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Abstract

The increasing capability of large language
models (LLMs) to generate fluent long-form
texts is presenting new challenges in dis-
tinguishing machine-generated outputs from
human-written ones, which is crucial for ensur-
ing authenticity and trustworthiness of expres-
sions. Existing zero-shot detectors primarily
focused on token-level distributions, which are
vulnerable to real-world domain shifts includ-
ing different prompting and decoding strate-
gies, and adversarial attacks. We propose a
more robust method that incorporates abstract
elements—such as event transitions—as key
deciding factors to detect machine vs. hu-
man texts, by training a latent-space model
on sequences of events or topics derived from
human-written texts. On three different do-
mains, machine generations which are orig-
inally inseparable from humans’ on the to-
ken level can be better distinguished with our
latent-space model, leading to a 31% improve-
ment over strong baselines such as DetectGPT
(Mitchell et al., 2023; Bao et al., 2024). Our
analysis further reveals that, unlike humans,
modern LLMs like GPT-4 generate event trig-
gers and their transitions differently, an inher-
ent disparity that help our method to robustly
detect machine-generated texts.

1 Introduction

In today’s digital world, large language models
(LLMs) such as GPT-4 have transformed various
daily tasks with their human-like text generation
capability, such as drafting emails and essays. How-
ever, their potential misuse poses substantial risks
including impersonation, misinformation, and aca-
demic dishonesty (Tang et al., 2024). This high-
lights the need for effective detection mechanisms.
Existing AI content detectors can be categorized
into 1) a priori methods such as watermarking
(Kirchenbauer et al., 2023), 2) parameterized meth-
ods such as fine-tuned classifiers (Hu et al., 2023),

(a) Observation Space
Typical Generation Configs Diverse Real-World Configs

Greedy 
DecodeHigher T

Paraphrase 
Attack

Complex 
Prompt

Inseparable...Find decision boundary!

(b) Latent Space

More robust. Still separable!Human Machine

Top-k sampling, 
T = 0.7

Domain Shift

Domain Shift

E.g., inferred discourse tags

E.g., tokens

Figure 1: (a) Existing zero-shot detectors that rely on
the token distributions (observation space statistics) are
not robust to various real-world scenarios such as high
decoding temperature, complex prompts, and adversar-
ial attacks. (b) Our detector with latent features (e.g.,
discourse tags) are more robust to these changes.

and 3) zero-shot methods that rely on certain sta-
tistical differences (Vasilatos et al., 2023; Mitchell
et al., 2023; Bao et al., 2024). This paper focuses
on the last due to its general pertinence in practice:
end users may still choose non-watermarked LLMs
outside the distribution of the fine-tuned classifiers
(Yang et al., 2023; Ghosal et al., 2023).

Existing zero-shot methods to distinguish
machine-generated texts (MGTs) from human-
written texts (HWTs) typically assume an unchang-
ing relationship between machine and human out-
puts, ignoring potential distribution shifts resulted
from changes in generation setups (Zellers et al.,
2019) or adversarial attacks (Shi et al., 2024; Wang
et al., 2024). As is shown in Figure 1(a), prior zero-
shot detection methods usually assume that MGTs
consistently exhibit higher log-likelihood (or con-
ditional curvature) than HWTs. However, certain
changes—including increased decoding tempera-
ture, paraphrasing, and word substitution—can al-
ter the distribution of MGTs (Hans et al., 2024),
making MGTs and HWTs inseparable by log-
likelihood after domain shift. In this work, we
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further identify that complex prompts (e.g., ask
to prepare an outline before generation) can alter
the typical relationship between MGTs and HWTs.
Consequently, when considering MGTs from di-
verse sources in real world, existing detectors be-
come less effective.

Towards more robust detection, we aim to an-
swer the research question: Is there a shared fea-
ture among all MGTs, regardless of the generation
configurations and adversarial attacks? Wang et al.
(2022); Deng et al. (2022); Tian et al. (2024) ar-
gue that machine-generated long texts are fluent at
word level, but lack discourse coherence in terms
of topic or event transitions. We hence hypothe-
size that MGTs and HWTs are more separable in
such latent space illustrated in Figure 1(b), because
those underlying features can not be easily cap-
tured by next token probabilities (i.e., optimization
in observation1 space). In addition, paraphrase or
edit attacks change original texts with semantically
similar yet lexically different alternatives. While
they effectively alter token-level distributions, the
high-level, hidden representations remain similar.

We test our hypothesis on three writing tasks:
creative scripts, news, and academic essays. We
explored latent variables like part-of-speech tags,
topics, verbs, and event sequences. Specifically, we
first train a lightweight model (62M transformer,
half the size of gpt-2-small) on the latent variables
inferred from HWTs, and then compare the latent
distributions between HWTs and MGTs at test time.
We find detectors in observation and latent space
exhibit complementary strengths (§ 3.2) in differ-
entiating MGTs from various configurations. Inte-
grating the criteria from both types yields the best
performance.

We explore five features to represent the under-
lying structure, and find that event trigger derived
from information extraction models (Peng et al.,
2023) is the most effective in separating HWTs
from MGTs, outperforming strong token-space de-
tector (Bao et al., 2024) by 31% in AUROC. Our
analysis in § 5 further reveals that LLMs such as
GPT-4 exhibit a different preference from human
in choosing event triggers (for creative writing)
and event transitions (for news and science), and
such a disparity cannot be bridged through explicit
planning of these latent structures.

To sum up, we identify key factors that deceive

1We use observation, sample, and token interchangeably
throughout this paper.

existing detectors in real-world scenarios. We then
demonstrate a significant discrepancy in hidden
structures between current LLMs and humans, es-
pecially the selection and transitions of event trig-
gers. Building on these insights, we propose a
novel detection framework that employs latent vari-
ables to robustly differentiate between human- and
machine- generated texts.

2 Preliminary: Fragility of Existing
Zero-Shot Detectors

In this section, we introduce two popular lines
of zero-shot detection methods (logit-based and
perturbation-based), and then illustrate how they
are fragile to manipulations in decoding, variations
in prompting style, and adversarial attacks.

2.1 Existing Detectors
Logit-Based Logit-based methods commonly
employ probability metrics of tokens. Irene So-
laiman (2019) established a strong baseline for de-
tecting machine-generated text through the average
log probability under the generative model. The
intuition behind is that language model text gener-
ation is auto-regressive; the model selects tokens
based on relatively higher probability at each deci-
sion point, resulting in MGT exhibiting a markedly
higher average log probability compared to HWT,
which becomes the foundational assumption of
perplexity-based detectors (Vasilatos et al., 2023;
Xu and Sheng, 2024) and rank-based detectors (Su
et al., 2023), etc.

Perturbation-Based Another notable hypothe-
sis introduced by Mitchell et al. (2023) posits and
verifies that MGT tends to occur in regions of neg-
ative curvature within the language model’s log
probability function. Specifically, minor edits to
MGT—referred to as perturbations—typically lead
to a lower log probability under the model than
the original text, whereas such rewrites of HWT
may result in either higher or lower log probabili-
ties. Bao et al. (2024) then increases its efficiency
and efficacy by utilizing dual models that share the
same tokenizer to expedite the perturbation pro-
cess. Given text sample x and scoring model pθ,
conditional probability curvature is defined as:

d (x, pθ, qφ) =
log pθ(x | x)− µ̃

σ̃
where, (1)

µ̃ = Ex̃∼qφ(x̃|x) [log pθ(x̃ | x)]
σ̃2 = Ex̃∼qφ(x̃|x)

[
(log pθ(x̃ | x)− µ̃)2

]
.

(2)
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Method for Generation Logit Based Pert. Based

Default T=0.7
Direct Generation ✓ ✓

Decoding T=1.0
Direct Generation ✓— ✓

Prompting Simple ✓— ✓—
Complex ✗ ✗
Paraphrase ✗ ✗Attack Edit ✗ ✗

Table 1: Different methods for generation and whether
existing zero-shot detectors are robust to them.

Perplexity

Distinguishable Indistinguishable

Decrease Temperature
Lower k for Top-k
Lower p for Top-p

Increase Temperature
Complex Prompt

Paraphrase Attack

HumanMachine

Figure 2: Both logit-based and perturbation-based de-
tectors are not robust to changes in decoding, variations
of prompting style, and adversarial attacks.

µ̃ denotes the expected score of samples x̃ gen-
erated by the sampling model qφ, and σ̃2 is the
expected variance of the scores.

2.2 Influential factors for detection

Despite the reported success, the robustness of the
above methods are instinctively tied to text distri-
bution, which are influenced by various factors,
including but not limited to the following three
settings (also summarized in Table 1):

1) Decoding Settings: As is shown in Figure 2,
Zellers et al. (2019) argues that setting a higher tem-
perature (e.g., T=1.0), a higher k for top-k sampling
can increase the likelihood of generating atypical
sequences (i.e., increased perplexity), which con-
tradicts the assumption of logit- and perturbation-
based methods (Irene Solaiman, 2019; Vasilatos
et al., 2023).

2) Variations in Prompting: Changes in
prompts can significantly influence the generation
process and cause text distribution to be shifted as
assessed by the proxy language model, particularly
when the prompt is usually unknown to detectors.
An illustrative example from Hans et al. (2024)
using the prompt “Can you write a few sentences
about a capybara that is an astrophysicist?” demon-
strates how even seemingly simple prompts can
lead to increased perplexity, as the probability that

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥'

𝑧! 𝑧" 𝑧#

Latent Space

...

Figure 4: Generative process with latent variables.

“capybara being astrophysicist” is very low.
In addition, we investigate a planning-based

prompting strategy, which emulates human drafting
processes and has been widely adopted in neural
long-text generation (Yao et al., 2019; Tian and
Peng, 2022; Yang et al., 2022) for improved co-
herence. Our experiments in Table 2 reveal that
multiple steps of planning, expansion, and revision
(referred to as complex chains of prompt, shown
in Figure 2) results in a significantly higher down-
stream text perplexity than direct generation (no
chain of prompt) and one step of planning (simple
chains of prompt).

3) Paraphrase/Edit Attacks: Rephrasing a por-
tion of words (termed edit attack) or sentences
(termed paraphrase attack) of the original article
can dramatically alter the text distribution, too
(Ghosal et al., 2023; Sadasivan et al., 2023; Shi
et al., 2024). Such attacks disrupts the original auto-
regressive properties, increases output perplexity,
and changes text distribution to the indistinguish-
able region in Figure 2.

3 Machine-Content Detection with Latent
Variables

In § 3.1, we formulate the next-token-prediction
process with latent variables and introduce a neural
model to learn the distributions of these variable.
Next, in § 3.2, we propose a simple but effective
method to combine the benefits of existing sample-
space detectors with our latent model.

3.1 Generative Process with Hidden Variables

Formulation Following Deng et al. (2022), we
introduce a next-word prediction model that also
models underlying structures using latent variables
(z ∈ Z), with the generated output as observed
variables (x ∈ X ) shown in Figure 4:

P (x) =
∑

z

P (z)P (x | z) (3)

Given a single text sequence x sampled from x ∼
Px(x), we infer the latent sequence z from x with
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Sample Space Curvature + Latent Space PPL = Dual Criterion
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Figure 3: Left and middle: kernel density plots of the sample-space curvature and latent space PPL across five
test sets in the news domain. These include human-written texts (collected from multiple sources) and machine-
generated texts under four different configurations. The plots reveal complementary strengths: 1) the sample-space
curvature only effectively distinguishes machine outputs generated from typical settings but fail to identify outputs
generated with complex prompts or after paraphrasing/edit attacks; 2) the latent-space PPL excels at distinguishing
those non-standard settings. Right: considering both criteria leads to the most robust detection performance.

a learned posterior function Pz(z | x)2, also called
a critic model. We can evaluate the negative log-
likelihood (latent NLL) and perplexity (Latent PPL)
of the inferred latent variables with:

Latent NLL(x) = −Ez∼Pz(z|x) logPz(z)

Latent PPL(x) = exp
1

m
Latent NLL(x)

(4)

where m is the length of the latent sequence, z.
When using an external inference model, the pro-
cess of inferring latent features is expressed as
z⋆ = argmaxzp(z | x), and the Latent NLL(x)
becomes − log p (argmaxzp(z | x)).

Choice of latent variables We study the impact
of the choice of the critic model, Pz(z | x). With-
out losing generality, the latent variables can be
anything that captures the high-level underlying
structures of a long-form text, such as topic or event
transitions. We experiment with five different vari-
ables that are relatively easy to obtain, including the
part-of-speech tags, nouns or verbs as the approx-
imation of topics, event types, and event triggers,
all of which can be obtained using off-the-shelf
extraction models (Bird et al., 2009; Peng et al.,
2023). We show the results of event triggers 3, the

2If Pz(z | x) = 1[z = x] or z is the same as x, then
Latent PPL is the same as text perplexity.

3Event type and event trigger are terms commonly used
in Information Extraction (Grishman and Sundheim, 1996;
Doddington et al., 2004; Chen et al., 2015; Liu et al., 2020).
The event trigger is the main word or phrase that most clearly
signals the occurrence of an event, while the event type refers
to the category or classification of the event trigger. For ex-
ample, in the sentence ‘Barry Diller on Wednesday quit as
chief of Vivendi Universal Entertainment’, the event trigger is

‘quit’, and the event type is ‘Personnel_End-Position’.

Algorithm 1 Dual Criterion Process (Sequential)
Input:

X - List of sample space curv.
Y - List of latent space PPL

Output:
combined - List ▷ requires continuous
criteria rather than binary outcomes.

Begin
0: init combine as empty list
1: for (x, y) in X,Y do
2: if Confidence(x = machine) > 95% then
3: combined.add(max(Y ))
4: else
5: combined.add(y)
6: return combined
End

best performing latent variable, in § 4.4 and report
the full results in § 5.1.

Latent-Space Language Model Given a critic
model Pz(z | x) and a distribution of x, we have to
learn Pz(z) to obtain Latent PPL. Concretely, we
train a reduced-scale transformer on sequences of
latent variables inferred only from human-written
texts. At the test time, we can then compare the
latent PPL from two distributions: human-written
and machine-generated.

3.2 Dual Criterion Process

Latent variables contribute to machine-content
detection by complementing the strengths of
observation-space detectors. We illustrate this
by examining the distributions of HWTs and and
MGTs under four different configurations in Fig-
ure 3. The figure reveals that 1) the sample-space
curvature (Mitchell et al., 2023) only distinguishes
machine outputs from standard settings (no chain,
T=0.7) but fails for those outputs from complex
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prompts or altered by paraphrasing and editing at-
tacks. Conversely, 2) the latent-space PPL excels at
identifying texts generated under these challenging
conditions but is less successful in distinguishing
machine outputs under typical settings.

Towards more robust detection, we propose to
combine both metrics. Follow existing setups
(Mitchell et al., 2023; Bao et al., 2024) which report
detection accuracy using AUROC4, we require a
continuous criterion rather than a mere binary clas-
sification outcome. Therefore, we consider both
metrics in a sequential order, first based on the con-
fidence level of the sample-space detector. The
detailed procedure is described in Algorithm 1.

4 Experimental Results

4.1 Dataset

Human Text Following previous setups (Bao
et al., 2024; Mitchell et al., 2023), we collect texts
from similar domains that cover a variety of LLM
use-cases. We use recent movie synopses from
Wikipedia to represent creative writing, New York
Times and BBC articles to represent news, and
the introduction sections of Arxiv papers from
three disciplines: economy, quantitative biology,
and computer science, to represent academic es-
says. We crawled the latest human-written texts
ourselves and intentionally avoided using common
datasets such as Reddit WritingPrompt (Fan et al.,
2018), XSum (Narayan et al., 2018) and PubMed
(Jin et al., 2019) to avoid data contamination in
recent LLMs such as Llama3 and GPT-4.

Machine Text On all above domains, we col-
lect machine outputs from two sources: Llama3
(AI@Meta, 2024) that represents open-source
LLMs and GPT-4 (Achiam et al., 2023) that repre-
sents proprietary models. We test the following and
variations in prompts. No Chain: Directly generate
the output given the task instruction and generating
seed (including the title, first sentence, topic, etc.).
We compare sampling with decoding temperature
T=0.7 and T=1.0. Simple Chain: First write an
outline given the task instruction and generating
seed, then expand the outline to an complete arti-
cle. Complex Chain: Identify illogical and vague
descriptions and revise the original generation of
simple chain. We use a decoding temperature of
1.0 unless otherwise specified.

4Area under the True Positive Rate (y-axis) against False
Positive Rate (x-axis)

We also implement popular attack methods on
texts generated by complex chain to increase the
difficulty of detection task: Edit (Shi et al., 2024):
Randomly replace 40% adjectives, adverbials and
20% verbs (about 15% in total) with their syn-
onyms. Paraphrase (Sadasivan et al., 2023): Ran-
domly paraphrase 40% sentences while maintain-
ing the overall coherence by keeping the proper
nouns and writing style unchanged.

Inferring Events as Latent Variable We ex-
tract event types and triggers through OmniEvent’s
model (Peng et al., 2023) under the MAVEN
schema (Wang et al., 2020) for news and movie.
We used GPT-4 for few-shot event extraction in aca-
demic essays due to the absence of a specialized
model. 5

4.2 Baseline Methods

We compare our method with the state-of-the-
art detection system, Fast-DetectGPT (Bao et al.,
2024), which utilizes the conditional probability
curvature (Sample Curv.) using a GPT-Neo-2.7b
model (Black et al., 2021). It outperforms the well-
known DetectGPT (Mitchell et al., 2023) by 29%.
In addition, we compare with the popular token per-
plexity (Sample PPL) on several pretrained LLMs
including gpt2-medium, gpt2-large (Radford et al.,
2019), GPT-Neo-2.7b, and Llama3-8b (AI@Meta,
2024), and find similar accuracy despite of model
sizes. To be consistent with the model used in
Sample Curv., we picked GPT-Neo-2.7b.

4.3 Training Configurations

Latent Model Since our latent sequences are
much shorter than the observed texts, we train a
lightweight transformer from scratch on sequences
of latent variables inferred solely from HWTs. We
began with a gpt2-medium-sized transformer and
performed grid search to decrease parameter size
by half every iteration. We continued to reduce the
model size until a noticeable decrease on a held-out
development set was observed. The model configu-
ration is a randomly initialized transformer with 12
heads, 12 layers, and 384 embedding dimensions.
We still consider our detector as “zero-shot” as it is
not trained on negative samples at all.

There was not much effort needed to tune the
hyper-parameters. We trained our latent-space

5Further details on our data size, source, prompting, at-
tack strategies, and event extraction models are provided in
Appendix A.
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Source of
Machine Output

MOVIE NEWS ARXIV
Sample Latent Dual Sample Latent Dual Sample Latent Dual

PPL Curv. PPL Crit. PPL Curv. PPL Crit. PPL Curv. PPL Crit.

1-Complex Chain 0.84−−→ 0.53
==

0.99−−→ 0.98 0.88−−→ 0.73−−→ 0.97−−→ 0.96 0.81←−− 0.80−−→ 0.78−−→ 0.79
2-Paraphrase 0.95−−→ 0.65←−− 0.99−−→ 0.99 0.97−−→ 0.53

==
0.97−−→ 0.97 0.53−−→ 0.52

==
0.88−−→ 0.87

3-Edit 0.97−−→ 0.73←−− 0.99−−→ 0.99 0.99−−→ 0.62←−− 0.97−−→ 0.97 0.80−−→ 0.73←−− 0.90−−→ 0.88
4-Simple Chain 0.66−−→ 0.56

==
0.98−−→ 0.97 0.70−−→ 0.86−−→ 0.95−−→ 0.96 0.91←−− 0.90←−− 0.73−−→ 0.80

5-No Chain 0.54
==

0.75−−→ 0.96−−→ 0.95 0.88←−− 0.99−−→ 0.83−−→ 0.99 0.90←−− 0.95−−→ 0.71−−→ 0.86
6-No Chain (T=0.7)

0.98←−− 0.99−−→ 0.94−−→ 0.99 0.94←−− 0.99−−→ 0.80−−→ 0.99 0.98←−− 0.99−−→ 0.61−−→ 0.78

Mixture 0.642 0.646 0.976 0.972 0.565 0.750 0.912 0.969 0.653 0.734 0.759 0.855

Table 2: First 6 rows: Relative position (indicated by arrows) and the detection accuracy (measured in AUROC)
of individual distributions of MGTs and HWTs. Note that the directions of arrows are more important than the
numerical values. An arrow pointing to the right (→), left (←), or equality (=) signifies that the machine distribution
is to the right of, to the left of, or close to the human distribution. Neither of the sample-space detectors are robust,
as is indicated by a mixture of arrows types. Last row: Detection accuracy of a mixture of the all distributions of
MGTs described above and HWTs, which better reflects real-world black-box scenarios. We use boldface to denote
the best performance and underscore the second best.
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Figure 5: 2D density clouds. For better readability, we only show four sets of machine generated outputs.

model with a learning rate of 1e-4, batch size of
24, and drop-out rate of 0.1. We randomly split
10% from the training set as a validation set. We
stopped training when the model reached the max-
imum number of epochs, which is set to 10. We
selected the model checkpoint with the best valida-
tion loss and ran that model on our test set.

Domain Adaptation To ensure a fair compari-
son, we performed domain adaptation (DA) by fine-
tuning all sample-space detectors for one epoch
on the same dataset of human texts on which our
latent model is trained. However, we found that
such domain-adaptation resulted in decreased per-
formance at test time, possibly due to over-fitting.
Consequently, we used the pre-trained LMs with-
out DA and report their detection accuracy.

4.4 Main Results

We report the detection performances of all com-
pared models in Table 2. We first evaluate their ac-
curacy on six individual sets of MGTs and HWTs

(the first six rows in Table 2), and visualize their
distributions in Figure 5. Across the three domains
of movie, news, and science, neither of the sample-
space detectors demonstrate robustness to all gen-
eration configurations or attacks, as is reflected by
the variability in arrow directions—right, left, and
equal. Consequently, when facing a mixture of all
six sets of MGTs that better reflects the real-world
black-box settings (the last row in Table 2), sample-
spaces detectors achieve only 60% to 70% accuracy.
On the other hand, our latent-space detector consis-
tently place machine outputs in a separable space
(i.e., consistently to the right of human distribu-
tions), greatly surpassing the baselines. Our dual
criterion process which takes advantage of both the
sample-space curvature and latent PPL achieves
the highest detection accuracy.

We also observe that the latent-space model
demonstrates superior performance in narrative do-
mains (e.g., movie and news) compared to scien-
tific domains. This can be attributed to two factors.
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Length of Movie News Arxiv
Token Event Trigger S Curv. L PPL S Curv. L PPL S Curv. L PPL

128 16.4 0.567 0.829 0.562 0.842 0.605 0.549
256 28.7 0.579 0.916 0.604 0.887 0.652 0.586
512 55.9 0.618 0.966 0.667 0.909 0.729 0.679
1024 83.3 0.636 0.976 0.738 0.912 0.734 0.767

2048 (max) 84.2 0.646 0.976 0.750 0.912 0.734 0.768

Table 3: Detection accuracy (AUROC) of the strongest sample-space detector (S Curv., (Bao et al., 2024)) and our
latent-space detector (L PPL) with varying content lengths. Higher accuracy for each domain is highlighted in bold.

First, narratives fundamentally rely on events as
their central structural elements (Verhoeven and
Stromqvist, 2004; Keven, 2016), whereas scientific
writing focuses more on factual information and
technical descriptions, which may not align as per-
fectly with the event-centric nature of our latent
representation. Second, we find the current event
extraction model less reliable on scientific texts.
This limitation can lead to error propagation during
both training and testing phases. Therefore, we
encourage future research to develop specialized
methods for extracting alternative discourse struc-
tures from academic writings, which may improve
the accuracy of detection in scientific domains.

4.5 Impact of Input Sequence Length

The detection accuracy of both our latent-space
detector and the token-level baselines is impacted
by the length of text. To account for this, we con-
duct additional experiments controlling for input
length by truncating texts to {128, 256, 512, 1024,
2048} tokens and extract event triggers. We com-
pare the performance of the strongest sample-space
detector with our latent-space detector and report
their test accuracy in Table 3. For both methods,
detection accuracy improves with longer text. No-
tably, despite our approach relying on discourse
features, which are sparser than tokens, it demon-
strates greater robustness to shorter texts, particu-
larly in the movie and news domains.

5 Further Analysis

5.1 What is the best choice of latent variables?

We report the detection accuracy of five differ-
ent latent variables: part-of-speech tags, nouns or
verbs, event types, and event triggers in Table 4.
We find that using parts of speech (which repre-
sents the inner-sentence coherence) as the underly-
ing hidden structures leads to decreased accuracy.
This also supports the claim that current LLMs
already generate locally human-like texts. On dis-

MOVIE NEWS ARXIV Avg Relative

Sample Curv. 0.65 0.77 0.73 0.72 -

Pos Tag 0.53 0.79 0.65 0.66 - 8%
Verbs 0.80 0.64 0.78 0.74 + 4%
Nouns 0.78 0.51 0.66 0.65 - 9%
Event Type 0.85 0.75 0.73 0.78 + 9%
Event Trigger 0.98 0.91 0.77 0.89 + 24%

Table 4: Detection accuracy (measured in AUROC)
and relative performance change using models trained
on different latent variables. We highlight the best in
boldface and second best in underline. For ARXIV, we
posit that the higher accuracy with verb sequences is due
to the errors of events extracted from scientific writings.

course structures, only events are indicative of the
deviations observed between LLMs and humans.
Event types, ranking as the second most effective
indicator, provide a richer analysis beyond mere
word forms (e.g. verbs and nouns) and syntactic
functions (e.g. parts of speech). However, event
types might be too generic and cannot capture the
finer semantic differences as well as event triggers.

5.2 Event choice v.s. Event transition
A natural follow-up question is “How much differ-
ence comes from event choices versus event tran-
sitions?” To answer this, we build Bag-Of-Words
(BOW) models using the event triggers extracted
from the test set, and visualize the PCA-reduced
features in Figure 6. We compare the detection
performance using three methods in Table 5: 1) the
principle component of the BOW features (BOW-
PC), 2) randomly shuffled event triggers (Sequence
Sf.), and 3) ordered event triggers (Sequence).

Event transition is crucial, but the extent de-
pends on task creativity. When event triggers
are randomly shuffled or reduced to their princi-
ple component, the loss of sequential information
impairs the detector’s ability to distinguish text
origins. This highlights the critical role of event
transitions in maintaining an article’s coherence
and authenticity. However, the amount of decrease
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Figure 6: Bag-Of-Words feature of human and machine latent variables, reduced via PCA.

Movie News Arxiv

BOW - PC 0.945 0.731 0.705
Sequence Sf. 0.953 0.801 0.744
Sequence 0.976 (↑3.3%) 0.912 (↑24.8%) 0.768 (↑8.9%)

Table 5: Detection accuracy (measured in AUROC)
of two latent methods that only consider the choices
of event triggers (BOW-PC and Sequence Sf.) and our
best latent model that includes both the choices and
transitions (Sequence).

are still domain dependent. In movies, the choice
of events itself already plays a decisive role (over
94%). This suggest that LLMs use a distinct list
of events triggers from humans in highly creative
writing tasks such as movie. Conversely, in less
open-ended domains like news and science, the
choice of event triggers is less distinct and the tran-
sition between event triggers contributes more to
authenticity. This indicates that while LLMs have
learned the appropriate event triggers, they have
not yet mastered the most logical flow of event tran-
sitions. To sum up, MGTs are farther away from
HWTs on highly creative generation tasks.

5.3 Does explicit structure-aware planning
make our detector less effective?

We utilize the differences of latent-structures be-
tween MGTs and HWTs. If models are explicitly
instructed to elaborate on the underlying structures
before auto-regressive generation, would our detec-
tion method remain effective? The two prompting
methods (i.e., simple chain and complex chain)
we employed in § 4.1 are designed to answer this
question by integrating a preliminary planning and
revision stage before or after text generation.

We emphasize that current models are unable
to mimic human-like discourse authenticity even
when instructed to plan on these structures. A com-
parison of line 1, 4, and 5 in Table 2 reveals that de-
spite the addition of a planning and revision stage,
models still struggle to replicate the human-like

flow in event arrangement. This finding echos pre-
vious critiques that current LLMs are poor in mim-
icking human high-level structures (Deng et al.,
2022). One possible reason is that most LLMs are
trained to optimize for local coherence and fluency,
rather than an overarching, discourse-level logic.
For example, the planning mechanism employed
by LLMs usually involve skeletal outlines or lists
of keypoints that tend to prioritize surface-level co-
herence instead of the depth in thought. In contrast,
human writers often plan their articles with a con-
scious awareness of theme and plot development
that are inherently challenging for current LLMs.

6 Related Work

6.1 MGT Detection

In aspects of ownership and usability, detectors
can be roughly divided into a priori and post-
hoc categories. A priori method involves proac-
tive involvement of the model’s generation pro-
cess through techniques like watermarking (Ghosal
et al., 2023). For example, Kirchenbauer et al.
(2023) encourage the sampling of tokens from a
pre-determined category (a green list), and this spe-
cial token distribution can be utilized for detection.
Christ et al. (2024) minimizes the distance between
the watermarked and original distribution, making
the watermark both undetectable and unbiased in
expectation. Despite the effectiveness of such tech-
niques, users may still opt for non-watermarked
model like GPT-4, underscoring the need for ro-
bust post-hoc detection methods (Yang et al., 2023).
Post-hoc method involves fine-tuning classifiers
on corpora of positive and negative samples (HWTs
and MGT) (Chen et al., 2023; Liu et al., 2019) and
zero-shot detection. These former classifiers often
struggle with out-of-distribution data (Zhang et al.,
2023) and are sensitive to data quality (Liang et al.,
2023). The variety of existing LLMs makes it less
practical to curate a universal training dataset (Bhat-
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tacharjee et al., 2023). The zero-shot detectors per-
form the task through a statistical approach. As is
introduced in § 2, Su et al. (2023); Gehrmann et al.
(2019); Mitchell et al. (2023); Bao et al. (2024)
employ statistics like probability, entropy and cur-
vature. We focus on zero-shot detection because
it is generalizable to diverse domains and do not
require access to the source model.

6.2 Attacks to Zero-Shot Detection

Attacks can occur pre-, post-, or during text gen-
eration (Wang et al., 2024), which we considered
in our experiments (§ 4.1). Pre-generation attacks
involve manipulating prompts to produce outputs
that are inherently harder to detect, such as adver-
sarial searches to known detectors (Shi et al., 2024).
Post-generation attacks replace text segments with
lexically or semantically similar alternatives, such
as typos, filled mask, synonyms, and rephrased
sentences (Shi et al., 2024; Sadasivan et al., 2023).
On-generation attacks (Wang et al., 2024) involve
decoding with intentional perturbations like typos
or emojis, which are later removed to alter the text’s
statistical distribution, impairing detection perfor-
mance. Additionally, Zhang et al. (2023) explores
how shifts in topic can impact detector efficacy.

6.3 Latent Features for Language Modeling

Current LLMs excel at generating locally fluent
sentences, yet they often fail to maintain the long-
form coherence, which requires awareness of con-
necting diverse ideas logically (Lin et al., 2021).
Bowman et al. (2016) introduced latent variable
models to improve the structural understanding of
long texts. Following this, Contrastive Predictive
Coding (CPC) (Oord et al., 2018) was proposed
to learn unconditioned latent dynamics implicitly,
which Wang et al. (2022) further refined with the in-
troduction of Brownian bridge to impose structured,
goal-oriented dynamics within the latent space of
texts. Novel evaluations for long-form coherence
include model criticism based on latent structures
such as section labels in Wikipedia (Deng et al.,
2022). Sheng et al. (2024) created a coherence
assessment metric grounded in Brownian bridge
theory (Horne et al., 2007). Owning to the lack
of reliable methods for inferring completely unob-
servable features from texts, we constrain our latent
variables to more accessible ones such as events.

7 Conclusion and Discussion

We propose a novel zero-shot detection framework
that employs latent features such as sequences of
events. Our method leverages the limitations of
current LLMs in replicating authentic human-like
discourse, despite their ability to generate locally
convincing language. Experimental results demon-
strate that our detector is highly robust across vari-
ous real-world generation settings and attacks.

Similar to existing works, our detection meth-
ods also rely on certain assumptions about how
machine-generated content differs from human-
created content. We specifically assumes that text
generators struggle to replicate human-like high-
level structures. However, we believe that it will
take longer for LLMs to catch-up with humans
on high-level structures than for them to mimic
token-level distributions. Therefore, our method is
likely to remain relevant for a longer period than
the token-level approaches. Furthermore, we hope
the latent-space statistics can serve as a valuable
indicator to guide current LLMs in improving high-
level content generation.
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Limitations

Our approach involves inferring discourse features,
which are more sparse than tokens, hence is re-
stricted to detecting long-form texts. Additionally,
the detection accuracy is reliant on the performance
of an external inference model, which, in our case,
is the event extractor. We find the existing event ex-
traction models are less accurate on scientific texts,
which can lead to error propagation during both
training and testing phases. We also encourage fu-
ture research to develop specialized methods for
extracting alternative discourse structures from aca-
demic writings, which could enhance the accuracy
of machine detection in scientific domains.
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A Datasets

We describe how we created human and machine
text dataset in more detail. The statistics summary
of dataset is shown in Table 6.

A.1 Collecting Human Texts

Considering any existing text from internet can be
the training data of current LLMs, we crawled the
latest texts to avoid LLMs memorizing them when
performing detection.

For Movie, we crawl the recent English-
language films category on Wikipedia6. To in-
crease the quality of synopses, we remove those
with fewer than 25 sentences. To minimize the risk
of model memorization, we filter out well-known
movies using the lengths of Wikipedia pages as an
approximate indicator of popularity.

For News articles, we collected all news arti-
cles from the main page of The New York Times7

published from 2024-04-09 to 2024-05-18 cover-
ing mainly politics, business and editorials news.
The test data are a mix of New York Times from
the same source and BBC8, the latter of which we
consider as out-of-distribution to increase the task
difficulty.

For Arxiv paper, we downloaded 419 economy,
666 quantitive biology and 782 computer science
published from 2023-06 to 2024-04 using its offi-
cial API. We then extracted the introduction section
in plain text from TeX source code of each paper
using GPT-3.5.

A.2 Collecting Machine Texts

All human and machine outputs have roughly the
same length. For each human text in test set, we
generate a paired machine-generated text.

Variations in Prompts For whole text genera-
tion, we use pure sampling at temperature T = 1.0
as default. To further avoid data contamination, we
first let the model to rephrase the titles and initial
settings, termed as generating seed, by altering all
the unique identifiers such as proper nouns. Then,
we use the three prompting strategies described in §
4.1 to collect machine generated texts from the gen-
erating seeds. More concretely, No Chain directly
complete the whole texts.Simple Chain mimics the
human-like plan-write process, by first generating

6https://en.m.wikipedia.org/wiki/Category:2020s_English-
language_films

7www.nytimes.com/section/us
8https://www.bbc.com/news/us-canada

an structured outlines and then expanding it to the
whole texts. Complex Chain add revision steps on
top of Simple Chain, to add more details in the out-
line and fix any illogical and vague descriptions in
original output. The complex chain prompt used to
generate scientific essays is shown in Figure 7.

Attack For both paraphrasing and edit attacks,
we introduce adversarial searches to known detec-
tors (Shi et al., 2024). Overall, our approach first
generates multiple substitutions for all candidate
segments that can be replaced by substitutions with-
out changing the meaning drastically. Then we
randomly sample substitutions with certain proba-
bility to produce candidates. Finally, GPT-2-XL is
used to calculate and select the text with the highest
perplexity to gain the maximum attack efficiency
at a fixed replacement ratio. For Paraphrase, the
segment is sentence level. We generate 2 to 5 sub-
stitutions for each sentence while keeping every
proper noun and overall writing styles. Then, we
generate candidates through replacing 40% original
sentences. For Edit, the segment is word level. We
generate 2 to 5 context-based synonyms for each
adjective, adverbial and verb as replacing them
would not affect the semantics severely. Then, we
generate candidates through replacing 40% adjec-
tives, adverbials and 20% verbs (about 15% of total
words). The prompt used for attacks is shown in
Figure 8.

A.3 Event annotation
For news and movie, we employed the off-the-shelf
T5 model from OmniEvent (Peng et al., 2023),
which is trained on multiple dataset including
ACE059, MAVEN (Wang et al., 2020), etc. We
use this model under MAVEN schema, which de-
fines 168 event types that cover various general
scenarios useful for our analysis. Owning to the
fact that there are no event extraction model spe-
cialized in scientific writing domain, we prompt
GPT-4 to extract, as is shown in Figure 9. Addition-
ally, we employ SpaCy’s lemmatization pipeline to
standardize the form of all event triggers.

9https://catalog.ldc.upenn.edu/LDC2006T06
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Main Tasks Source Event Extraction
Model

Length
(Words)

Length
(Events) Train Size Test Size

Creative
writing

Movie synopsis
(from Wikipedia)

OmniEvent
(Peng et al., 2023) 673 86 2,178 250

News NYT and BBC OmniEvent 1024 (truncated) 92 2,813 218

Academic
essay

Arxiv (introduction
of computer science,
economy, and
quantitative bio)

Few-Shot GPT-4 796 66 2,680 287

Table 6: The statistics of our human data. Note that for news articles, word length is truncated to max sequence
length of GPT-2.

1 <−− Create Consice Outline −−>
2 User: Create a simple outline structure for writing the introduction section of an academic paper based on the

given title and first sentence . Each line is a key component and its explanation . The paper domain is "{
domain}", title is "{ rephrased_title }" and first sentence is "{ rephrased_first_sentence }" .

3

4 Assistant : "{ concise_outline }"
5

6 <−− Expand Outline −−>
7 User: Based on the given simple outline of writing the introduction section of an academic paper , expand on the

key points outlined , providing bullet points of clear , well−developed arguments, data , context , etc . that
strengthen the introduction . The paper domain is "{domain}", title is "{ rephrased_title }" and the outline
is "{ concise_outline }" .

8

9 Assistant : "{expanded_outline}"
10

11 <−− Draft Paper −−>
12 User: Build upon the given bullet points to write a comprehensive and logically structured introduction that

frames the paper ' s arguments and significance . Your output should be the introduction section of an
academic paper generated in about 50 sentences . The paper domain is "{domain}", title is "{ rephrased_title }
" and the outline is "{expanded_outline}" .

13

14 Assistant : "{ paper_draft }"
15

16 <−− Refine Paper −−>
17 User: Based on the given outline , reexamine the flow of the draft introduction to ensure that it logically

progresses from general context to specific research questions , effectively setting up the research
framework. Strengthen transitions between ideas , ensure coherence in the presentation of arguments, and
align the structure with academic standards for introductions . Your output should be the introduction
section of an academic paper generated in about 30 sentences . The paper domain is "{domain}", title is "{
rephrased_title }" , the given outline is "{expanded_outline}" and the draft is "{ paper_draft }" .

18

19 Assistant : "{ refined_draft }"

Figure 7: Complex chain prompt used for generating scientific essays.

1 <−− Edit Attack −−>
2 User: Given the sentence and words within , for each of words, given two to five substitution words that do not

change the meaning of the sentence . Only generate substutions when a word is general but not proper word.
Return each general word and its substitutions in one line , in the format of ' word: substitution 1,
substitution 2, ...'. sentence : "{sentence}" ; words: "{words}"

3

4 Assistant : {Word substituions }
5

6 <−− Paraphrase Attack −−>
7 User: Please paraphrase the highlighted sentence (wrapped by '**' ) in the below text in 2 − 5 ways. You should

keep all proper words and style of the original text in your paraphrased sentences . Your should directly
output paraphrase splitted by linebreak without '**'.\ n\nText: "{ text }"

8

9 Assistant : {Sentence substitutions }

Figure 8: Prompt for edit and paraphrase attack.

10407



1 User:
2 Task: For each sentence in input , extract all the major event triggers . Your output should only be a valid JSON

string that is a list of dictionary . Each dictionary contains two fileds : ' sentence ' and ' triggers '.
3

4 Examples: "{examples}"
5

6 Now extract all major event triggers in the following input : "{ input_sentence }"
7

8 Assistant : { extracted_events }

Figure 9: Prompt for event annotation using GPT-4.
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