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Abstract

Emotion-Cause Pair Extraction in Conversa-
tions (ECPEC) aims to identify emotion utter-
ances and their corresponding cause utterances
in unannotated conversations, this task that has
garnered increasing attention recently. Previous
methods often apply Emotion-Cause Pair Ex-
traction (ECPE) task models, treating the entire
conversation as a whole for contextual interac-
tion. However, statistical analysis shows that
the number of emotion-cause pairs in ECPEC
conversation data far exceeds that in ECPE
datasets, leading to interference among mul-
tiple events within a conversation and causing
noise to propagate between different events. To
address this issue, we propose a novel CEnter
eveNT-guided framEwoRk (CENTER). This
model introduces a Center Event Detection task
to construct a center event-aware graph that
captures the unique representations of different
event regions. Additionally, mimicking human
reasoning processes, we build a center event
reasoning graph and use graph neural network
to facilitate the flow of information between
utterance pairs, thereby uncovering the rela-
tionships between emotions and their causes.
Experimental results demonstrate that our ap-
proach achieves state-of-the-art performance
across three benchmark datasets.

1 Introduction

With the development of news media, individu-
als can rapidly express and disseminate their opin-
ions through social platforms. By analyzing the
emotion polarity and intensity in conversation data
(Sharma et al., 2024), it is possible to comprehend
the intent of the text and uncover hidden informa-
tion (Zhang et al., 2024). Given that the causes of
emotions are key elements for in-depth emotion
understanding, the Emotion-Cause Pair Extraction
(ECPEC) task (Li et al., 2022) has garnered sig-
nificant attention. This task involves extracting
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I didn't get the job I interviewed for.

Speaker A

𝒖𝟏

Oh no, that must be really disappointing.

I just need a break from all this stress.𝒖𝟔

Let's grab a coffee this weekend and relax.

That sounds great, I can't wait𝒖𝟖

…
…

(𝒖𝟐, 𝒖𝟏)(𝒖𝟕, 𝒖𝟔)(𝒖𝟖, 𝒖𝟕)Emotion-Cause Pair Extraction:

𝒖𝟐

𝒖𝟕

Center Event Detection: 𝒖𝟏, 𝒖𝟕

Speaker B

Figure 1: An example of ECPEC task, where ui is
the utterance. The emotion for each utterance is then
marked. Arrow indicates the direction from the emotion
to its cause, while center event is highlighted in yellow
box. Based on the text content and the distribution of
EC pair labels, the conversation consists of two distinct
center events.

all potential emotion utterances and their corre-
sponding causes from unannotated conversations,
thereby gaining insights into the emotion propa-
gation between speakers and comprehensively un-
derstanding their emotion interactions. ECPEC
can be applied to various practical scenarios, such
as public opinion monitoring (Zhou et al., 2024;
Cheng et al., 2024), social media information detec-
tion (Hua et al., 2023), marketing (Schrama et al.,
2024), and psychological interventions (Evans and
Shaughnessy, 2024).

In the ECPEC task, accurately analyzing the
causes of emotions is challenging due to the unique
semantic properties of conversational content, such
as context dependencies, complex syntactic struc-
tures, and interactivity (Hoey and Kendrick, 2017).
The main approaches to addressing these chal-
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lenges can be categorized into sequential encoding
and aggregated encoding: (1) Sequential Encod-
ing: This method focuses on learning and enhanc-
ing context based on the sequential order of utter-
ances in a conversation. Li et al. (2022) employ
cross-attention mechanisms to learn the contextual
dependencies and interactivity between utterances,
effectively extracting emotion and cause utterances.
Jeong and Bak (2023) incorporate speaker features
as supplementary information, sequentially con-
catenating these with utterances to enrich the rep-
resentations. (2) Aggregated Encoding: This ap-
proach uses connection graph to learn the syntactic
structure of conversations through graph convolu-
tional network (GCN). Li et al. (2022) use fully
connected networks to represent the relationships
between utterances and employ GCNs to capture
the syntactic dependencies between them. Liu
et al. (2023) transform the task into a machine read-
ing comprehension problem, encoding utterances
based on the positional relationships between dif-
ferent speakers within the conversation.

While current research address the unique se-
mantic challenges present in conversation content,
existing methods treat conversation as a single se-
mantic unit, employing mechanisms such as graph
neural networks, attention mechanisms, and recur-
rent neural networks for contextual enhancement.
This approach can lead to the intermingling of in-
formation in lengthy conversations, resulting in
counterfactual reasoning where causes appear after
emotions. Inspired by embodied cognition men-
tioned (Zhang et al., 2021; Wilson, 2002), we ob-
serve that conversation participants may exhibit
various emotions and associated causes around cer-
tain center utterances, with conversation typically
exhibiting a discrete multi-event structure. Specifi-
cally, as illustrated in Figure 1, utterances u1 and u2
reflect speaker B’s frustration over speaker A not
getting the job, while u6 and u8 reflect speaker B’s
happiness about actions taken to relieve stress. If
we do not differentiate between different centers of
conversation content and instead encode the entire
conversation as a whole for context learning, noise
from unrelated content will increase the difficulty
for the model to understand these scenes, making
it challenging to accurately capture the intrinsic
connections between emotions and their causes.

In light of the above considerations, we propose
a novel CEnter eveNT-guided framEwoRk (CEN-
TER) for the ECPEC task. This method identifies

center events within conversations and traces the
causes of emotions from the perspective of human
cognitive reasoning through center-aware graphs
and center reasoning graphs. Specifically, we first
define the concept of center events and introduce
a new ECPEC auxiliary task called Center Event
Detection (CED). Besides, we construct a conver-
sation center event-aware graph from the predicted
center sequence to facilitate feature aggregation
within different center events. Additionally, rec-
ognizing the importance of center events in con-
versations, we emphasize their uniqueness in the
pairing process by establishing a candidate pair
center event reasoning graph, which promotes in-
formation flow between features of pairs. Finally,
we employ an end-to-end multi-task framework to
mitigate interference between different events and
enhance the efficient flow of multi-granularity fea-
tures. Experiments conduct on three ECPEC bench-
mark datasets demonstrate that CENTER achieves
state-of-the-art performance. Our contributions are
summarized as follows:

(1) We introduce an auxiliary task called con-
versation Center Event Detection, which helps the
model recognize multiple center events within a
conversation and model conversation features from
the perspective of human cognition.

(2) We propose a center event-aware graph aggre-
gation framework to model relationships between
utterances, facilitating the extraction of unique fea-
tures from different informational regions and en-
hancing the efficiency of information flow.

(3) We develop a conversation center event rea-
soning graph network to simulate the reason pro-
cess, aiding in the propagation of center emotion-
cause pair features among candidate pairs and im-
proving reasoning capability.

2 Related Work

2.1 Emotion-Cause Pair Extraction

Since ECPEC is a variant of the Emotion-Cause
Pair Extraction (ECPE) task, most methods for
extracting emotion-cause (EC) pairs from con-
versations commonly adopt the models used in
ECPE. Due to the significant role of emotions
and causes in the ECPE task, prior studies pre-
dominantly treated emotion extraction (EE) and
cause extraction (CE) as auxiliary tasks. Specif-
ically, Xia and Ding (2019) introduce the ECPE
task along with two auxiliary tasks. Employing a
two-stage method, it initially extracts emotion and
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cause clauses and subsequently matches them into
pairs for prediction using cartesian products. How-
ever, this approach focuses on capturing task corre-
lations through implicit parameter sharing, which
has limitations in explicitly modeling information
interactions and results in lower interpretability.
Fan et al. (2021) propose a multi-task sequence la-
beling framework, utilizing a tagging scheme based
on distance encoding to simultaneously predict
emotions and causes, thus enhancing the capability
of model in extracting emotion-cause pairs. Yet,
with the continuous refinement of encoding gran-
ularity, there exist drawbacks in simultaneously
modeling specific features and interaction features.
Chen et al. (2022) establish a feature-task align-
ment mechanism, explicitly modeling specific fea-
tures and interaction features while simultaneously
establishing task alignment mechanisms to achieve
better label consistency. Considering the lack of
modeling for pairs, Zhu et al. (2024) guide by aux-
iliary tasks, encode clause pair features through
GNN, facilitating information propagation among
candidate pairs.

These exemplary multi-task models enhance the
performance of ECPE task by treating emotion
extraction and cause extraction as auxiliary tasks.
However, due to the differences in content between
conversation and document, they often overlook the
event interaction and diversity in ECPEC, failing
to distinguish between events within conversations,
thereby potentially leading to issues of mutual in-
terference among multiple event information flows
within conversations.

2.2 Emotion-Cause Pair Extraction in
Conversations

Li et al. (2022) introduce the ECPEC task for the
first time, along with a two-step framework. Ini-
tially, they encode the emotions and causes ex-
pressed in conversations using graph neural net-
works (GNN) and attention mechanisms. Subse-
quently, they employ a chunk pruning strategy
to more accurately extract information features
of emotion-cause pairs. Recognizing the distinct
characteristics of conversations compared to ECPE
research based on news articles, Jeong and Bak
(2023) propose a pairing-based expert mixture
model. By incorporating conversation features
through gated networks, they significantly enhance
the performance of emotion cause pairing. How-
ever, extracting causes without distinguishing emo-

tions may lead to an incomplete understanding of
the dependency between emotions and their causes.
Therefore, Lee et al. (2023) propose a novel eval-
uation metric, Emotion-Cause Pair Emotion Com-
bination Assessment, to jointly evaluate emotion-
cause pairs extraction and their corresponding mul-
tiple emotion extraction. Nevertheless, prior ap-
proaches overlooked the role of speakers. Thus, An
et al. (2023) construct a global view and speaker-
perception extraction framework. By simulating
conversations between speakers and utilizing a
perception-coupled decoding module along with
an emotion graph attention network to encode con-
versation features, they efficiently extract emotions
and all associated causes in conversations.

These exemplary models for ECPEC task en-
hance representation capability by augmenting con-
versation features. However, they overlook the
utilization of center events in conversations, lead-
ing to issues such as feature scarcity and unfocused
attention when enhancing features in long conver-
sations.

3 Task Definition

In the ECPEC task, the input data format con-
sists of three hierarchical levels, i.e., “conversation-
utterance-word”. The input includes a series of
conversations d = {c1, c2, · · · , c|d|}, where each is
composed of n utterances ci = {u1, u2, · · · , un},
and each utterance consists of m words uj =
{w1, w2, · · · , wm}. The main objective of the
ECPEC task is to extract all EC pairs from the
conversation in d, which is described as:

P = {. . . , (ui, uj) , . . .}(1 ≤ i, j ≤ n) (1)

where (ui, uj) represents an EC pair, ui and uj
denote the emotion and corresponding cause utter-
ances, respectively. An emotion utterance can be
associated with multiple cause ones, and the same
cause may trigger various emotions. Additionally,
an emotion utterance can even serve as its own
cause utterance.

4 Proposed Model

In this section, we describe our approach in detail.
As in Figure 2, our CENTER consists of four main
components: (1) Conversation Encoder, which
encodes the input text and learns contextual fea-
tures; (2) Center Event-Aware (CEA) Graph,
which constructs a graph comprising center event
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nodes and non-center ones for utterance-level fea-
ture enhancement; (3) Center Event Reasoning
(CER) Graph, which is constructed by center pairs
and non-center pairs for reasoning between emo-
tion and cause; (4) Conversation Emotion-Cause
Extraction, which integrates multi-dimensional
feature representations and uses a multi-task frame-
work for final classification.

4.1 Conversation Encoder
For the input conversation ci = {u1, u2, · · · , un},
combined with the representational capacity of pre-
trained models, we encode utterance representa-
tions by learning contextual features. Specifically,
we first insert [CLS] and [SEP ] tokens at the be-
ginning and end of each utterance, respectively.
Then, we construct token sequences for each ut-
terance by including all words and the two special
tokens {[CLS], w1, w2, · · · , wm, [SEP ]}. We ob-
tain the utterance representation vi using BERT,
the process is provided as:

vi = BERT (token,mask, type) (2)

where mask represents the sequence for the self-
attention operation, and type denotes the sentence
position encoding. Finally, by allowing each word
to interact with its surrounding words, the [CLS]
token at the end of each utterance serves as the
feature for the entire utterance, resulting in the
conversation sequence, i.e., {v1, v2, · · · , vn}.

4.2 Center Event-Aware Graph
Annotation of Center Events We utilize objective
annotation rules to annotate center events within
public dataset, aiming to investigate their impact
on dialogues. Specifically, we adopt the follow-
ing rules: (1) center events serve as focal points
of the conversation; (2) center events should be
directly related to EC pairs; (3) the number of cen-
ter events should be minimized while accurately
and comprehensively expressing the main content
of the conversation; (4) the granularity of center
events is at the utterance level. Following these
rules, we conduct a statistical analysis based on
EC pair labels, defining center event utterances as
those emotion utterances containing more than α
causes and those cause utterances that appear α or
more times.
Center Event Detection Given significant role of
center events in conversations, it is crucial to accu-
rately identify multiple center events and convey
center information within utterance representations.

Specifically, we propose an auxiliary task for center
event detection. This task involves feeding the con-
versation sequence representations vi into a fully
connected layer. Using an activation function, we
regard the most likely utterances as center events.
The process is:

ŷce
i = argmax (linear (Wcevi + bce)) (3)

where ŷcei represents the predicted label indicat-
ing whether utterance i is a center event or not.
linear() denotes a linear layer, and argmax()
denotes the function that selects the index of
the maximum value. Wce and bce are trainable
parameters. This produces the label sequence
{ŷce1 , ŷce2 , · · · , ŷcen } of the CED task.
Center Event-Aware Graph Construction Given
the crucial role of center events in conversation and
the tendency for surrounding utterances to revolve
around these events, we construct a center event-
aware graph to facilitate the transmission of key
information among utterances. Specifically, we
treat each utterance as a node. We suppose that
utterances being predicted as center events and their
surrounding contexts describe the same event. The
specific connection method is provided as:

Mcei,j =

{
1 ŷce

i = 1 and |i− j| ≤ β

0 otherwise
(4)

where β is the influence range of a center event.
The dimension of matrix Mce for CEA graph is n2.
Utterance Feature Aggregation To facilitate the
transmission of key information within the conver-
sation, we consider the conversation sequence, i.e.,
{v1, v2, · · · , vn}, as nodes and use the matrix Mce

to establish edges. We utilize a GNN to effectively
aggregate the features of the utterances:

rti = ReLU


 ∑

j=Ni

Mcei,jWur
t−1
j


 (5)

where t represents the current layer, ReLU() is
the activation function, rt−1

j indicates the utterance
features from the (t− 1)-th layer of the GNN, Ni

represents all neighbors of the i-th utterance, and
Wu represents trainable parameters. Finally, we
obtain the utterance feature vector enhanced by
centrality, i.e., {r1, r2, · · · , rn}.

4.3 Center Event Reasoning Graph
Center Event Reasoning Graph Construction
To explore the causal relationships between emo-
tion and cause utterances, we establish a center
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Figure 2: Overall architecture of CENTER. First, the conversation text is input into a pre-trained BERT model for
encoding. Then, utilizing the CED task, we construct the CEA graph and CER graph to aggregate multi-granularity
features. Finally, the centrality enhanced representations are used for multi-task prediction.

event reasoning graph that also leverages the piv-
otal role of center events in conversation and aug-
ments the reasoning capacity between emotion and
cause. Specifically, we initially pair the n utter-
ances. Each candidate pair of utterances serves as
a node, and based on the predicted labels of center
events, we define the pairs between center events
as center utterance pair. Subsequently, we estab-
lish connections between center utterance pair and
candidate pair as:

Mpair(i,j),(z,w)
=




1

ŷce
i = 1 and ŷce

j = 1
|i− z| ≤ δ and |j − w| ≤ δ

0 otherwise
(6)

S where δ is the connection range of center pairs.
The dimension of the Mpair for the CER graph is
n4.
Center Event Reasoning Graph Aggregation Af-
ter concatenating the center-enhanced utterance
vectors with the utterance distance encoding, we
obtain the feature vector for each pair of utterances,
i.e., pi,j = [ri; rj ; di,j ]. We treat each utterance
pair as a node and utilize the matrix of the CER
graph Mpair to establish edges. This enables the
utilization of GNN to aggregate the feature vec-
tors of utterance pairs. The specific calculation is
outlined as:

xl
i,j = ReLU


 ∑

z,w=Ni,j

Mpair(i,j),(z,w)
Wpx

l−1
i,j


 (7)

where l denotes the current layer. When it is
the first layer, the input is the feature vector of
the utterance pair {p1,1, p1,2, · · · , pn,n}, Wp rep-
resents the trainable parameters, xl−1

i,j denotes the
feature of the utterance pair corresponding to the
(l − 1)-th layer of the GNN. Ni,j represents all
neighbors of the utterance pair pi,j . Ultimately,
through the multi-layer aggregation of GNN, the
feature vectors of the enhanced utterance pairs
{x1,1, x1,2, · · · , xn,n} can be obtained.

4.4 Conversation Emotion-Cause Extraction
Emotion Extraction and Cause Extraction Fol-
lowing Li et al. (2022), we treat EE and CE as aux-
iliary tasks to facilitate the learning of utterances
within context. We feed the feature vectors of the
enhanced utterances {r1, r2, · · · , rn} into two sep-
arate activation functions to predict whether the
utterances are emotion or cause, i.e.,

ŷe
i = softmax (Weri + be) (8)

ŷc
j = softmax (Wcrj + bc) (9)

where ŷei and ŷcj represent the predicted labels of
emotion and cause utterance respectively, We, be,
Wc, and bc are trainable parameters.

Binary cross entropy loss is utilized for both EE
and CE tasks which are provided as:

Le =
i∑

n

− (ye
i log ŷ

e
i ) (10)
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Lc =

j∑

n

−
(
yc
j log ŷ

c
j

)
(11)

where yei and ycj are the truth labels.
Emotion-Cause Pair Extraction After obtaining
the center enhanced utterance pair features, we try
to predict the EC pairs:

ŷpair
i,j = softmax (Wpxi,j + bp) (12)

where ŷpairi,j is the predicted label of EC pairs, Wp

and bp are trainable parameters.
We employ the same loss calculation method:

Lpair =
i∑

n

j∑

n

−
(
ypair
i,j log ŷpair

i,j

)
(13)

where ypairi,j is the truth label.
Training Based on CED labels described in 4.2,
we compute the loss as:

Lce =
i∑

n

− (yce
i log ŷce

i ) (14)

where ycei is the truth label.
We jointly optimize these four subtasks to train

CENTER and overall training loss is defined as:

L = γeLe + γcLc + γceLce + γpairLpair (15)

where γe, γc, γce, and γpair are hyper-parameters.

5 Experiments

5.1 Dataset and Evaluation Metrics
We utilize ConvECPE dataset released by Li et al.
(2022). Furthermore, we also consider RECCON
dataset (Poria et al., 2021). This dataset comprises
DailyDialog (Li et al., 2017) (named ECPE-D-DD)
and IEMOCAP (Busso et al., 2008) (named ECPE-
D-IE). In these datasets, utterances being labeled as
happy, sad, angry, excited, or frustrated are consid-
ered as emotion utterances, while neutral utterances
are categorized as non-emotion ones.

We split the datasets into 80/10/10 for training,
validation, and testing, respectively. Given the
small scale of ECPE-D-IE, we use ECPE-D-IE
exclusively as test data. Furthermore, Precision
(P ), recall (R), and F1-score (F1) are adopted as
evaluation metrics.

5.2 Implementation Details
Our model is implemented based on the Transform-
ers framework, utilizing the default parameters of
bert-base-cased, with a hidden size being set to 768.

Additionally, the hyperparameters β, δ, and α are
set to 3, 2, and 2 respectively, while γe, γc, γce, and
γpair are all assigned to 1. We train CENTER using
Adam optimizer with a learning rate of 0.001. The
training epoch is set to 40. Experiments are con-
ducted on the PyTorch-1.12.0 platform and Ubuntu
20.04.1, using Intel(R) Xeon(R) Silver 4310 CPU
and NVIDIA GeForce RTX 3090 24GB GPU.

5.3 Baselines

In this manuscript, we considered the following
baselines for comprehensive performance compari-
son. The corresponding details are provided as:

ECPE-2D (Ding et al., 2020a): This introduces a
2D representation scheme to depict emotion-cause
pairs. It employs a unified end-to-end framework
for modeling, interaction, and prediction.

ECPE-MLL (Ding et al., 2020b): This approach
incorporates a sliding window-based multi-label
learning framework. It extracts emotion-cause
pairs by designating either emotion clauses or cause
clauses as the focal point.

RANKCP (Wei et al., 2020): This model
presents a ranking-based end-to-end extraction
method. It simulates interactions between speak-
ers through a graph attention mechanism and uses
kernel-based relative position embeddings for ef-
fective ranking.

RECCON (Poria et al., 2021): Utilizing a pre-
trained RoBERTa model with a classification layer,
this method models and extracts emotion-cause
pairs. For a fair comparison, we configure the lan-
guage model to BERT.

ECPE-MM-R (Zhou et al., 2022): This ap-
proach transforms the ECPE task into a document-
level machine reading comprehension (MRC) task.
It introduces a multi-round MRC framework to sim-
ulate complex relationships between emotions and
causes.

MRC (Liu et al., 2023): This model implements
multi-turn MRC for ECPEC. It adopts a position-
aware graph convolutional network framework to
model conversation and utterance features.

PRG-MoE (Jeong and Bak, 2023): This method
introduces a pairwise relationship-guided mixture-
of-experts model. It utilizes speaker information
to enhance utterance features and employs a gated
network to model the causality of emotions from
the perspective of cause classification.

Joint (Li et al., 2022): This method employs
a two-step model, utilizing GCN or Cross Atten-
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tion (Xatt) to generate utterance-level representa-
tions. Subsequently, it prunes emotion-cause pair-
ings using a window-limiting approach. Specifi-
cally, Joint-GW denotes the use of GCN and the
window-limiting method, while Joint-XW denotes
the use of Xatt and the window-limiting method.

5.4 Main Results

Table 1 and Table 2 present the experimental re-
sults of CENTER and baseline methods on there
datasets. On the ECPE-D-DD dataset, CENTER
shows no significant performance difference in ad-
dressing the EE task compared to other models.
This is because the introduction of the center event
auxiliary task diminishes the distinction between
emotion and cause. However, despite similar per-
formance in EE task, our primary focus is on ex-
tracting EC pairs, where CENTER demonstrates
a clear advantage over previous approaches. Fur-
thermore, the ECPE-D-IE and ConvECPE datasets
contain approximately eight times more EC pairs
than that of ECPE-D-DD, leading to significant in-
terference between events and subsequently poorer
model performance. Compared to other models,
CENTER effectively balances various metrics and
exhibits robust performance.

Specifically, we believe that center events play
a crucial role in the CENTER model, facilitating
feature interactions within their respective regions
and mitigating the propagation of noise from irrel-
evant events. Notably, compared to ECPE-MLL,
CENTER exhibits similar performance in address-
ing the EE task but shows significant improvement
in handling the ECPE task. This suggests that the
introduction of center events in CENTER helps dis-
tinguish between different events and accurately
match more EC pairs. Compared to MRC, CEN-
TER exhibits a certain degree of performance de-
cline in the EE task. We attribute this to MRC’s pri-
oritization of emotion in machine reading compre-
hension, enhancing emotion representation through
multiple rounds of querying. However, by utiliz-
ing center event detection and reasoning methods
to extract emotion-cause relationships, CENTER
achieves significant improvements in the ECPE
task. Similarly, PRG-MoE achieves several second-
best results across the datasets, but its emphasis
on cause classification and overall conversation
enhancement leads to suboptimal EC pair extrac-
tion performance. Compared to the Joint model,
CENTER demonstrates significant improvements

in both EE and ECPE tasks. We attribute this to
the fact that the Joint model employs a two-step
extraction process and uses window-based prun-
ing, leading to error accumulation. In contrast, our
model leverages the concept of center events to
effectively model utterance and utterance pair rep-
resentations. This end-to-end approach not only
enhances EE performance but also significantly
improves the performance of handling ECPE task.

5.5 Ablation Studies
To validate the effectiveness of the CEA and CER
graphs, we conduct corresponding ablation studies.
The results are presented in Table 3.
Effect of CER We replace the utterance pair fea-
tures aggregated under the guidance of the CER
graph with direct concatenation and matching of
utterance features. This diminishes the model’s
reasoning capability, leading to the second-worst
performance in EE and ECPE. This demonstrates
that the aggregation method based on center utter-
ance pairs enhances the flow of key information
and the ability to trace emotions in conversations.
Effect of CEA We replace the features aggregated
under the guidance of CEA graph with embeddings.
Without this graph, our model’s performance in EE
task significantly decreases, leading to a further
decline in ECPE task. This indicates that the aggre-
gation method based on center events is crucial for
effective conversation modeling.
Effect of CEA & CER We remove both graphs and
GNN aggregation method, retaining only the CED
as an auxiliary task. The lack of critical informa-
tion flow in utterance-level and candidate pair-level
features results in the most significant performance
decline in the EE and ECPE tasks. However, the
performance still surpasses some baselines, indicat-
ing the effectiveness of addressing the CED task.

5.6 In-Depth Analyses
Effect of Center Event Distance To evaluate the
impact of the center events’ influence distance on
the ECPEC task, we conduct additional experi-
ments under varying interaction distances. As in
Figure 3, the distance β from the center represents
the distance between center events and surrounding
nodes in the CEA graph, as well as the distance
δ between center pairs and surrounding pairs in
the CER graph. Specifically, we first fix β = 3
and vary δ. The results indicate that the optimal
performance is achieved at δ = 2. Increasing δ
beyond this point introduces excessive interaction
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Dataset ECPE-D-DD ECPE-D-IE

Model
ECPE EE ECPE EE

F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%)
ECPE-2D 48.34 49.34 47.37 74.44 71.91 77.16 19.42 45.17 12.37 60.36 78.16 49.16

ECPE-MLL 46.86 50.71 43.56 71.23 68.97 73.64 4.13 43.41 2.17 12.66 83.82 6.85
RANKCP 17.77 58.09 10.49 31.87 75.85 20.17 2.09 65.91 1.10 6.26 91.75 3.24
RECCON 39.68 49.31 33.19 - - - 7.92 46.52 4.33 - - -

ECPE-MM-R 50.22 49.36 51.32 74.31 75.41 73.48 13.91 34.30 8.82 33.23 76.23 21.43
MRC 52.47 52.19 52.86 75.49 76.26 74.96 20.96 59.59 16.08 39.54 90.32 29.49

PRG-MoE 57.26 58.95 55.67 73.86 71.76 73.86 28.90 51.95 20.02 57.29 85.58 43.06
CENTER 62.50 64.94 60.24 71.97 74.39 72.77 52.94 43.55 67.50 49.22 69.81 46.59

Table 1: The performance of CENTER and baseline models in ECPE and EE tasks. All models are trained
exclusively on ECPE-D-DD dataset. To validate the model’s generalization capability, we also test it using the
ECPE-D-IE dataset.

Dataset ConvECPE

Model
ECPE EE

F1(%) P(%) R(%) F1(%) P(%) R(%)
RANKCP 1.44 45.16 0.73 4.09 83.87 2.1
Joint-GW 46.43 38.16 59.27 66.10 58.28 76.34
Joint-XW 44.67 37.12 56.09 66.10 58.28 76.34
PRG-MoE 49.17 - - 72.35 - -
CENTER 50.55 45.73 56.50 79.04 78.67 80.04

Table 2: Experimental results on ConvECPE, which
contains more EC pairs and longer conversations.
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Figure 3: Influence of the center event distance.

noise, leading to a decline in performance. Next,
we fix δ = 2 and vary β. The results show that per-
formance consistently improves with the increase
of β, peaking at β = 3. Beyond this, the perfor-
mance declines due to the over-reasoning of event
influence. These findings suggest that the opti-
mal performance is achieved at β = 3 and δ = 2.
Deviations from these values result in suboptimal
performance.
Effect of Center Event Annotation To verify the
importance of center event annotation, we vary α
to observe their effect on the ECPE task. As in
Figure 4, setting α = 1 results in a significant
decline in performance, which is attributed to the
high overlap between center events and emotion
cause annotations. As α increases, performance im-
proves because most irrelevant events are filtered
out. However, when α continues to increase, perfor-
mance gradually declines. We attribute this to the

uneven label distribution incurred by too few center
events, particularly when α exceeds 6, leading to
an average of less than one center event per con-
versation. The results indicate that setting α = 2
allows for an optimal number of center events to
be annotated, achieving peak performance.
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47
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48.80

48.45
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Figure 4: Results of the center event annotation experi-
ment for different numbers of center event occurrences.

Effect of Center Event Detection To evaluate the
effectiveness of the CED task, we conduct experi-
ments through our CENTER on different datasets.
CENTER demonstrates a clear advantage across
all three datasets, with F1, P , and R metrics all
exceeding 60%.
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Figure 5: Performance of addressing CED task across
different datasets.

In ECPE-D-DD, which has a sufficient number
of conversations but an average length of only 10,
the number of center events per conversation is rel-
atively low, resulting in poorer model performance.
Conversely, ECPE-D-IE, with an average conversa-
tion length of 41, contains an adequate number of
center events, leading to the best extraction perfor-
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Dataset ConvECPE RECCON

Model
ECPE EE ECPE EE

F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%)
w/o CEA & CER 48.54 44.61 53.21 66.88 70.28 76.34 56.59 48.60 67.72 69.06 69.63 69.08

w/o CER 49.64 44.99 55.35 67.10 68.78 76.16 56.88 52.95 61.45 69.52 69.59 69.50
w/o CEA 49.98 46.06 54.62 67.67 70.09 76.28 59.44 57.68 61.31 70.18 71.01 70.59
full model 50.55 45.73 56.50 79.04 78.67 80.04 62.50 64.94 60.24 71.97 74.39 72.77

Table 3: Ablation studies of CEA and CER.

mance by the model. In ConvECPE, the average
conversation length is 49, but the higher number
of conversations yields suboptimal performance
in the CED task. These findings indicate that our
model excels at extracting center events in longer
conversations that contain multiple EC pairs.
Case Study We analyze examples from benchmark
corpus to verify the effectiveness of CENTER in
predicting center events. As in Table 4, u2 and u8
are marked as center events. Our model success-
fully identifies all EC pairs with a high confidence
level of over 80%. In contrast, Joint-GW only cap-
tures (u2, u2) with a high confidence.

To reveal the causal reasoning capability, we
visualize the results of test data. In Figure 6(a),
our CENTER focuses on the beginning and end of
long conversation, thereby identifying the center
events accurately. In Figure 6(b), our model suc-
cessfully captures emotions in both head and tail
parts, whereas Joint-GW model, due to the lackage
of guidance from center events, concentrates atten-
tion mainly on the tail part. Notably, for ECPE
task, Joint-GW model, as in Figure 6(d), treats the
conversation as a whole and enhances the utter-
ances globally. It causes the pairing of emotions
with largely irrelevant contexts. According to hu-
man language habits, emotions usually arise after
their corresponding causes, so EC pairs above the
diagonal are considered as incorrect extractions.
We attribute this phenomenon to the interference
of multiple events, which affects the model’s rea-
soning direction and scope. Our CENTER, as in
Figure 6(c), enhances utterance centrality within
events, mitigating the issue of divergent pairing
ranges. Through correct guidance from center pair-
ings, most of the extracted EC pairs are distributed
below the diagonal, alleviating the problem of un-
clear reasoning direction.

6 Conclusion

In this paper, we propose a novel CEnter eveNT-
guided framEwoRk (CENTER) for emotion-cause
pair extraction in conversation. This framework

...I want to know what to do to stop it from happening again
(u2: frustrated). This happens every two weeks (u3)? Yeah.
That my service just goes out (u4: frustrated). You’ve lost
your connection (u5). ... And I’ll reset the IP address. Direct
connect the modem to my computer, and then reset everything
(u8: frustrated)...
CENTER: (u2, u2, 98.1%)(u4, u2, 84.3%)(u8, u8, 81.5%)

Joint-GW: (u2, u2, 92.1%)(u4, u2, 59.8%)(u8, u8, 58.6%)

Truth: (u2, u2)(u4, u2)(u8, u8)

Table 4: EC pair predictions by CENTER and Joint-GW.
Red utterances indicate center events, while blue words
denote annotated emotion utterances.
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Figure 6: (a) True and predicted labels for CED task;
(b) True labels, predicted emotions by CENTER and
Joint-GW in EE task. Probability of correctly extracted
EC pairs by CENTER (c) and Joint-GW (d). Darker
color indicates higher confidence.

detects center events within conversations and con-
structs a center event-aware network and a center
event inference network. By enhancing the cen-
trality of utterance and utterance pair representa-
tions, it mitigates the interference between different
events and effectively captures the relationships be-
tween emotions and their corresponding causes.
We evaluate our approach using the ECPE-D-DD,
ECPE-D-IE, and ConvECPE datasets, demonstrat-
ing that CENTER outperforms other models in the
ECPEC task.
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Limitations

Following previous studies, we develop CENTER
to extract emotion-cause pairs from unannotated
textual data. However, in pratice, emotions and
their causes can originate from human visual, au-
ditory, and social information. The multimodal
ECPEC problem often presents additional chal-
lenges, which will be a focus of our future research.
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