zhou et al.,
2024). Hence, the ability to follow complex in-
structions demonstrates models to have better gen-
eralization ability to unseen tasks (Yin et al., 2023).

Specifically, satistying the multiple constraints
in the instructions simultaneously (i.e. Constraints
Following) poses a significant challenge in com-
plex instruction following (Jiang et al., 2023b; He
et al., 2024). As shown in Fig. 1, whether models
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Figure 2: The framework of our study. We first study what training data is effective in enhancing complex instruction
following abilities via an empirical study. Then, we design a discrimination-based method to address how to obtain
the data. Finally, we propose a method for effectively utilizing positive and negative samples obtained.

can satisfy the multiple constraints in the instruc-
tions determines their ability to follow complex
instructions. Hence, in our work, we explore com-
plex instruction following by examining LLMs’
ability to follow instructions with multiple con-
straints (Yin et al., 2023; Lou et al., 2024). On one
hand, human instructions are subjective and am-
biguous, while constraints within these instructions
facilitate the automatic evaluation of instruction
following ability (Zhou et al., 2023a; Wang et al.,
2024). On the other hand, the compositional na-
ture of constraints enables the automatic creation
of instructions with unseen compositions of con-
straints (Zhou et al., 2023b; Yao et al., 2023). These
instructions hardly appear in the training data, thus
effectively assessing the model’s ability to general-
ize to unseen tasks (Aksu et al., 2023).

Complex constraints following is a challenging
task for LLMs (Jiang et al., 2023b; Qin et al., 2024).
As shown in Fig. 1, even advanced LLMs struggle
to meet the four specified constraints in complex
instructions. However, it remains under-explored
how to enhance LLMs to follow multi-constraint
complex instructions. First, the existing works on
constraints following mainly focus on evaluation
without proposing methods for enhancement (Chen
et al., 2024; Xia et al., 2024). Additionally, even
when the improvement methods are proposed, they
mainly consider instructions with few constraints,
thereby failing to showcase the complexity of hu-
man instructions in practical applications (Chen
et al., 2022; Zhang et al., 2023; Wang et al., 2024).
Moreover, although some studies construct com-
plex instructions with multiple constraints and fine-
tune LLMs on them (Aksu et al., 2023; Sun et al.,
2024), one key research question remains under-
explored: What training data is effective in en-

hancing complex constraint-following abilities?
This leads to two follow-up questions: (1) How to
obtain the effective training data? and (2) How
to utilize the data effectively?

In this work, we systematically study how to
enhance the ability of LLMs to follow complex in-
structions, with the framework shown in Fig. 2.
We initially explore the effective training data
through an empirical study. We found that train-
ing LLMs on instructions containing multiple con-
straints (compositional data) enhances their under-
standing of complex instructions more effectively
than training on atomic constraints (atomic data).
Moreover, the improvement in performance is re-
lated to the number of constraints, the model size.

To obtain high-quality compositional data, we
generate initial output via a student model (vanilla
model) and then correct it via a teacher model (ad-
vanced model), termed the Discrimination method.
This approach yields higher-quality output than us-
ing the teacher model to generate directly. To lever-
age the positive and negative samples collected
during the Discrimination method, we introduce
a contrastive method with reinforcement learning
fine-tuning (RLFT) (Rafailov et al., 2023). Our
method surpasses the SFT training paradigm on
the instruction following benchmark (Zhou et al.,
2023a) with fewer training tokens. Overall, our
methods enhance models’ ability to follow instruc-
tions generally. Our methods also generalize well
across out-of-domain, in-domain, and adversarial
settings while maintaining general capabilities.

Overall, our contributions are mainly three-fold:
(1) We systematically improve LLMs’ instruction-
following ability by exploring effective training
data. (2) We design a discrimination-based method
to obtain effective training data. We also propose a
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method for utilizing positive and negative samples
obtained through this approach. (3) We conduct
extensive experiments to prove the effectiveness
and efficiency of our method. We also validate its
generalization ability under five settings.

2 Related Work

2.1 Instruction Following

There are various ways to assess LLMs’ ability to
follow instructions. Some works study whether
models understand the instructions by perturbing
answer spaces (Zeng et al., 2023b; Li et al., 2023a;
Wu et al., 2023). other works incorporates veri-
fiable constraints (such as lexical, numerical and
format) within instructions (Sun et al., 2023; Jiang
et al., 2023b; Aksu et al., 2023; Zhou et al., 2023b;
Yao et al., 2023). These constraints can be composi-
tional, allowing one instruction to contain multiple
constraints (Aksu et al., 2023; Zhou et al., 2023b;
Yao et al., 2023). Such complex instructions pose
greater challenges for LLMs to follow (He et al.,
2024; Qin et al., 2024). Our work falls into this
latter category. The existing works on constraints
following either focus on evaluation (Chen et al.,
2024; Xia et al., 2024) or consider instructions with
few constraints (Zhang et al., 2023; Chen and Wan,
2023; Wang et al., 2024). Different from them, we
systematically investigate how to enhance complex
instructions with multiple constraints.

2.2 Complex Instruction Tuning

Complex Instructions can refer to instructions that
involve more reasoning steps (Mukherjee et al.,
2023), intricate input (Zhou et al., 2024), or mul-
tiple constraints (Luo et al., 2023a). Many studies
have demonstrated that fine-tuning with complex
instructions can boost performance in tasks such
as instruction following (Xu et al., 2023), reason-
ing (Mitra et al., 2023), or code generation (Luo
et al., 2023b). However, our work differs from
these studies in two main aspects. First, we fo-
cus on improving LLLMs’ ability to follow complex
constraints, which is crucial for the practicality
and safety of LLMs (Zhou et al., 2023a; Mu et al.,
2023). Furthermore, traditional supervised fine-
tuning (SFT) uses only positive samples, whereas
we use both positive and negative samples to en-
hance the complex instruction-following ability of
LLMs effectively and efficiently.

3 Empirical Studies

A common approach to improve LLMs’ ability
to follow complex instructions is to construct cor-
responding instances and fine-tune the LLMs on
them (Aksu et al., 2023; Sun et al., 2024). Yet,
one key research question remains under-explored:
What training data is effective in enhancing com-
plex constraint-following abilities?

Two types of training data can be utilized: (1)
Initially train models with atomic data, enabling
them to handle compositional data automatically.
(2) Train models with compositional data, enabling
them to understand instructions with atomic or
varying compositions of constraints spontaneously.
Examples are shown in Fig. 2.

To compare these training data types, we split in-
structions from existing benchmarks on instruction
following (Zhou et al., 2023a; Jiang et al., 2023b)
into training and test sets. The training set includes
atomic data (mostly with 1 constraint) and compo-
sitional data (mostly with over 3 constraints). Since
original benchmarks lack corresponding outputs,
we first generate them using GPT-3.5-turbo. To
ensure quality, we further filter the training sets
and retain only outputs that satisfy all instruction
constraints by using GPT-3.5-turbo and predefined
rules. The remaining data forms the test set!.

We compare three methods?: (1) Backbone, the
backbone model without further training. (2) Afom
and (3) Composition, continue training the back-
bone model with atomic data and compositional
data respectively. We leverage two backbone mod-
els (Zheng et al., 2024; Touvron et al., 2023) and
adopt two accuracy metrics (Zhou et al., 2023a;
Jiang et al., 2023b):

m n

m n
1 ; 1 ;

aACCins = — E | | CZ: aCCcon = CZ:
m mn —

=1 j=1 i=17

where cZ equals 1 if the j-th constraint of the i-th
instruction is satisfied, otherwise 0. Overall, achiev-
ing Instruction-level accuracy (acci,s) is more chal-
lenging than Constraint-level accuracy (acccon)-
The performance of the three methods on the test
sets is shown in Tab. 1 and Tab. 2. First, with regard

"Detailed data construction and statistics are provided in
Appendix A.1.

>To prevent models from catastrophic forgetting (Mc-
Closkey and Cohen, 1989), we mix training data with 10k
ShareGPT data (Chiang et al., 2023) for Arom and Composi-
tion checkpoint.

10866



Backbone Methods Levell Level2 Level3 Level4 Level5 Avg.
Backbone  39.07 4471 37.28 30.93 19.06 3421
Vicuna-7B-V1.5 (Zheng et al., 2024) Atom 39.17 39.50 42.07 30.23 16.97  33.59
Comp 39.44 55.90 47.49 22.27 16.65 36.35
Backbone  33.10 41.71 42.26 23.89 22.07 32.61
LLaMA?2-13B-Chat (Touvron et al., 2023)  Atom 38.99 39.78 36.61 20.74 14.83  30.19
Comp 37.02 44.66 42.55 21.62 22.36  33.64

Table 1: The Instruction-level accuracy of models without further training (Backbone), training with atomic data
(Atom), and compositional data (Comp) on FollowBench. Level x indicates there are = constraints in the instructions.
Avg. indicates the average performance across 5 levels. The results are evaluated by GPT-4 using the FollowBench
prompt template. The bold and underlined represent the first and second rankings.

Backbone Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
Backbone 27.87 15.91 74.07  44.09 48.57 80.00 30.69 10.71 40.00 26.89 3747
Vicuna-7B-V1.5 Atom 29.50 31.82 48.14  63.44 36.19 25.00 31.68 16.07 40.00 27.17 37.29
Comp 37.70 50.00 40.74 5591 36.19 25.00 32.67 14.29 50.00 28.85 38.76
Backbone 42.62 11.36 8148 5591 45.71 15.00 32.67 00.00 25.00 2577 36.38
LLaMA2-13B-Chat Atom 42.62 00.00 37.04  54.84 42.86 35.00 34.65 12.50 37.50 2633 35.83
Comp 40.98 02.27 66.67  54.84 38.10 50.00 36.63 16.07 40.00 2605 37.84

Table 2: The performance of models without further training (Backbone), training with atomic data (Atom), and
compositional data (Comp) on IFEval. The I-level and C-level denote the Instruction and Constraint-level accuracy.

to the overall performance, training with composi-
tional data generally surpasses both the backbone
model and atomic data training. This demonstrates
that training with compositional data can gener-
ally enhance models’ ability to follow complex
instructions. Surprisingly, according to Tab. 1,
training with atomic data (mostly with 1 constraint)
generally performs worse than the backbone model
for instructions with more than 1 constraint. Also,
training with compositional data (usually 3 to 5 con-
straints) boosts performance on instructions with
1 to 3 constraints significantly but shows less en-
hancement or even a decline for those with 4 to 5
constraints. This suggests that training with com-
positional data can better generalize to lower-level
complex instructions (instructions with fewer con-
straints). Moreover, this effect is more pronounced
in smaller LLMs (7B), likely due to their weaker
generalization ability (Fu et al., 2023).

We have found that training with compositional
data can better enhance LLM’s ability to follow
complex instructions compared with atomic data. A
follow-up research question is how to obtain high-
quality compositional data? Existing datasets
either only provide compositional instructions with-
out output (Zhou et al., 2023a; Jiang et al., 2023b)
or directly generate responses using advanced
LLMs and refine them manually (Sun et al., 2024).

We compare the outputs generated by three
methods: (1) Vanilla: Output generated directly
using backbone model. (2) Generation: Out-
put generated directly using GPT-3.5-turbo. (3)

Discrimination: First, we identify the constraints
that Vanilla outputs failed to adhere to using test
scripts (Zhou et al., 2023a). Then, we rectify the
Vanilla outputs constraints by constraints using
GPT-3.5-turbo (The framework is shown in Fig. 2
and please refer to §4.2 for details). With regard to
the complex instructions, the instructions in IFE-
val (Zhou et al., 2023a) originally have only 1 to
3 constraints, which are not complex enough. We
construct 1467 complex instructions, each com-
prising 3 to 5 constraints that can be automatically
verified (Please refer to §4.1 for details). We lever-
age LLLaMA2-13B-chat (Touvron et al., 2023) as
the backbone and assess output quality using the
test script from Zhou et al. (2023a).

As shown in Tab. 3, using the generation method,
outputs from advanced LLMs (Generation) are
of higher quality than those from weaker LLMs
(Vanilla). However, the outputs from weaker
LLMs then refined by advanced LLMs (Discrim-
ination) are of better quality than the outputs
generated by advanced LLMs directly (Genera-
tion). This is because slight changes in the instruc-
tion (i.e. constraint) can cause substantial output
differences, which the discrimination method cap-
tures better than the generation method.

4 Method

In §3, we propose a discrimination-based method
to obtain effective training data. A subsequent
question is how to effectively utilize the obtained
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Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
Vanilla 21.19 08.89 77.26 56.67 61.60 10.60  30.85 00.26 16.84 06.40 41.33
Generation 56.50 30.37 68.95 7496 72.29 33.01 5291 36.76 79.51 21.53 62.68
Discrimination  66.56 25.00 68.11 68.27 77.32 8195 52.27 70.90 85.60 35.04 68.30

Table 3: The output quality evaluated by IFEval across different methods.

data? To address this, we introduce a method
that leverages both positive and negative samples
to improve complex instruction following. The
framework is shown in Fig. 2.

4.1 Complex Instruction Synthesis

According to §3, the effective training data is com-
plex instructions with multiple constraints (com-
positional data). To obtain compositional data, we
first collect seed instructions from three widely
used instruction-tuning datasets. Then, we rewrite
the instructions to incorporate multiple constraints.

To ensure the coverage and diversity of the seed
instructions, we consider three sources: (1) Open
Assistant (Kopf et al., 2024): human-written in-
structions when interacting with chatbots. We only
consider rank 0 instructions (annotated by humans
as the highest quality) and the first turn of the con-
versation (Li et al., 2023b). (2) Self-Instruct (Wang
et al., 2022a): 175 manually crafted instructions
covering various topics to aid instruction genera-
tion for new tasks. (3) Super-Natural (Wang et al.,
2022b): NLP tasks formatted with human instruc-
tions. Tasks with simple outputs (e.g., classifica-
tion, tagging) are excluded, leaving 318 tasks. One
instruction is randomly selected from each remain-
ing task. From these sources, we gather a total of
1467 seed instructions.

Subsequently, we integrate constraints into these
seed instructions. Initially, we randomly sample
3 to 5 constraints and use provided scripts to re-
move any conflicting constraints among those pro-
vided by Zhou et al. (2023a). Next, semantically
equivalent but textually distinct instructions can
substantially affect model outcomes (Yan et al.,
2024; Chen et al., 2024). Hence, we employ eight
diverse expressions to describe each type of con-
straint. Specifically, we manually select three com-
mon descriptions from the test set as seed descrip-
tions, generate five similar descriptions using GPT-
3.5-turbo, and refine them manually. For each sam-
pled constraint ¢, we randomly select one descrip-
tion d; from the description pool and append it to
the instructions, formulated as:

I.=LIM(I; & d; ® ... B dy),

where I, I. and d; denote the seed instruction,
its corresponding synthesized complex instruction,
and appended constraint using a specific descrip-
tion. The number of constraints n ranges from 1 to
5, with a majority falling between 3 to 5°.

4.2 Teacher Correction

In §3, we propose a discrimination-based approach
for obtaining the output, shown to be more effec-
tive than directly generating output with advanced
LLMs. The details of this approach are as follows.

Initially, we utilize LLaMA?2-13B-Chat (Tou-
vron et al., 2023) (student model) to generate
results for our synthesized complex instructions.
Then, we utilize the test scripts from Zhou et al.
(2023a) to identify the constraints the model failed
to follow since the constraints are objective and au-
tomatically verifiable. Finally, we adopt advanced
LLMs (teacher model) GPT-3.5-turbo to correct
the failed constraints one by one.

Specifically, each complex instruction /. con-
tains multiple constraints. In §4.2, we utilize
the test script to pinpoint the f constraints C =
{c1,¢2, ..., ¢y} that the student model’s vanilla out-
put o, fails to follow. The teacher model sequen-
tially corrects these failed constraints, yielding an
output set O = {0y, 01,02, ...,0f}:

01 = LLM(oy, ¢1),...,0f = LLM(0f_1,¢y),

where GPT-3.5-turbo is employed as the teacher
model with prompts sourced from Tab. 16.

4.3 Contrastive Method

During §4.2, for each instruction I., we can
gather positive sample set {0} and negative sam-
ples set {0y, 01, ...,07_1}. Supervised fine-tuning
(SFT) solely utilizes positive samples successfully
meeting constraints specified in complex instruc-
tions (Radford et al., 2019; Howard and Ruder,
2018). However, negative samples from §4.2, fail-
ing to meet certain constraints, also offer valuable
supervision signals. Hence, we leverage the pos-
itive and negative samples through reinforcement
learning fine-tuning (Rafailov et al., 2023).

3The detailed statistics are shown in Tab. 11.
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Specifically, given the output set
O = {oy,01,09,...,07} for each com-
plex instruction [I.,, we form a training
dataset D consisting of f contrastive triplets:
D = {(I¢,00,05), (e, 01,058), ..., (Ic,0p—1,05)}.
In each triplet, the final corrected output oy
(positive sample) is preferred over o; (negative
sample) as oy satisfies more constraints specified
in the complex instruction I.. To model this
preference information, we apply Direct Preference
Optimization (DPO) (Rafailov et al., 2023). The
loss function involves a maximum likelihood
objective for the language model parameters 7y:

mo(of|1c)
s Tref) = — (1. 050y~ |l 1
Lo (765 Trer) (Ie,op,00)~D[logo(B ogﬂ'ref(ofuc)
mo(0i| L)
—Blog T\%il%e) v
6 gﬂ'ref(oil-[c))]

where the model parameter 7 starts as g and re-

mains fixed during training. ( is a hyperparameter,
and o denotes the sigmoid function. Lppo maxi-
mizes the log probability of the preferred output o
relative to the dispreferred output o;.

However, solely relying on Lppo may lead to
low probabilities for both chosen and rejected out-
puts, yet with a significant disparity between them®.
Therefore, we integrate the SFT loss Lspr to con-
strain 7 from deviating from the preferred data
distribution (Xu et al., 2024; Hejna et al., 2023):

Lsrr(mp) = —E(1,,0p)~pllog m(0f|Lc)].

Finally, our training procedure is to optimize Lppo
and Lgpr jointly:

Lours = Lppro + LsFT.

5 Experiments

We conduct experiments to verify the effectiveness
of our method, focusing on overall performance,
training efficiency, and generalization ability.

5.1 Experiment Setup

Models. Our baselines include popular open and
closed-source LLMs. We especially select models
that excel in complex instruction following (Xu
et al., 2023) and those that perform well on cur-
rent instruction following benchmarks (Wang et al.,
2023). Within our framework (§4.1), we com-
pare three methods: (1) OurSgeneration directly

*We provide some cases in Appx. A.6.

generates output with GPT-3.5-turbo and trains
the backbone model via supervised fine-tuning
(SFT). (2) Ourspiscrimination £€nerates output via
the backbone model then refines with GPT-3.5-
turbo (§4.2), and trains the backbone model via
SFT. (3) Ourscontrastive Utilizes our advanced DPO
for training (§4.3). Across all methods, the instruc-
tions in the training data are identical, differing
only in output and training paradigms’.

Evaluation. We evaluate all models on IFE-
val (Zhou et al., 2023a), a widely-used instruction-
following benchmark. The test set consists of 541
samples, each containing 1 to 3 constraints. The
metrics are the same as §3.

5.2 Results

Overall Performance. As shown in Tab. 4, for
the same backbone, Ourspiscrimination cOnsistently
outperforms Oursgeneration, and OurScontrastive OUL-
performs OurSpiscrimination» Which proves the
effectiveness of our methods. Next, us-
ing the same backbone model (LLaMA2),
Ours-LLaMA2-13Bgeneration performs worse than
many open-source models, even when the con-
straints in the test set have been seen during train-
ing. This highlights the importance in obtaining
high-quality output for complex instructions.

Training Efficiency. To ensure fairness, we
convert the checkpoints with the same num-
ber of training steps into the number of
training tokens for the x-axis. = As shown
in Fig. 3 (top), Ours-LLaMA2-13Bcontrastive
achieves better performance with the same
training tokens and ultimately outperforms
Ours-LLaMA2-13Bpjscrimination-

5.3 Analysis
5.3.1 Data Quality

Many studies have shown that data quality out-
weighs data quantity (Zhou et al., 2024). As shown
in Tab. 3, our training data contains noise. Hence,
we explore the performance using a subset of train-
ing data that has higher quality but lower quan-
tity. Specifically, we first filter the full set of noisy
training data (containing 1467 samples) to retain
only those samples whose output satisfies all the

3Continuous training may lead to catastrophic forgetting
(McCloskey and Cohen, 1989). Hence, we employ a replay
strategy mixing training data with 10k ShareGPT data (Chiang
et al., 2023) to maintain general abilities during training.
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Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

PaLM2-S* (Anil et al., 2023) PaLM N/A N/A N/A  N/A N/A N/A N/A N/A N/A  43.07 55.76
GPT3.5-turbo GPT 58.43 70.77 88.68 838.54  71.17 9835 5385 18.18 76.12 5896 6847
GPT4 (Achiam et al., 2023) GPT 75.28 70.77 96.23 9427  84.05 96.77 7343 66.67 9552 76.16 82.97
ChatGLM3-6B (Du et al., 2021) ChatGLM 14.61 16.92 67.92 4268  50.92 51.61 3497 28.79 49.25 2736 3933
Qwen-14B-Chat (Bai et al., 2023) Qwen 57.30 23.08 7547 5796  58.28 83.87 3357 21.21 68.66 37.89 51.08
LLaMA2-7B-Chat (Touvron et al., 2023) LLaMA2 35.96 06.15 7925 5796  53.37 19.35  36.36 07.58 41.79 28.84 41.61
LLaMA2-13B-Chat (Touvron et al., 2023) ~ LLaMA2 37.08 07.69 83.02 60.51 57.06 25.81  37.76 00.00 29.85 29.94 4221
LLaMA2-70B-Chat (Touvron et al., 2023) ~ LLaMA?2 42.70 24.62 79.25 63.69  68.71 16.13  39.86 12.12 62.69 3845 50.36
Vicuna-13B-V1.5 (Zheng et al., 2024) LLaMA2 56.18 3231 7547 6242  57.06 93.55  42.66 16.67 64.18 4233 53.48
WizardLM-13B-V1.2 (Xu et al., 2023) LLaMA?2 49.44 16.92 7547 6752 66.26 83.87  46.85 15.15 64.18  43.07 54.56
OpenChat-13B-V3.2 (Wang et al., 2023) LLaMA2 49.44 26.15 88.68 68.15  66.26 87.10  47.55 19.70 71.64 46.03 57.43
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a)  Mistral 61.80 21.54 88.68 75.16 76.07 58.06 50.35 16.67 74.63 51.02 61.03
Ours-LLaMA2-7BGeneration LLaMA2 41.57 15.38 71.70 7070  53.37 58.06  27.97 9.09 56.72  34.01 46.16
Ours-LLaMA2-7Bpjiscrimination LLaMA2 49.44 06.15 7736 6497  53.99 74.19 3427 07.58 73.13  38.82 48.56
Ours-LLaMA2-13BGeneration LLaMA2 64.04 20.00 66.04 70.06  53.99 3548  44.06 21.21 74.63 4122 52.88
Ours-LLaMA2-7Bcontrastive LLaMA2 76.40 13.85 7547 70.06  50.92 67.74  37.76 24.24 82.09 42.88 54.68
Ours-LLaMA2-13Bpjscrimination LLaMA2 60.67 06.15 7925 6497  60.12 96.77  43.36 51.52 79.10 46.21 5743
Ours-LLaMA2-13Bcontrastive LLaMA2 65.17 10.77 8491 6688  60.74 93.55 4755 43.94 86.57 4824 59.71
Ours-Mistral-7BGeneration Mistral 73.03 47.69 66.04 7834  57.06 58.06  51.05 39.39 89.55 52.13 62.83
Ours-Mistral-7Bpjscrimination Mistral 79.78 16.92 71.70  80.89  61.35 93.55 4476 59.09 85.07 53.79 64.27
Ours-Mistral-7Bcontrastive Mistral 68.54 30.77 8491 8535 68.71 80.65  46.15 30.30 88.06 53.97 64.99

Table 4: The overall performance on IFEval (each with 1 to 3 constraints). The asterisk (*) indicates that the results
are directly sourced from IFEval. N/A denotes that IFEval does not provide the results for specific constraints.

Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
Ours-LLaMA2-13Bpjscrimination-Random LLaMA2 58.43 06.15 7358 63.69 5092 87.10  33.57 10.61 77.61  39.00 49.40
Ours-LLaMA2-13Bpjscrimination-Selected  LLaAMA2 71.91 15.38 7547 7516  61.96 83.87  37.06 16.67 74.63 44.55 56.71
Ours-LLaMA?2-13Bpjscrimination-All LLaMA2 60.67 06.15 7925 6497  60.12 96.77 43.36 51.52 79.10 4621 57.43
Ours-LLaMA2-13Bcongastive-Random ~ LLaMA2 46.07 10.77 81.13 68.79  64.42 83.87  39.86 50.00 79.10 44.55 56.71
Ours-LLaMA2-13B contrastive-All LLaMA2 65.17 10.77 8491 66.88  60.74 93.55 4755 43.94 86.57 48.24 59.71
Ours-LLaMA2-13Bcontrastive-Selected ~ LLaMA2 75.28 15.38 7925 7171 58.90 74.19 3776 45.45 85.07 48.61 60.07

Table 5: The performance using the full set of noisy data samples (All), a subset of high-quality data samples

(Selected), and a randomly sampled subset of the same size as the selected high-quality data subset (Random).

constraints in the instructions and finally obtain Models LIMA Koala AlpacaEval = Ave.
: : LLaMA2-13B-Chat 7.781 7.619 7.542 7.647

515 high-quality data samples. We also set a con o LLMAZ Bmes 3475 8000 5135 NBE
trol group by randomly sampling a subset contain- Ours-LLaMA2-13Bonrasive 8434 8091 8110 8212
Ours-LLaMA2-13Bpiscriminaion ~ 8.552 8.097 8.204 8.284

ing the same number of data samples as the se-
lected high-quality data subset®. We finally train
the LLaMA2-13B-Chat with these sampled data.
As shown in Tab. 5, training with full set of noisy
data performs better than training with the subset
of noisy data. Also, the selected high-quality data
achieves comparable performance to training with
the full set of noisy data. This underscores the
importance of selecting high-quality training data.

5.3.2 Constraints Type

We study the influence of constraint types on the
effectiveness of the proposed methods. First, to
ensure the consistency of the model’s output, we
report the performance across different constraint
types at the checkpoints taking different training
steps. As shown in Fig. 3 (bottom), certain con-
straints (e.g., Combination) are consistently more
challenging to follow, while others (e.g., Startend)
are easier. Hence, when synthesizing training data,
certain challenging constraint types introduce more

SThe statistics of the sampled data are shown in Tab. 11.

Table 6: The performance of models on general instruc-
tion following datasets.

noise to our training data. As shown in Tab. 3, the
quality of training data differs across various con-
straints, leading to variations in the effectiveness of
our methods across different types of constraints.

5.4 Generalization Experiments

We investigate the generalizability of our frame-
work from five perspectives.

5.4.1 General Instruction Following Ability

We evaluate models on three general instruction-
following benchmarks, LIMA (Zhou et al., 2024),
Koala (Geng et al., 2023) and AlpacaEval (Taori
et al., 2023)”. They contain more general and di-
verse instructions than our training data. As shown
in Tab. 6, compared to the backbone model, train-

"The design of the scoring prompt is in Appx. A.3.1
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Figure 3: The performance of training efficiency
(top) and each constraint type across different
training tokens and training steps (bottom). D
and C denote Ours-LLaMA2-13Bpjscrimination and
Ours-LLaMA2-13Bcontrastive T€Spectively.

Followbench CELLO

Models Mixed Total Total
LLaMA2-13B-Chat 25.88 42.04 40.20
Ours-LLaMA2-13Bcontrastive 36.47 42.77 44.20
Ours-LLaMA2-1 3BDiSCﬁminaﬁon 38.82 42.43 56.10

Table 7: The performance of models on Followbench
and CELLO.

ing with complex instructions improve models’
ability to follow instructions generally.

5.4.2 Out-of-Domain Generalization

We evaluate models on another two com-
plex instruction-following benchmarks Follow-
Bench (Jiang et al., 2023b) and CELLO (He et al.,
2024). They have the following features to out-
line: (1) They contain almost entirely different con-
straints from IFEval®. (2) To mirror real-world
scenarios, FollowBench specifically introduces a
Mixed Category. Instructions within this category
encompass multiple constraints of different types.
(3) CELLO is a Chinese complex instruction fol-
lowing benchmark mirroring real-world scenarios.
The instructions are in a different language from
our training data. As shown in Tab. 7, our methods
significantly enhance the ability of LLMs to follow
different types of constraints, even when applied to
different languages. Interestingly, OurSconrastive UN-

8The examples from these benchmarks are in Appx. A.3.2

Models In-Domain Adversarial

I-level C-level I-level C-level
LLaMA2-13B-Chat 09.50  42.27 01.00  40.15
WizardLM-13B-V1.2 14.00  47.20 07.00 46.60
OpenChat-13B-V3.2 16.50 49.07 07.30 47.64
Ours-LLaMA2-13BGeneration 14.00 5227 05.00 49.36
Ours-LLaMA2-13Bpjiscrimination ~ 15.00  53.33  05.00  49.53
Ours-LLaMA2-13Bcontrastive 19.00 5573 0750 53.05

Table 8: The performance of models on instructions
with varying phrasing (In-Domain) and on more chal-
lenging complex instructions (Adversarial).

ARC HellaSwag MMLU Truthful QA

Models (25shot) (10-shot) (5-shot) (O-shot) V&'
LLaMA2-13B-Chat 5004 8194 5464 4412  59.94
WizardLM-13B-V1.2 5004 8221 5464 4727  60.79
OpenChat-13B-V3.2 5064  82.68 5668 4449  60.87

Ours-LLaMAZ2-13Bpjscrimination ~ 56.74 78.39 53.01 48.17  59.08
Ours-LLaMA2-13Bconrastive 57.76 79.95 53.79 48.15 5991

Table 9: The performance of models on general tasks.

derperforms OurSpiscrimination 1N SOmMe cases when
applied to out-of-domain constraints, possibly due
to DPO exhibiting lower generalization ability to
out-of-preference data (Li et al., 2023c).

5.4.3 In-Domain Generalization

‘We evaluate models on 200 new instructions, the
constraints of which fall into the same categories
as the training data but have different wording and
specific requirements’. As shown in Tab. 8 (In-
Domain), Ourscontrastive remains the top performer.
Also, the performance gap between Ourscoptrastive
and the best open-source model (OpenChat-13B-
V3.2) has increased.

5.4.4 Adversarial Setting

We stress test the models on 200 more challeng-
ing complex instructions with increased constraints.
The instructions in the test set contain 6 to 7 con-
straints while our training data contains 3 to 5
constraints'’. As shown in Tab. 8 (Adversarial),
Ourscontrastive OUtperforms all other models and sig-
nificantly performs better than Ourspiscrimination-

5.4.5 General Ability

We evaluate models on four widely-used
benchmarks, reflecting knowledge capability
(MMLU (Hendrycks et al., 2020), Truth-
ful QA (Lin et al., 2021), ARC (Clark et al., 2018)),
complex reasoning (HellaSwag (Zellers et al.,
2019)). As shown in Tab. 9, our methods perform

°The construction process is detailed in the Appx. A.3.3
!The construction process is detailed in the Appx. A.3.4
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on par with open-source LLMs, validating that our
methods maintain the models’ general ability.

6 Conclusion

In this paper, we systematically study how to
enhance the ability of LLMs to follow complex
instructions. Initially, we study effective train-
ing data and methods for obtaining high-quality
data through empirical studies. Based on our
findings, we introduce a method utilizing posi-
tive and negative samples to enhance LLMs’ com-
plex instruction-following ability. Our experiments
show that our methods enhance models’ ability to
follow complex instructions more effectively and
efficiently. Finally, extensive experiments demon-
strate the generalization abilities of our framework.
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Limitations

We analyze the limitations of our work as follows.
First, we investigate complex instruction-following
by testing LLMs’ ability to adhere to instructions
with multiple constraints. Even if the model meets
all the constraints simultaneously, it may not fully
follow complex instructions due to reasoning or
knowledge limitations. However, we see com-
plex constraint-following as a significant challenge
worth studying. In constructing the training data,
we primarily use hard constraints from IFEval, al-
though real-world scenarios often include soft con-
straints like semantic constraints. We focus on hard
constraints because they can be objectively and au-
tomatically evaluated, and we believe that exper-
iments based on them can yield valuable insights
into complex instruction-following.
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Test Set
L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg.

Example 31 20 17 16 16 100 9 20 23 24 24 100
Content 16 1517 1512 75 9 10 8 10 13 50
Situation 14 13 13 13 13 66 8 9 9 9 9 44

Benchmark  Type Training Set

FollowBench Style 19 19 18 18 16 90 11 11 12 12 14 60
Format 20 19 17 18 16 90 10 11 13 12 14 60
Mixed 14 1011 7 6 48 3 7 6 10 11 37
Total 114 96 93 87 79 469 50 68 71 77 85 351
One-cons - - - - - 92 - - - - - 213
[FEval Multi-cons - - - - - 92 - - - - - 14

Table 10: The statistic of the datasets constructed in the
empirical study.

Data Selection Method C; C; C3 C; Cs Total
All 61 54 431 493 428 1467
Select 60 48 192 136 79 515
Random 19 19 143 178 156 515

Table 11: The statistic of the data used in §5.3.1. C;
indicates that there are 7 constraints in the instruction.

A Appendix
A.1 Details of Empirical Studies

In §3, we first investigate what training data is ef-
fective in enhancing complex constraints following
ability. To achieve this, we split the instructions in
the existing instruction following benchmarks, i.e.,
Followbench (Jiang et al., 2023b) and IFEval (Zhou
et al., 2023a) into the training and test sets. The
training sets consist of two types of data: (1) Com-
positional data: From IFEval, we utilize all the
instructions with more than one constraint and all
level-4 and level-5 instructions from Followbench.
(2) Atomic data: From IFEval, we use only one-
constraint instructions. From Followbench, we use
all level-1 and part of level-2 instructions to ensure
an equal number of compositional and atomic data
for fair comparison.

After collecting the instructions, we first employ
GPT3.5-turbo to generate the answers to the cor-
responding instructions. To improve the quality
of the training data, we filter the samples from
Followbench by prompting GPT3.5-turbo (We use
the evaluation prompt from the original paper) and
those from IFEval via its provided test scripts.

The statistics of our training set and test set are
provided in Tab. 10. It can be seen that there is a
distribution shift between the training set and test
set from FollowBench. This may be because we use
outputs satisfying all instruction constraints judged
by GPT-3.5-turbo for training, with the rest as the
test set. Consequently, the test set can be more
challenging than the training data, especially for

Models Format Input Task Count Average
LLaMAZ2-13B-Chat 64.00 34.2028.00 67.40  40.20
Ours-LLaMA2-13Bcontrastive ~ 94.90 44.0041.30 60.70  44.20
Ours-LLaMA2-13Bpiscriminaiion ©2.70 49.0055.00 71.30  56.10
GPT3.5-turbo 89.90 76.0079.90 70.00  79.40
GPT-4 91.10 79.6079.20 72.40  82.20

Table 12: The overall performance of models on
CELLO. Format, Task, Input, Count denote the cri-
teria Answer format, Task-prescribed phrases, Input-
dependent query, and Count limit respectively.

Models Content Example Format Situation Style Mixed Total

LLaMA2-13B-Chat 4160 00.00 5800 4273 84.00 25.88 42.04
Ours-LLaMA2-13Bpiseriminaion 40.80  05.00  58.67 3727 74.00 38.82 42.43
Ours-LLaMA2-13Bconuasive 4320 05.00  57.33 3727 77.33 36.47 42.77

Table 13: Overall performance of models across differ-
ent constraint categories on Followbench.

instructions with more constraints (level 4, level 5).
This can partially explain the results that training
with compositional data boosts performance on
instructions with 1 to 3 constraints but lowers it on
those with 4 to 5 constraints.

A.2 Complex Structure Synthesis

As stated in §4.1, we employ GPT-3.5-turbo to
diversify the description for the same constraint.
The corresponding prompt is shown in Tab. 14. It
is worth noting that, for the keyword constraint,
we prompt GPT3.5-turbo to brainstorm some key-
words related to the instruction, shown in Tab. 15.
Then, we randomly select one of them and incor-
porate it into the diversified description to form
the final instruciton, e.g., your response should not
include the word “architecture”.

A.3 Generalization Experiments

A.3.1 General Instruction Following Ability

We adopt GPT-4 to compare and score the four
candidates outputs given by LLaMA?2-13B-Chat,
Oursgenerations OUTISDiscrimination and Ourscongrastive
respectively. The score ranges from 1 to 10. To
mitigate potential position bias in candidate out-
puts, we randomly shuffle the positions of the four
candidate answers for each sample. The evaluation
prompt is detailed in Tab. 17. Finally, we average
the scores across all data samples.

A.3.2 Out-of-Domain Generalization

We provide detailed performance metrics and data
examples for two out-of-domain complex instruc-
tion following benchmarks: FollowBench and
CELLO. The detailed performance of FollowBench
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/* Task prompt */

You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not change

the meaning of the original <constraint>.

/* Example */

—INPUT—

<constraint>:

Your response should contain at least 3 sentences.
—OUTPUT—

variants:

1. Respond with at least three sentences

2. Use at least 3 sentences in your reply

3. Your entire response should include at least three sentences
4. Organize your entire response in at least 3 sentences

5. Please make sure the response is at least 3 sentences long

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 14: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted in bold.

is shown in Tab. 13. Except for mixed categories,
our methods typically exhibit decreased perfor-
mance compared to the backbone model when eval-
uated against individual, unseen constraints. The
declined performance in specific categories is rea-
sonable. The complex instructions in specific cat-
egories (e.g., Style) from FollowBench (each has
constraints from the same category) differ signif-
icantly from those in our training dataset (each
contains constraints from multiple categories). We
show some cases in the Tab. 21, with the constraints
highlighted in bold. This suggests that models
training with certain constraints can hardly gener-
alize to unseen constraints directly. The detailed
performance of CELLO is shown in Tab. 12. As
demonstrated in Tab. 21, CELLO’s constraints and
language significantly differ from our training data.

A.3.3 In-Domain Generalization

We detail the test set construction process below.
First, we select 200 instructions from the Open
Assistant dataset (introduced in §4.1) not in our
training set. Next, we randomly choose 3 to 5
constraints from IFEval, pair them with descrip-
tions from our description pool (§4.1), and utilize
GPT-3.5-turbo to paraphrase them, ensuring dis-
tinct descriptions from the training data. Addition-
ally, we manually adjust specific requirements in
the instructions, changing symbols (e.g., “separated
by 6 asterisk symbols *#****” to “separate the re-

sponses with 6 hash signs: ######°) and formats
(e.g., “wrap the entire output in JSON format” to
“I want the entire output in XML format”).

A.3.4 Adversarial Setting

We detail the test set construction process below.
Specifically, we utilize the same 200 seed instruc-
tions from §5.4.3 and the method introduced in §4.1
to append 6 to 7 constraints to the seed instructions.
These new instructions are challenging since our
training data contains 3 to 5 constraints.

A.4 Case Study

We present some examples of various models
following complex instructions in Tab. 18 and
Tab. 19. Given the complex instructions with multi-
ple constraints, we present the outputs generated by
GPT3.5-turbo and LLaMA2-13B-Chat and the list
indicating whether they have followed the specific
constraint or not. Constraints in the instruction are
underlined sequentially.

A.5 Implementation Details

We utilize 2 NVIDIA A800 80GB GPUs to con-
duct all the experiments. DeepSpeed ZeRO stage 1
is adopted for both SFT and DPO training. We use
LORA(Hu et al., 2021) adaptor for effective train-
ing. We set the batch size to 4 for each GPU. All
the methods utilizing SFT are trained for 2 epochs
with the initial learning rate set to 3e-4 and the
gradient accumulation step set to 4. The warm-up
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/* Task prompt */

You are provided with an <instruction>. Your object is to come up some keywords that may be used to answer the <instruction>.
They are usually related to the task described in the <instruction>. you should output your thinking process and the keywords
you come up with.

/* Example */

—INPUT—

<instruction>:

Explain Generative Adversarial Networks (GANs) to me using bullet points. Do not contain any commas in your response.
—OUTPUT—

Thinking process:

The <instruction> asks to explain GANSs, hence, “architecture”, “training” and “generator” may be appropriate keywords to use
in the answer.

Keywords:

[“architecture”, “training”, “generator” |

/* Input */
—INPUT—
<instruction>:

{ Given_instruction}
—OUTPUT—

Table 15: The prompts for brainstorming some related keywords of a given instruction. The information that
requires manual input is highlighted in bold.

steps are set to 300. As for the training of methods
utilizing DPO, the beta value is set to 0.1. DPO is
trained for 2 epochs with the initial learning rate
set to 5e-4 and the gradient accumulation step also
set to 4. We apply cosine learning rate scheduler
and Adam optimizer to both models, and their max-
imum sequence length is set to 2048.

A.6 Ablation Study on the Contrastive
Method

To prove the effectiveness of the proposed objec-
tive function in §4.3, we train LLaMA2-13B-Chat
only utilizing naive DPO loss Lppo. As shown in
Tab. 22, using only naive DPO loss causes mod-
els to output repeated constraints meaninglessly.
This is probably because DPO Loss tend to over-
fit to the training data (Li et al., 2023c; Xu et al.,
2024; Hejna et al., 2023). After incorporating the
Lsrr loss into our objective function, the model
can effectively follow complex instructions.
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/* Task prompt */

You are provided with a response which is generated by a LLM and a constraint that the response is asked to follow. Now, you
have known that the response does not follow the constraint. You are designated as a corrector to correct the response. You
should make as minimal revisions as possible so that it follows the constraint. For example, you should not change the case of
the word if you are not asked. To fulfil this task, you are expected to provide your analysis and a revised response which has
followed the constraint.

/* Example */

—INPUT—

Response:

«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code: 012».
Andorra is a small, independent principality located in the Pyrenees mountains. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Do you agree?

Constraint:

The very last sentence of your response should be “Hope you agree with me.”

—OUTPUT—

Analysis:

The last sentence of the response is “Do you agree?”. I need to change it to “Hope you agree with me.” to follow the constraint.
Revised response:

«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012». Andorra is a small, independent principality located in the Pyrenees mountain. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Hope you agree with me.

/* Input */
—INPUT—
Response:
{Given_response}
Constraint:
{Given_constraint}
—OUTPUT—

Table 16: The prompts for correcting the response generated by the model to follow a specific constraint. The
information that requires manual input is highlighted in bold.

I* Prompt */

You are a helpful assistant who reviews a debate among four other assistants in evaluating the quality of the outputs for
a given instruction. The four assistants, Assistant (LLaMA?2-13B-Chat), Assistant (Ours-LLaMA2-13Bgeneration), Assistant
(Ours-LLaMA2-13Bpjiscrimination ) and Assistant (Ours-LLaMA2-13Bcontrasiive), are given an instruction. Output (LLaMA2-13B-
Chat), Output (Ours-LLaMA2-13Bgeneration ), Output (Ours-LLaMA?2-13Bpiscrimination ), and Output (Ours-LLaMA2-13Bconrastive)
are generated by four different Al chatbots respectively. Assistants have conflicting evaluations. Your goal is to rate each output,
assigning higher scores to the assistants whose responses better fulfill the given instruction.

Here are some rules of the evaluation:

1) You should prioritize evaluating whether the output honestly, precisely, and closely executes the instruction, then consider its
helpfulness, accuracy, level of detail, harmlessness, etc.

2) Outputs should NOT contain more or less than what the instruction asks for; as such outputs do NOT precisely execute the
instruction.

Rate each output from 1 to 10, then output your final verdict using this format: [[LLaMAZ2-13B-Chat-x]],
[[Ours-LLaMA2-13Bgeneration-X]], [[(Ours-LLaMA2-13Bpjiscrimination)-X1], [[(Ours-LLaMA2-13Bcontrastive)-X]], Where x is the
score you assigned to each assistant.

[* Instruction */
{Given_instruction}

I* Random order of four model outputs */
<The Start of Assistant’s Answer>
{Model_output}

<The End of Assistant’s Answer>

Table 17: The prompts for scoring the outputs generated by different models to a general instruction. The information
that requires manual input is highlighted in bold.
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Instruction
Describe the content of the article in a brief manner. A study published earlier this year by Zee and her team exam-
ined the role of light in sleep for healthy adults in their 20s. Sleeping for only one night with a dim light, such as
a TV set with the sound off, raised the blood sugar and heart rate of the young people during the sleep lab experi-
ment. An elevated heart rate at night has been shown in prior studies to be a risk factor for future heart disease and
early death, while higher blood sugar levels are a sign of insulin resistance, which can ultimately lead to type 2 dia-
betes. (1) The answer should be in at least 4 sections with each section starting with section X (where X is 1, 2, 3,...). The an-
swer should be (2) written in English, with all letters lowercased. Respond with (3) less than 73 words.
GPT3.5-turbo

/* Output */

section 1: study by zee and team on light’s impact on sleep for young adults

section 2: sleeping with dim light raised blood sugar and heart rate

section 3: higher blood sugar levels indicate insulin resistance and risk of type 2 diabetes.

[* Followed list */
[False, True, True]
LLaMA2-13B-Chat

/* Output */

section 1: Introduction

the article discusses the impact of light on sleep and its effects on healthy adults in their 20s.

section 2: Experiment Findings

the study found that sleeping with a dim light, such as a TV with the sound off, raised blood sugar and heart rate levels during
the sleep lab experiment.

section 3: Risk Factors

elevated heart rate at night has been linked to future heart disease and early death, while higher blood sugar levels can lead to
insulin resistance and type 2 diabetes.

section 4: Conclusion

the study highlights the importance of a dark, quiet sleep environment for optimal sleep and overall health.

/* Followed list */
[True, False, False]

Table 18: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 1).
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Instruction

Summarize a meeting from the given list of bullet points. Be sure to convert shorthand into a first-hand account. Rose: Analyze
data and presents findings
John: propose new idea
Jane: appointed to head project
Tom: need more time to fix a software bug.
(1) End it with a postscript starting with P.S..  (2) The very end of your entire response should be like: That is all you need!.
Your answer must also (3) contain at least 2 placeholders (an example of a placeholder is [address]).

GPT3.5-turbo

/* Output */

During the meeting, Rose analyzed data and presented her findings. John proposed a new idea for the project, while Jane was
appointed to head the project. Tom mentioned that he needed more time to fix a software bug.

P.S. [Address] That is all you need!

/* Followed list */
[True, True, False]
LLaMA2-13B-Chat

/* Output */

Sure, I'd be happy to help! Here’s a summary of the meeting based on the provided bullet points:

The meeting began with Rose presenting her findings after analyzing the data. She shared some insightful observations and
conclusions, which were well-received by the team.

Next, John proposed a new idea that he believed would benefit the project. He explained his reasoning and provided some
supporting evidence for his proposal.

After John’s proposal, Jane was appointed as the head of the project. She expressed her gratitude for the opportunity and outlined
her vision for the project’s success.

Tom then reported that he needed more time to fix a software bug. He explained that the bug was more complex than initially
thought and required additional time to resolve.

In conclusion, the meeting was productive and successful. The team made progress on several fronts, including data analysis,
proposal development, and project leadership.

P.S. That is all you need!

[Address] - the physical location of the meeting [Data] - the specific data that Rose analyzed

[Software bug] - the technical issue that Tom is working to resolve

[* Followed list */
[True, False, True]

Table 19: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 2).

Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level
PalL.M2-S PaLM N/A N/A N/A N/A N/A N/A N/A N/A N/A 46.95 59.11
GPT3.5-turbo GPT 66.29 75.38 88.68 89.17  74.23 100.00  65.03 24.24 86.57 63.96 73.62
GPT4 GPT 78.65 72.31 96.23 9427  83.34 96.77  76.92 69.70 95.52  78.74 85.13
ChatGLM3-6B ChatGLM 16.85 21.54 67.92 4586  56.44 54.84  38.46 34.85 56.72  30.31 43.41
Qwen-14B-Chat Qwen 58.43 23.08 7547 58.60  60.12 83.87  36.36 25.76 74.63  40.11 53.00
LLaMAZ2-7B-Chat LLaMA?2 47.19 12.31 79.25 58.60  62.58 29.03 4336 16.67 56.72  36.60 48.68
LLaMAZ2-13B-Chat LLaMA2 51.69 15.38 83.02 67.52 6748 4194 4755 09.09 5821 41.22 53.00
LLaMAZ2-70B-Chat LLaMA2 49.44 27.69 79.25  65.61 72.39 22.58  48.25 21.21 70.15  43.44 55.40
Vicuna-13B-V1.5 LLaMA2 60.67 44.62 7547 6497 6135 93.55 4895 22.73 67.16 46.95 58.03
WizardLM-13B-V1.2 LLaMA2 57.30 21.54 7547 70.70  70.55 93.55 5594 25.76 71.64  49.72  60.55
OpenChat-13B-V3.2 LLaMA?2 5843 35.38 88.68 71.34  68.10 90.32  58.04 24.24 74.63  51.02 62.59
Mistral-7B-Instruct-v0.2 Mistral 68.54 26.15 88.68 77.71 77.30 80.65  56.64 27.27 79.10  56.19 65.95
Ours-LLaMA2-7BGeneration LLaMA2 57.30 16.92 71.70  70.70  60.12 61.29  33.57 19.70 65.67 40.67 51.92
Ours-LLaMA2-7Bpiscrimination ~ LLaMA2 55.06 09.23 7736 6497  61.35 74.19  40.56 21.21 79.10 43.99 53.48
Ours-LLaMA2-13BGeneration LLaMA2 66.29 26.15 66.04 7325  59.51 3548  49.65 27.27 82.09 46.03 57.31
Ours-LLaMA2-7B contrastive LLaMA2 77.53 15.38 7547 7070  55.83 67.74  46.85 31.82 89.55 4695 58.75
Ours-LLaMA2-13Bpjscrimination  LLaMA2 69.66 12.31 79.25 6752  62.58 96.77  49.65 54.55 80.60 50.83 61.27
Ours-LLaMA2-13Bcontrasiive ~~ LLaMA2 69.66 16.92 8491 68.15 66.87 93.55  51.05 57.58 88.06 52.13 6391
Ours-Mistral-7BGeneration Mistral 76.40 50.77 66.04 7898  61.35 58.06 55.94 46.97 92.54 5490 66.07
Ours-Mistral-7Bcontrastive Mistral 70.79 35.38 8491 8535 68.71 80.65  50.35 40.91 89.55 5582 67.27
Ours-Mistral-7Bpiscrimination Mistral 82.02 20.00 7170  81.53  63.19 96.77  55.24 62.12 85.07 56.75 67.39

Table 20: The loose accuracy score (defined by (Zhou et al., 2023a)) of models on different constraints of the IFEval.
To alleviate this false negative problem, following (Zhou et al., 2023a), we use three variants of the model response
to calculate a more loose accuracy score.
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Source Category Instruction

FollowBench Style ..., Position yourself as a sagacious detective, ..., Respond with the whimsical humor and imaginative wit typical of Lewis Carroll,
..., placing emphasis on refined language and meticulous attention to detail in a manner befitting the social and literary norms of
the early 19th century.

FollowBench Mixed Lost, found vodka, drank to forget.\n \nAccording to the above prompt, write a four-sentence story that describes a man. However,
the word "'man'' should not appear in the story. Please write using an introspective narrative tone.You should also describe
something about the bad weather.

CELLO Meta HRAFLLFAE, H—E>H: "input": "— MR E2 T, DIOKAPIEEZS), ERIZIHERZ? " "output": "EIREA ...
CELLO Structure 28 7E LA RSQLIUA, iR ERAAIFKAELA? < FHE MR S 4 G5 a2 70q213 ... e L 55u 170

Our Training data  N/A  For the following request, please repeat the request itself exactly as it is, ..., Create a list of subtopics for the given topic: Music theory.
Response should in all lowercase. Your answer must have a title contained in double angular brackets, such as «title». Refrain from
using commas in your response.

Table 21: Data examples from FollowBench, CELLO and our training data.

Instruction
Can you write a poem about the pros and cons of playing a lot of video games? Please make sure it’s at least 40 sentences long
(don’t forget to add punctuation). You must highlight some words or phrases in your response, like *highlighted phrase®.
Output (w Lppro)
*highlighted phrase* “the pros and cons of playing a lot of video games”

highlighted phrase* “the benefits and drawbacks of gaming”

highlighted phrase* “the advantages and disadvantages of playing video games”
highlighted phrase* “the positive and negative aspects of gaming”

highlighted phrase* “the good and bad sides of gaming”

highlighted phrase* “the pros and cons of gaming”

highlighted phrase* “the benefits and drawbacks of gaming”...(repeated)

Output (W Lours)
Sure, I’d be happy to help! Here’s a poem about the pros and cons of playing a lot of video games: Pros of playing video games:
* Fun and entertainment * Improved cognitive skills * Enhanced problem-solving abilities * Develops hand-eye coordination
* Social connections with other gamers * Stress relief and relaxation * Escapism from real-life problems * Opportunities
for creativity and self-expression Cons of playing video games: * Addiction and negative impact on mental health * Sleep
deprivation and poor physical health * Social isolation and lack of face-to-face interaction * Increased aggression and violent
behavior * Distraction from important responsibilities and tasks * Exposure to inappropriate content and negative influences *
Wasting time and not being productive It’s important to note that while playing video games can have both positive and negative
effects, the key is to find a balance and enjoy them responsibly. *Highlighted phrase:* It’s crucial to be aware of the potential
downsides and take steps to mitigate them, such as setting limits on playtime, engaging in physical activity, and prioritizing
real-life relationships and responsibilities.

Instruction

Generate a forum thread about several people waiting to hear the latest local news. All sentences should be short. Refrain from
using any commas. Use placeholders to represent different usernames. Use square brackets for placeholders, like [usernamel],
[username?]. Please include at least 20 placeholders in the thread.

Output (w Lppro)
[usernamel] [username2] [username3] [username4] [username5] [username6] [username7] [username8] [username9]
[username10] [usernamel1] [usernamel2] ...(repeated)

Output (W Lours)
Title: Waiting for the Latest Local News [usernamel]: Hey everyone, has anyone heard the latest local news? [username?2]:
No, have you? [username3]: Not yet, 'm waiting for the evening news. [username4]: Me too. I hope it’s not more bad news.
[usernameS5]: I heard there might be a new development in the local project. [username6]: Really? Do you know anything about
it? [username7]: No, I just heard it from a friend. [username8]: I hope it’s something positive. We need some good news around
here. [username9]: Agreed. I'm getting tired of all the negative news. [usernamel0]: I know, it’s been a tough few months.
[usernamel1]: I heard the local government is working on a new plan to improve the economy. [usernamel2]: That sounds
promising. Do you know what the plan is? [username13]: No, I don’t have any details. But it’s good to hear theyre taking action.
[username14]: Definitely. I'm looking forward to hearing more about it. [username15]: Me too. I hope it makes a difference.
[username16]: I'm sure it will. The community needs something positive to focus on. [usernamel7]: Absolutely. I'm feeling
more hopeful already. [usernamel8]: That’s the spirit! We just need to stay positive and support each other. [username19]:
Agreed. Let’s keep each other updated on any news we hear. [username20]: Great idea! Let’s keep the conversation going.

Table 22: The outputs generated by vanilla DPO loss and our training objective in §4.3.
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