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Abstract

Path planning is a fundamental scientific prob-
lem in robotics and autonomous navigation,
requiring the derivation of efficient routes
from starting to destination points while avoid-
ing obstacles. Traditional algorithms like
A* and its variants are capable of ensuring
path validity but suffer from significant com-
putational and memory inefficiencies as the
state space grows. Conversely, large language
models (LLMs) excel in broader environmen-
tal analysis through contextual understanding,
providing global insights into environments.
However, they fall short in detailed spatial and
temporal reasoning, often leading to invalid
or inefficient routes. In this work, we pro-
pose LLM-A*, an new LLM based route plan-
ning method that synergistically combines the
precise pathfinding capabilities of A* with the
global reasoning capability of LLMs. This hy-
brid approach aims to enhance pathfinding ef-
ficiency in terms of time and space complex-
ity while maintaining the integrity of path va-
lidity, especially in large-scale scenarios. By
integrating the strengths of both methodolo-
gies, LLM-A* addresses the computational
and memory limitations of conventional algo-
rithms without compromising on the validity
required for effective pathfinding.

1 Introduction

Path planning is the computational process of de-
termining a path from an initial point to a desti-
nation point that adheres to specific criteria, such
as avoiding obstacles, minimizing travel distance
or time, and satisfying other constraints (LaValle,
2006; Hart et al., 1968b; Karaman and Frazzoli,
2011). This problem is crucial across several
fields, such as robotics, autonomous vehicle navi-
gation, industrial automation, and virtual environ-
ment navigation due to its direct impact on the ef-
ficiency, safety, and feasibility of operational sys-
tems (Thrun et al., 2005; Karaman and Frazzoli,
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Figure 1: An comparison between LLM-A* and A* in
computation and memory efficiency during pathfinding
process. LLM-A* leverages target states generated by
LLMs as waypoints to guide the searching process, sig-
nificantly reducing the number of visited states, which
leads to fewer operations and storage usage than A*.

2011; Fiorini and Shiller, 1998; Fox et al., 1997).
Existing path planning algorithms are capable

of effectively completing planning tasks and en-
suring the validity of their paths. However, as the
environment and map scale up, algorithms like A*
and its variants (Hart et al., 1968b; Korf et al.,
2001; Harabor and Grastien, 2011; Jansen and
Buro, 2007) encounter an exponential increase in
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computational and memory demands. This occurs
because the pathfinding process can become sub-
optimal (see Figure 1 and 2), where the algorithm
might spend unnecessary effort exploring less rel-
evant areas, leading to exponential increases in
time complexity as the map size enlarges.

Meanwhile, Large Language Models (LLMs)
have achieved notable milestones in various plan-
ning tasks (Naveed et al., 2023; Yin et al., 2023;
Chen et al., 2023a; Shinn et al., 2024; Dou et al.,
2024). These models demonstrate capabilities in
processing and reasoning over long-context in-
put to provide valuable global insights that re-
flect their understanding of the environment, such
as identifying the relative positions of barriers,
agents, and goals. However, they struggle with
complex, long-term planning and complex spatial
reasoning tasks such as grid-based path planning.
LLMs often generate paths that are either invalid
or ungrounded, resulting in incomplete or collid-
ing paths, indicating a gap in their capability to
handle detailed spatial intricacies (Aghzal et al.,
2023).

In this work, we propose LLM-A*, a new
LLM based route planning method that synergizes
the traditional A* algorithm with the global in-
sights from Large Language Models. As illus-
trated in Fig. 1 and 2, this hybrid approach lever-
ages LLM-generated waypoints to guide the path
searching process, significantly reducing compu-
tational and memory costs. In addition, by inte-
grating the standard L2 distance-based heuristic of
A* with new heuristic values derived from these
waypoints, LLM-A* addresses the granularity is-
sues in LLM-generated solutions, ensuring the va-
lidity of the output paths.

We conducted extensive experiments across
various environment to compare the performance
of A* and LLM-A* (integrating LLAMA3 with
few-shot prompting). As illustrated in Figure 3,
A* exhibits exponential growth in both compu-
tational operations and storage requirements with
linearly increasing environment scale. In contrast,
LLM-A* shows a nearly linear growth pattern, in-
dicating superior scalability. This suggests that
LLM-A* is significantly more efficient in terms
of both computation and memory, making it bet-
ter suited for larger environments. Furthermore,
our primary experimental results, summarized in
Table 1, reveal that LLM-A* not only excels in
scalability but also outperforms A* in baseline

computational and memory efficiency. LLM-A*
achieves significantly lower operation and storage
ratios compared to A*, requiring less than about
half the operations and storage needed by A* on
average for the pathfinding process, thereby offer-
ing a robust and efficient solution for large-scale
path planning.

2 Related Work

Traditional Algorithms in Path Planning.
Pathfinding has been pivotal in artificial intelli-
gence, robotics, and computer graphics, with nu-
merous algorithms developed to address various
challenges. Among the foundational methods, the
A* algorithm, introduced by Hart, Nilsson, and
Raphael in 1968, stands out for its use of a heuris-
tic to estimate the cost from the current to the
goal node, balancing greedy best-first search with
uniform-cost search for efficient pathfinding (Hart
et al., 1968a). Similarly, Pearl’s Best First Search
(BFS), proposed in 1984, prioritizes nodes based
on heuristic values but can lead to longer paths due
to its focus on the most promising nodes (Pearl,
1984).

Extensions of A* have aimed to enhance its ef-
ficiency and adaptability. Korf’s Iterative Deepen-
ing A* (IDA*), from 1985, combines depth-first
search with A*’s heuristic to create a memory-
efficient approach (Korf, 1985). Korf also intro-
duced Learning Real-time A* (LRTA*) in 1990,
incorporating real-time learning to dynamically
update heuristic values, improving performance in
changing environments (Korf, 1990). Russell’s
Simplified Memory Bounded A* (SMA*), from
1992, addresses memory constraints by selectively
forgetting less promising paths, making it suitable
for resource-limited applications (Russell, 1992).

Further enhancements include Stentz’s Dy-
namic A* (D*) from 1994, which recalculates
paths as the environment changes, proving effec-
tive for navigation in unknown or evolving ter-
rains (Stentz, 1994). Koenig et al.’s Lifelong Plan-
ning A* (LPA*), introduced in 2004, incremen-
tally updates paths in dynamic and large-scale en-
vironments (Koenig et al., 2004). Harabor and
Grastien’s Jump Point Search (JPS), proposed in
2011, optimizes A* for only grid-based maps by
identifying key ”jump points”, reducing the num-
ber of expanded nodes (Harabor and Grastien,
2011). Nash et al.’s Theta*, from 2007, allows
line-of-sight checks between nodes, resulting in
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Figure 2: Visual comparison of pathfinding efficiency Between A* and LLM-A*. This figure illustrates the
performance differences between the traditional A* algorithm (left and upper images) and the LLM-A* algorithm
(right and lower images). Red lines indicate the computed paths, blue dots mark the starting state, green dots
indicate the goal state, gray areas represent visited states, and black lines denote obstacles. The LLM-A* algorithm
demonstrates more efficient pathfinding by requiring significantly fewer visited states than A*.

more direct paths (Nash et al., 2007).
Hierarchical approaches, such as Holte et al.’s

Hierarchical A* (HA*) from 1996, decompose
large pathfinding problems into smaller subprob-
lems through a hierarchy of abstractions, re-
ducing computational complexity (Holte et al.,
1996). Botea et al.’s Hierarchical Path-finding A*
(HPA*), introduced in 2004, improves transitions
between abstraction levels for efficient large-map
pathfinding (Botea et al., 2004).

Specialized methods also contribute signifi-
cantly. Demyen and Buro’s Triangulation-Based
Pathfinding (TRA*), proposed in 2006, navi-
gates polygonal environments using triangulation,
suited for non-grid-based settings (Demyen and
Buro, 2006). Koch’s Grid-specific Hierarchical
Path-finding (GHPA*), introduced in 2011, op-
timizes grid maps pathfinding by integrating hi-
erarchical and grid-specific optimizations (Koch,
2011).

Large Language Models in Path Planning.
Large Language Models (LLMs) have recently
achieved remarkable success in natural language
processing tasks and other domains (Naveed et al.,
2023). Studies such as (Shridhar et al., 2020b;
Song et al., 2023; Shah et al., 2023) explore LLMs
in high-level planning, highlighting challenges in
long-term planning and spatial reasoning (Aghzal
et al., 2023). Our research shifts focus to continu-
ous environments, offering a more realistic setting
compared to grid-based maps. Continuous spaces
align better with real-world conditions, providing
a more natural interface for human interaction and
allowing higher precision in spatial reasoning.

LLMs show varying proficiency in spatial rea-
soning (Ilharco et al., 2020; Patel and Pavlick,
2021; Bubeck et al., 2023; Abdou et al., 2021;
Yang et al., 2023b), yet face limitations in spatial
reasoning and planning (Agrawal, 2023; Xie et al.,
2023; Wu et al., 2023). We introduce a benchmark
for path planning in continuous environments, in-
tegrating spatial and temporal reasoning. Prior
benchmarks (Côté et al., 2019; Shridhar et al.,
2020a; Ruis et al., 2020; Wu et al., 2021) often ne-
glect temporal planning aspects. Our study further
evaluates LLMs in robot motion and path plan-
ning contexts, addressing limitations in end-to-end
planning (Liu et al., 2023; Chen et al., 2023b; Xie
et al., 2023; Silver et al., 2022).

Recent work, such as the LLM3 framework
(Wang et al., 2024) leverages pre-trained LLMs to
integrate symbolic task planning with continuous
motion generation through motion failure reason-
ing, where LLM3 iteratively refines both symbolic
actions and continuous parameters, significantly
improving planning efficiency in dynamic envi-
ronments, which aligns with our focus on LLMs’
adaptability in correcting low-level planning er-
rors and enhancing resilience in dynamic condi-
tions.

Understanding the interplay between high-level
and low-level planning is crucial (Latif, 2024;
Yang et al., 2023a; Ding et al., 2024; Zhou et al.,
2024). High-level planning involves strategic
goals, while low-level focuses on detailed task ex-
ecution. Our research explores LLMs’ adaptabil-
ity in correcting low-level planning errors, ensur-
ing resilience in dynamic conditions.
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Algorithm 1 LLM-A* Algorithm for Path Planning

1: Require: START state s0, GOAL state sg, OBSTACLE set obs, heuristic function h(), cost function
g(), Large Language Model llm()

2: OPEN list Oopen ← {s0}, CLOSE list Cclose ← {}, TARGET list T ← llm(s0, sg,O), TARGET
state t← Tstart, g(s0)← 0, f(s0)← h(s0), P ← {}

3: while Oopen ̸= ∅ do
4: sa ← argmins∈Oopen f(s)
5: if sa = sg then
6: return reconstruct path(sa)
7: Remove sa from Oopen
8: Add sa to Cclose
9: for all neighbors sn of sa do

10: if sn = t and sg ̸= t then
11: t← Tnext
12: Update f -cost of states in Oopen

13: if sn ∈ (Cclose ∪ obs) then
14: continue
15: Tentative cost gtent ← g(sa) + cost(sa, sn)
16: if sn /∈ Oopen or gtent < g(sn) then
17: Update path to sn to go through sa
18: g(sn)← gtent
19: f(sn)← g(sn) + h(sn) + cost(t, sn)
20: if sn /∈ Oopen then
21: Add sn to Oopen

22: return failure

3 Methodology

3.1 A* Algorithm

The A* algorithm is a widely used pathfinding
and graph traversal algorithm. It seeks to find the
shortest path from a start node s0 to a goal node
sg by combining the strengths of Dijkstra’s Algo-
rithm and Greedy Best-First Search.

A* employs a heuristic function h(s) to esti-
mate the cost from a node s to the goal, and a
cost function g(s) to track the exact cost from the
start to s. The total cost function f(s), defined as
f(s) = g(s)+h(s), guides the search towards the
goal. The algorithm operates as follows:

1. Initialization: Place the start node s0 in the
OPEN list with f(s0) = g(s0) + h(s0), and
initialize the CLOSED list as empty.

2. Search: Continuously select the node s from
the OPEN list with the lowest f -cost, expand
its neighbors, and update their costs. If a
neighbor sn offers a cheaper path than pre-
viously recorded, update its cost and parent

node. Repeat until the goal node sg is reached
or the OPEN list is empty.

3. Path Reconstruction: Once sg is reached,
reconstruct the path by tracing back from sg
to s0 via parent nodes.

The heuristic h(s) should be admissible, mean-
ing it does not overestimate the true cost to reach
the goal. This ensures the path optimality of A*.

3.2 LLM-A* Algorithm
LLM-A* integrates the global insights provided
by Large Language Models (LLMs) with the
A* algorithm’s optimal local search mechanism,
where achieves a balance between the efficiency of
the pathfinding process and optimality. The pseu-
docode for LLM-A* is shown in Algorithm 1, and
it closely resembles the original A* algorithm.

LLM-A* accepts the same inputs as A*, with
the addition of an obstacle state variable, denoted
as obs. This obstacle state is utilized to compute
a TARGET list T , which comprises a sequence of
path nodes from the start state s0 to the goal state
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sg. This list is generated through a prompt to a
large language model, reflecting the model’s un-
derstanding and global perspective of the current
environment. The returned T must meet two criti-
cal constraints in the following:

1. Containment of Start and Goal Points: T
must include the start point and goal point
that match the inputs s0 and sg. If the re-
turned T does not satisfy this requirement, s0
and sg must be inserted by algorithm.

2. Obstacle Avoidance: Every target node t in
T must not be located within any obstacle
obs. If any node t is found within an obstacle,
it is removed from T by algorithm.

The pathfinding process of LLM-A* is similar to
that of A*. It uses a heuristic function h, a cost
function g, an OPEN list O, and a CLOSED list
C. The algorithm searches through each state in
O until the goal state sg is reached. Each ex-
plored state sa is saved into C to avoid redun-
dant searches. The distinction that encapsulates
the main differences between LLM-A* and A*
happens during the expansion of the neighbor state
sn (see in Algorithm 1:13-15). For each sn, we
check if it matches the current target t from T . If
the current t is reached, t is updated to the next
target in T . Subsequently, the f -cost of every
state in the current O is re-computed, where the
f -cost in LLM-A* is computed as the sum of the
state’s cost, the heuristic value, and the cost from
the state to current t (see in Algorithm 1:20), de-
fined as f(s) = g(s)+h(s)+cost(t, s). This step
introduces an additional computational amount to
the pathfinding process, and the time complexity
scales linearly with both the length of T and the
increasing size of O. However, it is important that
this re-computation process ensures that the f -cost
of visited states in O remains accurate and updated
with the new target t.

General Applicability. LLM-A* retains the
versatility of the original A*, making it suitable for
a wide range of pathfinding tasks across various
environments, where specialized A* variants such
as JPS and GHPA* (Harabor and Grastien, 2011;
Koch, 2011), which are tailored to grid maps and
specific scenarios, and the mechanism of LLM-
A* is able to handle diverse and large-scale en-
vironments effectively. This generality positions
LLM-A* as a robust alternative to A*.

3.3 Prompt Techniques

Few shot Learning. In the methodology we
termed ”Few Shot Learning” or ”Vanilla Prompt-
ing,” our initial approach involves directly pre-
senting the Large Language Model (LLM) with
ground-truth sequences of actions as prompts.
This method is informed by previous studies
which have demonstrated that the performance of
such models can vary significantly based on the
volume of task-specific examples provided (Cao
et al., 2019; Razeghi et al., 2022). To investi-
gate this further, we employed a few-shot learn-
ing technique, wherein we provides five demon-
strations (See Table 2 in Appendix) presented to
the LLM. This approach aimed to determine the
optimal number of examples that would enhance
the model’s accuracy and learning efficiency.

Chain of Thought. The Chain-of-Thought
(CoT) methodology, as proposed by (Wei et al.,
2022), introduces a technique that encourages a
Large Language Model (LLM) to engage in a
sequential, step-by-step reasoning process. This
approach has demonstrated substantial efficacy in
tasks necessitating multiple layers of reasoning
and decision-making. In light of its proven effec-
tiveness, we have adapted the CoT strategy (See
Table 3 in Appendix) to the specific requirements
of path planning.

Recursive Path Evaluation. The Recursive
Path Evaluation (RePE) methodology (See Table 4
in Appendix) is designed to guide Large Language
Models (LLMs) in generating paths incrementally,
with a particular emphasis on evaluating each step
in the process. This approach gains its effective-
ness from deconstructing the path planning prob-
lem into three distinct sub-problems: environment
analysis, path generation, and path evaluation. By
following these sub-problems in a recursive man-
ner, the model systematically navigates towards
the goal, ensuring compliance with predefined
constraints at each stage. This concept bears a re-
semblance to the ReAct approach, Step Back QA,
and Self Reflection (Yao et al., 2022; Zheng et al.,
2023; Renze and Guven, 2024) in its process-
ing step by step foundational principles. Mean-
while, RePE receives no feedback or observation
from environment, and it distinctively focuses on
a step-by-step progression and only intrinsic rea-
soning, where the path is constructed one point at
a time with environment analysis and path evalua-

1091



tion. This methodical approach not only facilitates
more precise navigation by the LLM but also al-
lows for continuous assessment and adjustment at
each juncture, thereby may enhancing the overall
accuracy of the path planning process.

4 Experiments

4.1 Dataset
Our dataset consists of 100 manually selected
50 × 30 maps from a randomly generated collec-
tion, each with 10 different start and goal posi-
tions. Therefore, there are 1000 samples in total
(see Figure 1 for sample visualization). Our data
conform to the standard of search-based algorithm
environments in a continuous space. Each map in-
cludes the following parameters:

• x range: The minimum and maximum x-
coordinates of the environment boundary
range as [x min, x max].

• y range: The minimum and maximum y-
coordinates of the environment boundary
range as [y min, y max].

• horizontal barriers: List of horizontal bar-
riers, each represented as [y, x start, x end].

• vertical barriers: List of vertical barriers,
each represented as [x, y start, y end].

• start goal: List of 10 unique start and goal
positions for each map.

These parameters define the structure and con-
straints of each map, ensuring consistency and rel-
evance to the standard experimental environment
conditions for search-based algorithms. Notably,
the discretization of points and actions within this
continuous framework is a necessary simplifica-
tion that allows us to make the problem tractable
and effectively evaluate algorithms. Meanwhile,
the map environment is able to scale properly for
scalability experiment.

4.2 Experimental Setup
Large Language Model. We employ GPT-3.5-
TURBO and LLAMA3-8B-16bit for their bal-
ance of robustness and cost-effectiveness in val-
idating the LLM-A* algorithm. Prompts in-
clude simple instructions, standard 5-shot exam-
ples, chain of thought with 3-shot, and recursive
path evaluation with 3-shot for in-context learning
(see Section 3.3).

Experiment Environment. Our system facili-
tates search-based pathfinding within a scalable
framework designed for environments of varying
complexity. It consists of modules for environ-
ment management, agent control, and visualiza-
tion (see Section 4.1).

• Environment Management: Configures the
environment and provides feedback, ensuring
a challenging setup.

• Agent Control: Customizes the agent’s op-
erations using the algorithm and model, oper-
ating on discrete points and actions to make
the problem tractable.

• Visualization: Offers real-time and final vi-
sual outputs for comprehensive analysis.

While the environments considered are pre-
sented within a continuous framework, both the
LLM and A* algorithms operate on discrete points
and actions. This necessary simplification allows
us to effectively evaluate the proposed LLM-A*
algorithm, ensuring the system remains applicable
to a wide range of complex environments.

Experiment Subject. Our experiments focus on
two critical aspects: efficiency and scalability. For
efficiency, we assess the number of operations
and the storage required for the pathfinding pro-
cess, defined as time and space complexity, re-
spectively. Additionally, we evaluate the gener-
ated path length to assess path efficiency. These
metrics are used to compute a composite efficiency
score, as presented in Table 1. Larger environ-
ments and maps are employed to better illustrate
algorithm efficiency, as they offer a more compre-
hensive reflection of the algorithm’s performance
under increased complexity. Specifically, we con-
ducted efficiency experiments on a 50×30 map of
the original sample size. This size was selected as
it provides a substantial basis for evaluating effi-
ciency while keeping the computational demands
within a manageable range. Beyond this scale, the
experiment run times become excessively long.
For scalability, we tested both A* and LLM-A*
algorithms across 10 different scales, from 1 to 10,
to examine how they adapt to progressively larger
environments, as depicted in Figure 3.

4.3 Evaluation Metrics
We assess LLM-A* against A* using metrics for
operation efficiency, storage efficiency, and path
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Methodology Base Model Prompt Approach Operation Ratio ↓ (%) Storage Ratio ↓ (%) Relative Path Length ↓ (%) Valid Path Ratio ↑ (%)

A* - - 100 100 100 100
Dynamic WA* (w = 2) - - 60.91 78.53 100.24 100

LLM

GPT-3.5
Few-Shot - - 119.38 12.80
CoT - - 151.73 15.20
RePE - - 183.87 7.80

LLAMA3
Few-Shot - - 111.05 12.60
CoT - - 114.89 12.00
RePE - - 138.32 16.40

LLM-A* (Ours)

GPT-3.5
Few-Shot 57.39 74.96 102.44 100
CoT 69.50 83.65 102.54 100
RePE 85.47 96.53 102.41 100

LLAMA3
Few-Shot 44.59 64.02 102.47 100
CoT 47.60 66.27 102.46 100
RePE 64.08 80.19 102.54 100

Table 1: Quantitative analysis of three pathfinding methodologies: the classical A* algorithm, dynamic weighted
A* with initial weight of 2 and 0.99 decay, an LLM-only approach, and our proposed LLM-A* approach. The
methodologies are evaluated on the map size (50 × 30) of original samples. The LLM-only approaches explore
the path without explicitly searching the space grid by grid, so we do not report the operation and storage ratio.
The table includes the results from GPT-3.5 and LLAMA3 models with three prompting approaches: Few-Shot,
Chain of Thought (CoT), and Recursive Path Evaluation (RePE) for both LLM-only and LLM-A* approaches (see
Section 4.4 for details).

quality. Performance is summarized by the geo-
metric mean of performance ratios between LLM-
A* and A* for operation, storage, path length, of-
fering a balanced view less affected by outliers.

Operation and Storage Ratios. We compute
the geometric mean of the ratios of operations and
storage used by LLM-A* relative to A* ( LLM-A*

A* ).
A lower score indicates better efficiency, e.g., a
50% score means LLM-A* uses 50% of the re-
sources compared to A*.

Relative Path Length. Path quality is evaluated
by comparing the path lengths from LLM-A*, A*
and LLM-only approach to the optimal path. The
geometric mean of these ratios indicates how close
LLM-A* paths are to optimal.

Valid Path Ratio. This metric measures the pro-
portion of successful pathfinding attempts, often
indicating that the generated path is collision-free
and completable. A higher ratio indicates better
reliability, showing the algorithm’s effectiveness
in generating valid paths consistently.

Growth Factor. We assess how performance
scales from a 50 × 30 environment to larger sizes
by calculating the arithmetic mean of the growth
factors for operations and storage. This normal-
izes efficiency and scalability across different en-
vironment sizes.

4.4 Quantitative Analysis

Table 1 presents a comparative analysis of three
pathfinding methodologies: the classical A* algo-

rithm, an LLM-only approach, and our proposed
LLM-A* approach. The A* algorithm serves as
the baseline, with an index value of 100 indicat-
ing performance equivalent to A*, as outlined in
Section 4.3. The methodologies are evaluated on
maps 50× 30 of original map sizes.

The results demonstrate that LLM-A* signifi-
cantly enhances both operation and storage effi-
ciencies compared to A*. Specifically, when uti-
lizing the LLM-A* model, GPT-3.5 achieves a
57.39% score in operations and a 74.96% score
in storage, with a modest 2.44% increase in rel-
ative path length. Superior, with the LLAMA3
model, LLM-A* reduces operations by 44.59%
and storage by 64.02%, accompanied by a slight
2.47% increase in relative path length. These re-
sults highlight that LLM-A* not only reduces re-
source consumption but also maintains path va-
lidity, consistently achieving a valid path ratio of
100% across all scenarios. The observed increase
in path length remains relatively low compared to
the optimal path.

When compared to other variants using non-
admissible heuristics, LLM-A* demonstrates an
superior performance in term of operation and
storage efficiency. Dynamic weighted A* (with
initial weight of 2 and 0.99 decay) employs a static
logic to dynamically update the weight, but it lacks
the flexibility inherent to LLM-A*. Consequently,
dynamic weighted A* falls short in terms of both
operation efficiency and storage efficiency com-
pared to our advanced LLM-A* approach.

Meanwhile, the LLM-only approach underper-
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forms compared to LLM-A* and A* algorithms in
terms of both path efficiency and validity. When
used in isolation, LLMs may struggle with com-
prehensive path planning due to their lack of
heuristic guidance, which is provided by LLM-
A*, or the deterministic guarantees inherent in A*.
The integration of LLM insights in LLM-A* sig-
nificantly enhances its operational and storage ef-
ficiencies, surpassing the performance of A*.

Ablation Analysis. The Recursive Path Evalua-
tion (RePE) prompting method achieves marginal
improvements in relative path length for the LLM-
A* approach using GPT-3.5, with an increment of
2.41%. This suggests some potential of RePE’s
step-by-step progression and intrinsic reasoning
capabilities in generating more optimal waypoints,
resulting in slightly more efficient paths. How-
ever, it is important to acknowledge that RePE un-
derperforms compared to Chain of Thought (CoT)
and few-shot prompting in a both operation and
storage ratio, as well as efficiency in the LLM-
only approach. This observation aligns with the
limitations of LLMs in executing end-to-end path
planning and spatial-temporal reasoning, which
can affect their proficiency in sequentially rea-
soning out detailed path sequences and lead to
issues such as hallucinations and misunderstand-
ings, highlighting the diminish of RePE’s effi-
ciency for long-horizon tasks, where the inter-
mediate points chosen using this technique are
not optimal. Therefore, while RePE shows some
promise, its overall effectiveness is limited com-
pared to other methods in both LLM-A* and
LLM-only scenarios.

Scalability Analysis. Figure 3 provides a com-
parative analysis of the computational and mem-
ory efficiency of the A* and LLM-A* algorithms
across environments of different scales. The anal-
ysis is presented through two metrics: the growth
factor of operations and the growth factor of stor-
age, with respect to different environment scales.

The results from Fig. 3 indicate that LLM-
A* significantly outperforms A* in both com-
putational and memory efficiency across various
environment scales. While A* grows exponen-
tially in operations and storage, LLM-A* achieves
near-linear scalability relative to the environment
size. This performance advantage arises from the
learning-based enhanced heuristic values incorpo-
rated into LLM-A*, which allow it to avoid un-
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Figure 3: The comparative analysis examines the
computational and memory efficiency between A*
and LLM-A* (incorporating LLAMA3 with few-shot
prompting) across scaled environments ranging from
1 to 10 times enlargement, based on the means of 10
trials of random sampling. A* exhibits exponential
growth in both (a) OPERATION and (b) STORAGE
with linear increasing, environment scale, in contrast,
LLM-A* achieves a near linear scalability.

necessary node exploration and facilitate a more
direct search towards the goal. This adaptation
proves especially effective in larger and more
complex environments. The efficiency gains of
LLM-A* are particularly noteworthy in environ-
ments scaled up to 10 times, where the inefficien-
cies of A* become increasingly pronounced.

4.5 Qualitative Analysis

From the visualization in Figure 1, LLM-A* iden-
tifies the optimal path with only 140 operations,
less than one-fifth the 859 operations required by
A*, as well as the storage reduction. Both algo-
rithms utilize a priority queue that stores the f -
cost of each reached state, with the state having the
lowest f -cost selected for exploration. The funda-
mental distinction between the two algorithms lies
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#       : 37

1 2

43

LLM-A* SEARCH: A* SEARCH:      
TARGET (LLM WAYPOINTS):  START: GOAL:

PATH:

Without LLM Insights (A*) With LLM Insights (LLM-A*)

OPERATIONS: # STORAGES:  #     
TARGET (LLM WAYPOINTS):  START: GOAL:

PATH:

#          : 49 #       : 10 #          : 27

LLM-A* Efficient Search

Figure 4: Visualization of pathfinding process with
LLM-A* algorithms (under chebyshev heuristic set-
ting in 11× 11 grid environment) utilizing each LLM-
generated waypoint, as well as comparison with A* in
number of explored states. The blue and green rectan-
gles denote the start and goal states, respectively. Grey
rectangles indicate the states explored by the LLM-A*
algorithms, while pink rectangles represent states ex-
plored by A*. Red line illustrate the generated paths.
Stars indicate LLM-generated waypoints. (See Section
4.5 for more)

in their calculation of the f -cost or heuristic val-
ues. In addition, as the map size increases, this op-
erational efficiency difference could become more
pronounced, as further illustrated in Figure 3.

As illustrated in Figure 4, LLM-A* lever-
ages heuristic values derived from LLM-generated
waypoints in addition to standard heuristic from
A*, resulting in a dynamic heuristic that changes
as the algorithm progresses. This dynamic adjust-
ment is achieved through switching to the next
target state during search when the current tar-
get state is reached. Each time the target state
changes, the heuristic values for all previously
reached states are recalculated. This allows LLM-
A* to steer the search direction towards areas
deemed more favorable by the large model at var-
ious stages of the search.

In contrast, A* employs a static heuristic for
each state, which remains unchanged throughout
the search. This static approach can lead to exten-

sive exploration of non-optimal paths, including
dead-end areas in the environment.

5 Conclusion

In this work, we propose a novel path planning al-
gorithm, LLM-A*, which outperforms traditional
algorithms like A* in terms of both computational
and memory efficiency, as well as LLM-only ap-
proach in path robustness and optimality. LLM-
A* integrates heuristic values derived from LLM-
generated waypoints (serves as global insight),
with the deterministic guarantees in the A* algo-
rithm. This hybrid approach addresses the short-
comings of both LLM-only approach and the A*
algorithm by combining their respective strengths.
Furthermore, the methodology of LLM-A* re-
tains the general applicability of A*, making it
suitable for pathfinding tasks in a wide range of
environments. Thus, LLM-A* serves as an effec-
tive alternative to A* algorithm for path planning,
especially in large-scale scenarios.

Limitations

Although around 90% of the paths generated by
LLM-A* are optimal, our algorithm does not
guarantee optimal path. While these cases are rel-
atively few, they indicate that the algorithm may
sometimes yield paths that are not the shortest or
most efficient. Future improvements could focus
on enhancing the optimality of the generated paths
to ensure more consistent performance.

Our experiments mainly utilized GPT-3.5-
TURBO and LLAMA3-8B-16bit with basic
prompt techniques. Although these models and
prompts were adequate to validate the robustness
of the LLM-A* algorithm, we did not explore a
wider array of models or advanced prompt engi-
neering strategies. Further testing with additional
models and varied prompting methods could pro-
vide more comprehensive insights into the algo-
rithm’s performance across different scenarios.
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A Admissible Heuristic and Optimality

In path planning algorithms such as A*, a heuris-
tic function h(n) is deemed admissible if it never
overestimates the cost to reach the goal from any
given node n. This ensures that the estimated cost
from n to the goal does not exceed the actual low-
est possible cost, thereby providing a lower bound
on the true cost. An admissible heuristic guaran-
tees that the A* algorithm will find an optimal so-
lution, as it always explores the least costly path
first.

The standard A* heuristic is often the Euclidean
distance or straight-line distance between the cur-
rent node and the goal, which is both admissible
and consistent. This heuristic function accurately
reflects the minimum possible cost in scenarios
where there are no obstacles or other constraints
that might alter the cost path.

However, the LLM-A* algorithm integrates an
additional heuristic component, influenced by in-
sights from large language models (LLMs), into
the traditional A* heuristic function. Specifi-
cally, LLM-A* incorporates a modified heuris-
tic hLLMA∗(n) which includes an additional cost
term that estimates the difficulty of transitioning
from the current state to the target state, based on
the learned patterns from the LLM. This adjust-
ment effectively amplifies the traditional heuristic
by adding a factor derived from the LLM’s assess-
ment of the state-space complexity and the likely
transitions required.

Let hA∗(n) represent the conventional heuris-
tic, and cLLM (n) represent the cost component de-
rived from the LLM insights. The modified heuris-
tic can be expressed as:

hLLMA∗(n) = hA∗(n) + cLLM (n)

The term cLLM (n) may include factors such
as predicted transition costs, obstacle avoidance
strategies, or other environmental complexities in-
ferred by the LLM, through selected target states
in target list. Consequently, the heuristic function
hLLMA∗(n) provides a more nuanced estimate of
the cost to reach the goal, potentially guiding the
search more effectively by leveraging the LLM’s
understanding of the domain.

While this enhanced heuristic expedites the
search process by prioritizing paths that the LLM
identifies as promising, it introduces a deviation
from admissibility. By incorporating the addi-
tional cost cLLM (n), the heuristic may overes-

timate the true cost to the goal, particularly if
the LLM-derived costs are overly conservative or
based on non-optimal path predictions. This over-
estimation violates the admissibility condition be-
cause the total estimated cost g(n) + hLLMA∗(n)
could exceed the actual optimal path cost, where
g(n) is the cost from the start to the current node.

The implications of this non-admissibility are
significant: while the LLM-A* heuristic can po-
tentially lead to faster convergence towards the
goal by focusing the search in promising regions
of the state space, it compromises the guarantee
of finding the optimal path. The trade-off between
search efficiency and optimality must be carefully
considered in the application of LLM-A*. In sce-
narios where the heuristic insights from the LLM
offer substantial benefits in reducing search time
and computational resources, the potential loss of
optimality may be justified. However, for appli-
cations where finding the absolute optimal path is
crucial, relying solely on an admissible heuristic
might be preferable.

B Prompts in LLMs

This appendix outlines the prompting techniques
used in our LLM-A* algorithm to generate paths
between start and goal points while navigating
around obstacles. We employed different prompt-
ing strategies to evaluate their effectiveness in
guiding the model. Below are the details of each
technique along with the templates used.

B.1 Standard 5-Shot Demonstration
In the standard 5-shot demonstration in Table 2,
the model is provided with five examples (or
demonstrations) to guide the generation of the
path. Each example includes start and goal points,
along with horizontal and vertical barriers. The
model is prompted to generate a path by following
the pattern observed in the examples.

B.2 Chain of Thought (CoT) Prompting
The chain of thought prompting technique in Ta-
ble 3 provides a sequence of reasoning steps that
the model follows to arrive at the final path. This
technique includes a detailed thought process and
evaluation for each step, helping the model to un-
derstand the rationale behind the path generation.

B.3 Recursive Path Evaluation (RePE)
In the recursive path evaluation technique shown
Table 4, the model iteratively evaluates the path
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Identify a path between the start and goal points to navigate around obstacles and find the shortest path to
the goal. Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x,
y start, y end]. Conclude your response with the generated path in the format ”Generated Path: [[x1, y1],
[x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[5 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 2: The template of the prompt we used for LLM-A* using standard 5-shot demonstration.

Identify a path between the start and goal points to navigate around obstacles and find the shortest path to
the goal. Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x,
y start, y end]. Conclude your response with the generated path in the format ”Generated Path: [[x1, y1],
[x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
Thought: Identify a path from [5, 5] to [20, 20] while avoiding the horizontal barrier at y=10 spanning x=0
to x=25 by moving upwards and right, then bypass the vertical barrier at x=25 spanning y=10 to y=22, and
finally move directly to [20, 20].
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[3 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 3: The template of the prompt we used for LLM-A* using standard 3-shot demonstration with chain of
thought generation process.

at each step and makes decisions based on pre-
vious iterations. This process involves selecting
points, evaluating their effectiveness, and adjust-
ing the path as necessary to avoid obstacles and
reach the goal.

C Details of Dataset Construction

The dataset for A* path planning is generated us-
ing a custom Python script, leveraging several key
packages for randomization, geometric manipu-
lation, visualization, and data management. The

process involves the following steps:

1. Initialization: The script initializes with
specified map dimensions (x and y bound-
aries) and parameters (number of barriers and
obstacles) for the number of unique environ-
ments and start-goal pairs.

2. Environment Creation: For each map con-
figuration, do the following:

• Random obstacles, horizontal barriers,
and vertical barriers are generated
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Identify a path between the start and goal points to navigate around obstacles and find the shortest path to
the goal. Horizontal barriers are represented as [y, x start, x end], and vertical barriers are represented as [x,
y start, y end]. Conclude your response with the generated path in the format ”Generated Path: [[x1, y1],
[x2, y2], ...]”.

Start Point: [5, 5]
Goal Point: [20, 20]
Horizontal Barriers: [[10, 0, 25], [15, 30, 50]]
Vertical Barriers: [[25, 10, 22]]
- First Iteration on [5, 5]
Thought: The horizontal barrier at y=10 spanning x=0 to x=25 blocks the direct path to the goal. To navigate
around it, we should move to the upper-right corner of the barrier.
Selected Point: [26, 9]
Evaluation: The selected point [26, 9] effectively bypasses the horizontal barrier, positioning us at its corner
and maintaining progress toward the goal without encountering additional obstacles.
- Second Iteration on [26, 9]
Thought: Now that we have bypassed the horizontal barrier, the path to the goal seems clear.
Selected Point: [20, 20]
Evaluation: The path is obstructed by the vertical barrier, leading to a collision. A more effective route
involves moving around this vertical barrier.
Thought: To bypass the vertical barrier at x=25, we should move along its length and then turn around it to
continue toward the goal.
Selected Point: [25, 23]
Evaluation: The selected point [25, 23] successfully avoids the vertical barrier and brings us closer to the
goal without encountering further obstacles.
- Third Iteration on [25, 23]
Thought: From this position, there are no barriers directly obstructing the path to the goal.
Selected Point: [20, 20]
Evaluation: The path to the goal is clear from here, allowing a direct move to the goal.
Generated Path: [[5, 5], [26, 9], [25, 23], [20, 20]]

[3 in-context demonstrations abbreviated]

Start Point: {start}
Goal Point: {goal}
Horizontal Barriers: {horizontal barriers}
Vertical Barriers: {vertical barriers}
Generated Path: Model Generated Answer Goes Here

Table 4: The template of the prompt we used for LLM-A* using standard 3-shot demonstration with recursive path
evaluation generation process.

within defined x and y ranges using the
shapely.geometry.LineString
for line segments.

• Start and goal points are randomly
placed on the map, ensuring they do not
intersect with any obstacles. Valid pairs
form non-intersecting line segments.

3. Data Storage: The generated environments,
including the obstacles and start-goal pairs,
are stored in JSON format.

4. Query Generation: Natural language
queries are appended to each start-goal pair.
These queries describe the task of finding

a path that avoids the obstacles, which is
supported as text input for LLMs.

5. Visualization: The environments are visu-
alized using matplotlib, displaying the
grid, obstacles, and paths. The plots are sup-
ported to be saved as image files for reference
and stream in a show..

The Python packages utilized include:

• random: For generating random coordi-
nates.

• shapely: For geometric operations, specif-
ically creating and validating the positions of
obstacles and points.
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• matplotlib: For plotting and saving vi-
sual representations of the environments.

• inquirer: For command-line prompts to
make user decisions during dataset genera-
tion.

• json and os: For managing the reading and
writing of dataset files.

• search env: A custom package for en-
vironment setup and plotting specific to the
search based path planning task.

This process ensures a comprehensive dataset
with varied environments and queries, suitable for
training and testing A* path planning algorithms.

D Evaluation Metric

In this study, we evaluate the performance of our
algorithm using the geometric mean of ratios. This
metric provides a robust measure for comparing
the efficiency and effectiveness of different path
planning algorithms. Below, we outline the ratio-
nale for choosing this metric, the calculation pro-
cedure, and its advantages.

D.1 Rationale
The geometric mean of ratios is used in this study
to assess the relative performance of different path
planning algorithms or approaches. It provides a
balanced evaluation by aggregating multiple per-
formance ratios, ensuring that no single extreme
value disproportionately affects the overall metric.
This is particularly useful in scenarios where the
distribution of ratios can be skewed, and a simple
arithmetic mean might be misleading.

D.2 Calculation Procedure
Let Ri represent the ratio of performance mea-
sures (such as path length, computation time, or
any other relevant metric) between the proposed
algorithm and a baseline or reference algorithm
for the i-th test case. The geometric mean G of
N ratios is calculated as follows:

G =

(
N∏

i=1

Ri

) 1
N

(1)

The geometric mean G provides a multiplica-
tive average, effectively normalizing the ratios and
providing a single representative value that reflects
the overall performance across all test cases.

D.3 Advantages
Using the geometric mean of ratios offers several
benefits in the context of evaluating path planning
algorithms:

1. Sensitivity to Relative Changes: The geo-
metric mean is sensitive to the relative differ-
ences between performance measures, mak-
ing it suitable for comparing ratios.

2. Mitigation of Outliers: Unlike the arith-
metic mean, the geometric mean minimizes
the impact of extreme values or outliers, pro-
viding a more stable and representative met-
ric.

3. Interpretability: The geometric mean al-
lows for easy interpretation of performance
improvements or deteriorations. A geometric
mean greater than 1 indicates that, on aver-
age, the proposed algorithm performs better
than the baseline, while a value less than 1
suggests poorer performance.

4. Scalability: The geometric mean naturally
scales with multiplicative factors, making it
appropriate for comparing algorithms across
different scales or units of measurement.
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