
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 10836–10863
November 12-16, 2024 ©2024 Association for Computational Linguistics

Ask-before-Plan: Proactive Language Agents for Real-World Planning

Xuan Zhang1, Yang Deng2*, Zifeng Ren1, See-Kiong Ng1, Tat-Seng Chua1

1National University of Singapore 2Singapore Management University
{xuanzhang,renzifeng}@u.nus.edu ydeng@smu.edu.sg

{seekiong,dcscts}@nus.edu.sg

Abstract

The evolution of large language models
(LLMs) has enhanced the planning capabili-
ties of language agents in diverse real-world
scenarios. Despite these advancements, the
potential of LLM-powered agents to compre-
hend ambiguous user instructions for reason-
ing and decision-making is still under explo-
ration. In this work, we introduce a new
task, Proactive Agent Planning, which requires
language agents to predict clarification needs
based on user-agent conversation and agent-
environment interaction, invoke external tools
to collect valid information, and generate a
plan to fulfill the user’s demands. To study this
practical problem, we establish a new bench-
mark dataset, Ask-before-Plan. To tackle
the deficiency of LLMs in proactive plan-
ning, we propose a novel multi-agent frame-
work, Clarification-Execution-Planning (CEP),
which consists of three agents specialized in
clarification, execution, and planning. We in-
troduce the trajectory tuning scheme for the
clarification agent and static execution agent,
as well as the memory recollection mechanism
for the dynamic execution agent. Extensive
evaluations and comprehensive analyses con-
ducted on the Ask-before-Plan dataset validate
the effectiveness of our proposed framework.1

1 Introduction

Since long, people have been engaged in a never-
ending trek to devise intelligent agents cloning ap-
pearance, behaviors, and even mindsets similar to
human beings (Descartes and Cress, 1998; Drey-
fus, 1992). The emergence of large language mod-
els (LLMs) and their integration into autonomous
agents exhibits the potential for logical reason-
ing, decision-making, and problem-solving capa-
bilities (Wang et al., 2023b; Xi et al., 2023). LLM-

*Corresponding author.
1The data and code will be released via https://github.

com/magicgh/Ask-before-Plan.

(a) Agent Planning

(b) Proactive Information Seeking

(c) Proactive Agent Planning

Database

Query

Agent

ClarifyHow many people are going?

No �ights on March 10th.
Change your destination?

Result Planning
Agent

Complete Execution
Agent

Clari�cation
Agent

Environment

Clarify

Can you organize a 3-day trip starting from Seattle
to San Diago, departing on March 10th, 2022?

User Initial Query

Environment

Complete

AgentResult

Figure 1: Illustrations of different problems.

based language agents have been explored in var-
ious real-world planning problems, such as travel
planning (Xie et al., 2024), web navigation (Deng
et al., 2023a), online shopping (Yao et al., 2022),
etc. Nevertheless, they struggle to digest real-
world instructions from time to time, particularly
when the context is ambiguous or the user’s inten-
tion is unclear. Figure 1(a) exemplifies a case of
Agent Planning, where the language agent fails to
produce a desired plan when encountering an un-
clear user instruction.

Inspired by proactive information-seeking sys-
tems (Deng et al., 2023b; Liao et al., 2023) that
can proactively ask clarification questions for clar-
ifying the query uncertainty, latest studies on lan-
guage agents (Qian et al., 2024; Zhang et al.,
2024b) emphasize intention clarifications by in-
corporating implicit intention understanding into
downstream applications (Figure 1(b)). Despite
their effectiveness in clarifying the uncertainty
within user queries, there are several challenges
that remain to be solved in agent planning sce-
narios: (1) The exclusive reliance on query un-
derstanding for clarification without considering

10836

https://github.com/magicgh/Ask-before-Plan
https://github.com/magicgh/Ask-before-Plan

the observations from the environment interaction;
and (2) The negligence of the effect of user inten-
tion disambiguation in subsequent planning.

Given these important but neglected aspects, we
formulate a novel task named Proactive Agent
Planning. In addition to apprehending the user’s
implicit intentions in proactive information seek-
ing, Proactive Agent Planning further requires
language agents to predict clarification needs de-
pending on the environmental observations, in-
voke external tools to collect valid information
based on the user-agent conversation, and finalize
decisions to accomplish the common goal condi-
tioned on both user-agent conversation and agent-
environment interaction history (Figure 1(c)). To
study this practical problem, we first establish a
new benchmark dataset, Ask-before-Plan, based
on an agent planning dataset, TravelPlanner (Xie
et al., 2024), which is used for evaluating the capa-
bility of agents for real-world travel planning.

To tackle the aforementioned challenges, we
propose a novel multi-agent framework, named
Clarification-Execution-Planning (CEP), to encom-
pass user instruction clarification into downstream
agent planning. Specifically, the CEP involves
three agents with distinct roles in Clarification, Ex-
ecution, and Planning. The Clarification agent is
responsible for understanding the uncertainty of
user instructions and asking users clarifying ques-
tions to uncover their underlying intentions. The
Execution agent leverages various tools to interact
with the environment, gathering necessary infor-
mation for the Clarification agent. The Planning
agent produces the final plan by aggregating the
clarification process for accomplishing the initial
user instruction. To supplement the deficiency of
simply prompting LLMs to ask clarification ques-
tions or perform complex tool learning, we devise
Trajectory Tuning for fine-tuning the clarification
and execution agents. Furthermore, we employ
self-reflection to improve the reasoning process of
the execution agent. However, the redundancy of
self-reflection in multi-turn conversations may in-
crease the time complexity of inference and intro-
duce more noise into the context. To this end,
we propose the memory recollection mechanism
to optimize the memory utility for the execution
agent in long-context reasoning.

In summary, our contributions are as follows:

• We introduce a new and practical problem of
Proactive Agent Planning to study the chal-

lenges of LLM-powered language agents in han-
dling unclear user instructions.

• We propose a novel multi-agent framework,
namely CEP, which consists of clarification, ex-
ecution, and planning agents, to address the un-
derlying challenges in the Proactive Agent Plan-
ning problem.

• We construct the first dataset for studying Proac-
tive Agent Planning, namely Ask-before-Plan.
Extensive evaluations and comprehensive analy-
ses in diverse settings validate the effectiveness
of the proposed CEP framework.

2 Related Work

Language Agents Language-based agents (Xi
et al., 2023; Wang et al., 2023b; Deng et al., 2024a;
Zhang et al., 2024a) aim to perform real-world
tasks that require professional expertise or exten-
sive training by utilizing LLMs to conduct reason-
ing (Yao et al., 2023; Shinn et al., 2023), mem-
ory storage and retrieval (Wen et al., 2023; Zhong
et al., 2024), and tool use (Qin et al., 2024; Schick
et al., 2023). The rapid development and applica-
tion of language agents span various domains, in-
cluding web agents (Deng et al., 2023a; Yao et al.,
2022; Deng et al., 2024b), game agents (Wang
et al., 2023a; Zhu et al., 2023), and medical agents
(Li et al., 2024a; Schmidgall et al., 2024), etc. Ex-
isting studies typically assume that the user in-
structions are clear enough for language agents to
execute the task, while the instructions tend to be
succinct and brief in actual scenarios, potentially
leading to ambiguity and uncertainty.

Asking Clarification Questions The problem
of asking clarification questions (Aliannejadi et al.,
2021) typically involves two phases: Clarification
Need Prediction and Clarification Question Gener-
ation. Early studies develop ranking-based meth-
ods (Rao and Daumé III, 2018; Xu et al., 2019)
to select clarification questions from a candidate
pool, or apply end-to-end solutions (Deng et al.,
2022) for generating questions on the fly. Recently,
LLMs have also been employed to generate clar-
ifying questions (Kuhn et al., 2022; Deng et al.,
2023c; Zhang et al., 2024b; Chen et al., 2024).
Another line of research investigates environmen-
tal reward feedback to formulate questions (Za-
mani et al., 2020; Pyatkin et al., 2023; Andukuri
et al., 2024). Qian et al. (2024) explore how lan-
guage agents understand implicit user intentions

10837

but do not clarify users’ needs based on their pre-
defined preferences and consider the whole lan-
guage agent problem, such as planning and task-
solving.

3 Ask-before-Plan Dataset

Existing benchmarks on language agents either
only focus on their capabilities of asking clarifi-
cation questions, e.g., Tell Me More (Qian et al.,
2024) and Clamber (Zhang et al., 2024b), or sim-
ply assume that all the user instructions are clear
and explicit, e.g., TravelPlanner (Xie et al., 2024)
and Mind2Web (Deng et al., 2023a). In order to
integrally investigate agents’ competence in ask-
ing clarification questions as well as planning and
interacting with the environment, we construct
the Ask-before-Plan dataset. Built on the Trav-
elPlanner benchmark, our dataset incorporates un-
certain user instructions that require clarifications
into real-world travel planning scenarios.

3.1 Annotation & Quality Control

We aim to incorporate uncertain user instructions
with proactive information-seeking dialogues into
tool-augmented planning, allowing the agent to
ask clarification questions when faced with am-
biguous or vague user instructions. As shown in
Figure 2, the dataset construction process is bifur-
cated into the following two phases: (1) Indefinite
Detail Formation, and (2) Proactive Conversa-
tion Generation.

Indefinite Detail Formation Each instruction
in TravelPlanner precisely describes the task and
all pertinent details. To produce unclear instruc-
tions with indefinite details, we focus on two typ-
ical scenarios observed in proactive information-
seeking dialogues: (1) clarifying under-specified
queries, and (2) managing over-specified queries
(Wu et al., 2023; Deng et al., 2023b):
1. We create the under-specified user instruction

with missing details based on attributes such as
origin, destination by arrival days, departure
date, duration, number of people, and budget,
by discarding corresponding information from
the original complete instruction.

2. To construct over-specified instructions, we de-
velop unfeasible details based on features such
as accommodation, cuisine, and transportation
preferences, destination by arrival days, and
budget. We exhaustively iterate over all pos-
sible values within the TravelPlanner environ-

ment to select those that lack directly matched
information for instruction rewriting.

Consequently, we range the size of indefinite de-
tails from 0 to 3 for each instruction to formu-
late the final dataset. Given the interdependencies
among these details, topological sort is employed
to reorder the details according to the dependency
graph, and the priority of each detail is assigned
accordingly. The descriptions of indefinite detail
creation and instruction modification are presented
in Appendix A.1.

Proactive Conversation Generation After ac-
quiring the revised instruction and selecting indef-
inite details, we utilize GPT-3.5 to simulate the
proactive conversation between users and agents.
In the user simulation, we adopt different tones, in-
cluding succinct and passionate response patterns.
To summarize, we follow the pipeline below to
generate the real-world conversation:
1. Ambiguity Observation: The description of

an unclarified indefinite detail is presented to
GPT-3.5 (Agent) as the observation.

2. Question Generation: A question is generated
to inquire about the indefinite detail based on
the initial instruction and observation.

3. Draft Answer: The draft answer is provided to
GPT-3.5 (User) to guide the clarification of the
indefinite detail.

4. Natural Response Generation: A natural user
response is generated based on the question and
the draft answer.

5. Quality Control: The human examiner verifies
that the question covers the indefinite detail and
that the response provides clarification.

The detailed implementation of these simulations,
including the prompts used, is documented in Ap-
pendix A.2. The methodology achieved a pass rate
of 87.2% on the human examination.

3.2 Dataset Statistics

After the dataset construction, we obtain 1,000
samples for both the training and testing datasets.
Indefinite details were randomly selected from
11 distinct candidate types, as previously defined.
The distribution of indefinite detail sizes is struc-
tured as follows: 10% of the data contains no in-
definite details, and 30% of the data includes 1,
2, or 3 indefinite details each. The overall dataset
statistics are presented in Table 1. The environ-
ment setting is presented in Appendix A.3.

10838

(2) Proactive Conversation Generation

Assets

Itinerary

Origin Cleveland ❓

Destination by Arrive Days
Fort Myers on day 1
Tampa on day 3

Duration 5 days

Departure Date March 2nd, 2022

The number of People 6

Accommodation Preferences entire room, pets

Cuisine Preferences None

Transportation Preferences no self-driving

Budget $13,900 $2,401 ⚠

Minimal Budget: $2,642

Missing Details

Unfeasible Details

I am planning a 5-day trip for six individuals, starting on
March 2nd, 2022, from Cleveland. Our itinerary includes
visiting Fort Myers on the �rst day and Tampa on the third
day. We are looking for accommodations that offer an entire
room and are pet-friendly. Additionally, we prefer not to self-
drive during our trip. Our budget for this journey is $13,900.

Initial Query

(1) Indefinite Detail Formation

Simulated Dialogue

I am planning a 5-day trip for 6 individuals, starting on March 2nd,
2022. Our itinerary includes visiting Fort Myers on the 1st day and
Tampa on the 3rd day. We are looking for accommodations that offer
an entire room and are pet-friendly. Additionally, we prefer not to
self-drive during our trip. Our budget for this journey is $2401.

Where will you be departing from for this trip?

I will be departing from Cleveland.

It looks like the budget you've mentioned might not be

enough for your trip. Would you be open to adjusting your

budget to meet the minimum requirements for the itinerary

you've planned?

Absolutely, I'm willing to adjust the budget to ensure I can fully
experience everything on my itinerary. Let's make it $13,900 to cover all
the amazing activities and accommodations I have planned.

Figure 2: Data annotation process.

Train Test

Level
Easy 331 348
Medium 336 333
Hard 333 319

Duration
3 days 335 308
5 days 337 351
7 days 328 341

Missing Details

Origin 219 192
Destination by Arrival Days 379 360
The number of People 200 204
Duration 199 201
Departure Date 199 213
Budget 384 401
Total 1,204 1,183

Unfeasible Details

Destination by Arrival Days 189 176
Accommodation Preferences 182 185
Cuisine Preferences 18 20
Transportation Preferences 20 24
Budget 187 212
Total 596 617

Total # Dialogues 1,000 1,000
Turns 2,800 2,800

Table 1: Dataset statistics of Ask-before-Plan.

3.3 Problem Definition
Regarding the problem of Proactive Agent Plan-
ning, given an initial user instruction q0 poten-
tially containing T vague or unfeasible details,
D = {d1, . . . , dT }, we define three subtasks:

• Clarification Need Prediction & Clar-
ification Question Generation: For a
user-agent dialogue up to t − 1 turns,
we define the conversation history,
Ct−1 = {(q0), (a1, q1), . . . , (at−1, qt−1)}, the
agent-environment interaction history based on
Ct−1, denoted as Et−1 = {f1, o1, . . . , fn, on},
where fi is the function call and oi is the obser-
vation from the environment, and the unclarified
detail set for this turn, Dt = {dt+1, . . . , dT }.
The clarification agent is tasked with predicting
a binary label bt, indicating the need for clari-

fication based on the vagueness and feasibility
of environmental responses Et−1, and eliciting
unclarified details in Dt by generating a clarifi-
cation question at if needed. The conversation
will advance according to the topological prior-
ity assigned to each detail, with those sharing
the same priority addressed randomly.

• Tool Learning: Given the ongoing conversation
Ct = {(q0), (a1, q1), . . . , (at−1, qt−1), at}, the
agent needs to generate the complete interaction
chain Ei−1

t = {f1, o1, . . . , fi−1, oi−1} within
the present information. A correct function call
is defined as having accurate function names and
valid parameters. This stage is used to interact
with the environment as well as provide observa-
tion for the next-turn clarification.

• Agent Planning: Upon completion of the clari-
fied dialogue Ct and the last interaction history
Et, the planning agent must generate a valid
plan in JSON format with pre-defined fields
such as day, current city, transportation, etc.

4 Method

We introduce our multi-agent framework, namely
Clarification-Execution-Planning (CEP), which
consists of three agents: clarification agent,
execution agent, and planning agent.

Specifically, we investigate two settings of exe-
cution agents to interact with the environment us-
ing tools, namely static and dynamic interaction.
For the static interaction, the agent needs to gener-
ate the whole valid interaction of tool calls Ei−1

t

based on the current conversation Ct in one-step

10839

Result

Planning
Agent

Complete
Trajectory
Tuning

Clari�cation
 Agent

User

Interaction

Conversation

Static

Execution Agent

Dynamic

Execution Agent

Memory
Recollection

Environment

Trajectory
Tuning

Figure 3: Overview of the CEP framework.

inference. We regard the dynamic interaction as a
multi-step inference. In this situation, the agent is
expected to generate one action fi depending on
the current conversation Ct, with previous interac-
tion history Ei−1

t = {f1, o1, . . . , fi−1, oi−1}.
As illustrated in Figure 3, we introduce the tra-

jectory tuning scheme for the clarification agent
and static execution agent, along with memory rec-
ollection for the dynamic execution agent. Finally,
the planning agent generates a valid plan based on
the conversation history and interaction results.

4.1 Trajectory Tuning

Concerning the status quo, LLMs struggle to
spontaneously clarify users’ intentions during the
conversation (Deng et al., 2023b) and accurately
obtain necessary information via tool utilization
without hallucination (Li et al., 2024b), even af-
ter the instruction tuning or providing the well-
crafted prompts. To resolve these issues and align
the current language-based agents with our task,
we propose to use the trajectory (Ct−1, Et−1) to
finetune the clarification agent and the execution
agent in the static setting. We sample t− 1 details
according to topological order (see Appendix A.1)
to craft Ct−1 and derive the valid interaction chain
Et−1 from Ct−1 based on ground truth.

Clarification Agent As introduced in Section
3.3, there are two steps to be achieved for the clar-
ification agent: (1) Clarification Need Prediction.
In this step, the agent generates a boolean indica-
tor bt to predict the need for clarification based on
the ongoing conversation Ct−1 and the last turn
interaction Et−1. (2) Clarification Question Gen-
eration. If bt is true, the model needs to gener-
ate a clarifying question at for a specific detail
dt. In this case, we create a conversation sequence
[fprompt(Ct−1, Et−1, bt), at

[bt=1]] and tokenize it
into the input tokens xt, where fprompt(·) is a func-
tion to apply the prompt template.

Static Execution Agent In the tool learning sub-
task, we apply trajectory tuning for the static set-

ting. Given the current-turn conversation Ct and
the complete interaction chain Et, we construct
the sequence [fprompt(Ct), Et] and transform it
into the input xt.

Training Objective Finally, we train the agent
using the trajectory sequence xt for turn t in the
autoregressive manner:

L = max
θ

1

|T |
∑T

t=1

∑Nt

i=1
logP t

θ(x
t
i|xt

<i) (1)

where θ denotes the model parameter to be learned,
T denotes the number of total conversation turns,
and Nt denotes the number of tokens in turn t.

4.2 Memory Recollection
In view of dynamic tool interaction, Reflexion
(Shinn et al., 2023) has been validated as an effec-
tive approach to improve the reasoning capability
of LLMs by incorporating the self-reflective feed-
back into the ReAct framework (Yao et al., 2023).
However, when applying this approach to Proac-
tive Agent Planning, there is a potential issue: the
dynamic execution agent may encounter similar
types of exceptions and repeatedly generate iden-
tical rationales across different turns. To alleviate
this disadvantage, we introduce the Memory Rec-
ollection mechanism to reuse self-reflective feed-
back from previous turns.

Given the conversation context Ct at turn t, the
execution agent generates a tool call fi during
the i-th interaction, based on previous interactions
Ei−1

t and all reflective text in the memory bank Ri
t,

i.e., fi = LLM(Ct, E
i−1
t , Ri

t). When fi is invalid,
the agent will generate a rationale ri and store it
into Ri+1

t for self-reflection at the next interaction:

Ri+1
t =

{
Ri

t if fi is valid
concat(Ri

t, ri) else
(2)

Given that Ct shares common clarified details
across different turns, the memory recollection ac-
cumulates the reflective feedback from previous
turns, i.e., Rt+1 = Rt. This mechanism not only
prevents the model from repeating mistakes in his-
tory turns but also reduces the inference time for
upcoming turns. The theoretical time complexity
analysis and corresponding experimental results
are presented in Appendix C.1.

4.3 Overall Framework
Given the conversation Ct of turn t, the execution
agent first generates the whole interaction chain

10840

Et. Next, based on Ct and Et, the clarification
agent is required to predict the clarification need
and ask a question about a detail from Dt if nec-
essary. This process continues iteratively until all
indefinite details have been recovered by the clar-
ification agent. Once all such details are clarified,
the planner agent will generate a valid plan in the
format of JSON, based on the conversation CT and
the interaction ET from CT .

5 Experiment

5.1 Experimental Setups

Baselines We adopt the following baselines for
subtasks in the problem of Proactive Agent Plan-
ning: (1) Clarification: We first design a rule-
based environment-only method and adopt four
conversation-only methods, including Proactive,
Proactive CoT (ProCoT) (Deng et al., 2023c), and
Direct prompting, as baselines. For the reason
that there is no existing approach that concur-
rently considers the environment and conversation
when asking clarification questions, we further di-
rectly prompt the GPT-3.5 with the conversation
history and interaction log, along with In-context
Learning (ICL) prompting, as additional baselines.
(2) Tool learning: We adopt the general brute-
force algorithm and four baselines, including Di-
rect prompting (GPT-3.5) and finetuned ToolLLM
(LLaMA-2-7B) (Qin et al., 2024) for the static ex-
ecution setting, as well as ReAct (Yao et al., 2023)
and Reflexion (Shinn et al., 2023) for the dynamic
setting. (3) Planning: Our baselines include Direct
prompting, Zero-shot CoT (Kojima et al., 2023)
for static settings, as well as ReAct (Yao et al.,
2023) and Reflexion (Shinn et al., 2023) for dy-
namic settings.2 Additionally, Greedy Search is
included as a baseline for comparison. Details of
these baselines are presented in Appendix B.1.

Evaluation Metrics Similarly, we employ eval-
uation metrics for the three subtasks as follows:
(1) In the clarification subtask, Clarification Ac-
curacy (Clarif. Acc) is adopted for evaluating
the performance of Clarification Need Prediction,
and meanwhile, we setup three metrics to score
the quality of clarification question generation, in-
cluding Rule-based, BLEU, and GPT scores. (2)
For the tool learning subtask, following previ-
ous studies (Wang et al., 2024), we also adopt

2ReAct and Reflexion are not tested for Mistral-7B due to
the inability to generate valid JSON plans.

Clarif. Acc Rule-based Score GPT Score

Micro Macro Micro Macro
BLEU

Micro Macro

Environment-only 70.4 17.7 21.5 8.1 1.0 40.1 19.4

Conversation-only

Proactive (GPT-3.5) 62.3 6.1 9.7 3.4 3.7 0.9 0
ProCoT (GPT-3.5) 33.7 10.6 3.3 2.6 2.2 2.4 1.8
Direct (Mistral-7B) 59.4 24.6 56.8 50.8 47.9 65.8 59.3
Direct (LLaMA-3-8B) 76.8 48.5 70.5 64.6 53.4 80.7 75.5

Environment + Conversation

Direct (GPT-3.5) 47.0 16.9 20.8 17.4 8.2 8.6 6.2
ICL (GPT-3.5) 65.7 29.4 2.1 0.6 8.8 2.7 0.9
CEP (Mistral-7B) 82.8 51.7 54.2 37.0 44.5 73.1 58.6
CEP (LLaMA-3-8B) 99.4 98.2 69.7 55.8 57.2 85.8 77.0

Table 2: Evaluation of clarification.

the same metrics for evaluation, including Well-
formed, API Match, and Correctness. Further-
more, we add two metrics to assess the Repeat
Rate and Pass Rate of tool use. (3) Concerning
the planning subtask, we also adopt the same eval-
uation metrics as TravelPlanner (Xie et al., 2024),
including Delivery Rate, Commonsense Pass Rate,
Hard Constraint Pass Rate, and Final Pass Rate.
Details of these evaluation metrics are presented
in Appendix B.2.

Implementation Details For all experiments in-
volving GPT-3.5, we use gpt-3.5-turbo-0125.
Mistral-7B, LLaMA-2-7B, and LLaMA-3-8B are
adopted for finetuning and inference. More imple-
mentation details are presented in Appendix B.3.

5.2 Overall Evaluation
We list our experiments on clarification, tool learn-
ing, and planning subtasks, shown in Tables 2, 3,
4. To assess the capability of agents on these three
subtasks individually, we use the ground truth of
prior subtasks as input for the subsequent sub-
task. Evaluations of the integral framework are
discussed in Section 5.2.4.

5.2.1 Evaluation on Clarification
From Table 2, the results of the environment-only
method surpass Proactive and ProCoT, pointing
out the importance of using environment observa-
tion as a supervised signal in clarification for lan-
guage agents.

Comparing four conversation-only methods,
Proactive performs well in turn-grained (Mi-
cro Clarif. Acc), while ProCoT strengthens
in instance-grained clarification (Macro Clarif.
Acc). Upon careful inspection, we observe that
Proactive prefers to clarify the user’s instruction,
whereas ProCoT tends to directly execute the
instruction, which is discussed in Section 5.3.
Besides, ProCoT performs better in clarification

10841

Well-formed
API

Match
Repeat
Rate

Correctness Pass Rate

P R F1 Micro Macro

Brute-force 100 98.8 0 77.2 90.3 81.9 45.7 22.0

Static Setting

Direct (GPT-3.5) 99.9 88.9 0.07 72.8 62.0 64.7 7.1 2.3
ToolLLM (LLaMA-2-7B) 99.7 82.9 2.4 65.9 66.1 63.3 16.3 3.4
CEP (Mistral-7B) 99.4 93.4 0.15 91.7 90.1 90.1 57.6 27.3
CEP (LLaMA-3-8B) 100 99.3 0.04 97.9 98.1 97.9 89.0 78.4

Dynamic Setting

ReAct (GPT-3.5) 66.2 33.3 14.3 42.8 15.6 21.1 1.4 0
Reflexion (GPT-3.5) 70.5 42.2 11.1 44.4 18.6 24.0 1.0 0
CEP (GPT-3.5) 73.3 45.3 9.8 45.0 19.2 24.7 1.1 0

ReAct (Mistral-7B) 49.0 50.0 11.8 58.1 24.6 32.3 1.2 0
Reflexion (Mistral-7B) 48.1 46.3 15.6 54.2 21.8 28.8 1.2 0
CEP (Mistral-7B) 46.9 42.4 18.1 49.0 19.5 25.6 1.3 0

Table 3: Evaluation of tool learning.

question generation with higher GPT scores. Both
Direct prompting methods deliver better results
than the previous two baselines while achieving
BLEU and GPT scores that are closer to their En-
vironment + Conversation counterparts. However,
they fail to distinguish the need for clarifying the
conversation, highlighting the importance of ob-
serving both environment and conversation.

For approaches using both environment and
conversation observations, Direct (GPT-3.5) sur-
passes Proactive and ProCoT in question qual-
ity and macro clarification accuracy. However,
it still performs worse than the environment-only
method, regardless of Clarification Need Predic-
tion or Clarification Question Generation. ICL
(GPT-3.5) performs better in clarification need pre-
diction but worse in question generation, support-
ing the argument that in-context learning is an un-
stable approach for the clarification subtask. Fi-
nally, our proposed CEP framework with either
Mistral-7B or LLaMA-3-8B outperforms all other
methods. Specifically, finetuned LLaMA-3-8B is
better than finetuned Mistral-7B, mainly due to the
larger parameter size and better pretraining data.

5.2.2 Evaluation on Tool Learning
As shown in Table 3, we evaluate tool learning in
two settings, namely static and dynamic.

Discussion on Static vs. Dynamic Settings
First of all, Brute-force outperforms all methods
in the dynamic setting. In general, agents in the
dynamic setting represent worse results compared
with agents in the static setting, indicating that in
a complex environment similar to the real-world
situation, agents are more likely to fail to handle
different exceptions during the interaction.

Comparison on Static Setting In the static set-
ting, we observe the same phenomenon in the clar-
ification subtask, i.e., LLaMA-3-8B performs bet-

ter, and even surpasses the Brute-force baseline.
Zero-shot GPT-3.5 presents the undesired perfor-
mance on API match, correctness, and pass rate.
Interestingly, ToolLLM also produces unexpected
results, suggesting that the pretraining knowledge
from ToolBench did not translate into improved
performance on our task.

Comparison on Dynamic Setting In the dy-
namic setting, due to the input token limitation
of LLaMA-3-8B, we could only conduct experi-
ments over GPT-3.5 and Mistral-7B for three dif-
ferent strategies. We find that GPT-3.5 is prone
to generating actions without syntax errors. But
when it comes to evaluating the quality of the gen-
erated actions, Mistral performs better. Secondly,
we find the performance degradation trend of Mis-
tral from the strategy ReAct to our proposed mem-
ory recollection mechanism, which is in contrast
to the observation we find in GPT-3.5, probably
because of the reasoning ability drops when pro-
cessing the context with length over 8K. The re-
sults of GPT-3.5 prove the effectiveness of mem-
ory recollection. It can also be concluded that in a
dynamic setting, all agents fail to consistently gen-
erate correct actions throughout the entire interac-
tion. More analysis on dynamic execution agents
is presented in Appendix C.

5.2.3 Evaluation on Planning
In the planning task, greedy search achieves a de-
livery rate of 100% and meets most constraints,
but this does not result in a valid plan. For Mis-
tral, we only test the Direct and CoT strategies
because the agent gets trapped in a fail-retry loop
when using ReAct and Reflexion. This scenario
mirrors the performance drop observed in the tool
learning task with a super-long context. For GPT-
3.5, we observe the same trend in TravelPlanner
(Xie et al., 2024), the performance degrades from
direct prompting to Reflexion, demonstrating the
difficulty for most advanced agents to finish the
planning task. Among these results, only GPT-3.5
with direct prompting successfully generates one
passed plan out of 1,000 samples in the test set, in-
dicating the significant challenge of this problem.

5.2.4 Evaluation on the Integral Framework
Finally, we evaluate the integral CEP framework
holistically rather than assessing the performance
of each subtask independently. To this end, we
adopt the execution interactions generated by the
SOTA model in Table 3, CEP (LLaMA-3-8B), for

10842

Commonsense Hard Constraint
Delivery

Rate
Pass Rate Pass Rate Final

Pass RateMicro Macro Micro Macro

Greedy Search 100 76.9 0 64.5 46.7 0

Direct (Mistral-7B) 86.6 44.8 0.4 4.0 0.9 0
CoT (Mistral-7B) 61.5 29.8 0 2.4 0.1 0

Direct (GPT-3.5) 98.6 63.7 0.7 19.0 5.1 0.1
CoT (GPT-3.5) 77.5 50.0 0.6 16.2 5.2 0
ReAct (GPT-3.5) 68.7 38.0 0 3.2 0.6 0
Reflexion (GPT-3.5) 61.5 33.9 0 3.1 0.4 0

Table 4: Evaluation of planning.

Clarification

Clarif. Acc Rule-based Score GPT Score

Micro Macro Micro Macro Micro Macro

CEPindependent (LLaMA-3-8B) 99.4 98.2 69.7 55.8 85.8 77.0
CEPintegral (LLaMA-3-8B) 97.3 92.9 68.4 54.7 85.1 76.0

Planning

Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate

Final
Pass Rate

Micro Macro Micro Macro

CEPintegral 98.8 64.3 1.0 19.2 5.0 0.1
CEPintegral w/o Clarification 93.3 53.3 0.3 8.4 3.1 0

Table 5: Evaluation of the integral framework.

the subsequent clarification and the final planning.
Results are reported in Table 5.

As for the clarification subtask, we use CEP
(LLaMA-3-8B) based on the environment interac-
tion generated by the execution agent and the cur-
rent conversation history. Compared to the version
supervised by ground-truth data, i.e., CEPindependent
(LLaMA-3-8B), the performance of CEPintegral
(LLaMA-3-8B) slightly drops due to incorrectly-
predicted tool usage, highlighting the robustness
of our proposed CEP framework.

For the final planning subtask, we analyze the
effect of user intention disambiguation by ablating
the clarification agent. We adopt the best planning
model from Table 4, i.e., Direct (GPT-3.5), as the
planning agent. Specifically, we feed the initial
instruction without clarification into the planning
agent, denoted as w/o Clarification, for compari-
son. The observations indicate that the planning
agent fails to formulate valid plans without clari-
fication, stating that user intention understanding
is essential for effective plan delivery and meeting
constraints. To intuitively illustrate the importance
of clarification in agent planning, we present a de-
tailed case study in Appendix D.

5.3 Detailed Analysis
Analysis of Clarification Recall We further ex-
amine the clarification accuracy from two an-
gles: clearness and vagueness judgment recall
(definitions are presented in Appendix B.2). It
can be observed from Figure 4 that: (1) CEP

0.25 0.50 0.75 1.00
Micro

0.2

0.4

0.6

0.8

1.0

M
ac

ro CEP (Mistral-7B)

CEP (LLaMA-3-8B)

Environment-only

Direct (GPT-3.5)
ProCoT (GPT-3.5)

Proactive (GPT-3.5)

ICL (GPT-3.5)

Clearness

0.8

0.9

1.0

CEP (Mistral-7B)

CEP (LLaMA-3-8B)

Environment-only

Proactive (GPT-3.5)

Vagueness

0.25 0.50 0.75 1.00
Micro

0.0
0.1
0.2
0.3
0.4
0.5

Direct (GPT-3.5)
ProCoT (GPT-3.5)

ICL (GPT-3.5)

M
ac

ro

Figure 4: Analysis of clarification recall.

Constraint Type
Greedy Search CEPintegral CEPintegral w/o Clarif.

Easy Medium Hard Easy Medium Hard Easy Medium Hard

Commonsense Constraint

Within Sandbox 100 100 100 38.8 38.1 42.3 23.6 22.2 21.0
Complete Information 100 100 100 89.7 89.8 74.6 67.0 55.0 48.0
Within Current City 100 100 100 69.8 76.3 77.7 62.9 64.3 62.1
Reasonable City Route 100 100 100 68.7 74.2 67.4 31.6 25.8 28.5
Diverse Restaurants 0 0 0 65.2 69.4 72.4 66.7 72.1 73.7
Diverse Attractions 100 100 100 93.1 93.7 92.2 89.7 90.4 89.0
Non-conf. Transportation 93.4 92.5 91.8 74.4 70.3 89.3 64.9 55.6 68.0
Minimum Nights Stay 20.4 24.9 22.9 6.0 5.1 6.0 31.6 30.0 34.5

Hard Constraint

Budget 99.7 99.4 100 5.2 7.8 2.5 3.4 4.8 0.9
Accommodation - 41.3 32.0 - 33.8 34.8 - 16.4 14.4
Cuisine - 5.9 0 - 32.8 19.8 - 8.4 8.4
Transportation - - 55.0 - - 37.2 - - 15.6

Table 6: Analysis of plan constraints.

(LLaMA-3-8B) outperforms all other methods in
both clearness and vagueness judgment. (2) Proac-
tive (conversation-only) and environment-only ap-
proaches are inclined to request clarification, in-
dicating that these agents struggle to make accu-
rate judgments when either type of observation is
absent. (3) ProCoT, Direct, and ICL (GPT-3.5)
tend to not clarify the conversation, suggesting
that full observations or invoking agents to engage
in deeper reasoning might bring about hallucina-
tions in judgment. (4) CEP (Mistral-7B) performs
worse than CEP (LLaMA-3-8B) in both clearness
and vagueness judgment, correlating with find-
ings from static tool learning that LLaMA-3-8B’s
larger parameter size and better pretraining data
lead to superior performance.

Analysis of Planning Constraints We report
the detailed planning constraint pass rates for
Greedy Search, CEPintegral with and without clari-
fication in Table 6. The description of these con-
straints is shown in Appendix B.2. Our findings in-
clude: (1) Compared to Greedy Search, CEPintegral
underperforms on most constraints except for di-
verse restaurants and cuisine, highlighting the lim-
itations of off-the-shelf language agents in Proac-
tive Agent Planning. (2) Clarification plays a criti-
cal role in enabling agents to meet most common-
sense and all hard constraints, as evidenced by the
lower pass rates of CEPintegral without clarification.
However, an exception is the constraint minimum

10843

nights stay, which checks whether the accommo-
dation options entailed in a plan satisfy the mini-
mum night requirements. This constraint demands
mathematical understanding of the plan, while the
lengthy context of clarification dialogues may in-
troduce some noise into the planning process.

Analysis of Framework Efficiency To delve
into the time complexity and communication over-
head of the proposed multi-agent framework, we
measure the execution time for CEPintegral from
Table 5. For each data sample involving multi-
ple conversation turns and interaction iterations,
we calculate the total time spent on three sub-
tasks separately: an average of 14.17 seconds for
tool learning, 5.40 seconds for clarification, and
8.78 seconds for planning. The experimental re-
sults demonstrate that CEPintegral is efficient in real-
world applications, as clarification requires signif-
icantly less time than tool learning and planning.

6 Conclusion

In this work, we introduce a new and practical
problem of Proactive Agent Planning to address
the challenges faced by LLM-powered language
agents in handling unclear user instructions. To
tackle these obstacles, we propose a novel multi-
agent framework, CEP, which consists of clari-
fication, execution, and planning agents. This
framework features trajectory tuning and memory
recollection to address challenges faced by cur-
rent agents in requesting clarifications and execut-
ing tools within lengthy conversation contexts and
complex environmental interactions. Additionally,
we construct the first dataset specifically for study-
ing the concerned problem, named Ask-before-
Plan. Extensive evaluations and comprehensive
analyses across diverse settings substantiate the ef-
fectiveness of the proposed CEP framework.

Limitations

User Simulation To simplify the evaluation on
the clarification subtask, we employ static user
simulation rather than real-time user simulation
for dialogues. This approach allows us to focus ex-
clusively on evaluating the agent’s ability for clar-
ification question generation, without the latent in-
terference from incorrect user simulation. We be-
lieve that our proposed task could be easily ex-
tended to include dynamic real-time user simula-
tion in future work.

Agent Planning The effectiveness of our pro-
posed framework, CEP, has not been verified on
other benchmarks, as we are the first to introduce
the problem of Proactive Agent Planning and there
are no other suitable datasets available. Due to
the limited computing resources, we are unable
to conduct experiments with larger-size models.
In addition, while cooperation and division of la-
bor among different LLM-based agents improve
planning capabilities in uncertain situations (Song
et al., 2024; Xie and Zou, 2024), our work does
not thoroughly explore this. Our primary goal is
to establish and benchmark this new and practical
problem, as well as leave room for future research
on this challenging problem.

Ethical Consideration

The Ask-before-Plan dataset was built from the
TravelPlanner dataset (Xie et al., 2024), which is
publicly available. We have obtained permission
from the authors of TravelPlanner to utilize the
dataset for further construction.

Acknowledgement

This research was supported by the Singapore
Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 1 grant (No. MSS24C004).
This research/project is supported by A*STAR,
CISCO Systems (USA) Pte. Ltd, and National
University of Singapore under its Cisco-NUS Ac-
celerated Digital Economy Corporate Laboratory
(Award I21001E0002) and the National Research
Foundation, Singapore, under its Industry Align-
ment Fund Pre-positioning (IAF-PP) Funding Ini-
tiative. Any opinions, findings, conclusions, or
recommendations expressed in this material are
those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.

References
Mohammad Aliannejadi, Julia Kiseleva, Aleksandr

Chuklin, Jeff Dalton, and Mikhail Burtsev. 2021.
Building and evaluating open-domain dialogue cor-
pora with clarifying questions. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4473–4484. Asso-
ciation for Computational Linguistics.

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Ger-
stenberg, and Noah D Goodman. 2024. Star-gate:
Teaching language models to ask clarifying ques-
tions. ArXiv preprint.

10844

https://doi.org/10.18653/v1/2021.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.367
https://arxiv.org/abs/2403.19154
https://arxiv.org/abs/2403.19154
https://arxiv.org/abs/2403.19154

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Yue Chen, Chen Huang, Yang Deng, Wenqiang Lei,
Dingnan Jin, Jia Liu, and Tat-Seng Chua. 2024.
STYLE: improving domain transferability of asking
clarification questions in large language model pow-
ered conversational agents. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
pages 10633–10649.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023a. Mind2web: Towards a generalist agent for
the web. Advances in Neural Information Process-
ing Systems.

Yang Deng, Wenqiang Lei, Wai Lam, and Tat-Seng
Chua. 2023b. A survey on proactive dialogue sys-
tems: problems, methods, and prospects. In Pro-
ceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI ’23.

Yang Deng, Wenqiang Lei, Wenxuan Zhang, Wai Lam,
and Tat-Seng Chua. 2022. PACIFIC: Towards proac-
tive conversational question answering over tabular
and textual data in finance. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 6970–6984. Associa-
tion for Computational Linguistics.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang,
Wenqiang Lei, and Tat-Seng Chua. 2023c. Prompt-
ing and evaluating large language models for proac-
tive dialogues: Clarification, target-guided, and non-
collaboration. In Findings of the Association for
Computational Linguistics: EMNLP 2023. Associ-
ation for Computational Linguistics.

Yang Deng, An Zhang, Yankai Lin, Xu Chen, Ji-Rong
Wen, and Tat-Seng Chua. 2024a. Large language
model powered agents in the web. In Companion
Proceedings of the ACM on Web Conference 2024,
WWW 2024, pages 1242–1245.

Yang Deng, Xuan Zhang, Wenxuan Zhang, Yifei Yuan,
See-Kiong Ng, and Tat-Seng Chua. 2024b. On the
multi-turn instruction following for conversational
web agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8795–8812.
Association for Computational Linguistics.

R. Descartes and D.A. Cress. 1998. Discourse on
Method (Third Edition). HPC Classics Series. Hack-
ett Publishing Company.

Hubert L. Dreyfus. 1992. What Computers Still Can’t
Do: A Critique of Artificial Reason. MIT Press.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adapta-
tion of large language models. In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2022.
Clam: Selective clarification for ambiguous ques-
tions with generative language models. ArXiv
preprint.

Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yungh-
wei Lai, Xinhui Kang, Weizhi Ma, and Yang Liu.
2024a. Agent hospital: A simulacrum of hospital
with evolvable medical agents. ArXiv preprint.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024b. Formal-llm: Integrating
formal language and natural language for control-
lable llm-based agents. ArXiv preprint.

Lizi Liao, Grace Hui Yang, and Chirag Shah. 2023.
Proactive conversational agents in the post-chatgpt
world. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’23. Associa-
tion for Computing Machinery.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd,
John Kamalu, et al. 2022. Fp8 formats for deep
learning. ArXiv preprint.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318. Association for
Computational Linguistics.

Valentina Pyatkin, Jena D. Hwang, Vivek Srikumar,
Ximing Lu, Liwei Jiang, Yejin Choi, and Chandra
Bhagavatula. 2023. ClarifyDelphi: Reinforced clari-
fication questions with defeasibility rewards for so-
cial and moral situations. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

10845

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2024.findings-acl.632
https://aclanthology.org/2024.findings-acl.632
https://aclanthology.org/2024.findings-acl.632
https://doi.org/10.24963/ijcai.2023/738
https://doi.org/10.24963/ijcai.2023/738
https://aclanthology.org/2022.emnlp-main.469
https://aclanthology.org/2022.emnlp-main.469
https://aclanthology.org/2022.emnlp-main.469
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.1145/3589335.3641240
https://doi.org/10.1145/3589335.3641240
https://doi.org/10.18653/v1/2024.acl-long.477
https://doi.org/10.18653/v1/2024.acl-long.477
https://doi.org/10.18653/v1/2024.acl-long.477
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2405.02957
https://arxiv.org/abs/2405.02957
https://arxiv.org/abs/2402.00798
https://arxiv.org/abs/2402.00798
https://arxiv.org/abs/2402.00798
https://doi.org/10.1145/3539618.3594250
https://doi.org/10.1145/3539618.3594250
https://arxiv.org/abs/2209.05433
https://arxiv.org/abs/2209.05433
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.acl-long.630
https://doi.org/10.18653/v1/2023.acl-long.630
https://doi.org/10.18653/v1/2023.acl-long.630

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024.
Tell me more! towards implicit user intention under-
standing of language model driven agents. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1088–1113. Association for Compu-
tational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In ICLR 2024.

Sudha Rao and Hal Daumé III. 2018. Learning to
ask good questions: Ranking clarification questions
using neural expected value of perfect information.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2737–2746. Association for
Computational Linguistics.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language models can
teach themselves to use tools. Advances in Neural
Information Processing Systems.

Samuel Schmidgall, Rojin Ziaei, Carl Harris, Eduardo
Reis, Jeffrey Jopling, and Michael Moor. 2024.
Agentclinic: a multimodal agent benchmark to eval-
uate ai in simulated clinical environments. ArXiv
preprint.

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023.
Reflexion: an autonomous agent with dynamic mem-
ory and self-reflection. ArXiv preprint.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,
Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang.
2024. Adaptive in-conversation team building for
language model agents. ArXiv preprint.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin
Van Durme, and Yu Su. 2024. Llms in the imaginar-
ium: tool learning through simulated trial and error.
ArXiv preprint.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. ArXiv
preprint.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei
Wei, and Ji-Rong Wen. 2023b. A survey on large
language model based autonomous agents. ArXiv
preprint.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao
Ma, Pinlong Cai, Min Dou, Botian Shi, Liang He,

and Yu Qiao. 2023. Dilu: A knowledge-driven ap-
proach to autonomous driving with large language
models. ArXiv preprint.

Zeqiu Wu, Ryu Parish, Hao Cheng, Sewon Min,
Prithviraj Ammanabrolu, Mari Ostendorf, and Han-
naneh Hajishirzi. 2023. InSCIt: Information-
seeking conversations with mixed-initiative interac-
tions. Transactions of the Association for Computa-
tional Linguistics.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. ArXiv preprint.

Chengxing Xie and Difan Zou. 2024. A human-like
reasoning framework for multi-phases planning task
with large language models. ArXiv preprint.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. In ICML
2024.

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan,
Pengcheng Yang, Qi Zeng, Ming Zhou, and Xu Sun.
2019. Asking clarification questions in knowledge-
based question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1618–1629. Association
for Computational Linguistics.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023. React: Synergizing reasoning and acting in
language models. In The Eleventh International
Conference on Learning Representations.

Hamed Zamani, Susan T. Dumais, Nick Craswell,
Paul N. Bennett, and Gord Lueck. 2020. Gener-
ating clarifying questions for information retrieval.
In WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, pages 418–428. ACM /
IW3C2.

An Zhang, Yang Deng, Yankai Lin, Xu Chen, Ji-Rong
Wen, and Tat-Seng Chua. 2024a. Large language
model powered agents for information retrieval. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, pages 2989–2992.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang,
Wenqiang Lei, Junhong Liu, Dingnan Jin, Hongru
Liang, and Tat-Seng Chua. 2024b. Clamber: A

10846

https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://arxiv.org/abs/2405.07960
https://arxiv.org/abs/2405.07960
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2309.16292
https://arxiv.org/abs/2309.16292
https://arxiv.org/abs/2309.16292
https://doi.org/10.1162/tacl_a_00559
https://doi.org/10.1162/tacl_a_00559
https://doi.org/10.1162/tacl_a_00559
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2405.18208
https://arxiv.org/abs/2405.18208
https://arxiv.org/abs/2405.18208
https://doi.org/10.18653/v1/D19-1172
https://doi.org/10.18653/v1/D19-1172
https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3626772.3661375
https://doi.org/10.1145/3626772.3661375

benchmark of identifying and clarifying ambiguous
information needs in large language models. In ACL
2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 17.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao,
Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei
Lu, Xiaogang Wang, et al. 2023. Ghost in the
minecraft: Generally capable agents for open-world
enviroments via large language models with text-
based knowledge and memory. ArXiv preprint.

A Dataset Specifications

To adapt TravelPlanner to our proposed task, we
modify the dataset and environment for proactive
information seeking. In the following sections, we
share our implementation of the Ask-before-Plan
dataset along with the environment.

A.1 Indefinite Detail Formation
To simplify the dataset and tailor it to our task,
we specify the destination cities and related arrival
days, rather than providing the destination state
and the number of cities to visit. In this case, we
present only the departure date for each data sam-
ple in lieu of the date range. Besides, we combine
the room type and the house rule under local con-
straints as the accommodation. Table 7 shows the
description of elements in the dataset. To construct
the unfeasible details, we apply the following pro-
cedures for each feature:

• Accommodation: We search all combinations of
room types and house rules for every destination
in the environment to identify candidates with
no matching information, and then randomly se-
lect one of these accommodation preferences as
the unfeasible detail.

• Cuisine: We iterate all possible cuisine prefer-
ences in each destination. If some cuisine pref-
erences are not available in any destination, we
randomly choose one of them as the unfeasible
detail.

• Transportation: We assign the preference "No
flight" or "No self-driving" as the unfeasible de-
tail if the corresponding transportation mode is
not available for the route described in the in-
struction. It is guaranteed in the environment
that both preferences will not be unavailable si-
multaneously.

• Destination by Arrival Days: We randomly mod-
ify one of the destinations to be unreachable
from the previous city in the travel route. To
preserve the consistency of destinations, cities
within the same state as the original destination
are preferentially chosen for modification.

• Budget: We begin by estimating the lower
bound of the budget for the user’s travel plan
by summing the accommodation and transporta-
tion expenses. To determine the minimum ac-
commodation cost, we select the least expensive
accommodation in the given city that satisfies
the minimum nights constraint. The minimum
transportation cost is calculated by choosing the
cheapest option between "No flight" and "No
self-driving". Ultimately, we subtract a random
integer, ranging from 10 to 10% of the final esti-
mated lower bound, from the total approximate
budget.

Upon obtaining all the indefinite details, we select
between 0 and 3 for each instruction. Afterwards,
we apply the topological sort algorithm, based on
the directed acyclic graph illustrated in Figure 5,
to regulate the dependency between these details.
Eventually, we utilize the prompts outlined in E.1
and employ gpt-3.5-turbo-0125 to rewrite the
original instruction.

Origin

Destination by Arrival Days
Departure Date

Duration

Destination by Arrival Days
Budget

Budget

Number of People

Accommodation

Cuisine

Transportation

Unfeasible DetailsNode: Missing Details

Figure 5: Dependency graph for indefinite details.

A.2 Proactive Conversation Generation

We apply gpt-3.5-turbo-0125 to implement
conversation generation, with the specific prompts
utilized detailed in Section E.1. Notably, to ac-
curately guide GPT-3.5 in generating role-playing
dialogues, we incorporate both XML and Python-
type structures into the prompts. In the quality
control phase, we initially use keyword matching
to ensure that relevant keywords are included in
both the questions and responses. Finally, we se-
lect 20% of the data points at random for proof-
reading.

10847

https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144

Destination by Arrival Days
Definition: An array depicts the destination city with the day to arrive.
Example in the Natural Language Instruction: We plan to visit Dallas on the 1st day and Houston on the 3rd day...

Duration
Definition: The number of travel days.
Example in the Natural Language Instruction: We are planning a 3-day trip...

Departure Date
Definition: Date of departure from the origin city.
Example in the Natural Language Instruction: Would you be able to organize a trip on March 18th, 2022...

Number of People
Definition: The total number of individuals on the trip.
Example in the Natural Language Instruction: Please organize a trip for 2 individuals...

Budget
Definition: The budget for the trip in integers.
Example in the Natural Language Instruction: ... we have a budget of $1600...

Origin
Definition: The departure city of the trip.
Example in the Natural Language Instruction: Would you mind creating a travel plan starting from St. Louis...

Accommodation
Definition: An optional array describes the accommodation preferences, consisting of the room type and the house rule.
Possible values for the room type include "shared room", "not shared room", "private room", and "entire room". Possible
values for the house rule include "parties", "smoking", "children under 10", "pets", and "visitors".
Example in the Natural Language Instruction: ... Our accommodation preference is a place that allows parties...

Transportation
Definition: An optional string indicates transportation preferences, such as "No flight" and "No self-driving".
Example in the Natural Language Instruction: ... Additionally, we prefer not to use flights for transportation...

Cuisine
Definition: An optional array represents cuisine preferences, with possible values including "Chinese", "American", "Ital-
ian", "Mexican", "Indian", "Mediterranean", and "French".
Example in the Natural Language Instruction: ... We are interested in exploring Chinese, Indian, Mexican, and Italian
cuisines...

Table 7: Description of elements in the dataset.

A.3 Environment Settings

To align the TravelPlanner environment with our
proposed task, we modify it by removing tools
such as NotebookWrite and CitySearch. We intro-
duce a new tool named BudgetEstimator to accom-
modate the unfeasible detail, budget. Furthermore,
we adjust the required parameters of each tool to
better suit our dataset setup. The description of
modified tools in our environment is as follows:

• AccommodationSearch: Instead of merely
searching for accommodation options in the
specified city, an optional parameter, filters, is
introduced to describe the user’s accommoda-
tion preferences. This parameter corresponds di-
rectly to the dataset element accommodation.

• RestaurantSearch: We add an optional parame-
ter, cuisines, to capture the user’s culinary prefer-
ences, corresponding to the dataset element cui-
sine. This enhancement enables the tool to list
all restaurants in the selected city and verify the
availability of the user’s preferred cuisine.

• BudgetEstimator: This tool is used to calculate
the minimum budget required for the trip based
on the cheapest accommodation and transporta-
tion options. The parameters include the depar-
ture city, destination cities, dates of arrival in
each city, and the number of people.

10848

B Details of Experimental Setups

B.1 Baselines

We describe the details of the adopted baselines.
The prompts for the clarification, execution, and
planning subtasks are exhibited in Sections E.2,
E.3, and E.4.

Clarification For the clarification subtask, we
adopt the following baselines:

• Environment-only: To implement the generation
of clarification questions based on environmen-
tal feedback, we prepare predefined questions
tailored to two scenarios: one where a tool invo-
cation is not recorded in the interaction log, and
another where a tool invocation suggests that
the current travel plan conversation is infeasible.
For each interaction history, if one of these sce-
narios occurs, we add the corresponding ques-
tions to the candidate pool and finally sample
one question from this pool to ask the user.

• Proactive (Deng et al., 2023c): This method pro-
vides alternative choices for agents to decide
whether to ask a question for disambiguation or
take no action.

• ProCoT (Deng et al., 2023c): This approach dis-
tinguishes itself from the Proactive baseline by
involving reasoning about the next action prior
to making a decision.

• Direct: Given the conversation history and the
current interaction log, the agent is prompted to
finish Clarification Need Prediction and Clarifi-
cation Question Generation without additional
strategies. In the conversation-only setting, en-
vironmental information is excluded from the
prompts.

• ICL (Brown et al., 2020): Based on Direct
prompting, two examples for clarification need
prediction and one for question generation are
selected from the training dataset and incorpo-
rated into the context.

In Clarification Need Prediction, we record the
first "Yes" or "No" from the agent’s response as the
final judgment. If the response does not contain
"Yes" or "No", we consider the prediction to be
"No".

Execution We adopt the following baselines in
the execution subtask:

• Brute-force: We provide the brute-force solu-
tion, as a representative of the traditional algo-
rithm, for the execution subtask. As the name
suggests, this solution invokes all tools, regard-
less of syntax correctness, based on the informa-
tion from the conversation history.

• Direct: In this method, the agent is prompted to
generate all possible tool invocations according
to the conversation history. For GPT-3.5, we pro-
vide an example to enable in-context learning.

• ToolLLM (Qin et al., 2024): Following the Di-
rect prompting, we train ToolLLaMA on our
Ask-before-Plan dataset in the static setting for
3 epochs, after pretraining on ToolBench for 2
epochs, to match the total number of training
epochs with CEP.

• ReAct (Yao et al., 2023): This prompting strat-
egy necessitates that the agent integrate envi-
ronmental observations into its reasoning pro-
cess. In the execution subtask, the ReAct agent
produces step-by-step tool commands based on
the conversation history and its previous inter-
actions with the environment, cycling through
thought, action, and observation.

• Reflexion (Shinn et al., 2023): This approach is
similar to ReAct, but the agent is required to re-
flect on the incorrect tool invocations and pro-
vide a high-level explanation of the error in or-
der to improve its reasoning.

Planning We use the same baseline setting as de-
scribed in the TravelPlanner sole-planning mode,
which is outlined as follows:

• Greedy Search: We borrow the greedy search al-
gorithm from TravelPlanner and adapt it to our
planning subtask. To illustrate, we remove des-
tination selection since our dataset specifies the
city to visit for 5- or 7-day travel plans.

• Direct: In this baseline, the agent directly gener-
ates the plan given the conversation and interac-
tion history.

• CoT (Kojima et al., 2023): Compared with the
direct baseline, we add the prompt "Let’s think
step by step" to elicit reasoning capability.

10849

• ReAct (Yao et al., 2023): Similar to ReAct in
the execution subtask, we only provide the agent
with a cost calculation environment to assist in
generating the travel plan.

• Reflexion (Shinn et al., 2023): Based on ReAct,
we introduce the self-reflection module, similar
to the execution subtask, for guiding the agent to
generate a valid travel plan.

Unlike TravelPlanner, which first generates a
natural language plan and then uses GPT-4 to con-
vert it into a JSON format, our planning subtask
requires directly generating a JSON travel plan.

B.2 Evaluation Metrics
Considering the conversational nature of clarifica-
tion and execution subtasks, we introduce two dif-
ferent evaluation strategies: micro and macro. The
micro strategy calculates the average per conver-
sation turn, whereas the macro strategy calculates
the average per data sample. In the planning sub-
task, the definition of micro and macro strategies
is consistent with TravelPlanner (Xie et al., 2024),
which is the ratio of passed constraints to the to-
tal number of constraints and the ratio of passed
constraints among all tested plans, respectively.

Clarification We incorporate the following met-
rics to evaluate the clarification subtask:

• Clarification Accuracy: The percentage of cor-
rect Clarification Need Prediction. A prediction
is considered correct if the agent accurately iden-
tifies when a conversation requires clarification.

• Clearness Recall: The ratio of conversation
turns predicted to be clear to the total number of
turns that do not require clarification. This mea-
sures the agent’s ability to identify unambiguous
user inquiries.

• Vagueness Recall: The ratio of conversation
turns predicted to be vague to the total number
of turns that require clarification. This metric
evaluates the agent’s capability to identify am-
biguous user inquiries.

• Rule-based Score: The percentage of generated
questions containing the predefined keywords
for respective indefinite details.

• BLEU (Papineni et al., 2002): This metric mea-
sures the similarity between the generated ques-
tion and the ground truth in terms of n-gram

overlap. We set the maximum n-gram order to
4 without smoothing.

• GPT Score: We utilize the OpenAI model
gpt-4-turbo-2024-04-09 with zero tempera-
ture to judge the correctness of the generated
questions. Prompts are shown in Section E.2.

Note that the last three metrics are exclusively
used to assess the correctness of the generated
questions. Consequently, we perform these cal-
culations only when the Clarification Need Pre-
diction is correct. Given that multiple indefinite
details may require clarification within a single
conversation turn, for these metrics, we calculate
the highest score across all candidate indefinite de-
tails.

Execution For conversation turn t, we denote
the generated tool calls as F t

gen and the ground
truth tool calls as F t

gt. We define set(·) as a func-
tion that eliminates duplicate elements from an ar-
ray. Following Wang et al. (2024), the metrics for
the execution subtask are as follows:

• Well-formed: The percentage of F t
gen without

syntax errors.

• API Match: This metric calculates the ratio
of matched API names between set(F t

gen) and
set(F t

gt) to the total number in set(F t
gt).

• Repeat Rate: The percentage of repeated tool
calls in F t

gen.

• Correctness: We measure the precision, recall,
and F1 score between set(F t

gen) and set(F t
gt).

• Pass Rate: This metric in the micro strategy
evaluates the full match of tool execution, i.e.,
set(F t

gen) = set(F t
gt). This macro metric evalu-

ates that ∀t, set(F t
gen) = set(F t

gt).

Planning In this subtask, we adapt the evalua-
tion metrics from TravelPlanner (Xie et al., 2024)
to our setting, shown as follows:

• Delivery Rate: The percentage of valid JSON
plans within a limited interaction step.

• Commonsense Constraint Pass Rate: This met-
ric evaluates whether the planning agent could
incorporate commonsense, incorporating within
sandbox, complete information, within current
city, reasonable city route, diverse restaurants,
diverse attractions, non-conflict transportation,

10850

minimum nights stay into the plan without ex-
plicit instructions.

• Hard Constraint Pass Rate: This metric mea-
sures whether a generated plan satisfies all hard
constraints, including budget, accommodation,
cuisine, transportation.

• Final Pass Rate: The metric reports the percent-
age of valid JSON plans that satisfy all con-
straints.

To differentiate, we combine the hard constraints
room rule and room type from TravelPlanner into
accommodation to fit our dataset. Since we spec-
ify the destinations and their arrival days in our
dataset, we do not evaluate the number of visit-
ing cities or the state of destinations in our com-
monsense constraint assessment. Additionally, the
minimum nights stay constraint in our setting is de-
signed to verify whether the accommodation op-
tion provided by the agent aligns with the user’s
expected duration of stay in a city.

B.3 Implementation Details
We choose Mistral-7B-Instruct3, ToolLLaMA-2-
7B4, and LLaMA-3-8B-Instruct5 for finetuning
and inference using a single NVIDIA A5000
24GB. To facilitate finetuning, we apply LoRA
(Hu et al., 2022) in 4-bit quantization and train for
5 epoches with a maximum context length of 4096.
To optimize the open-source LLM inference, FP8
E5M2 KV Cache (Micikevicius et al., 2022) is ex-
ploited.

In dynamic execution and planning evaluations,
we exclude LLaMA-3-8B due to the limited con-
text window length. To maximize the utilization of
the context window, we truncate the environment
feedback in Clarification and Execution subtasks
to 3 items. In terms of dynamic prompting strate-
gies such as ReAct and Reflexion, we set the max-
imum interaction steps to 30 and the maximum ac-
tion retries to 3. Our temperature is set to 0 for all
experiments.

For the integral framework, we feed the clarifi-
cation need prediction and execution interactions
generated by CEP (LLaMA-3-8B), along with the
ground truth conversation, into the final planning.

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

4https://huggingface.co/ToolBench/
ToolLLaMA-2-7b-v2

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

ReAct Reflexion Memory Recollection
Prompting Method

0

20

40

60

80

100

Se
co

nd
s

86.59

108.87
104.43

38.85

47.84
43.91

Average Runtime per Iteration
Mistral-7B
GPT-3.5

ReAct Reflexion Memory Recollection
Prompting Method

0

2

4

6

8

10

St
ep

s

9.97
9.38 9.12

6.35 6.65 6.80

Average Steps per Iteration

Figure 6: Average runtime and steps in dynamic execu-
tion.

C Additional Study on Dynamic
Execution Agents

We discuss the time complexity and execution sta-
tus of the dynamic execution agents in this section.

C.1 Analysis of Time Complexity

To precisely outline the memory recollection, let
Ct denote the conversation at turn t, associated
with the clarified detail set D′

t = {d0, d1, . . . , dt},
where d0 pertains to the details entailed in the
initial query q0. It can be observed that Ct−1

and Ct share the common clarified details, de-
fined as D′

t − D′
t−1 = {d0, d1, . . . , dt−1}. We

postulate that an agent, operating under determin-
istic parameters, consistently replicates specific
errors when invoking tools on these shared de-
tails. In the Reflexion framework, if the ratio-
nales generated during conversation turn t are rep-
resented by Rt, then the cumulative number of
generated rationales across T turns is expressed
as

∑T
t=1 |Rt|. Conversely, in memory recollec-

tion, as we reuse the past rationales, this can be
reduced to maxTt=1 |Rt| = |RT |. In conclusion,
the memory recollection mechanism effectively re-
duces the number of generated rationales, thereby
diminishing the time complexity of rationale infer-
ence from linear to constant time.

Figure 6 showcases a comparison in average
runtime and execution steps between ReAct, Re-
flexion, and Memory Recollection. We observe
that Reflexion consumes more time than ReAct for
both Mistral-7B and GPT-3.5, while the Memory
Recollection module alleviates this effect. More-
over, Mistral-7B, on average, takes longer infer-
ence time than GPT-3.5. We also examine the
mean execution steps per iteration for Mistral-7B
and GPT-3.5, revealing a starkly contrasting trend:
Mistral-7B shows a decrease in steps from ReAct
to Memory Recollection, while GPT-3.5 exhibits
an increase. This phenomenon, detailed in Table
3, suggests that more execution steps lead to im-
proved performance, as the agent engages more

10851

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/ToolBench/ToolLLaMA-2-7b-v2
https://huggingface.co/ToolBench/ToolLLaMA-2-7b-v2
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Re
Ac

t 46.2%

2.9%
20.1%

4.8%

9.3%

0.72%5.3%
7.6%3.2%

Mistral-7B

56.1%

0.82%

10.1%

2.2%
4.5%

0.15%

21.5%

1.05%
3.6%

GPT-3.5
Re

fle
xi

on 45.6%

2.4% 15.7%

3.7%

14.7%

0.68%7.3%
2.7%

7.1%

59.8%

0.28%

4.1% 0.63%

19.5%

2.6%

10.7%
2.4%

M
em

or
y

Re
co

lle
ct

io
n

44.6%

2.3% 15.8%

3.7%

14.6%

0.72%
8.0%

2.8%
7.4%

62.0%

3.4% 0.27%

11.3%

0.36%2.1%

18.0%

2.5%

Status
Success
Finish
Invalid API

Retry Limit Exceeded
Null Action
Runtime Error

API Limit Exceeded
Syntax Error
Invalid Parameters

Figure 7: Execution status distributions. Statuses with
proportions less than 0.1% are ignored.

with the environment and gathers more informa-
tion.

C.2 Analysis of Execution Status
Figure 7 presents the distribution of each execu-
tion status for Mistral-7B and GPT-3.5. From a
holistic perspective, we notice that Reflexion elim-
inates the errors consisting of Invalid API, Retry
Limit Exceeded, and Invalid Parameters. In the
case of Mistral-7B, prompting strategies like Re-
flexion and Memory Recollection lead to lower
Success and Finish rates, while the probability of
exceptions such as API Limit Exceeded and Null
Action rises. This is in line with our observation
in Table 3. In contrast, the performance improve-
ments of GPT-3.5 are reflected in higher Success
and Finish rates, and lower error rates.

D Case Study

We display two detailed case studies to explore the
impact of clarification on subsequent planning sub-
tasks. We compare plans generated by CEPintegral
with and without clarification in Tables 8 and 9.
Note that each table includes the initial user in-

struction, the type of indefinite detail, the question
generated by finetuned LLaMA-3-8B, the ground
truth response, and the planning outcome. Dis-
crepancies resulting from the clarification are high-
lighted in yellow. From Table 8, it is evident that
without asking for the missing destination detail,
the agent incorrectly confines the itinerary to the
origin city, Nashville, on the first day, leading to a
confusing itinerary. In Table 9, if the agent over-
looks that the previously specified accommodation
preferences in Houston are unavailable and fails
to inquire about the user’s opinion, an incomplete
travel plan will be generated.

E Prompt List

E.1 Data Annotation
We present the prompts for original instruction re-
vision during the indefinite detail formation stage
in Table 10. Prompts and examples involved in
proactive conversation generation are shown in Ta-
bles 11, 12, and 13.

E.2 Clarification Subtask
Since the clarification subtask necessitates the in-
teraction history from the execution stage as input,
we provide the relevant tool description in Snippet
1. Prompts of conversation-only methods, includ-
ing Proactive and ProCoT, as well as the direct
strategy, are exhibited in Snippets 2 and 3. Fur-
thermore, we also specify the prompts for GPT-4
evaluation in Table 14.

E.3 Execution Subtask
The tool description used in execution is show-
cased in Snippet 4. We demonstrate the prompts
for static and dynamic settings in Snippets 5 and
7. The error prompts for dynamic interaction are
presented in Snippet 6.

E.4 Planning Subtask
The prompts for static planning, dynamic plan-
ning, and errors in dynamic interaction are dis-
played in Snippets 8, 10, and 9.

10852

Instruction: Could you suggest a 5-day travel itinerary for a solo traveler starting from Nashville, departing on March 13th,
2022, with a budget of $2123?
Missing Detail: Destination by arrival days.
Question: Which cities are you interested in visiting during your 5-day trip, and on which specific days do you plan to
arrive in each city?
Response: I can’t wait to explore the vibrant streets of San Diego on day 1 and then soak up the glitz and glamour of Los
Angeles on day 3!

CEPintegral CEPintegral w/o Clarification

Day 1 1

Current City from Nashville to San Diego Nashville

Transportation Flight Number: F3973475, from Nashville to
San Diego, Departure Time: 09:14, Arrival
Time: 11:22, Cost: $485

N/A

Breakfast Open Yard, San Diego Biscuit Love Gulch, Nashville

Attraction Cabrillo National Monument, San Diego; La
Jolla Shores Park, San Diego

Country Music Hall of Fame and Museum,
Nashville; Ryman Auditorium, Nashville

Lunch Bikaner Sweets, San Diego Hattie B’s Hot Chicken, Nashville

Dinner Chawlas 2, San Diego Martin’s Bar-B-Que Joint, Nashville

Accommodation Spacious Room in Large 2 Bedroom Prewar
Apartment, San Diego

Cozy Loft in East Nashville, Nashville

Table 8: Comparison of travel plans for the missing detail, destination by arrival days.

Instruction: I am planning a solo trip starting from Bloomington. The itinerary includes visiting Dallas on day 1, Amarillo
on day 3, and Houston on day 5. I will be departing on March 5th, 2022. I am looking for shared room accommodations
that allow pets.
Unfeasible Detail: Accommodation.
Question: It seems like the accommodation preferences you’ve specified might not be feasible for this trip. Is there a
different type of accommodation you would consider for your solo trip?
Response: Any accommodation preference is acceptable.

CEPintegral CEPintegral w/o Clarification

Day 5 5

Current City from Amarillo to Houston from Amarillo to Houston

Transportation Flight Number: F3822285, from Amarillo to
Houston, Departure Time: 06:31, Arrival Time:
08:05, Cost: $103

Taxi: from Amarillo to Houston, Duration: 8
hours 49 mins, Distance: 965 km, Cost: 965

Breakfast N/A Jalapenos, Houston

Attraction Downtown Aquarium, Houston; Space Center
Houston, Houston

Downtown Aquarium, Houston; Space Center
Houston, Houston

Lunch Jalapenos, Houston The BrewMaster - The Mix Fine Dine, Houston

Dinner Royal Mart, Houston "Pebble Street, Houston

Accommodation Superhost 3 bedroom DISCOUNT, Houston N/A

Table 9: Comparison of travel plans for the unfeasible detail, accommodation.

10853

Role Content

system Given a JSON with data where ’org’ denotes the departure city, ’dest’ contains the destination cities to be
visited along with the arrival day, and ’housing’ contains the room type and house rules. Please generate a
natural language query beginning with ’{begin_word}’ and including the arrival day if available.

user JSON:
{"org": "Gulfport", "dest": ["Charlotte on day 1"], "departure_date": "2022-03-05", "budget": 1800}
QUERY:

assistant Please design a travel plan from Gulfport heading to Charlotte on day 1, departing on March 5th, 2022, with a
budget of $1800.

user JSON:
{"org": "Omaha", "days": 5, "people_number": 7, "housing": ["pets"], "budget": 35300}
QUERY:

assistant Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at $35,300,
and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.

user JSON:
{"dest": ["Atlanta on day 1", "Augusta on day 3", "Savannah on day 5"], "days": 7, "departure_date": "2022-
03-01", "people_number": 2, "housing": ["entire room", "parties"], "cuisine": ["Italian", "Indian"], "transporta-
tion": "no self-driving"}
QUERY:

assistant I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We
intend to depart on March 1st, 2022, and will navigate our journey without self-driving. In terms of food, we’re
enthusiasts of Italian food, and we’d also appreciate indulging in genuine Indian cuisine.

Table 10: Prompts for original instruction revision.

Type System Message

Missing Detail Observation You are an intelligent agent designed to interact with users to clarify and specify their
requests. When given a user’s initial query and a specific detail that is missing, your task
is to generate a natural, conversational question to obtain that specific missing information
from the user. Your response should use coreference or omission to refer back to the initial
query, minimizing direct repetition of its details.

Unfeasible Detail Observation You are an intelligent agent designed to interact with users to clarify and specify their re-
quests based on the search results from external tools. When a user’s initial query includes
unfeasible details, as determined by these search results, your task is to inform the user
that the initial query cannot be fulfilled due to these details. Then, generate a natural, con-
versational question to obtain an alternative option from the user. Your response should
use coreference or omission to refer back to the initial query, minimizing direct repetition
of its details.

Succinct User Response You are an intelligent agent designed to act as a real human user talking to a travel agent.
When asked for details or clarifications about your travel plans, reply succinctly and di-
rectly using only the provided draft answers, ensuring your responses are natural, human-
like, and creative without repeating the question.

Passionate User Response You are an intelligent agent designed to act as a real human user talking to a travel
agent. When asked for details or clarifications about your travel plans, reply diversely
and passionately using only the provided draft answers, ensuring your responses are natu-
ral, human-like, and creative without repeating the question.

Table 11: System messages for simulated conversations.

10854

Destination by Arrival Days
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at
$35,300, and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <missing_detail> Destinations and arrive days of the trip </missing_detail>
Question: Could you specify which cities you plan to visit during the trip, and the specific days you plan to arrive in each
city?
Thought: <draft_answer> destinations_and_arrive_days = ... </draft_answer>
Answer: We plan to go Seattle on the 1st day.

Duration
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022, with a budget of $1800.
Observation: <missing_detail> Number of days for the trip </missing_detail>
Question: Sorry for the confusion, but could you please clarify the number of days you plan to spend on this trip?
Thought: <draft_answer> number_of_days_for_trip = ... </draft_answer>
Answer: 5 day.

Departure Date
Instruction: I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We don’t like
driving during our journey.
Observation: <missing_detail> Departure date of the trip </missing_detail>
Question: I think I missed the departure date for your trip. Could you provide that information?
Thought: <draft_answer> departure_date = ... </draft_answer>
Answer: March 1st, 2022.

Number of People
Instruction: Could you provide a 5-day travel itinerary, starting in Omaha? Our budget is set at $35,300, and it’s essential
that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <missing_detail> Number of people on the trip </missing_detail>
Question: I’m not sure about the number of people in your group. Would you mind sharing that information?
Thought: <draft_answer> total_number_of_people_including_me = ... </draft_answer>
Answer: We are a group of seven.

Budget
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022.
Observation: <missing_detail> Budget of the trip </missing_detail>
Question: It seems you haven’t mentioned the expected budget for this trip. Could you provide that information?
Thought: <draft_answer> budget_of_trip = ... </draft_answer>
Answer: Our budget for this trip is $36,000.

Origin
Instruction: We plan to visit South Bend on the 1st day, Ithaca on the 3rd day departing on March 5th, 2022 for a 5-day trip.
Our budget is $1800.
Observation: <missing_detail> Departure city of the trip </missing_detail>
Question: Sorry, I am not sure about the departure city for your trip. Could you provide that information?
Thought: <draft_answer> departure_city = ... </draft_answer>
Answer: Ann Arbor.

Table 12: Examples of missing details in proactive conversation generation.

10855

Budget
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at
$35,300, and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <search_result> The current budget ... is not sufficient for the trip. The minimum budget required is ...
</search_result>
Question: It seems like the budget you’ve mentioned might be insufficient for your trip. Would you be open to considering a
higher budget?
Thought: <draft_answer> Adjust the budget to ... </draft_answer>
Answer: My Budget could be $40,000.

Accommodation
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022. I prefer to stay in private rooms that allow parties.
Observation: <search_result> The current accommodation preference ... is not available for the trip. </search_result>
Question: The accommodation preference you’ve mentioned might be a bit restrictive. Would you be open to considering
other options?
Thought: <draft_answer> ... </draft_answer>
Answer: Sure, how about any rooms that allow parties?

Transportation
Instruction: I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We don’t like
driving during our journey.
Observation: <search_result> The current transportation preference ... is not available for the trip. </search_result>
Question: It seems like navigating the entire trip without self-driving might be quite challenging. Would you be open to
considering other transportation options?
Thought: <draft_answer> ... </draft_answer>
Answer: Any transportation preference is acceptable.

Cuisine
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? We plan to go Seattle on
the 1st day. We enjoy Chinese and Italian cuisine.
Observation: <search_result> The current cuisine preference ... is not available in any of the cities you plan to visit.
</search_result>
Question: Sorry, I do not find any Chinese restaurants in cities you plan to visit. Could you provide alternative cuisine
preferences?
Thought: <draft_answer> ... </draft_answer>
Answer: I am open to any cuisine preference.

Destination by Arrival Days
Instruction: We plan to visit South Bend on the 1st day, Ithaca on the 3rd day departing from Richmond on March 5th, 2022
for a 5-day trip. Our budget is $1800.
Observation: <search_result> ... is unreachable by all available transportation methods. </search_result>
Question: Sorry, I couldn’t find a way to arrive in Ithca. Could you provide an alternative destination?
Thought: <draft_answer> My alternative destination is ... </draft_answer>
Answer: Charlotte could be my alternative destination.

Table 13: Examples of unfeasible details in proactive conversation generation.

Message Type Content

System Message You are a helpful assistant skilled at evaluating questions.

User Message for Missing Details Please check if the following question exclusively asks for [...], rather than [...].
Provide a simple "Yes" or "No" answer.
Question: [...]

User Message for Unfeasible Details Please check if the question indicates that the initial [...] is/are unfeasible and re-
quests changes to the [...], rather than [...]. Provide a simple "Yes" or "No" answer.
Question: [...]

Table 14: Prompts for clarification evaluation.

10856

SNIPPET 1: TOOL DESCRIPTION IN CLARIFICATION

1. AccommodationSearch(city, filters)
− Description: Discover accommodations in your desired city with specific filters.
− Parameters:

− city (str, required): The name of the city where you’re seeking accommodation.
− filters (list[str], required): A list of filters to refine your search. Choices include "shared room", "not shared room
", "private room", "entire room", "parties", "smoking", "children under 10", "pets", "visitors". If the user does not
specify any accommodation filters, assign an empty list "[]" to the parameter.

2. RestaurantSearch(city, cuisines)
− Description: List all restaurants in your chosen city, regardless of cuisine type, and check if any of the cuisines you
specify are unavailable there.
− Parameters:

− city (str, required): The name of the city where you’re seeking restaurants.
− cuisines (list[str], required): A list of desired cuisines to check for availability. Available options include "
Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean", and "French". If the user does not specify
any cuisines, assign an empty list "[]" to the parameter.

3. AttractionSearch(city)
− Description: Find attractions in a city of your choice.
− Parameters:

− city (str, required): The name of the city where you’re seeking attractions.

4. DistanceMatrix(origin, destination, mode)
− Description: Estimate the distance, time, and cost between two cities.
− Parameters:

− origin (str, required): The departure city of your journey.
− destination (str, required): The destination city of your journey.
− mode (str, required): The method of transportation. Choices include "self−driving" and "taxi".

5. FlightSearch(origin, destination, date):
− Description: A flight information retrieval tool.
− Parameters:

− origin (str, required): The city you’ll be flying out from.
− destination (str, required): The city you aim to reach.
− date (str, required): The date of your travel in "YYYY−MM−DD" format.

6. BudgetEstimator(origin, destination, dates, people_number)
− Description: Calculate the minimal estimated budget for the trip. Use this tool to verify if the budget provided by
the user is sufficient.
− Parameters:

− origin (str, required): The departure city of your trip.
− destination (list[str], required): A list of cities you plan to visit during your trip.
− dates (list[str], required): A list of dates corresponding to the departure from the origin and each of the
destinations. The first date is the departure from the origin, and each subsequent date corresponds to the departure
from the respective city in the destination list. The last date in this list is the departure from the final destination
back to the origin city. All dates should be formatted as "YYYY−MM−DD".
− people_number (int, required): The number of people on the trip.

10857

SNIPPET 2: CONVERSATION-ONLY PROMPTS

System Message

Your current task is to determine the user’s intentions and satisfy their needs based on the provided conversation
between the user and the assistant.

Proactive User Message

Conversation: [...]
Based on the conversation, you have two options: ask a clarifying question or take no action. Choose the appropriate
option to formulate your answer, starting with either "The clarifying question is" or "No action should be taken".

Note that if the user does not specify details regarding accommodation, cuisine, or transportation in the initial query,
it indicates that the user does not have specific preferences that need clarification in the following conversation.

ProCoT User Message

Conversation: [...]
Based on the conversation, first determine whether the user’s request is ambiguous. A request is ambiguous if it
contains missing or unfeasible details. If it is ambiguous, ask a clarifying question. If it is not ambiguous, no action
is needed. Your response should start with an analysis of the ambiguity and then conclude with either "Therefore,
the request is not ambiguous. No action should be taken." or "Therefore, the request is ambiguous. The clarifying
question is". Note that if the user does not specify details regarding accommodation, cuisine, or transportation in the
initial query, it indicates that the user does not have specific preferences that need clarification in the following
conversation.

SNIPPET 3: DIRECT CLARIFICATION PROMPTS

System Message

Your current task is to determine the user’s intentions and satisfy their needs based on the provided conversation
between the user and the assistant, along with the interaction trajectory involving tool use between the agent and the
environment. The interaction trajectory includes the following tools:

[tool description]

If certain tools are not called in the interaction trajectory, it indicates a lack of the required parameters needed to call
those tools. For each category, including accommodations, dining, attractions, transportation, and budget, at least

one relevant tool should be used during the interaction to gather sufficient information to help the user provide a
clear and feasible request. Note that if the user does not specify details regarding accommodation, cuisine, or
transportation in the initial query, it indicates that the user does not have specific preferences that need clarification
in the following conversation.

Clarification Need Prediction

Conversation: [...]
Interaction trajectory: [...]
Please determine whether the user’s request needs clarification. A request needs clarification if the user’s intention
contains missing or unfeasible details based on the tool parameters and call results in the interaction trajectory. If the
user’s intention requires clarification, answer "Yes"; if it is clear and feasible, answer "No".

Answer:

Clarification Question Generation

Please ask the user one clarification question to gather more information about a specific detail. Do not attempt to
solve the task.
Question:

10858

SNIPPET 4: TOOL DESCRIPTION IN EXECUTION

1. AccommodationSearch(city, filters)
− Description: Discover accommodations in your desired city with specific filters.
− Parameters:

− city (str, required): The name of the city where you’re seeking accommodation.
− filters (list[str], required): A list of filters to refine your search. Choices include "shared room", "not shared room
", "private room", "entire room", "parties", "smoking", "children under 10", "pets", "visitors". If the user does not
specify any accommodation filters, assign an empty list "[]" to the parameter.

− Example: AccommodationSearch("Berlin", ["private room", "parties"]) would return private rooms in Berlin that
allow parties.

2. RestaurantSearch(city, cuisines)
− Description: List all restaurants in your chosen city, regardless of cuisine type, and check if any of the cuisines you
specify are unavailable there.
− Parameters:

− city (str, required): The name of the city where you’re seeking restaurants.
− cuisines (list[str], required): A list of desired cuisines to check for availability. Available options include "
Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean", and "French". If the user does not specify
any cuisines, assign an empty list "[]" to the parameter.

− Example: RestaurantSearch("Dublin", ["Chinese", "Italian", "French"]) returns all restaurants in Dublin and
informs you if any of the Chinese, Italian, or French cuisines are unavailable.

3. AttractionSearch(city)
− Description: Find attractions in a city of your choice.
− Parameters:

− city (str, required): The name of the city where you’re seeking attractions.
− Example: AttractionSearch("London") would return attractions in London.

4. DistanceMatrix(origin, destination, mode)
− Description: Estimate the distance, time, and cost between two cities.
− Parameters:

− origin (str, required): The departure city of your journey.
− destination (str, required): The destination city of your journey.
− mode (str, required): The method of transportation. Choices include "self−driving" and "taxi".

− Example: DistanceMatrix("Paris", "Lyon", "self−driving") would provide driving distance, time, and cost between
Paris and Lyon.

5. FlightSearch(origin, destination, date):
− Description: A flight information retrieval tool.
− Parameters:

− origin (str, required): The city you’ll be flying out from.
− destination (str, required): The city you aim to reach.
− date (str, required): The date of your travel in "YYYY−MM−DD" format.

− Example: FlightSearch("New York", "London", "2022−10−01") would fetch flights from New York to London on
October 1, 2022.

6. BudgetEstimator(origin, destination, dates, people_number)
− Description: Calculate the minimal estimated budget for the trip. Use this tool to verify if the budget provided by
the user is sufficient.
− Parameters:

− origin (str, required): The departure city of your trip.
− destination (list[str], required): A list of cities you plan to visit during your trip.
− dates (list[str], required): A list of dates corresponding to the departure from the origin and each of the
destinations. The first date is the departure from the origin, and each subsequent date corresponds to the departure
from the respective city in the destination list. The last date in this list is the departure from the final destination
back to the origin city. All dates should be formatted as "YYYY−MM−DD".
− people_number (int, required): The number of people on the trip.

− Example: BudgetEstimator("London", ["Paris", "Rome", "Madrid"], ["2022−09−01", "2022−09−05",
"2022−09−10", "2022−09−15"], 2) would return the minimal estimated budget for a trip from London to Paris, from
Paris to Rome, from Rome to Madrid, and from Madrid back to London on September 1, 5, 10, and 15, 2022,
respectively, for two people.

10859

SNIPPET 5: STATIC EXECUTION PROMPTS

System Message

Based on the provided conversation between the user and the assistant, generate function calls to collect valid
information related to accommodations, dining, attractions, transportation, and budget. The available functions are
detailed below:

[tool description]

Please ensure that nested function use is avoided, escape symbols are not included in the string, and functions are
only called when all required parameters are available. Your response should include all available function calls,
specifying both the function name and its parameters, with each function on a separate line.

Example

Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn\’t find a way to arrive in Portland. Could you provide an
alternative destination?’}, {’user’: ’Charlotte.’}]

Response:
AccommodationSearch("Charlotte", [])
RestaurantSearch("Charlotte", [])
AttractionSearch("Charlotte")
DistanceMatrix("Ithaca", "Charlotte", "taxi")
DistanceMatrix("Ithaca", "Charlotte", "self−driving")
FlightSearch("Ithaca", "Charlotte", "2022−03−08")
DistanceMatrix("Charlotte", "Ithaca", "taxi")
DistanceMatrix("Charlotte", "Ithaca", "self−driving")
FlightSearch("Charlotte", "Ithaca", "2022−03−10")
BudgetEstimator("Ithaca", ["Charlotte"], ["2022−03−08", "2022−03−10"], 7)

User Message

Conversation: [...]
Response:

SNIPPET 6: ERROR PROMPTS IN DYNAMIC EXECUTION

Invalid Action

Invalid action: [...]. Valid actions include AccommodationSearch(city, filters), RestaurantSearch(city, cuisines),
AttractionSearch(city), DistanceMatrix(origin, destination, mode), FlightSearch(origin, destination, date),
BudgetEstimator(origin, destination, dates, people_number), and Finish(). Do not include any comment or
description in the action.

Invalid Parameters

Invalid parameters for [action]. Please ensure that all parameters are provided in the correct format.

Null Action

Your action has been filtered due to content restrictions. Please ensure your action does not begin with [’\n’, ’
Thought’, ’Action’, ’Observation’]. Ensure that the action is permitted in this environment, and try again.

10860

SNIPPET 7: DYNAMIC EXECUTION PROMPTS

System Message

Based on the provided conversation between the user and the assistant, collect valid information related to
accommodations, dining, attractions, transportation, and budget. Solve this task by alternating between "Thought", "
Action", and "Observation" steps. "Thought" can reason about the current situation, and "Action" can have 7
different types:

[tool description]

7. Finish()
− Description: Use this function to indicate the task’s completion once all the necessary information has been
collected.
− Example: Call Finish() after gathering all necessary information related to accommodations, dining, attractions,
transportation, and budget.

Please ensure that nested function use is avoided, escape symbols are not included in the string, and functions are
only called when all required parameters are available. Each action should call a single function once, using the
valid function name and all required parameters. You should take as many steps as possible until you have gathered
the necessary information to complete the task using Finish(). If the user’s request is vague or infeasible, avoid
making assumptions and strictly use the provided information. Do not add any description or comment to the action.
Additionally, do not include line breaks in your response.

User Message for ReAct

Conversation: [...]
[...]

User Message for Reflexion

In previous attempts, you tried to use tools to interact with the environment to gather valid information on
accommodations, dining, attractions, transportation, and budget given the user−assistant conversation but were
unsuccessful. The reflections below offer suggestions to help you avoid past mistakes. Use these insights to refine
your strategy for effectively and efficiently utilizing tools to collect the necessary information.
Reflections:
[...]
Conversation: [...]
[...]

Self-reflection Generation

You are an advanced reasoning agent capable of self−improvement through reflection. You will review a previous
attempt where you failed to effectively utilize a tool to gather valid information about accommodations, dining,
attractions, transportation, and budget given the user−assistant conversation. Analyze the reasons for the mistake,
referencing the tool documentation, the observation, and the action you have taken. Then, formulate a concise, high−
level explanation to address and prevent similar errors in the future. Keep your reflections in complete sentences
without any line breaks.

Tool documentation:
[...]
Ensure that each action uses only one non−nested tool and contains no comments or descriptions.

Observation: [...]
Action: [...]

Reflection:

10861

SNIPPET 8: STATIC PLANNING PROMPTS

System Message

You are a proficient planner tasked with generating a detailed travel plan in JSON format, which is an array of
objects, based on the interaction trajectory and the user−assistant conversation. Your plan must strictly adhere to the
format provided in the example, incorporating specific details such as flight numbers (e.g., "F0123456"), restaurant
names, and accommodation names. Ensure all information in your plan is derived solely from the provided data and
aligns with common sense. Attraction visits and meals are expected to be diverse. Use the symbol "−" for
unnecessary details, such as "eat at home" or "on the road". For instance, you do not need to plan after returning to
the departure city. When traveling to two cities in one day, ensure that "current_city" aligns with the format "from A
to B" in the example. If transportation details indicate a journey from one city to another (e.g., from A to B), update
the "current_city" to the destination city (in this case, B) the following day. Use ";" to separate different attractions,

formatting each as "Name, City". Make sure all flight numbers and costs are appended with a colon (e.g., "Flight
Number:" and "Cost:"), consistent with the example. Your JSON plan should include the following fields: ["day", "
current_city", "transportation", "breakfast", "attraction", "lunch", "dinner", "accommodation"]. Escape symbols
should be used in the string when necessary. Additionally, remove any "$" symbols and comments from the plan.

***** Example *****
Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn’t find a way to arrive in Portland. Could you provide an alternative
destination?’}, {’user’: ’Charlotte.’}, {’assistant’: ’It seems you haven’t mentioned the expected budget for this trip.
Could you provide that information?’}, {’user’: ’Yes, my expected budget is $30,200.’}]

Travel Plan: [{"day": 1, "current_city": "from Ithaca to Charlotte", "transportation": "Flight Number: F3633405,
from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time: 08:10", "breakfast": "Nagaland’s Kitchen, Charlotte
", "attraction": "The Charlotte Museum of History, Charlotte;", "lunch": "Cafe Maple Street, Charlotte", "dinner": "
Bombay Vada Pav, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in Bushwick!, Charlotte
"}, {"day": 2, "current_city": "Charlotte", "transportation": "−", "breakfast": "Olive Tree Cafe, Charlotte", "attraction
": "The Mint Museum, Charlotte;Romare Bearden Park, Charlotte;", "lunch": "Birbal Ji Dhaba, Charlotte", "dinner":
"Pind Balluchi, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in Bushwick!, Charlotte"},

{"day": 3, "current_city": "from Charlotte to Ithaca", "transportation": "Flight Number: F3786160, from Charlotte to
Ithaca, Departure Time: 20:48, Arrival Time: 22:34", "breakfast": "Subway, Charlotte", "attraction": "Books

Monument, Charlotte;", "lunch": "Olive Tree Cafe, Charlotte", "dinner": "Kylin Skybar, Charlotte", "
accommodation": "−"}]
***** Example Ends *****

User Message for Direct

Interaction trajectory: [...]
Conversation: [...]
Travel Plan:

User Message for Zero-shot CoT

Interaction trajectory: [...]
Conversation: [...]
Travel Plan: Let’s think step by step. First,

SNIPPET 9: ERROR PROMPTS IN DYNAMIC PLANNING

Invalid Plan

The subplan cannot be parsed into JSON format; please check. Only a one−day plan is supported.

Error Plan

The subplan cannot be parsed into JSON format due to the syntax error; please check.

Invalid Action

Invalid action. Valid actions include CostEnquiry(subplan) and Finish(final_json_plan). Please ensure that the
parameter is provided in the correct format. Do not include any comments, descriptions, or line breaks in your
response.

10862

SNIPPET 10: DYNAMIC PLANNING PROMPTS

System Message

You are a proficient planner tasked with generating a detailed travel plan in JSON format, which is an array of
objects, based on the interaction trajectory and the user−assistant conversation. Your plan must strictly adhere to the
format provided in the example, incorporating specific details such as flight numbers (e.g., "F0123456"), restaurant
names, and accommodation names. Ensure all information in your plan is derived solely from the provided data and
aligns with common sense. Attraction visits and meals are expected to be diverse. Use the symbol "−" for
unnecessary details, such as "eat at home" or "on the road". For instance, you do not need to plan after returning to
the departure city. When traveling to two cities in one day, ensure that "current_city" aligns with the format "from A
to B" in the example. If transportation details indicate a journey from one city to another (e.g., from A to B), update
the "current_city" to the destination city (in this case, B) the following day. Use ";" to separate different attractions,

formatting each as "Name, City". Make sure all flight numbers and costs are appended with a colon (e.g., "Flight
Number:" and "Cost:"), consistent with the example. Your JSON plan should include the following fields: ["day", "
current_city", "transportation", "breakfast", "attraction", "lunch", "dinner", "accommodation"]. Escape symbols
should be used in the string when necessary. Additionally, remove any "$" symbols and comments from the plan.
Solve this task by alternating between "Thought", "Action", and "Observation" steps. The "Thought" phase involves
reasoning about the current situation. The "Action" phase can be of two types:
1. CostEnquiry(subplan): This function calculates the cost of a detailed subplan, for which you need to input the
number of people and plan in JSON format. The subplan should encompass a complete one−day plan and include
the following fields: ["people_number", "day", "current_city", "transportation", "breakfast", "attraction", "lunch", "
dinner", "accommodation"]. An example will be provided for reference.
2. Finish(final_json_plan): Use this function to indicate the completion of the task. You must submit a final,
complete plan in JSON as the argument.

***** Example *****
Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn’t find a way to arrive in Portland. Could you provide an alternative
destination?’}, {’user’: ’Charlotte.’}, {’assistant’: ’It seems you haven’t mentioned the expected budget for this trip.
Could you provide that information?’}, {’user’: ’Yes, my expected budget is $30,200.’}]

You can call CostEnquiry like CostEnquiry({"people_number": 7, "day": 1, "current_city": "from Ithaca to Charlotte
", "transportation": "Flight Number: F3633405, from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time:
08:10", "breakfast": "Nagaland’s Kitchen, Charlotte", "attraction": "The Charlotte Museum of History, Charlotte", "
lunch": "Cafe Maple Street, Charlotte", "dinner": "Bombay Vada Pav, Charlotte", "accommodation": "Affordable
Spacious Refurbished Room in Bushwick!, Charlotte"})
You can call Finish like Finish([{"day": 1, "current_city": "from Ithaca to Charlotte", "transportation": "Flight
Number: F3633405, from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time: 08:10", "breakfast": "Nagaland’
s Kitchen, Charlotte", "attraction": "The Charlotte Museum of History, Charlotte;", "lunch": "Cafe Maple Street,
Charlotte", "dinner": "Bombay Vada Pav, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in
Bushwick!, Charlotte"}, {"day": 2, "current_city": "Charlotte", "transportation": "−", "breakfast": "Olive Tree Cafe,

Charlotte", "attraction": "The Mint Museum, Charlotte;Romare Bearden Park, Charlotte;", "lunch": "Birbal Ji Dhaba
, Charlotte", "dinner": "Pind Balluchi, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in
Bushwick!, Charlotte"}, {"day": 3, "current_city": "from Charlotte to Ithaca", "transportation": "Flight Number:
F3786160, from Charlotte to Ithaca, Departure Time: 20:48, Arrival Time: 22:34", "breakfast": "Subway, Charlotte",
"attraction": "Books Monument, Charlotte;", "lunch": "Olive Tree Cafe, Charlotte", "dinner": "Kylin Skybar,

Charlotte", "accommodation": "−"}])
***** Example Ends *****

You must use Finish(final_json_plan) to indicate that you have finished the task. Each action only calls one function
once, without any comments or descriptions. Do not include line breaks in your response.

User Message for React

Interaction trajectory: [...]
Conversation: [...]
[...]

User Message for Reflexion

You have attempted to give a subplan before and failed. The following reflection(s) give a suggestion to avoid failing
to answer the query in the same way you did previously. Use them to improve your strategy for correctly planning.

Reflections:
[...]
Interaction trajectory: [...]
Conversation: [...]
[...]

10863

