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Abstract

Table reasoning tasks have shown remarkable
progress with the development of large lan-
guage models (LLMs), which involve interpret-
ing and drawing conclusions from tabular data
based on natural language (NL) questions. Ex-
isting solutions mainly tested on smaller tables
face scalability issues and struggle with com-
plex queries due to incomplete or dispersed
data across different table sections. To alleviate
these challenges, we propose TAP4LLM as
a versatile pre-processor suite for leveraging
LLMs in table-based tasks effectively. It covers
several distinct components: (1) table sampling
to decompose large tables into manageable sub-
tables based on query semantics, (2) table aug-
mentation to enhance tables with additional
knowledge from external sources or models,
and (3) table packing & serialization to convert
tables into various formats suitable for LLMs’
understanding. In each module, we design and
compare several common methods under vari-
ous usage scenarios, aiming to shed light on the
best practices for leveraging LLMs for table-
reasoning tasks. Our experiments show that
our method improves LLMs’ reasoning capa-
bilities in various tabular tasks and enhances
the interaction between LLMs and tabular data
by employing effective pre-processing.

1 Introduction

The extensive and complex characteristics of the
data are commonly represented in the format of
structured data. Table is one of those fundamen-
tal and widely used semi-structured data types in
different areas, such as relational databases, spread-
sheet applications, and programming languages
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Utterance: Which category achieves the most sales in 2016?  

(1) Table Sampling

Utterance (user query)

Output Prompt:
<table id = “user_table_1” range = “A1:G16”>
   <tr row = 1>
       <th role = “dimension”> Year </th>
        …
   <th row = 2>
        <td>2016</td>
        …
</table>

(2) Table Augmentation 

<augmentedInfo> 
The table is sampled from the user table 
of 15 rows and 5 columns with headers 
[“Year”,“Category”,”Product”…]
The range of ”Year” column is from 
2015 to 2017 with category Dimension…
</augmentedInfo>

Input Control: HTML(output form), 512(Token Limit)

(3) Table Packing & Serialization 

Year Category Product Sales Rating
2016 Components Chains $20,000 75%

2017 Clothing Bib-Shorts $4,000 22%

2016 Clothing Socks $2,300 28%

2016 Accessories Helmets $3,400 36%

2017 Components Brakes $5,400 38%
… … … … …

R1

R2

R3

R4

R5

Sampled Rows {R1,R3,R4…}

Sampled column headers 

Year Category Sales

2016

2016
2016

Components
Clothing

Accessories

$20,000
$2,300
$3,400

Components

Clothing
Accessories

…

$20,000

…

$4,000
$2,300

15 rows, 5 columns, headers are [“Year”, …]

…

Augmented info

• Year: The year in which sales data is recorded or reported.

• Category: The classification or grouping of sales products.

• Sales: The total revenue generated from the sale of products.
…

D
im

ension

M
easure

Sampled Table:
Referred from Wiki

Figure 1: Demo of TAP4LLM Modules. (1) Table sampling:
sample most relevant content. (2) Table augmentation: retrieve
and add extra / meta information. (3) Table packing: serialize
the sampled table and augment information into a string while
controlling the number of tokens.

that handle data for various domains, including
financial analysis (Zhang et al., 2020; Li et al.,
2022), risk management (Babaev et al., 2019),
healthcare analytics (Vamathevan et al., 2019), etc.
Reasoning over tabular data has several important
downstream tasks that are crucial to the field of
natural language understanding (NLU) and infor-
mation retrieval (IR), such as Table-based Ques-
tion Answering (TQA) (Chen et al., 2020b; Iyyer
et al., 2017; Ye et al., 2023a; Cheng et al., 2023),
Table-based Fact Verification (TFV) (Chen et al.,
2020a; Xie et al., 2022; Günther et al., 2021), Table-
to-Text (Wang et al., 2021b), Text-to-SQL (Yu
et al., 2018), Column Type & Relation Classifi-
cation (Iida et al., 2021; Deng et al., 2020), etc.

Although there is remarkable progress on table
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reasoning tasks with the development of large lan-
guage models (LLMs) (Cheng et al., 2023; Ye et al.,
2023a; Gemmell and Dalton, 2023), the existing
solutions are mainly tested on small tables and can-
not reflect the real challenges of table reasoning.
For example, there are usually issues on scaling
to large tables or handling complex queries that
require gathering data from various parts of a ta-
ble. How well do LLMs understand tables and
how to leverage LLMs to work with table data re-
mains an open question (Chen, 2022; Gong et al.,
2020). Our research aims to explore this question
and shed light on the best practices to leverage
LLMs for table-reasoning tasks. Several specific
practical issues are faced when leveraging LLMs
for table reasoning tasks as follows.

First, which part of a table should be kept in the
prompt? The full content of a table could be too
lengthy and noisy to be included in the prompt. In
addition, most LLMs have a limited input context
window size in which an overlong table cannot fit.
For large tables that satisfy the length constraint,
it can still lead to unnecessary computations (of
LLM on long prompt) and quality regressions (gen-
eration interfered from noisy input) when placing
irrelevant table content (w.r.t. the task or query) in
the prompt. To address the challenge, some sam-
pling methods were proposed in ad-hoc ways. For
example, truncating the input tables to contain only
the first 20+ rows and 8 columns (Chen, 2022), or
filtering relevant rows based on n-gram overlap
between them and the utterance (Yin et al., 2020).
To answer the question of which part to keep, we
conduct a systematic study of different grounding
and sampling algorithms in Section 2.1, and the ex-
periments and findings can be found in Section 3.2.

Second, what additional/external knowledge
could help LLMs better understand a table? The
raw content of a table may contain ambiguous infor-
mation (e.g., abbreviations, domain-specific terms,
column type, etc.) that requires further interpreta-
tion and clarification. As a result, direct reasoning
with the raw table may lead to misinterpretation and
hallucination by LLMs. To address this, some aug-
mentation techniques were proposed to incorporate
structured knowledge (Sui et al., 2023; Xie et al.,
2022), common sense knowledge (Bian et al., 2023;
Ogundare and Araya, 2023; Shen et al., 2023; Guo
et al., 2023), and analytical knowledge (Jena et al.,
2022; He et al., 2023) into training and inference
processes. For example, (Jena et al., 2022) trans-
forms existing tabular data to create diverse NL in-

ference instances for better zero-shot performance.
AnaMeta (He et al., 2023) infers implicit metadata
behind raw table contents through field distribu-
tion and knowledge graph information. However,
the techniques were proposed independently and
there lack a comprehensive study that compares
them and attempts to combine them to provide use-
ful and diverse knowledge and thoughts for LLMs.
We will discuss several augmentation methods in
Section 2.2 and their corresponding experiments
and findings can be found in Section 3.3.

Moreover, table augmentation plays a crucial
role in avoiding LLMs to partitionally comprehend
the semantics and distribution of the whole table
solely based on table sampling (which may remove
some essential rows/columns due to the limitations
of the methods). It leverages the summarization,
statistics, and metadata information derived from
the whole table to represent high-level informa-
tion, to compromise the trade-off with table sam-
pling, which will intuitively decrease information
entropy. We will discuss this essential trade-off in
Section 3.5 and the experiments and findings can
be found in Figure 3.

Third, how do we encode the table into a prompt?
While sampling and grounding compress the ta-
ble content, augmentation expands the prompt by
adding more information. With a given token bud-
get, one needs to find the balance to allocate avail-
able tokens between table content and augmented
knowledge. Furthermore, the serialization format
of the table also plays a critical role. It not only in-
fluences how well an LLM understands the table in-
put (Sui et al., 2023), but also determines the string
length of the serialized table and the augmented in-
formation. For example, as discussed in (Sui et al.,
2023), table formats such as HTML (Aghajanyan
et al., 2021) or XML are better understood by GPT
models, but they also lead to increased token con-
sumption. To pack a table into the prompt, these
problems should be addressed with trade-offs (see
Section 3.5).

To mitigate the aforementioned challenges, we
propose TAP4LLM (TAble Provider for Large
Language Models) as a versatile pre-processor
suite for LLMs in table-based tasks. Specif-
ically, there are three essential modules: (i)
Table Sampling: decomposing large tables into
manageable sub-tables based on query semantics;
(ii) Table Augmentation: enhancing tables with ad-
ditional knowledge from external sources or sym-
bolic models; and (iii) Table Packing: convert ta-
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TAP4LLM: Table Provider

Application
(e.g., Excel Copilot)

Utterance

Table Manager
(Table Cache /

Database Connection)

Table

Table Sync
Docs 

References

Metadata

Term 
Explanation

Table Sampling

Rule-based

Embedded-based

Hybrid approach

Table Augmentation

Retrieval-based

Metadata-based

Augmented Info

Sampled Table Table Packing

Token Allocation

Serialization Options

LLM (e.g., GPT-4)

Figure 2: TAP4LLM Framework for Tabular Data. Note that “table sync” refers to the application (such as Excel Copilot)
keeping its table data in sync with the table manager. The table manager acts as an intermediary, managing the data that is either
stored locally in a cache or accessed through a database connection. This sync process is crucial for “interactive table reasoning”
and for maintaining data integrity. The implications of this syncing process are further discussed in §F.2.

bles into various formats (e.g., HTML, XML, Mark-
down, etc) suitable for LLMs’ understanding while
balancing the token allocation trade-off as well.

In each module, we design and compare new and
existing methods for various scenarios across six
distinct datasets. Through experiments in Section 3,
we find that: (1) When using LLMs to process ta-
bles, it is more effective to concentrate on key rows
and columns rather than overloading with extra-
neous data. For tasks that require high accuracy,
semantic-based sampling typically enhances perfor-
mance, whereas for tasks prioritizing low latency
and minimal computational resources, rule-based
sampling may be more suitable. (2) Integrating ex-
ternal knowledge of the tables can consistently im-
prove the performance of table reasoning tasks by
reducing hallucinations and factual inaccuracies in
LLMs and improving general comprehension and
analysis of tabular data. (3) A balanced distribution
of tokens between table content and augmented in-
formation can help improve overall performance;
We find a performance-optimized ratio (close to
5:5 or 4:6 between table content and augmentation
tokens) often achieves the best performance across
different settings.

In summary, our main contributions are:

• We propose TAP4LLM framework to improve
the effectiveness of LLMs on tabular reasoning
tasks by better sampling, augmentation and pack-
ing tables into input prompts.

• A comprehensive evaluation of each component
is conducted. On average TAP4LLM achieves a
7.93% performance improvement.

• We summarize a table prompting guideline. For
different real-world scenarios, we identify the
corresponding optimal combination / setting of
methods within each module.

2 TAP4LLM: Table Provider for LLMs

The overall architecture of TAP4LLM is defined as
follows (as illustrated in Figure 2): Given a natural
language query/utterance Q from applications (e.g.,
Excel Copilot) and a table T from Table Manager
(e.g., table cache or database connection), our sys-
tem incorporates three core components as follows:

• Table Sampling: Decompose a large table T into
a sub-table T ′ with specific rows and columns.

• Table Augmentation: Incorporate relevant ex-
ternal knowledge, metadata, and attributes about
the original table T explicitly.

• Table Packing: Convert tables into various for-
mats suitable for LLMs’ understanding while
control the token allocation for table sampling
and augmentation.

2.1 Table Sampling
In table sampling, a subset of top-ranked rows and
columns is selected to form a sub-table. Specifi-
cally, given an original table T with a distinct set of
rows RT , columns CT , and a query q, the goal of
table sampling is to produce a sub-table T ′ = Tr,c,
where r ∈ P(RT ), c ∈ P(CT ). Here P(X) de-
notes the power set of X , representing all possible
subsets of X . The process can be formulated as

T ′ = Tr,c = select(T, rank(f(T, q))) (1)

The f(T, q) function represents each sampling
method. For example, the query-based sampling
(discussed in detail below) calculates the similarity
score as f between the query q and each row/col-
umn from T . The rank() function sorts the rows
and columns of T based on sampling methods f
and outputs a ranked list. The select() function
then chooses the top-k rows and top-l columns from
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the ranked list to form the sub-table Tr,c. Specifi-
cally, we classify multiple variants for table sam-
pling as three following categories:

2.1.1 Rule-based Sampling

Rule-based sampling refers to table sampling based
on predefined criteria or rules. These methods fol-
low the established patterns or criteria for data se-
lection. Specifically, we consider three common
rule-based sampling methods incoporated into our
table sampling module: (1) Random Sampling, (2)
Evenly Sampling, and (3) Content Snapshot & Syn-
thetically Sampling. The detailed description can
be found in Appendix A.

2.1.2 Embedding-based Sampling

Instead of adhering to strict rules or criteria in rule-
based sampling, embedding-based methods lever-
age the semantic and contextual representation of
each row and column. Specifically, let T be a ta-
ble where RT is the set of rows and CT is the set
of columns. Let E : RT ∪ CT → Rd be an em-
bedding function that maps each row or column
to a d-dimensional vector by capturing its seman-
tic content. By mapping each row or column to
vectors, this method harnesses the power of spatial
relationships within the embedding space to guide
sampling decisions.

Here, we propose three variant methods as
shown below: (1) Semantic-based Sampling:
Semantic-based Sampling is a tailored approach
emphasizing the semantics relevance of row/-
columns to the utterance. The process is exactly
illustrated in Eq. 1. Note that the default query-
based sampling is the row-based method. In our
experiments, we also study the column ground-
ing shown in Table 1. (2) Centroid-based Sam-
pling: The goal of centroid-based sampling is to
ensure the preservation of data diversity. We use K-
Means (MacQueen et al., 1967) to partition the set
of embeddings into n clusters Cn. For each cluster
Ci, we select the top-K rows or columns based on
the closeness to the centroid. (3) Hybrid-approach:
The Hybrid approach marries the specificity of
semantic-based sampling with the broad represen-
tations of centroid-based sampling. Specifically,
the top-K rows or columns are selected based on a
combination metric h(r, c, u) measuring the direc-
tional distance to cluster centroid c and the seman-
tic similarity to the utterance u. We formulate the

measuring metric as:

h(r, c, u) = α(
1

1 +D(r, c)
) + βS(r, u) (2)

where D(r, c) measures the directional distance
(e.g., Euclidean distance) between selected rows
or columns and cluster centroid in embedding
space, and S(r, u) measures the semantic simi-
larity between rows/columns and the utterance.
The weights α and β provide flexibility in priori-
tizing between contextual relevance and diversity.
Without further specification, we set α = 0.3 and
β = 0.7 in our experiments.

2.1.3 LLM-based Sampling

LLMs have proven effective in tabular reason-
ing (Ye et al., 2023a), utilizing their capabilities to
predict row and column indices for efficient sub-
table extraction. However, relying on LLMs for pre-
processing significantly increases computational
costs. Additionally, using LLMs to predict indices
introduces challenges such as token limitations,
noisy information, and the need for further table
pre-processing, turning the task into a recursive
loop. Despite this method not being ideally suited
to our scope, we still consider it a strong baseline,
albeit at the expense of time.

2.2 Table Augmentation

Table augmentation enhances LLM reasoning by
adding extra knowledge to the input table and query.
In the table augmentation module, we categorize
different knowledge aspects into three main cate-
gories: Metadata-based, Retrieval-based, and Self-
consistency-based (See Table 7 in Appendix). We
will describe each category in detail below.

2.2.1 Metadata-based Augmentation

Tabular data analysis relies on accurately under-
standing field semantics and identifying common
patterns in everyday analysis (He et al., 2023). Fol-
lowing AnaMeta (He et al., 2023) using a range of
knowledge-fusion language models for metadata
inference, we consider five main metadata-based
augmentation types and leverage LLMs for zero-
shot inference using metadata instruction as clues:
Dimension / Measure, Semantic Field Type, Table
Size, Statistics Feature, Header Hierarchy. The de-
tailed description for each meta-data augmentation
type can be found in Appendix C.
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Table 1: Comparative results of the table sampling methods. The term “w/ Column Grounding” refers to the method consider
both row-based and column-based sampling (sometimes referred to as “grounding”). “GPT-3.5” refers to the OpenAI released
model gpt-3.5-turbo-32k, with 32k token-sized context window; In contrast, “GPT-3.5 truncated” refers to gpt-3.5-turbo, with 4k
token-sized context window, where most tables will be truncated according to this token limitation. The top-3 performances on
each dataset are highlighted in green, with the best performance being both bold and underlined.

Sampling Type Table Sampling Methods SQA FEVEROUS TabFact HybridQA ToTTo

Rule-based Sampling
Random Sampling 27.30% 60.30% 55.17% 23.60% 40.12%
Evenly Sampling 26.72% 61.87% 54.63% 5.32% 29.41%
Content Snapshot (Yin et al., 2020) 28.24% 63.10% 56.92% 23.40% 47.51%

Embedding-based Sampling

Centroid-based Sampling 28.10% 63.50% 55.40% 24.03% 48.30%
Semantic-based Sampling 28.32% 63.32% 59.80% 24.32% 49.14%

w/ Column Grounding 29.12% 64.74% 60.23% 25.14% 53.42%
Hybrid Sampling 28.79% 65.34% 61.37% 24.71% 51.63%

LLM-based Sampling LLM-Decomposer (Ye et al., 2023b) 27.98% 62.34% 58.74% 24.98% 48.13%

-
No sampling (GPT-3.5) 27.60% 60.12% 56.20% 14.10% 47.42%
No sampling (GPT-3.5, truncated) 23.54% 43.54% 52.12% 23.12% 30.42%

2.2.2 Retrieval-based Augmentation

Large Language Models have occasionally been
observed to generate hallucinated or factually inac-
curate text (Zhou et al., 2021; Zhao et al., 2023). To
mitigate these issues, several works have proposed
to strengthen LLMs with information retrieval sys-
tems (Shi et al., 2023; Jiang et al., 2023b; Nakano
et al., 2022), which enables LLMs to retrieve rel-
evant content from an external repository (knowl-
edge corpus). It has been verified that retrieval-
augmented LLMs can generate texts in response to
user input with fewer hallucinations (Nakano et al.,
2022). Furthermore, by incorporating customized
private data resources, retrieval-augmented LLMs
can respond to in-domain queries that cannot be
answered by LLMs trained with public data. As
previous works (Nakano et al., 2022; Shi et al.,
2023; Jiang et al., 2023b) suggested, LLMs can
generate more factual answers by feeding the refer-
ences retrieved from the external corpus.

In TAP4LLM, we have fortified the document
retrieval capabilities of LLMs and consider two
components: (1) document references: provide
supplemental relevant web pages as the references
for the given table; (2) term explanation: explain
strange/ambiguous term in the given table. We uti-
lize technologies including vector databases (Wang
et al., 2021a) and LangChain (LangChain, 2022) to
facilitate the retrieval of pertinent information from
Wikipedia1. The details for document references
and term explanation can be found in Appendix B.

1https://www.wikipedia.org/

2.2.3 Self-consistency-based Augmentation

We follow (Sui et al., 2023) to implement the self-
consistency-based augmentation approach. Specifi-
cally, we append the instruction "Identify critical
values and ranges of the last table related to the
statement" to the initial prompt and forward it to the
LLM. The output generated from this instruction is
then incorporated back into the prompt. Following
this, we then re-forward the enriched prompt to
LLMs — containing both the initial query and the
newly generated insights, along with task-specific
instructions for further processing.

2.3 Table Packing

The table packing module is motivated by the need
to preserve efficient reasoning without altering the
LLM architecture. First, we apply this module to
manage token-limit allocation for the table sam-
pling and augmentation. To achieve this, we con-
duct an empirical study to determine the optimal
ratio between the sub-table length and the length
of the augmentation information, as illustrated in
Figure 3. The packing process is regulated by a
user-defined token limit parameter, which sets the
maximum truncated token length. Additionally, we
are inspired by the study (Sui et al., 2023), which
highlights that using markup languages such as
HTML or XML significantly improves generation
quality in comparison to TQA and TFV. In line
with this, TAP4LLM supports multiple serializa-
tion formats, including HTML, XML, JSON, CSV,
NL+Sep (a common option, e.g., using ‘|’ as a
cell/column separator), and Markdown, etc.
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Table 2: Comparative results of the table augmentation methods. We use a semantic-based sampling method without
augmentation as the baseline. The term “Delta” refers to the performance gap between each method and the baseline. The top-3
performance gaps on each dataset are highlighted in green, with the best performance being underlined. Note that since only the
ToTTo dataset contains hierarchical headers, we only provide the “header hierarchy” method on this dataset. “D/M + SF" refers
to Dimension/Measure+ Semantic Field Type.

Augmentation Aspect
SQA FEVEROUS TabFact HybridQA ToTTo

Acc Delta Acc Delta Acc Delta Acc Delta BLEU-4 Delta

baseline 28.32% 0.00% 63.32% 0.00% 59.80% 0.00% 24.32% 0.00% 49.14% 0.00%

D/M + SF 30.12% 1.80% 65.72% 2.40% 62.67% 2.87% 26.12% 1.80% 51.25% 2.11%
Table Size 28.85% 0.53% 63.40% 0.08% 60.30% 0.50% 24.94% 0.62% 49.03% -0.11%
Statistics Feature 31.22% 2.90% 66.51% 3.19% 62.33% 2.53% 26.13% 1.81% 50.57% 1.43%
Header Hierarchy - - - - - - - - 48.64% -0.50%

Docs References 33.45% 5.13% 63.13% -0.19% 61.32% 1.52% 25.12% 0.80% 52.74% 3.60%
Term Explanations

- LLM-based 31.59% 3.27% 64.12% 0.80% 62.32% 2.52% 26.24% 1.92% 53.21% 4.07%
- Heuristics-based 29.59% 1.27% 63.72% 0.40% 61.58% 1.78% 25.24% 0.92% 51.21% 2.07%

Self Prompting 30.45% 2.13% 65.24% 1.92% 62.32% 2.52% 26.64% 2.32% 52.36% 3.22%

3 Experiments

In this section, we first present the experimental
setup, followed by an extensive comparison be-
tween baselines within each module in TAP4LLM.
Additionally, we conduct an ablation study and pro-
vide a thorough evaluation of the performance of
TAP4LLM. For further details on the experimental
setup and additional experiments, please refer to
Appendix D and E.

3.1 Experiment Settings
Datasets. We evaluate TAP4LLM on five TQA
& TFV datasets: Sequential Question Answer-
ing (SQA) (Iyyer et al., 2017), HybridQA (Chen
et al., 2020b), TabFact (Chen et al., 2020a),
ToTTo (Parikh et al., 2020). Additionally, we set up
TAP4LLM on a Text-to-SQL database Spider (Yu
et al., 2018), detailed in E.4. The statistics of the
datasets are given in Table 6, and the details of the
datasets and metrics are described in Appendix D.1.
Models. We select state-of-the-art LLMs that have
been widely studied in text generation and reason-
ing, including multiple GPT-series models and ad-
vanced open-source LLMs. Details of the tested
models and embedding methods are provided in
Appendix D.2, while the experimental results for
open-source LLMs are available in Appendix E.3.

3.2 Results of Table Sampling
As shown in Table 1, we perform comparative ex-
periments on various table sampling methods, lead-
ing to the following key observations: (1) Semantic-
based sampling with column grounding outper-
forms other sampling methods across all datasets

by effectively selecting table parts most relevant
to queries. Centroid-based sampling also shows
competitive results by clustering data points within
tables, though it lacks query-table relevance con-
sideration. Moreover, when combining these two
strong variants (hybrid sampling), it shows the
most powerful capability. (2) The rule-based sam-
pling method content snapshot, while not as pre-
cise in capturing query-specific information, offers
a promising, efficient alternative by focusing on es-
sential table content through n-gram overlap, with-
out the need for complex embedding calculations.
(3) Direct encoding methods, including using GPT-
3.5-turbo with a 32k token limit or a 4k token-sized
context window with truncation, demonstrate in-
ferior performance. This suggests that while they
can encompass more table information, they may
introduce noise or lose critical context, undermin-
ing the table reasoning process and highlighting
the importance of strategic sampling for optimal
LLM performance.

3.3 Results of Table Augmentation

For the comparative experiments of table augmen-
tation methods, we use the semantic-based sam-
pling method as the baseline and report the per-
formance gap between adding each augmentation
method or not. Table 2 provides several key in-
sights, summarized as follows: (1) Table augmen-
tation methods further improve LLM’s reasoning
ability after sampling. For example, D/M + SF
achieves higher accuracy across all six datasets
(a most significant increase on TabFact +2.87%).
Docs References and Term Explanations add mean-
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ingful context and semantic understanding to the
model’s processing of tables, with (SQA +5.13%,
ToTTo +4.07% ). The Self-Prompting further ex-
emplifies the potential for iterative improvement
in query and response generation. However, not
all augmentation methods yield positive outcomes.
Table Size offers minimal performance enhance-
ment and Header Hierarchy shows that introduc-
ing a hierarchy may complicate the model’s ability
to process the tabular information in some con-
texts, possibly by adding unnecessary complexity.
(2) Additionally, the comparison of cell selection
methods for Term Explanations highlights the su-
perior performance of LLM-based selection over
heuristic approaches. We find that LLM-based cell
selection outperforms the heuristics-based cell se-
lection with improvements in “Delta” ranging from
0.80% to 4.07%. While achieving higher perfor-
mance, the LLM-based method also increases the
calling budget as it requires additional LLM calls.
These results indicate that the method’s effective-
ness varies with the dataset. i.e. It’s beneficial for
datasets requiring complex text understanding and
generation (SQA and ToTTo). However, its impact
is less distinct or even slightly negative in datasets
involving different types of data or nuanced tasks
(FEVEROUS and HybridQA).

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8
T:A Portion: Table Tokens vs. Augmentation Tokens

30

40

50

60

Pe
rfo

rm
an

ce
 M

et
ric

 (%
)

TabFact
FEVEROUS
HybridQA
SQA
ToTTo

Figure 3: Token Allocation. T:A refers to the ratio of upper
#token limitations of sampled table vs. augment info.

Through the experiment results, we also observe
that different augmentation methods perform well
on the same dataset. For example, D/M + SF, Statis-
tics Feature, Term Explanation and Self Prompting
all show significant improvement on the TabFact
dataset. This suggests that combining multiple aug-
mentation methods may have cumulative effects,
leading to improved performance. In this work, we
only report one simple intuitive approach - append-
ing all augmentation information together into the

prompt. We leave more fine-grained combinations
for future exploration.

3.4 Ablation Study of TAP4LLM

As shown in Table 3, we conduct an ablation study
to evaluate the impact of various components on
the performance of TAP4LLM. Each row repre-
sents the model’s performance with the removal of
a specific component. Our findings indicate that
all components contribute to the overall effective-
ness of the model, with certain components, such
as table sampling and table augmentation, being
particularly critical. The study also reveals that
each dataset responds differently to the removal of
features, underscoring the importance of a tailored
design when optimizing for specific datasets. We
also report the performance using the most optimal
combination of table sampling and augmentation
for each dataset, as presented in Table 3.

3.5 Trade-offs between Token Allocation

We employ five table datasets to explore the trade-
off between token allocation for table sampling and
table augmentation, as illustrated in Figure 3. We
observe that: (1) A balanced token distribution be-
tween the table and augmentation (approximately
5:5 or 4:6, referred to as the balanced T:A ratio)
generally achieves the best performance across all
five datasets. This suggests that carefully managing
token allocation can enhance LLM performance.
(2) Diminishing returns are observed when an ex-
cessive number of tokens are allocated to augmen-
tation information (e.g., a 3:7 ratio), leading to a
decline in performance. This indicates that beyond
a certain point, additional augmentation tokens may
no longer be beneficial and could detract from the
core table content.

The trade-off we analyze above reflects a broader
principle in data processing and machine learning:
the balance between information overload and in-
formation scarcity. Over-augmentation can intro-
duce noise, making it harder to identify key patterns
or insights, while excessive sampling may lead to
an incomplete or biased understanding of the data.
It is important to note that the optimal T:A ratio
may vary across datasets, as each has unique char-
acteristics that make certain ratios more effective.

3.6 Computational Implications

Table 4 demonstrates the bottleneck of computa-
tion for TAP4LLM. Specifically, The first row cal-
culates the average LLM calls conducted during

10312



Table 3: Ablation results on five table datasets using gpt-3.5-turbo model. Similar to Table 2, the lowest accuracy on each
dataset is bold. The top-3 decreasing gap (delta) on each dataset are highlighted in red, with the lowest performance being
underlined. The performance of golden combination of table sampling and augmentation (“hybrid-sampling + all-augmentation”)
is reported in the first row.

Components of TAP4LLM
SQA FEVEROUS TabFact HybridQA ToTTo

Acc Delta Acc Delta Acc Delta Acc Delta BLEU-4 Delta

All 34.12% 0.00% 68.32% 0.00% 64.78% 0.00% 27.87% 0.00% 54.93% 0.00%

w/o table sampling 26.54% -7.58% 61.54% -6.78% 58.12% -6.66% 24.12% -3.75% 48.47% -6.46%
w/o table augmentation - all 29.12% -5.00% 63.74% -4.58% 60.23% -4.55% 25.14% -2.73% 53.42% -1.51%
w/o table augmentation - metadata-based 33.87% -0.25% 64.38% -3.94% 62.78% -2.00% 26.98% -0.89% 53.42% -1.51%
w/o table augmentation - retrieval-based 31.42% -2.7% 66.23% -2.09% 62.97% -1.81% 26.33% -1.54% 52.67% -2.26%
w/o table packing 31.87% -2.25% 67.42% -0.90% 63.28% -1.50% 26.32% -1.55% 52.87% -2.06%
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Figure 4: Comparative Analysis of Model Performance Across TabFact, HybridQA, FEVEROUS and SQA. The series of
graphs illustrates the frequency distribution of token lengths alongside the LLM performance (%) for three distinct methods:
only sampling, only augmentation, and the hybrid method. Each subplot corresponds to a different dataset, depicting how table
token length impacts model accuracy for various data augmentation and sampling strategies. Note that the “only augmentation”
method refers to adding only the augmentation information to the prompt, without using any sampling method.

the Table Augmentation with Docs References and
Term Explanations, which contributes to N + C
times LLM calling. Here, N is the number of
terms detected by the LLM, and C is a constant
equal to 2 if there is no error occurs when call-
ing the API. We also measure the token usage for
each LLM call during the Table Sampling. Since
the Table Sampling module only retrieves the top-
k-related rows/columns to reconstruct a sub-table
for LLM calling, this ensures token expenditure
without compromising the model’s performance,
especially in cases where thousands of rows exist
in a table. The second row of the table 4 shows
the average token usage per question needed by
TAP4LLM after table sampling.

Table 4: Efficiency of multiple preprocessing steps in
TAP4LLM

Dataset SQA FEVEROUS TabFact HybridQA

Average LLM Calls 4.7 5.2 5.3 8.4
Average Token Usage 637 512 417 742

3.7 Large Table Analysis in TAP4LLM

Compared to smaller tables, large tables can grow
to immense sizes, making them more difficult to
maintain and reason over tabular data. In design-
ing TAP4LLM, performance optimization in this

context is essential. Figure 4 presents the distri-
bution of token counts from the table across the
five datasets, while also illustrating the impact of
token numbers on LLM performance in three dis-
tinct settings. We can observe that: (1) Shorter
token lengths dominate the datasets, indicating the
prevalence of text entries is relatively brief. (2)
Augmentation techniques excel with these shorter
lengths by providing focused, enriched contexts
that facilitate better model learning from simpler
inputs. In contrast, sampling methods prove more
effective for larger tables, suggesting that they help
manage data complexity by focusing on relevant
data segments. (2) The hybrid method shows con-
sistent performance across various token lengths,
highlighting its ability to leverage the strengths of
both augmentation and sampling for robust perfor-
mance enhancement.

4 Related Work

Large Language Models for Tabular Data Fol-
lowing the line of LLMs in natural language pro-
cessing, researchers have also explored large mod-
els for various modalities like vision (Gong et al.,
2023; Kirillov et al., 2023) and speech (Huang
et al., 2023). From a technical standpoint, their
ability to generate human-like text has opened new
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vistas of possibilities for processing tabular data.
Nevertheless, it is non-trivial to directly employ
the vanilla LLMs in the tabular area for two rea-
sons: (i)-Global Table Understanding: the GPTs
are known to suffer from the limited token length
and thus, they can not read a whole large table,
making them hard to understand the global tabular
information. (ii)-Generalized to Tabular Domain:
Second, their training processes are tailored for
natural languages and thus, they are less generaliz-
able when handling tabular data. There have been
several works (Hu et al., 2023; Zhong et al., 2017;
Li et al., 2023b,a) developed to integrate natural
language for tabular data analysis.

Table Augmentation Table augmentation is a
technique used to improve the generalization per-
formance and robustness of machine learning mod-
els. To enhance the performance and capabili-
ties of LLMs in various domains, various explo-
rations have been done to augment their knowl-
edge grounding. It involves incorporating struc-
tured knowledge (Sui et al., 2023; Xie et al., 2022),
commonsense knowledge (Bian et al., 2023; Ogun-
dare and Araya, 2023; Shen et al., 2023; Guo et al.,
2023), and analytical knowledge (He et al., 2023;
Jena et al., 2022) into the pre-training and infer-
ence processes. For example, (Jena et al., 2022)
proposes to semi-automatically transform exist-
ing tabular data to create diverse/inventive natu-
ral language inference instances for better zero-
shot performance. (He et al., 2023) proposes a
multi-tasking Metadata model that leverages field
distribution and knowledge graph information to
accurately infer analysis metadata for tables, and
then demonstrates its deployment in a data analysis
product for intelligent features.

5 Conclusion

In this paper, we propose TAP4LLM (Table
Provider for LLM) as a powerful toolkit designed
to enhance the interaction between LLMs and struc-
tured table data. It provides optimized prompt
designs and robust functionalities to ensure high-
quality outputs when LLMs process table-related
inputs. We believe that TAP4LLM has the poten-
tial to significantly improve table modeling and
exploratory data analysis (EDA), with applications
in various domains.

Limitations

Code generation-based methods (Cheng et al.,
2023; Gemmell and Dalton, 2023; He et al., 2024)
have been proposed to leverage LLMs to convert
natural language queries into executable code or
structured representations. We believe that seman-
tic parsing or code generation is an important re-
search direction. However, due to the page limits,
we will leave this topic to further exploration. Ad-
ditionally, our empirical study is mostly designed
for English, rather than multilingual scenarios. The
conversation on multilingual capabilities will also
be part of future exploration.

Ethics Statement

All the datasets used in this paper are public and
have been reviewed to ensure they do not contain
any personally identifiable information or offensive
content. However, as these datasets are sourced
from the Internet, potential bias may still be present.
Furthermore, despite our careful review, the pro-
cess of table augmentation with LLMs throughout
may inadvertently introduce inappropriate informa-
tion into the preprocessed data. In addition, all the
experiments in this paper are run on GPU clusters
with 8 NVIDIA A100 GPUs.
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A Rule-based Sampling

Rule-based sampling refers to table sampling based
on predefined criteria or rules. These methods fol-
low the established patterns or criteria for data se-
lection. We consider three common rule-based
sampling methods as follows: (1) Random Sam-
pling, by selecting rows from a table, with each
having an equal probability of being selected. To
increase the quality of this baseline, we repeat the
random selection for a user-specified amount of
time and return the sub-table with the highest com-
bined score among all the randomly computed sub-
tables. (2) Evenly Sampling: It samples rows from
a table by alternating between the top (r1) and bot-
tom rows (rn) and moving towards the middle until
reaching a set token limit. Compared to random
sampling, it helps to balance the proportions of
each field in the dimension column of the table (i.e.
rows are selected at regular intervals), ensuring a
uniform distribution of the sample accross the en-
tire table. (3) Content Snapshot & Synthetically
Sampling: Content snapshot (Yin et al., 2020) is
a text-matching based method for retrieving sub-
tables. For our empirical analysis, we construct
the content snapshot K rows based on their rele-
vance to the utterance using n-gram overlap ratio.
Specifically, for K > 1, top-K rows with the high-
est n-gram overlap ratio are selected. For K = 1,
a synthetic row is composed by selecting the cell
values from each column with the highest n-gram
overlap with the utterance. The comparative results
can be found in Table 1.

B Retrieval-based Augmentation

B.1 Docs References

This process involves associating tables with rele-
vant documents or sources for in-depth insights or
references. For example, suppose we have a table
titled “2023 Fortune 500 Companies”. This ta-
ble contains various information about the top 500
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companies as ranked by Fortune in 2023, including
their revenue, number of employees, and market
capitalization. Docs references could fetch the ac-
tual 2023 Fortune 500 list from the Fortune website,
Wikipedia pages discussing the Fortune 500 con-
cept and its criteria, or analytical articles discussing
the companies on the 2023 list. In our setting, we
leverage Langchain (LangChain, 2022) to retrieve
wiki pages from wikipedia.org. We craft queries by
concatenating the table header and the table’s title
into a single string. These queries are then used
to identify and fetch the relevant Wikipedia pages,
which act as informative document references in
our study.

B.2 Term Explanation
Compared to the docs references, term explanation
focuses on providing definitions and explanations
for specific strange terms or values in the table cells.
For example, if a cell mentions a technical term
or an acronym, the term explanation module could
source a brief definition or background from reli-
able web sources (such as Wikipedia, wolfram,etc)
on that term, ensuring that the strange term will
not be forwarded to LLMs. To ensure the efficacy
and accuracy of term explanations, we introduce
two distinct approaches for selecting the cell that is
required to be explained, LLM-based Cell Selection
and Heuristics-based Cell Selection. The compara-
tive experiment results of these two variants can be
found in Table 2.

1) LLM-based Cell Selection Module: To pin-
point the exact cell warranting explanation, we
harness the capabilities of LLMs. The selection
prompt is meticulously constructed, taking into ac-
count various factors including: (1) Cell Position;
(2) Cell Content; (3) Cell Formatting; (4) Cell Con-
text; (5) Cell Properties. A detailed description
and the specific prompt utilized to determine which
cells require explanation can be found in Table 5.

2) Heuristics-based Cell Selection: Inspired
by the methodology presented in (Herzig et al.,
2020), we introduce a heuristics-based cell selec-
tion, which is predicated upon the following crite-
ria: (1) Explicit Mention: whether the cell’s value
is explicitly referenced in the query. (2) Compar-
ative Value: whether the cell’s value is greater or
less than a value mentioned in the query. (3) Su-
perlative Value: whether the cell’s value represents
a maximum or minimum across the entire column,
especially when the query incorporates superlative
terms.

Table 5: LLM-based Cell Selection Criteria and Exact Prompt
Template.

Criteria Description

Cell Position Specify the range or position of the cells you want
to search. For example, you may want to search for
explanations only in the cells of a specific column, row,
or a particular section of the table.

Cell Content Define the specific content or data type within the cells
you want to search. For instance, you may want to
search for explanations in cells containing numerical
values, dates, specific keywords, or a combination of
certain words.

Cell Formatting Consider the formatting or styling applied to the cells.
This could include searching for explanations in cells
with bold or italic text, specific background colors, or
cells that are merged or highlighted in a certain way.

Cell Context Take into account the context surrounding the cells. You
can search for explanations in cells that are adjacent
to certain labels, headings, or identifiers, or within a
specific context provided by other cells in the same row
or column.

Cell Properties Consider any specific properties associated with the
cells. This might include searching for explanations in
cells that have formulas, links, or other data validation
rules applied to them.

Prompt You will be given a parsed table {Table} in python
dictionary format, extract the cells that need to be ex-
plained. The extraction rule should be based on the
following criteria: {Criteria}. Only return the cells
name in a python List[str].

C Metadata-based Augmentation

Metadata are defined as a form of formally repre-
sented background knowledge to understand the
field semantics for correctly operating on table
fields (or columns) and to further find common
patterns in daily analysis (He et al., 2023). This an-
alytical knowledge, particularly of field semantics,
is able to increase the applicability across various
tasks. In our table augmentation, we consider the
following metadata:

(1) Dimension / Measure: This is one type of
metadata used in Tableau (Hoelscher and Mortimer,
2018) and Excel (Ding et al., 2019) across diverse
features. As the name suggests, the method in-
volves categorizing each field in a table as either
measure or dimension. The measure contains nu-
merical data that can be subjected to calculations,
such as the “Price" and “Discount". The dimension
provides categorical information used for filtering,
grouping, and labeling, such as the “Product Name"
and “Category". Correctly classifying fields as ei-
ther a measure or a dimension is crucial to determin-
ing feasible operations on the data and influences
the accuracy and relevance of data analysis. (2)
Semantic Field Type: Besides identifying whether
a field is a measure or a dimension, semantic field
type specifies the meaning and format of the data
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within each field based on knowledge graphs. For
example, the dimension field includes semantic
field types such as “Consumer Product” and “Cat-
egory”, etc. Measure field includes semantic field
types such as “Money” and “Ratio”, etc. We follow
the work (He et al., 2023) as a reference to this
term. (3) Table Size: The size of a table is defined
by its number of rows and columns. It provides
essential context when determining the computa-
tional complexity of operations or understanding
data density and granularity. (4) Statistics Feature:
Statistics feature provides a quantitative represen-
tation of the tabular data. These features serve as
numerical descriptors that summarize key aspects
of the table datasets, aiding LLMs in understanding
the overall characteristics and tendencies. Gener-
ally, statistics features include four categories (He
et al., 2023): (a) Progression features (b) String
features (c) Number range features (d) Distribution
features, discussed in Section §4. We conducted
empirical studies on common statistical features
to identify the most appropriate combination for
optimal utilization of TAP4LLM. (5) Header Hi-
erarchy: Tables are often used to present data in a
structured format, and headers play a crucial role
in defining the meaning and context of the data in
each column or row. The header hierarchy typically
includes different levels of headers, each providing
a level of organization and categorization for the
data.

D Additional Experiment Settings

D.1 Downstream Tasks and Datasets

Table Reasoning Tasks. Each instance in table-
based reasoning consists of a table T , a natural lan-
guage question Q, and an answer A. Specifically,
table T is defined as T = {vi,j | i ≤ RT , j ≤ CT },
containing RT rows and CT columns. The con-
tent of the cell in the i-th row and j-th column
is represented by vi, j. A question Q is a se-
quence of n tokens: Q = {q1, q2, q3, · · · , qn}. In
this paper, our primary focus is on two distinct
table-based reasoning tasks, table-based fact verifi-
cation (TFV) and table-based question answering
(TQA). In TFV, the answer A is a boolean value
in {0, 1}, indicating the veracity of the input state-
ment (where 1 means the statement is entailed by
the given table, and 0 means the statement is re-
futed by the given table). In TQA, the answer is
a sequence of natural language tokens represented
as A = {a1, a2, a3, · · · , an} corresponding to the

posed question. For our experiments, all tables
first undergo table sampling and table augmenta-
tion by our proposed method and then are serialized
into a sequence by table packing and serialization.
Detailed implementation specifics are provided in
Section §2.3.

In this paper, we mainly focus on tabular reason-
ing with two major tasks: TQA & TFV. We conduct
experiments on five typical datasets and the distri-
bution of the datasets can be found in Table 6. In
addition, to extend our work to databases contain-
ing table structures, we also set up TAP4LLM
on Spider (Yu et al., 2018) dataset. Specifically,
we use: (1) SQA (Iyyer et al., 2017), which is
constructed by decomposing a subset of a highly
compositional dataset, WTQ (Pasupat and Liang,
2015). The dataset consists of 1,288 unique queries
corresponding to 432 tables, with each table having
18.5 rows and 6.4 columns on average; (2) Hy-
bridQA (Chen et al., 2020b), which is designed as
a large-scale multi-hop question-answering dataset
over heterogeneous information of both structured
tabular and unstructured textual forms. The dataset
consists of 6,268 unique questions and each ques-
tion is aligned with a Wikipedia table. Compared
to the SQA dataset, HybridQA has shorter column
numbers, which facilitates the understanding of the
table’s structure boundaries. (3) ToTTo (Parikh
et al., 2020) is a high-quality English table-to-text
dataset. It proposes a controlled generation task
that involves synthesizing a one-sentence descrip-
tion given a Wikipedia table and a set of highlighted
table cells. The dataset contains 8,026 samples,
each comprising a Wikipedia table with highlighted
cells. Each table contains 16 rows and 6 columns
on average. (4) FEVEROUS (Aly et al., 2021) is a
fact verification dataset over structured information.
The dataset consists of 1,322 verified claims. Each
claim is annotated with evidence in the form of
sentences and cells from tables in Wikipedia. Each
annotation also includes a label indicating whether
the evidence supports, refutes, or does not provide
enough information to make a decision. Each table
contains 26.3 rows and 5.5 columns on average.
(5) TabFact (Chen et al., 2020a) is another fact
verification dataset where the tables are extracted
from Wikipedia and the sentences are composed
by crowd workers. Compared to the FEVEROUS
dataset, TabFact encompasses a larger number of
samples and each table has fewer rows, has 14 rows
per table on average.

Metrics. For TQA and TFV tasks (SQA,
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Table 6: The distribution of the used datasets.

Property SQA FEVEROUS TabFact HybridQA ToTTo Spider

Unique Query (Set Size) 1,228 1,322 9,228 6,268 8,026 10,181
Unique Table 432 942 1,342 4,364 5,934 500
SQL Query - - - - - 5,693
Rows per tables (Median/Avg) 12 / 18.5 14 / 26.3 8 / 14.0 8 / 15.7 16 / 28.4 10 / 16.1
Columns per tables (Median/Avg) 4 / 6.4 4 / 5.5 4 / 5.5 4 / 4.3 6 / 8.8 4 / 4.5
Cells per tables (Median/Avg) 78 / 180.4 77 / 190.3 80 / 150.3 70 / 143.9 87 / 212.6 -

Domain Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia -
Evaluation Metric Exact Match Exact Match Exact Match Exact Match BLEU-4 Execution Accuracy

Table 7: Different kinds of table augmentation.

Knowledge Aspect Categories Definition

Dimension/Measure Metadata-based Distinguish each element in a table as either dimension field or measure field.

Semantic Field Type Metadata-based Classify the meaning and format of the data within each field based on knowl-
edge graphs.

Table Size Metadata-based Basic information of a table including numbers of rows and columns.

Statistics Feature Metadata-based Statistics features such as change rate, numerical distribution, range of data.

Header Hierarchy Metadata-based The organization and structure of header elements within a table.

Docs References Retrieval-based External domain knowledge from reliable webpages (e.g., wikipedia, Wolfram
Alpha, etc.) which are similar to the given context.

Term Explanation Retrieval-based External domain knowledge such as term and metric definitions (formulas,
relevant documents/sources, search results, etc.)

Self Prompting Self-consistency-based Leverage LLMs to generate some reasoning thoughts as supplementary for table
augmentation (self-augmented prompting, chain-of-thoughts, etc.)

FEVEROUS, TabFact and HybridQA), we report
the exact match accuracy of answer sets. For the
data-to-text generation task (ToTTo), we report the
BLEU-4 score.

D.2 Models

We evaluate the performance of the recent domi-
nant LLM models, 1) Instruct-GPT-3.5 (Ouyang
et al., 2022), using versions gpt-3.5-turbo, gpt-3.5-
turbo-16k; 2) GPT-4, using the latest version of gpt-
4 model; 3) Llama-2-70B (Touvron et al., 2023),
using version 17; 4) Mixtral-8x7B (Jiang et al.,
2024), using version 0.1.

Unless otherwise specified, we utilize gpt-3.5-
turbo in all experiments. In the sampling methods,
we use text-embedding-ada-002 (ope) for row and
query embedding generation. The comparison ex-
periments using other embeddings models, such as,
text-search-ada-doc-001, bge-largen-en (Xiao et al.,
2023), all-MinLM-L6-v2 (Reimers and Gurevych,
2019) can be found in Table 8. We set the tempera-
ture of all the models as 0, top p as 1.0, frequency
penalty as 0, and presence penalty as 0.

The development of TAP4LLM begins with the
foundation provided by LLMs. In designing our
framework, we opt to use OpenAI models as our
base model due to their excellent capabilities in

language reasoning. However, the choice is not
exclusive. Since TAP4LLM use natural language
as an intermediary for interactive communication
between the table and LLMs, it can also support
other outstanding open-sourced models using natu-
ral language as input, such as Phoenix (Chen et al.,
2023), ChatGLM (Zeng et al., 2022), Ziya (IDEA-
CCNL, 2023), and Baichuan (Intelligence, 2023).
This design provides versatility and flexibility in
TAP4LLM implementation.

E Additional Experiments

E.1 Comparison Results of Embedding Type.

Based on the results from Table 8, we observe
that: (1) Superiority of “text-embedding-ada-002”:
“text-embedding-ada-002” consistently offers the
best performance across the datasets. It suggests
that for tasks similar to table reasoning, this embed-
ding type might be the most suitable choice. (2) Po-
tential of “sentence-transformer”: The “sentence-
transformer” embedding type provides competi-
tive results, especially in the ToTTo dataset. This
suggests that it might be particularly suitable for
certain tasks or datasets and is worth considering
alongside “text-embedding-ada-002”.

While “text-embedding-ada-001” and “bge-
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Table 8: Comparative results of different embedding mod-
els on query-based sampling method without any augmen-
tation method. We use all-MinLM-L6-v2 for the sentence-
transformer. The highest performance of each dataset is bold.

Embedding Type SQA FEVEROUS TabFact HybridQA ToTTo Spider

text-embedding-ada-002 28.32% 63.32% 59.80% 24.32% 49.14% 80.27%
text-embedding-ada-001 27.12% 62.24% 57.32% 23.14% 48.21% 79.34%
bge-large-en (Xiao et al., 2023) 26.76% 62.87% 56.31% 22.65% 47.32% 78.25%
sentence-transformer (Reimers and Gurevych, 2019) 26.32% 63.31% 58.94% 23.78% 50.12% 80.05%

large-en” don’t lead to the highest performance,
they still provide competitive performance. This
suggests that the choice of embedding can affect
the overall performance, but the differences might
not always be significant. The choice between these
embeddings would likely depend on specific use
cases, computational costs, and other practical con-
siderations.

E.2 Comparison Results of Statistics Features

The accuracy of each dataset for four groups of
statistics features reveals that the distribution fea-
tures overall performed well in capturing the nu-
ances and variations within specific tabular data
entries. Based on this, we further propose a combi-
nation including the most practical features across
these four categories and carry out an empirical
study to examine its performance. Specifically, this
combination contains variance, range, cardinality,
major, and change rate. with each term’s definition
listed in Table 9. The experiment result, displayed
in Table 10, demonstrates that our proposed com-
bination surpasses the previous four feature sets
across all six datasets.

Table 9: Detailed definition of statistics features.

Features Definition

Progression Type:
ChangeRate Proportion of different adjacent values
PartialOrdered Maximum proportion of increasing / decreasing adjacent values
OrderedConfidence Indicator of sequentiality

String Features:
AggrPercentFormatted Proportion of cells having percent format
CommonPrefix Proportion of most common prefix digit
CommonSuffix Proportion of most common suffix digit

Number Range Features:
Aggr01Ranged Proportion of values ranged in 0-1
Aggr0100Ranged Proportion of values ranged in 0-100
AggrIntegers Proportion of integer values
AggrNegative Proportion of negative values

Distribution features:
Variance Standard deviation of a given series of data
Range Values range
Cardinality Proportion of distinct values
Spread Cardinality divided by range
Major Proportion of the most frequent value
Benford Distance of the first digit distribution to real-life average
Skewness Skewness of numeric values
Kurtosis Kurtosis of numeric values
Gini Gini coefficient of numeric values

Table 10: Comparative results of various types of statistical
features. The experiment setting is the same as Section 2. The
highest performance of each dataset is bold.

Statistics Features Type SQA FEVEROUS TabFact HybridQA ToTTo Spider

Progression features 29.20% 64.26% 60.45% 25.11% 49.53% 77.47%
String features 28.56% 63.13% 61.38% 24.83% 48.29% 73.56%
Number range features 29.13% 62.18% 59.03% 24.53% 49.68% 76.32%
Distribution features 30.28% 66.34% 62.18% 24.76% 49.34% 79.14%
Statistics features 31.22% 66.51% 62.33% 26.13% 50.57% 80.94%

E.3 TAP4LLM in Open-source model

Beyond conducting experiments on GPT models.
we also evaluate the effectiveness of TAP4LLM on
two recent LLMs: Llama-2-70B and Mixtral-8x7B.
According to Table 11, we first evaluated direct
inference on open-source models and then apply
TAP4LLM to each model. The result demonstrates
that TAP4LLM increases models’ performance on
all five datasets.

In addition, TAP4LLM is currently evaluated
under the setting of in-context learning. However,
through parameter-efficient fine-tuning (Hu et al.,
2021) and recently advanced prompt compression
techniques (Jiang et al., 2023a; Zou et al., 2024),
we can directly apply TAP4LLM on more chal-
lenging tabular reasoning tasks requiring training
procedures. We will leave this as our future work.

Table 11: Comparison of TAP4LLM and baseline on Open-
source models. We refer to "Baseline" as directly inferring
each task using the model. For TAP4LLM, we apply se-
mantic sampling for table sampling module and Statistics
Feature/D/M+SF/self-prompting for table augmentation mod-
ule.

Model Name Methods SQA FEVEROUS TabFact HybridQA ToTTo

Llama-2-70B
Baseline 19.02% 65.33% 63.45% 17.21% 21.08%
TAP4LLM 22.14% 69.20% 66.32% 23.15% 30.00%

Mixtral-8x7B
Baseline 21.25% 61.32% 57.21% 21.01% 34.25%
TAP4LLM 24.18% 63.29% 58.80% 25.44% 37.79%

E.4 TAP4LLM in Database Application

Dataset We test TAP4LLM effectiveness on Spi-
der (Yu et al., 2018). Spider is a cross-domain
Text-to-SQL dataset as shown in Table 6. Each
instance contains a natural language question, a
specific database containing tabular information,
and one corresponding SQL query.
Metric We evaluate TAP4LLM on the development
split Spider-dev which contains 1034 instances over
200 databases. We use the Execution Accuracy,
followed by the original paper (Yu et al., 2018), to
compare the execution output of the predicted SQL
query with the golden SQL query.
Experiment As shown in Table 12 and Table 13,
the experiment result demonstrates that LLMs
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achieve an overall higher model performance
through TAP4LLM. Specifically, the execution ac-
curacy reaches the highest through semantic-based
sampling and D/M + SF augmentation.

Table 12: Comparative results of the table sampling methods
on Spider.

Sampling Type Table Sampling Methods Execution Accuracy

Rule-based Sampling
Random Sampling 74.58%
Evenly Sampling 72.03%
Content Snapshot (Yin et al., 2020) 78.93%

Embedding-based Sampling

Centroid-based Sampling 77.43%
Semantic-based Sampling 80.27%

w/ Column Grounding 81.03%
Hybrid Sampling 78.94%

LLM-based Sampling LLM-Decomposer (Ye et al., 2023b) 78.34%

-
No sampling (GPT-3.5) 72.15%
No sampling (GPT-3.5, truncated) 68.47%

Table 13: Comparative results of table augmentation methods
on Spider. We use semantic-based sampling method without
augmentation as the default method for table augmentation.

Augmentation Aspect Execution Accuracy

Baseline 80.27%

D/M + SF 82.45%
Statistic Feature 80.94%
Term Explaination (LLM-based) 80.48%
Term Explaination (Heuristics-based) 80.33%

F Implementation Details

F.1 Motivation of our Framework

Table Sampling: One primary challenges for tab-
ular reasoning is that the full content of a table
could be very long and noisy to be include in the
prompt. Most LLMs have a limited input context
window size (e.g., 4k tokens) in which an over-
long table cannot fit it. For long tables that satisfy
the length constraint, it can still lead to unneces-
sary computations (of LLMs on long prompt) and
quality regressions (generation interfered by noisy
input) when placing irrelevant table content (w.r.t.
the task or query) in the prompt.
Table Augmentation: Another challenge is what
additional/external knowledge could help LLMs
better understand a table? The raw content of a
table may contain ambiguous information (e.g., ab-
breviations, domain-specific terms, column type,
etc) that requires further interpretation and clarifica-
tion. We are motivated to propose table augmenta-
tion for 1) enhanced contextual understanding: by
supplementing tables with metadata and attributes,
we can achieve a more profound grasp of the ta-
ble’s intrinsic structure and semantics and further

enrich the tabular data; 2) bridging external knowl-
edge gasps: tables alone might not encompass all
the required information to provide comprehensive
answers to certain queries. By retrieving external
knowledge from reliable sources, e.g., Wikipedia,
we can aid the language models in understanding
the broader context of the query, leading to more
informed and nuanced responses.
Table Packing: The desire to maintain efficient
reasoning without changing the LLMs architecture
motivates us to consider how to encode the table
into a prompt? While sampling and grounding
compress the table content, augmentation expands
the prompt by adding more information. With a
given token budget, one needs to find the balance
to allocate available tokens between table content
and augmented knowledge.

F.2 Table Syncing
To achieve the interactive table reasoning,
TAP4LLM proposes the “table sync” to ensure
that applications, such as Excel Copilot, maintain
their table data in synchronization with the table
manager. The table manager acts as a go-between,
managing the data that is either stored locally in
a cache or accessed through a database connec-
tion. Specifically, when changes are made to the
data within the application, those changes must be
reflected in the table manager for any operation
performance, such as sampling, augmentation, and
packing. Conversely, if changes are made within
the table manager, the changed data should be up-
dated in the application as well.

This syncing process is essential for maintaining
data integrity and ensuring that all components of
the system are kept up-to-date. This is especially
beneficial when the data is being used to generate
prompts for a large language model, as it allows for
accurate data processing, querying, and analysis.
By having the most current and relevant informa-
tion, the model can provide accurate and reliable
responses.

F.3 Table Cleansing
Table cleansing is an independent step in tabular
data prepossessing, especially when dealing with
hierarchical tables. In the context of fine-grained
in-context learning, where pre-trained generated
model has to discern and process intricate patterns
and relationships within datasets. The importance
of clean and standardized tables cannot be over-
stated for two reasons: (1) Dirty or unorganized
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tabular data can mislead the models and impair
the model’s performance; (2) Cleansed tables en-
sure uniformity, making them easier to compare,
merge, or use in subsequent operations. For ex-
ample, imagine a financial analyst case aiming to
forecast a company’s stock price based on histor-
ical data. The corresponding table contains daily
stock prices, trading volumes, and various financial
indicators. If there are any missing certain values
for certain days, or duplicate entries due to system
glitches. Such inconsistencies may dramatically
affect the forecasting performance. For instance, it
might suggest a non-trading day or a sudden drop
in stock price. Specially, the formal definition of
table cleansing is: Given a table T consisting of
rows RT and columns CT , table cleansing trans-
forms T into T ′ such that: (a) Cell and column
name completeness: For every cell ci,j in T where
i ∈ RT and j ∈ CT , if ci,j has a missing or null
value, it is filled using contextual information (i.e.,
use the corresponding entire column Cj of cell ci,j
as the context). We utilize a separate “CallLLM"
system g(·) to call a pre-trained language model to
synthesize the missing value. The processing can
be formulated as ci,j = g(Cj). This ensures that
gaps in the data don’t lead to misleading interpreta-
tions or missed patterns. (b) Duplicate data points
removal: For every pair of rows rm, rn and pair of
columns cp, cq in T , if rm = rn or cp = cq respec-
tively, one from the pair is removed to eliminate
duplication. (c) Format consistency: For every cell
ci,j in T , the value conforms to a specific format,
unit, or pattern.
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